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Introduction to these Notes

If you are anything like me, then you like to work out almost all the details when reading a physics
text book. I find that this is the only way that I can really understand fully what I am reading. Of
course, most text books cannot give all the calculation details, or they would be many times thicker
than they already are.

From experience I have found that I understand things best if I force myself to write out every-
thing in glorious detail. These Notes are a result of such an effort.

Joe Polchinski’s two volume set on String Theory has become an instant classic on the subject.
Like many other authors, Joe often only gives a brief sketch of a derivation - if at all, or he assumes
that the reader already has a certain knowledge of the material. That may not always be the case.
I set it up to myself to understand Joe’s book in depth and work out as many details as possible.
Other people have already published solutions to the exercises in the book, so I won’t bother doing
that, except when they are directly needed for an understanding of the main text. As an aside, it
is also when you work out many of the details that you realise how well written the book is. In
many cases you find sentences that seem innocuous, but that are, as you realise many pages later,
not innocuous at all.

These notes are organised along the chapters of Joe’s book. Per chapter the Notes are given per
page and usually per equation. References to equations in Joe’s book are given in round brackets,
( ). References to equations in these Notes are given in square brackets, [ ].

I claim no originality whatsoever in these notes, and even less correctness. All errors, and I am
sure there are plenty of them, are entirely mine. Some open issues that I have not been able to
resolve are summarised at the beginning of the relevant chapters, and detailed in the main text. If
you want to help improve these Notes, either by correcting errors, changing, adding material, or
answering open questions please contact me on hepnotes@hotmail.com. The latest update of these
notes will also be available on my website, hepnotes.com.

But first and foremost, enjoy these Notes and enjoy Joe’s book!

Stany M. Schrans
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References Used

Obviously these notes are about Polchinski’s two volume book on string theory [1, 2].
There are some other textbooks that may, at times, be useful to consult. Of course we start
with the classic of Green, Schwarz and Witten, known as GSW [3, 4]. Zwiebach has written
an introduction on string theory for advanced undergraduates [5]. It proceeds slowly and
has a lot of details not often present in other textbooks. The book by Blumenhagen, Lüst
an Theisen [6] is also a nice companion to consult as it often contains more details than
Polchinski. There are two more books on String Theory that I need to mention as they
tend to get a lot of attention. Becker, Becker & Schwarz [7] is geared towards more recent
developments in string theory. It does contain some introductory material overlapping with
Polchinski, but this is happening at a rather breakneck speed. If that book is at break-neck
speed than the book by Kiritsis [8] is at relativistic speed. Its scope and detail is so vast
that I consider it more an encyclopedia than a textbook; it covers so many topics that it
does not have the time to explain too many things.

It has been said by some that you can learn string theory without any (or at least with
very little) knowledge of quantum field theory. I strongly believe this is not true and a good
understanding of field theory and the Standard Model is important. For this, I refer to two
classics in the field: Peskin & Schroeder [9] is well worth a detailed study and Zee [10] is
recommended for those with less patience. As an alternative I can offer my own notes on
quantum field theory [11]; these are mostly based on Peskin & Schroeder, but with many
details worked out and several additional subjects from a variety of sources.

Similarly, a reasonable understanding of general relativity is, in my opinion, necessary
for a good understanding of string theory. For this my choices are Carroll’s [12] and Zee’s
[13] books.

Lastly it is useful to have some background on more specific mathematical topics. For
symmetry and group theory I recommend Zee once more [14]. For geometry and topology
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turn to Nakahara [15].

There are a number of articles and reviews that I have found useful as well. Polchinski
has written a condensed version of his first volume [16]. It may be a condensed version,
but it sometimes has explanations that clarify his Big Book. Tong’s Notes on string theory
[17] are very useful to read alongside Polchinski’s book. These notes are very much based
on the first half of Polchinski’s first volume, but often contain more details or approach
the subject from a slightly different angle. Ginsparg’s Notes [18] on conformal field theory
remain an absolute classic. It is also worth mentioning that there exists a solution manual
[19] for about half the problems in Polchinski’s book. I should also mention a couple
of articles that have been very useful in understanding some specific parts of Polchinski’s
books. The article by Lüst and Skliros on handle operators [20], and in particular their
section 2, has been of great help to understand Weyl transformations on Riemann surfaces,
a topic discussed in chapter 3. The review article by Giveon, Porrati & Rabinovici on
target space duality [21] has helped me understand better toroïdal compactification and
its duality group in chapter 8. For a better understanding of the Born-Infeld term in the
Lagrangian of a D-brane I have used the lectures of Szabo [22], and complemented this
with the original article of Fradkin and Tseytlin [23].

Finally I should mention the Physics Stack Exchange at physics.stackexchange.com
which is a great repository of questions and answers on physics and has active groups
on quantum field theory, general relativity and string theory.

All the above references reflect, of course, my personal choices only. There are a variety
of other sources that someone else may find better suited for her or his purpose.

— 6—



Bibliography

[1] J. Polchinski, String Theory Volume I, An Introduction to the Bosonic String, Cambridge
University Press, 1998.

[2] J. Polchinski, String Theory Volume II, Superstring Theory and Beyond, Cambridge Uni-
versity Press, 1998.

[3] M.B. Green, J.H. Schwarz & E. Witten, Superstring Theory Volume I, Introduction, Cam-
bridge University Press, 1987.

[4] M.B. Green, J.H. Schwarz & E. Witten, Superstring Theory Volume II, Loop Amplitudes,
Anomalies & Phenomenology, Cambridge University Press, 1987.

[5] B. Zwiebach, A First Course in String Theory, Cambridge University Press, 2009.

[6] R. Blumenhagen, D. Lüst & S. Theisen, Basic Concepts of String Theory, Springer 2013.

[7] K. Becker, M. Becker & J. Schwarz, String Theory and M-Theory: a Modern Introduction,
Cambridge University Press, 2006.

[8] E. Kiritsis, String Theory in a Nutshell, Princeton University Press, 2019.

[9] M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory, Westview Press,
1995.

[10] A. Zee Quantum Field Theory in a Nutshell, Princeton University Press, 2010.

[11] S. Schrans, Miscellaneous Topics in Quantum Field Theory, work in progress, available
on www.hepnotes.com.

[12] S. Carroll, Spacetime and Geometry. An Introduction to General Relativity, Pearson,
2014.

[13] A. Zee, Einstein Gravity in a Nutshell, Princeton University Press, 2013.

[14] A. Zee, Group Theory in a Nutshell for Physicists, Princeton University Press, 2016.

7



Joe’s Book (version of November 20, 2020) Notes from Stany M. Schrans

[15] M. Nakahara, Geometry, Topology and Physics, Taylor & Francis, 2003.

[16] J. Polchinski, Joe’s Little Book of String, Class Notes, Phys 230A, String Theory, Winter
2010.

[17] D. Tong, String Theory, http://www.damtp.cam.ac.uk/user/tong/string.html.

[18] P. Ginsparg, Applied Conformal Field Theory, Lectures given at Les Houches 1988,
arXiv:hep-th/ 9108028v1.

[19] M. Headrick, A Solution Manual for Polchinski’s String Theory, arXiv:hep-th/
0812.4408v1.

[20] D. Lüst & D. Skliros, Handle Operators in String Theory, arXiv:hep-th/ 1912.01055v1.

[21] A. Giveon, M. Porrati & E. Rabinovici, Target Space Duality in String Theory,
arXiv:hep-th/ 9401139.

[22] R.J.Szabo, Busstepp Lectures on String Theory: An Introduction to String Theory and
D-Brane Dynamics, arXiv:hep-th/ 0207142.

[23] E.S. Fradkin & A.A. Tseytlin, Non-Linear Electrodynamics from Quantized Strings,
Phys. Lett. 163B (1985), 123.

— 8—



Contents

1 A First Look at Strings 29
1.1 p 12: Eq. (1.2.15) The Variation of the Determinant of the Metric . . . . . . 29
1.2 p 15: Eq. (1.2.32) The Change in the Curvature under a Weyl Rescaling . . 29
1.3 p 15: Below Eq. (1.2.32) Invariance of χ under Weyl Rescaling . . . . . . . 33
1.4 p 16: The Variation of the Einstein-Hilbert Action . . . . . . . . . . . . . . . 33
1.5 p 16: Two-Dimensional Gravity has no Dynamics . . . . . . . . . . . . . . . 35
1.6 p 17: Below Eq. (1.3.7) Determining p+ . . . . . . . . . . . . . . . . . . . . 36
1.7 p 18: Eq. (1.3.9) Invariance of fdσ . . . . . . . . . . . . . . . . . . . . . . . 37
1.8 p 18: Below Eq. (1.3.9) Fixing the Gauge . . . . . . . . . . . . . . . . . . . 37
1.9 p 18: Eq. (1.3.10) Invariance of fdσ . . . . . . . . . . . . . . . . . . . . . . 38
1.10 p 18: Eq. (1.3.11) The Lagrangian in the Light-Cone Gauge . . . . . . . . . 39
1.11 p 19: Eq. (1.3.13) The Open String Boundary Conditions . . . . . . . . . . . 40
1.12 p 22: Eq. (1.3.32) Regularising

∑
n n . . . . . . . . . . . . . . . . . . . . . . 40

1.13 p 24: Eq. (1.3.43) The Regge Slope for Open Strings . . . . . . . . . . . . . 41
1.14 p 29: Eq. (1.4.19) The Unoriented Strings . . . . . . . . . . . . . . . . . . . 42

2 Conformal Field Theory 43
2.1 p 33: Eq. (2.1.2) The Complex Coordinates . . . . . . . . . . . . . . . . . . 43
2.2 p 33: Eq. (2.1.3) The Complex Derivatives . . . . . . . . . . . . . . . . . . . 43
2.3 p 33: Eq. (2.1.6) The Complex Metric . . . . . . . . . . . . . . . . . . . . . 43
2.4 p 33: Eq. (2.1.7) The Jacobian . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.5 p 36: Eq. (2.1.23) The Equation of Motion as Operator Equation . . . . . . 44
2.6 p 36: Eq. (2.1.24) ∂∂̄ ln |z|2 = 2πδ2(z, z̄) . . . . . . . . . . . . . . . . . . . . 45
2.7 p 38: Eq. (2.2.4) A Taylor Expansion . . . . . . . . . . . . . . . . . . . . . . 45
2.8 p 39: Eq. (2.2.5) and (2.2.8) Subtractions and Contractions . . . . . . . . . 46
2.9 p 39: Below Eq. (2.2.6) Normal Ordered Products Satisfy the Equation of

Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.10 p 39: Eq. (2.2.10) The Product of Normal Ordered Operators . . . . . . . . 47
2.11 p 40: Eq. (2.2.11) Calculating an OPE . . . . . . . . . . . . . . . . . . . . . 47
2.12 p 41: Eq. (2.3.5) The Ward Identity . . . . . . . . . . . . . . . . . . . . . . . 48

9



Joe’s Book (version of November 20, 2020) Notes from Stany M. Schrans

2.13 p 42: Eq. (2.3.11) The OPE with the Conserved Current Determines the
Transformation Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.14 p 43: Eq. (2.3.14) Transformation of a Vertex Operator under a Space-Time
Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.15 p 43: Eq. (2.3.15) The Energy-Momentum Tensor . . . . . . . . . . . . . . . 49
2.16 p 43: Eq. (2.4.1) The Energy-Momentum Tensor is Traceless . . . . . . . . . 51
2.17 p 43: Eq. (2.4.2) The Energy-Momentum Tensor Splits into a Holomorphic

and an Anti-holomorphic Part . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.18 p 44: Eq. (2.4.6) The OPE with the Energy-Momentum Tensor . . . . . . . . 51
2.19 p 44: Eq. (2.4.7) The Transformation of the Field Xµ . . . . . . . . . . . . . 52
2.20 p 45: Fig 2.2. Examples of Conformal Transformations . . . . . . . . . . . . 52
2.21 p 46: Eq. (2.4.12) Conformal Transformation of an Operator, I . . . . . . . . 53
2.22 p 46: Eq. (2.4.14) Conformal Transformation of an Operator, II . . . . . . . 54
2.23 p 46: Eq. (2.4.16) Conformal Transformation of a Primary Field . . . . . . . 55
2.24 p 46: Eq. (2.4.17) Conformal Transformation of Typical Operators . . . . . 55
2.25 p 48: Eq. (2.4.23) Conformal Transformation of the Energy-Momentum

Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.26 p 48: Eq. (2.4.27) The Schwarzian Derivative . . . . . . . . . . . . . . . . . 57
2.27 p 49: Eq. (2.5.2) The Linear Dilaton Central Charge . . . . . . . . . . . . . 58
2.28 p 49: Eq. (2.5.3) The Linear Dilaton Transformation . . . . . . . . . . . . . 58
2.29 p 50: Eq. (2.5.4) The bc Action is Conformally Invariant . . . . . . . . . . . 59
2.30 p 50: Eq. (2.5.11) The Ghost Energy-Momentum Tensor . . . . . . . . . . . 59
2.31 p 51: Eq. (2.5.12) The Ghost Central Charge . . . . . . . . . . . . . . . . . . 60
2.32 p 51: Eq. (2.5.14) The Ghost Charge Current . . . . . . . . . . . . . . . . . 60
2.33 p 51: Eq. (2.5.15) The Conformal Transformation of the Ghost Charge, I . . 61
2.34 p 51: Eq. (2.5.16) The Conformal Transformation of the Ghost Charge, II . . 61
2.35 p 51: Eq. (2.5.17) The Conformal Transformation of the Ghost Charge, III . 61
2.36 p 52: Eq. (2.5.24) The Central Charge of the βγ System . . . . . . . . . . . 62
2.37 p 53: Eq. (2.6.4) The Complex Coordinates . . . . . . . . . . . . . . . . . . 62
2.38 p 53: Eq. (2.6.7) The Fourier Expansion . . . . . . . . . . . . . . . . . . . . 62
2.39 p 54: Eq. (2.6.8) The Relation Between Lm and Tm . . . . . . . . . . . . . . 63
2.40 p 54: Eq. (2.6.9) The Relation Between Tzz and Tww . . . . . . . . . . . . . 63
2.41 p 54: Eq. (2.6.10) The Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . 63
2.42 p 55: Fig 2.3 The Contracted Contour Integration . . . . . . . . . . . . . . . 64
2.43 p 55: Eq. (2.6.14) Switching Between OPEs and Commutation Relations . . 65
2.44 p 56: Eq. (2.6.19) The Virasoro Algebra . . . . . . . . . . . . . . . . . . . . 66
2.45 p 56: Eq. (2.6.24) The Transformation of Primary Fields . . . . . . . . . . . 67
2.46 p 56: Eq. (2.6.25) The Open String Boundary . . . . . . . . . . . . . . . . . 67
2.47 p 58: Eq. (2.7.2) The Single Valuedness of Xµ . . . . . . . . . . . . . . . . . 67
2.48 p 58: Eq. (2.7.3) The Space-Time Momentum . . . . . . . . . . . . . . . . . 68
2.49 p 58: Eq. (2.7.4) Integrating ∂Xµ . . . . . . . . . . . . . . . . . . . . . . . . 68

— 10—



Joe’s Book (version of November 20, 2020) Notes from Stany M. Schrans

2.50 p 59: Eq. (2.7.7) Normal Ordering for L0 . . . . . . . . . . . . . . . . . . . 69
2.51 p 59: Eq. (2.7.9) aX = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.52 p 60: Eq. (2.7.11) The Creation-Annihilation Normal Ordering . . . . . . . 70
2.53 p 60: aX from the Normal Ordering . . . . . . . . . . . . . . . . . . . . . . . 72
2.54 p 61: Eq. (2.7.15) The Virasoro Generators for the Linear Dilaton CFT . . . 73
2.55 p 61: Eq. (2.7.17) The bc Ghost Commutators . . . . . . . . . . . . . . . . . 73
2.56 p 61: Eq. (2.7.18) The bc Vacuum States . . . . . . . . . . . . . . . . . . . . 73
2.57 p 61: Eq. (2.7.19) The bc Virasoro Generators . . . . . . . . . . . . . . . . . 74
2.58 p 61: Eq. (2.7.21) The bc Normal Ordering Constant ag . . . . . . . . . . . . 74
2.59 p 62: ag from Normal Ordering . . . . . . . . . . . . . . . . . . . . . . . . . 76
2.60 p 62: Eq. (2.7.22) The Ghost Number Operator . . . . . . . . . . . . . . . . 77
2.61 p 62: Eq. (2.7.23) The Ghost Number of the Ghost Fields . . . . . . . . . . . 79
2.62 p 62: Eq. (2.7.24) The Ghost Number of the Vacuum . . . . . . . . . . . . . 80
2.63 p 63: Eq. (2.8.1) From the Semi-Infinite Cylinder to the Unit Disk . . . . . . 80
2.64 p 63: The State-Operator Isomorphism in 2d-CFTs . . . . . . . . . . . . . . . 81
2.65 p 63: Eq (2.8.2) The Unit Operator and the Ground State . . . . . . . . . . 81
2.66 p 64: Eq (2.8.4) The Isomorphism for General States . . . . . . . . . . . . . 82
2.67 p 64: Eq (2.8.6) The Isomorphism for General States with an Operator Act-

ing at the Origin, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
2.68 p 65: Eq (2.8.7) The Isomorphism for General States with an Operator Act-

ing at the Origin, II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
2.69 p 65: Eq (2.8.10) The Ghost Operators Acting on the Ground State . . . . . 84
2.70 p 65: Eq (2.8.11) The Ground State and the Ghost Ground State . . . . . . 85
2.71 p 65: The Ghost Number of the Ground State . . . . . . . . . . . . . . . . . 85
2.72 p 65: Eq (2.8.16) The Complex Coordinates for the Open String . . . . . . . 85
2.73 p 66: Eq (2.8.17) The State-Operator Mapping: from Operator to State . . . 86
2.74 p 67: Eq (2.8.18) The State-Operator Mapping: from State to Operator . . . 88
2.75 p 67-68: The State-Operator Mapping for the Scalar Field Xµ: The Ground

State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
2.76 p 68: Eq (2.8.28) The State-Operator Mapping for the Scalar Field Xµ: The

State for the Operator ∂kXµ . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
2.77 p 70: Eq (2.9.3) The OPE of Three Operators . . . . . . . . . . . . . . . . . 96
2.78 p 72: Eq (2.9.14) Non-Highest Weight States in Unitary CFTs . . . . . . . . 97
2.79 p 72: Eq (2.9.15) hO = 0 Operators . . . . . . . . . . . . . . . . . . . . . . . 98
2.80 p 73: The Normal Ordering Constants from the State-Operator Mapping . . 98

3 The Polyakov Path Integral 99
3.1 p 79: Fig 3.4 Open String Processes . . . . . . . . . . . . . . . . . . . . . . . 99
3.2 p 82: Eq (3.2.3b) The Weyl Invariance of the Euler Number . . . . . . . . . 100
3.3 p 83: Eq (3.2.7) String Coupling Constants . . . . . . . . . . . . . . . . . . . 102

— 11—



Joe’s Book (version of November 20, 2020) Notes from Stany M. Schrans

3.4 p 85: Eq (3.3.6) The Relations Between the Ricci Scalar and the Riemann
Tensor in 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.5 p 85: Eq (3.3.8) The Residual Conformal Symmetry after Gauge Fixing . . . 103
3.6 p 87: Footnote 2 The Gauge Invariance of the Delta Function . . . . . . . . 104
3.7 p 88: Eq (3.3.16) The Infinitesimal Transformation of the Metric . . . . . . 104
3.8 p 88: Eq (3.3.18) The Faddeev-Popov Determinant . . . . . . . . . . . . . . 105
3.9 p 89: Eq (3.3.21) The Faddeev-Popov Action . . . . . . . . . . . . . . . . . . 107
3.10 p 89: Eq (3.3.24) The Faddeev-Popov Action in the Conformal Gauge . . . . 107
3.11 p 90-91: The Anomaly of a Global Scale Symmetry . . . . . . . . . . . . . . 108
3.12 p 92: Eq (3.4.6) Weyl Invariance of an Expectation Value . . . . . . . . . . . 115
3.13 p 92: Eq (3.4.8) The General Form of the Weyl Anomaly . . . . . . . . . . . 115
3.14 p 92: Eq (3.4.9) The General Form of the Weyl Anomaly in Complex Coor-

dinates, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
3.15 p 92: Eq (3.4.10) The General Form of the Weyl Anomaly in Complex Coor-

dinates, II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
3.16 p 93: Eq (3.4.11) The General Form of the Weyl Anomaly in Complex Coor-

dinates, III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
3.17 p 93: Eq (3.4.12) The Actual Form of the Weyl Anomaly in Complex Coor-

dinates, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
3.18 p 93: Eq (3.4.15) The Actual Form of the Weyl Anomaly in Complex Coor-

dinates, II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
3.19 p 93: Eq (3.4.16a) The Ricci Scalar in the Conformal Gauge . . . . . . . . . 118
3.20 p 93: Eq (3.4.16b) The Laplacian in the Conformal Gauge . . . . . . . . . . 118
3.21 p 93: Eq (3.4.17) The Weyl Variation of Z[g] . . . . . . . . . . . . . . . . . . 119
3.22 p 93: Eq (3.4.18) Z[g] in the Conformal Gauge . . . . . . . . . . . . . . . . 119
3.23 p 94: Eq (3.4.19) Z[g] for an Arbitrary Metric . . . . . . . . . . . . . . . . . 119
3.24 p 94: Eq (3.4.21) The Second Way to Calculate the Variation of Z[g], I . . . 120
3.25 p 94: Eq (3.4.22) The Second Way to Calculate the Variation of Z[g], II . . . 123
3.26 p 95: Theories with a Quantum Anomaly . . . . . . . . . . . . . . . . . . . . 125
3.27 p 95: Eq (3.4.26) The Energy-Momentum Tensor of the Cosmological Term 125
3.28 p 96: Eq (3.4.27) The Most General Form δW lnZ[g] with Boundary Terms . 126
3.29 p 96: Eq (3.4.29) The Weyl Transformation of the Counterterms . . . . . . . 126
3.30 p 96: Eq (3.4.30) The Wess-Zumino Consistency Condition . . . . . . . . . . 127
3.31 p 97: Eq (3.4.31) The Central Charge is Constant . . . . . . . . . . . . . . . 127
3.32 p 98: Fig 3.8 Scattering of Closed Strings . . . . . . . . . . . . . . . . . . . . 128
3.33 p 100: Compact Connected Topologies . . . . . . . . . . . . . . . . . . . . . 129
3.34 p 102: Eq (3.6.3) The Normalisation of the First Excited States . . . . . . . 131
3.35 p 102: Eq (3.6.4) The On-Shell Condition for the First Excited States . . . . 131
3.36 p 103: Eq (3.6.7) The Weyl Transformation of a Renormalised Operator . . 132
3.37 p 103: Eq (3.6.8) The Weyl Transformation for the Tachyon Vertex for the

Polyakov String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

— 12—



Joe’s Book (version of November 20, 2020) Notes from Stany M. Schrans

3.38 p 103: Eq (3.6.11) The Weyl Transformation of the Geodesic Distance, I . . 133
3.39 p 105: Eq (3.6.15) The Weyl Transformation of the Geodesic Distance, II . . 133
3.40 p 105: Eq (3.6.16) The Weyl Transformation for the Massless Vertex Opera-

tor for the Polyakov String . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
3.41 p 105: Eq (3.6.18) Linking ∇2Xµ with kµR . . . . . . . . . . . . . . . . . . 146
3.42 p 106: Eq (3.6.20) The Independent Parameters of the Massless Vertex Op-

erator, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
3.43 p 106: Eq (3.6.21) The Independent Parameters of the Massless Vertex Op-

erator, II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
3.44 p 106: Eq (3.6.22) The Independent Parameters of the Massless Vertex Op-

erator, III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
3.45 p 108: Eq (3.7.5) The Graviton from the Background Field . . . . . . . . . . 170
3.46 p 109: Eq (3.7.7) The Spacetime Gauge Invariance of the Antisymmetric

Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
3.47 p 109: Eq (3.7.7) The Spacetime Gauge Invariance of the Three-Tensor Hωµν 171
3.48 p 110: The Most General Classical Action Invariant under a Rigid Weyl

Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
3.49 p 110: Eq (3.7.11) The Linear Approximation of the Non-linear Sigma Model 171
3.50 p 111: Eq (3.7.13) The β Functions to First Order . . . . . . . . . . . . . . . 172
3.51 p 111: Eq (3.7.14) The β Functions with two Spacetime Derivatives . . . . . 174
3.52 p 113: Eq (3.7.19) The β Function for the Linear Dilaton Model . . . . . . . 179
3.53 p 114: Eq (3.7.20) The Effective Spacetime Action . . . . . . . . . . . . . . 180
3.54 p 114: Eq (3.7.23) The Ricci Scalar after a Weyl Transformation . . . . . . . 185
3.55 p 114: Eq (3.7.25) The Space Time Action with Einstein Metric . . . . . . . 185
3.56 Appendix: Almost Complex Structures, Holomorphic Normal Coordinates,

Beltrami Equations and all that Stuff . . . . . . . . . . . . . . . . . . . . . . 187

4 The String Spectrum 197
4.1 p 122: Eq (4.1.8) Spurious States, I . . . . . . . . . . . . . . . . . . . . . . . 197
4.2 p 122: Eq (4.1.9) Spurious States, II . . . . . . . . . . . . . . . . . . . . . . 197
4.3 p 123: Eq (4.1.11) The Physical Hilbert Space, I: the Tachyon State . . . . . 197
4.4 p 123: Eq (4.1.16) The L0 Condition for the Level One State . . . . . . . . . 198
4.5 p 123: Eq (4.1.17) The Lm≥1 Condition for the Level One State . . . . . . . 199
4.6 p 124: Eq (4.1.18) The Spurious Level One State . . . . . . . . . . . . . . . 199
4.7 p 124: Eq (4.1.18) The Level One States for Different Values of A . . . . . . 200
4.8 p 124: Eq (4.1.18) The Level Two States . . . . . . . . . . . . . . . . . . . . 200
4.9 p 126: Eq (4.2.6) The BRST Invariance of the Quantum Action . . . . . . . 206
4.10 p 127: Ghost Number Conservation . . . . . . . . . . . . . . . . . . . . . . . 206
4.11 p 127: Eq (4.2.7) δB(bAF

A) = iε(S2 + S3) . . . . . . . . . . . . . . . . . . . 207
4.12 p 127: Eq (4.2.8) A Change in the Gauge-Fixing Condition . . . . . . . . . . 207
4.13 p 128: Eq (4.2.13) The BRST Charge is Nilpotent . . . . . . . . . . . . . . . 208

— 13—



Joe’s Book (version of November 20, 2020) Notes from Stany M. Schrans

4.14 p 129: Eq (4.2.20) The Structure Constants for the BRST Transformation of
the Point Particle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

4.15 p 129: Eq (4.2.22) The BRST Transformation for the Point Particle . . . . . 209
4.16 p 129: Eq (4.2.23) The BRST Action for the Point Particle . . . . . . . . . . 210
4.17 p 130: Eq (4.2.25) The BRST Transformation of the Gauge Fixed Action for

the Point Particle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
4.18 p 130: Eq (4.2.26) The Canonical Commutation Relations for the Point Particle212
4.19 p 131: Eq (4.3.1) The BRST Transformation for the Bosonic String . . . . . 214
4.20 p 131: Nilpotency of the BRST Transformation for the Bosonic String . . . . 215
4.21 p 131: Eq (4.3.3) The BRST Current for the Bosonic String . . . . . . . . . . 216
4.22 p 132: Eq (4.3.4) OPEs with the BRST Current . . . . . . . . . . . . . . . . 216
4.23 p 132: Eq (4.3.6) The Anticommutator {QB, bm} . . . . . . . . . . . . . . . 218
4.24 p 132: Eq (4.3.7) The Mode Expansion of the BRST Operator . . . . . . . . 219
4.25 p 132: Eq (4.3.7) The BRST Normal Ordering Constant . . . . . . . . . . . . 220
4.26 p 132: Eq (4.3.10) The jB(z)jB(w) OPE and the Nilpotency of the BRST

Charge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
4.27 p 133: Eq (4.3.11) The BRST Current as a Primary Field . . . . . . . . . . . 225
4.28 p 133: Eq (4.3.15) The Algebra Satisfied by the Constraints . . . . . . . . . 227
4.29 p 133: Eq (4.3.16) The Nilpotency of the General BRST Charge . . . . . . . 228
4.30 p 134: Eq (4.3.17) The Hermitian Conjugate of the Ghost Modes . . . . . . 229
4.31 p 134: Eq (4.3.18) The Ghost Insertions for the Inner Product of the Ground

States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
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Chapter 1

A First Look at Strings

1.1 p 12: Eq. (1.2.15) The Variation of the Determinant of the Metric

Use

ln detM = tr lnM [1.1]

to write

γ−1δγ = δ ln γ = δtr ln γ = tr δ ln γ = tr γ−1δγ = γabδγba [1.2]

We have used the fact that
(
γ−1

)
ab

= γab. So δγ = γγabδγab. The second equation is
obtained by using γabγbc = δac from which it follows that δγabγbc + γabδγbc = 0.

1.2 p 15: Eq. (1.2.32) The Change in the Curvature under a Weyl
Rescaling

This is a formula that will come back several times, and it is quite rare to see it worked out
in detail, so it is useful to do this here. We wish to show that under a local Weyl rescaling
gab → g′ab = e2ω(σ)gab the Ricci scalar satisfies

(g′)1/2R′ = g1/2(R− 2∇2ω) [1.3]

We have gone to Euclidean space and called the worldsheet metric g in stead of γ, just to
save us some typing. One way to show this to write the Ricci scalar out in terms of the
Riemann curvature, write that one out in terms of the connections and those in terms of
the metric. We then transform the metric, make sure we don’t get dizzy from all the terms,
indices, and different contractions and hope this all works out. The other way is to be
smart about it and ignore all terms we don’t need, focussing on only what we do need.
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Let us first recall some basic facts. The Ricci scalar is given by

R = gabRab = gabRcacb

= gab
(
∂cΓ

c
ba − ∂bΓcca + ΓccdΓ

d
ba − ΓcbdΓ

d
ca

)
[1.4]

We have used the definition of the Riemann curvature

Rabcd = ∂cΓ
a
db − ∂dΓacb + ΓaceΓ

e
db − ΓadeΓ

e
cb [1.5]

The connection is given by

Γabc =
1

2
gad (∂bgcd + ∂cgbd − ∂dgbc) [1.6]

When we replace the metric by g′ab = e2ω(σ)gab we have g′ab = e−2ω(σ)gab and the connec-
tion becomes

Γ′abc =
1

2
g′ad

(
∂bg
′
cd + ∂cg

′
bd − ∂dg′bc

)
=

1

2
e−2ωgad

[
∂b
(
e2ωgcd

)
+ ∂c

(
e2ωgbd

)
− ∂d

(
e2ωgbc

)]
=

1

2
gad (∂bgcd + ∂cgbd − ∂dgbc) + gad (gcd∂bω + gbd∂cω − gbc∂dω)

= Γabc + ∆a
bc [1.7]

where

∆a
bc = gad (gcd∂bω + gbd∂cω − gbc∂dω) [1.8]

Let us now think, before we blindly start calculating. The Ricci scalar contains connections
and their derivatives and these in turn contain derivatives of the Weyl factor ω. The

√
g

on both sides just makes sure that the e2ω is overall cancelled. So, R′ is an expression that
will contain terms without ω’s and terms with ∂nω, ∂nω∂mω or ∂n∂mω. The terms without
any ω obviously combine to give g1/2R again, so it is the terms containing ω’s that should
carry our attention.

Now R is a scalar under diffeomorphism, as all its indices are nicely contracted. There-
fore we should be able to write everything in terms of covariant derivatives of ω. A mo-
ment’s thought reveals that there are only two possible combinations with at most a second
order derivative, viz. ∇ω · ∇ω and ∇2ω. We should therefore be able to write

g′1/2R′ = g1/2
(
R+ a∇ω · ∇ω + b∇2ω

)
[1.9]

for some a and b that may depend on the metric and its derivatives, but not on ω. Let us
now think about how we can fix these coefficients. We will do this for a general dimension
D as we will need that formula later as well, and set D = 2 at the end.
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Let first fix the coefficient b. We can write

∇2ω = ∇a∇aω = ∇a∂aω = ∂a∂
a + Γaab∂

bω = ∂2ω + · · · [1.10]

where the dots are for terms that do not contain any second order derivatives. We can thus
just identify the part of R′ with a second order derivative and that should give us the value
of b. All the other terms then should fit in line, without us having to perform an actual
calculation. Writing out R′ in terms of the connections we find that

R′abcd = ∂c(Γ
a
db + ∆a

db)− ∂d(Γacb + ∆a
cb) + (Γace + ∆a

ce)(Γ
e
db + ∆e

db)− (Γade + ∆a
de)(Γ

e
cb + ∆e

cd)
[1.11]

Only the terms ∂c∆a
db and ∂d∆a

cb have a second derivative of ω. Therefore

R′ = g′abR′ab = g′abR′cacb = g′ab
(
∂cΓ
′c
ba − ∂bΓ′cca + · · ·

)
= e−2ωgab (∂c∆

c
ba − ∂b∆c

ca + · · · ) [1.12]

Now

gab∂c∆
c
ba = gab∂c [gce(gae∂bω + gbe∂aω − gba∂eω)]

= gab (δca∂c∂bω + δcb∂c∂aω − gcegab∂c∂eω)

= gbc∂c∂bω + gac∂c∂aω − δaagce∂c∂eω = (2−D)∂2ω [1.13]

and similarly

gab∂b∆
c
ca = gab∂b [gce(gce∂aω + gae∂cω − gac∂eω)]

= gab (δcc∂a∂bω + ∂a∂bω − ∂a∂bω) = D∂2ω [1.14]

Therefore

g′1/2R′ = e2ωg1/2R′ = e2ωg1/2e−2ω(2−D −D∂2ω) + · · · = −2(D − 1)g1/22∂2ω + · · ·
[1.15]

and we see that indeed b = −2(D − 1), and so for D = 2 we have indeed b = −2.
Let us next fix the coefficient a. Because ω is a scalar, we can write

a∇ω · ∇ω = a∂aω∂aω [1.16]

We thus need to identify any terms that have a ∂aω∂bω in R′. These can only come from
the terms that have a product of two connections:

R′ = g′ab
(
Γ′cceΓ

′e
ba − Γ′cbeΓ

′e
ca

)
+ · · ·

= e−2ωgab (∆c
ce∆

e
ba −∆c

be∆
e
ca) + · · · [1.17]
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Now

∆c
ce∆

e
ba = gcd

(
gdc∂eω + gde∂cω − gce∂dω

)
gef
(
gfb∂aω + gfa∂bω − gab∂fω

)
= gcdgef

(
gdcgfb∂eω∂aω + gdcgfa∂eω∂bω − gdcgab∂eω∂fω

+ gdegfb∂cω∂aω + gdegfa∂cω∂bω − gdegab∂cω∂fω
− gcegfb∂dω∂aω − gcegfa∂dω∂bω + gdcgab∂dω∂fω

)
= δcc∂aω∂bω + δcc∂aω∂bω − δccgab∂dω∂dω + ∂aω∂bω + ∂aω∂bω − gab∂cω∂cω
− ∂aω∂bω − ∂aω∂bω + gab∂

cω∂cω

= 2d∂aω∂bω − dgab∂cω∂cω [1.18]

Similarly

∆c
be∆

e
ca = gcd

(
gdb∂eω + gde∂bω − gbe∂dω

)
gef
(
gfc∂aω + gfa∂cω − gac∂fω

)
= gcdgef

(
gdbgfc∂eω∂aω + gdbgfa∂eω∂cω − gdbgac∂eω∂fω

+ gdegfc∂bω∂aω + gdegfa∂bω∂cω − gdegac∂bω∂fω
− gbegfc∂dω∂aω − gbegfa∂dω∂cω + gbegac∂dω∂fω

)
= ∂aω∂bω + ∂aω∂bω − gab∂cω∂cω + δcc∂aω∂bω + ∂aω∂bω − ∂aω∂bω
− ∂aω∂bω − gab∂cω∂cω + ∂aω∂bω

= (d+ 2)∂aω∂bω − 2gab∂
cω∂cω [1.19]

Therefore

e−2ωgab(∆c
ce∆

e
ba −∆c

be∆
e
ca) = e−2ωgab

[
2d∂aω∂bω − dgab∂cω∂cω

− (D + 2)∂aω∂bω + 2gab∂
cω∂cω

]
= e−2ωgab(D − 2)

(
∂aω∂bω − gab∂cω∂cω

)
= e−2ω(D − 2)(1−D)∂ω · ∂ω [1.20]

We thus find a = −(D − 1)(D − 2) and this vanishes for D = 2, setting a = 0 in this case.
We have thus shown that for general D we have

(g′)1/2R′ = g1/2
[
R− 2(D − 1)∇2ω − (D − 2)(D − 1)∂ω · ∂ω

]
[1.21]

For D = 2 we have

(g′)1/2R′ = g1/2(R− 2∇2ω) [1.22]

which is (1.2.32).
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1.3 p 15: Below Eq. (1.2.32) Invariance of χ under Weyl Rescaling

We first go to Euclidean space so we don’t have to carry around minus signs. We wish to
show that

∂a(
√
g va) =

√
g∇ava [1.23]

for an arbitrary four-vector va. Start with the LHS

LHS = ∂a(
√
g va) = (∂a

√
g) va +

√
g∂av

a =
1

2
√
g

√
ggbc∂agbcv

a +
√
g∂av

a

=
√
g

(
1

2
gbc∂agbcv

a + ∂av
a

)
[1.24]

For the RHS we find

RHS =
√
g∇ava =

√
g
(
∂av

a + Γaabv
b
)

=
√
g

[
∂av

a +
1

2
(gac∂agcb + gac∂bgca − gac∂cgab) vb

]
=
√
g

(
∂av

a +
1

2
gac∂bgcav

b

)
[1.25]

which is equal to the LHS.
Now the variation of χ in (1.2.31) after a Weyl rescaling is, and going back to Minkowski

space,

δχ =
1

4π

∫
M
dτdσ (−γ)1/2(−2∇2ω) = − 1

2π

∫
M
dτdσ (−γ)1/2∇a(∇aω)

= − 1

2π

∫
M
dτdσ ∂a

[
(−γ)1/2∇aω

]
[1.26]

and is indeed a total derivative.

1.4 p 16: The Variation of the Einstein-Hilbert Action

We wish to compute the variation of the Einstein-Hilbert action

SEH =

∫
d2σ (−γ)1/2R [1.27]

under a change of metric. It is more convenient to consider a change δgab than δgab. The
result should of course be equivalent. Using R = gabRab we can write the variation as

δSEH = (δSEH)1 + (δSEH)2 + (δSEH)3 [1.28]
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with

(δSEH)1 =

∫
d2σ (−γ)1/2 gabδRab

(δSEH)2 =

∫
d2σ (−γ)1/2 (δgab)Rab

(δSEH)3 =

∫
d2σ Rδ(−γ)1/2 [1.29]

Let us start with the first one. We first wish to calculate the variation of the Riemann
curvature. We will first write it in terms of a variation of the connection δΓabc. We find

δRabcd = δ [∂cΓ
a
db + ΓaceΓ

e
db − (c↔ d)]

= ∂cδΓ
a
db + δΓaceΓ

e
db + ΓaceδΓ

e
db − (c↔ d)

= ∂cδΓ
a
db + δΓaceΓ

e
db + ΓaceδΓ

e
db − ∂dδΓabc − δΓadeΓecb − ΓadeδΓ

e
cb

= ∂cδΓ
a
db + δΓaceΓ

e
db − δΓadeΓecb − ΓecdδΓ

d
be −

(
∂dδΓ

a
bc − ΓaceδΓ

e
db − ΓecdδΓ

d
be + ΓadeδΓ

e
cb

)
= ∇cδΓabd −∇dδΓabc [1.30]

In the fourth line we have added and subtracted−ΓecdδΓ
d
be and we have made use of the fact

that the difference of two connections is a tensor, so that we can introduce the covariant
derivatives of the tensors. Therefore

δRbd = δRabad = ∇aδΓabd −∇dδΓaba [1.31]

and

(δSEH)1 =

∫
d2σ (−γ)1/2 gbd (∇aδΓabd −∇dδΓaba)

=

∫
d2σ (−γ)1/2

[
∇a(gbdδΓabd)−∇d(gbdδΓaba)

]
[1.32]

Where we have used the fact that the metric tensor has covariant derivative zero: ∇agbc =
0. We can now use (−γ)1/2∇ava = ∂a((−γ)1/2 va) to rewrite this as a total derivative, so
that we see that this variation is equal to the boundary at infinity and hence zero1. Thus
(δSEH)1 = 0.

1We are ignoring potential global effects.
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(δSEH)2 is already of the form δgab × something so no further work is necessary. It
remains to look at (δSEH)3 .But here we can use (1.2.15):

δ(−γ)1/2 = −1

2
(−γ)−1/2δγ = −1

2
(−γ)−1/2 × (−γγabδγab) = −1

2
(−γ)1/2γabδγ

ab [1.33]

and thus

(δSEH)3 =

∫
d2σ (−γ)1/2

(
−1

2
γabR

)
δγab [1.34]

We conclude that

δSEH =

∫
d2σ (−γ)1/2

(
Rab −

1

2
γabR

)
δγab [1.35]

and so by varying the metric we do get the equations of motion

Rab =
1

2
γabR [1.36]

1.5 p 16: Two-Dimensional Gravity has no Dynamics

It is very tedious to show that Rab = 1
2γabR in two dimensions. Joe’s book claims that it

follows from symmetry reasons, but it still requires detailed calculation. For example the
expression the Ricci scalar is given by

R =
[
2g2

12(∂2
2g11 − 2∂1∂2g12 + ∂2

1g22) + g12(−∂2g11(2∂2g12 + ∂1g22)

+ ∂1g11∂2g22 + 2∂1g12(2∂2g12 − ∂1g22)) + g11(∂2g11∂2g22 − 2∂1g12∂2g22 + ∂1g
2
22)

+ g22(∂1g11(∂1g22 − 2∂2g12)− 2g11(∂2
2g11 − 2∂1∂2g12 + ∂2

1g22) + ∂2g
2
11)
]
/[

2(g2
12 − g11g22)2

]
[1.37]

It is actually easiest to show this via Mathematica. The corresponding code is shown in
fig.1.1. It defines the connections, the Riemann curvature and Ricci scalar for an arbitrary
two-dimensional metric. The test is that tt[a, b] = 0 for a, b = 1, 2.

— 35—



Joe’s Book (version of November 20, 2020) Notes from Stany M. Schrans

In[721]:= Clear[G, dG, gu, g, dg, ddg, dgu, R, RR, m, mu, tt];

m = {{g11[x, y], g12[x, y]}, {g12[x, y], g22[x, y]}};

mu = Inverse[m];

g[a_, b_] := m[[a, b]]

gu[a_, b_] := mu[[a, b]]

dg[1, a_, b_] := D[g[a, b], x]

dg[2, a_, b_] := D[g[a, b], y]

dgu[1, a_, b_] := D[gu[a, b], x]

dgu[2, a_, b_] := D[gu[a, b], y]

ddg[1, 1, a_, b_] := D[D[g[a, b], x], x]

ddg[1, 2, a_, b_] := D[D[g[a, b], x], y]

ddg[2, 1, a_, b_] := D[D[g[a, b], y], x]

ddg[2, 2, a_, b_] := D[D[g[a, b], y], y]

G[a_, b_, c_] := (1 / 2) * Sum[gu[a, d] * (dg[b, c, d] + dg[c, b, d] - dg[d, b, c]), {d, 2}]

dG[e_, a_, b_, c_] := Simplify[(1 / 2) * Sum[dgu[e, a, d] * (dg[b, c, d] + dg[c, b, d] - dg[d, b, c])

+ gu[a, d] * (ddg[e, b, c, d] + ddg[e, c, b, d] - ddg[e, d, b, c]), {d, 2}]]

R[a_, b_, c_, d_] := Simplify[dG[c, a, d, b] - dG[d, a, c, b]

+ Sum[G[a, c, e] * G[e, d, b] - G[a, d, e] * G[e, c, b], {e, 2}]]

R[a_, b_ ] := Simplify[Sum[R[c, a, c, b], {c, 2}]]

RR = Simplify[Sum[ gu[a, b] * R[a, b], {a, 2}, {b, 2}] ];

tt[a_, b_] := R[a, b] - (1 / 2) * g[a, b] * RR

In[740]:= {Simplify[tt[1, 1]], Simplify[tt[1, 2]], Simplify[tt[2, 1]], Simplify[tt[2, 2]]}

Out[740]= {0, 0, 0, 0}

Figure 1.1: Mathematica code for showing that two-dimensional gravity has no dynamics

1.6 p 17: Below Eq. (1.3.7) Determining p+

We start from the mass-shell condition −m2 = p2 = −2p−p+ + pipi. Thus pipi + m2 =
2p−p+. Use this in (1.3.6) to give

H =
2p−p+

2p−
= p− = −p+ [1.38]
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1.7 p 18: Eq. (1.3.9) Invariance of fdσ

We have σ′ = σ′(σ, τ) and τ ′ = τ . Therefore

γσσ =
∂σ′c

∂σ

∂σ′d

∂σ
γ′cd =

∂σ′

∂σ

∂σ′

∂σ
γ′σσ =

(
∂σ′

∂σ

)2

γ′σσ

γττ =
∂σ′c

∂τ

∂σ′d

∂τ
γ′cd =

∂τ ′

∂τ

∂τ ′

∂τ
γ′ττ + 2

∂τ ′

∂τ

∂σ′

∂τ
γ′τσ +

∂σ′

∂τ

∂σ′

∂τ
γ′σσ

= γ′ττ + 2
∂σ′

∂τ
γ′τσ +

(
∂σ′

∂τ

)2

γ′σσ

γτσ =
∂σ′c

∂τ

∂σ′d

∂σ
γ′cd =

∂τ ′

∂τ

∂τ ′

∂σ
γ′ττ +

∂τ ′

∂τ

∂σ′

∂σ
γ′τσ +

∂σ′

∂τ

∂τ ′

∂σ
γ′στ +

∂σ′

∂τ

∂σ′

∂σ
γ′σσ

=
∂σ′

∂σ
γ′τσ +

∂σ′

∂τ

∂σ′

∂σ
γ′σσ [1.39]

So

det γ = γσσγττ − γ2
τσ

=

(
∂σ′

∂σ

)2

γ′σσ

[
γ′ττ + 2

∂σ′

∂τ
γ′τσ +

(
∂σ′

∂τ

)2

γ′σσ

]

−
[
∂σ′

∂σ
γ′τσ +

∂σ′

∂τ

∂σ′

∂σ
γ′σσ

]2

=

(
∂σ′

∂σ

)2

γ′σσγ
′
ττ + 2

(
∂σ′

∂σ

)2 ∂σ′

∂τ
γ′σσγ

′
τσ +

(
∂σ′

∂σ

)2(∂σ′
∂τ

)2

γ′2σσ

−
(
∂σ′

∂σ

)2

γ′2τσ −
(
∂σ′

∂τ

)2(∂σ′
∂σ

)2

γ′2σσ − 2

(
∂σ′

∂σ

)2 ∂σ′

∂τ
γ′τσγ

′
σσ

=

(
∂σ′

∂σ

)2 (
γ′σσγ

′
ττ − γ′2τσ

)
=

(
∂σ′

∂σ

)2

det γ′ [1.40]

We thus find, using the fact that dτ = dτ ′ = 0,

fdσ = γσσ(−det γ)−1/2dσ

=

(
∂σ′

∂σ

)2

γ′σσ

[
−
(
∂σ′

∂σ

)2

det γ′

]−1/2
∂σ

∂σ′
dσ′ = γ′σσ(−det γ′)−1/2dσ′ [1.41]

1.8 p 18: Below Eq. (1.3.9) Fixing the Gauge

I feel this may need a bit more explanation. We have shown that fdσ is an invariant under
reparametrisations of σ with τ kept fixed. So for every given τ we can use this to define an
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invariant length dl = fdσ along the string. This is independent of the choice of σ as long as
τ is fixed. So we can now select a specific worldsheet coordinate system. We don’t change
τ but we define σ as being the proportional to the invariant length

∫
fdσ from one of the

endpoints of the open string2. The proportionality constant is determined by requiring that
at the other end-point σ = `. In this coordinate system f is independent of σ. f = dl/dσ
and dl is an invariant length hence it is independent of σ, but f can of course still depend
on τ , i.e. f = f(τ). We now use the Weyl invariance to rescale the metric so that γ = −1.
Now f is invariant under a Weyl rescaling as well, as both γσσ and (−γ)1/2 transform in
the same way, and so their ratio is invariant as well. Because f is invariant, this means that
after the Weyl rescaling we still have ∂σf = 0. But this means that 0 = ∂σ

(
γσσ(−γ)−1/2)

)
and thus ∂σγσσ = 0 as −γ = 1.

Let’s recapitulate. We fix τ by setting it equal to x+. We fix σ by defining it to be
proportional to the invariant length. We fix γ using a Weyl rescaling. Combining these, we
have shown that that we can satisfy ∂σγσσ and so this is an acceptable gauge choice.

1.9 p 18: Eq. (1.3.10) Invariance of fdσ

From −1 = γ = γττγσσ − γ2
τσ we get

γττ =
γ2
τσ − 1

γσσ
[1.42]

It is easily checked that

(
a b
b c

)−1

=
1

ac− b2

(
c −b
−b a

)
[1.43]

In our case ac− b2 = γ = −1. Thus

(
γττ γτσ

γτσ γσσ

)
=

(
γττ γτσ
γτσ γσσ

)−1

= γ−1

(
γσσ −γτσ
−γτσ γττ

)
=

(
−γσσ γτσ
γτσ (1− γ2

τσ)/γσσ

)
[1.44]

2For closed strings, there is no end-point, so we would have to chose a specific starting point on
the closed string, see (1.4.1).
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1.10 p 18: Eq. (1.3.11) The Lagrangian in the Light-Cone Gauge

It is important here that we talk about the Lagrangian and not the Lagrangian density. But
let us start with the latter

L = − 1

4πα′
γab∂aX

µ∂bXµ

= − 1

4πα′

(
− γab∂aX+∂bX

− − γab∂aX−∂bX+ + γab∂aX
i∂bX

i
)

= − 1

4πα′

(
− γττ∂τX+∂τX

− − γτσ∂τX+∂σX
− − γστ∂σX+∂τX

− − γσσ∂σX+∂σX
−

− γττ∂τX−∂τX+ − γτσ∂τX−∂σX+ − γστ∂σX−∂τX+ − γσσ∂σX−∂σX+

+ γττ∂τX
i∂τX

i + 2γτσ∂τX
i∂σX

i + γσσ∂σX
i∂σX

i
)

[1.45]

We now use X+ = x+ = τ so that ∂τX+ = 1 and ∂σX+ = 0 and use the explicit form of
the inverse metric

L = − 1

4πα′

(
− 2γττ∂τX

− − 2γτσ∂σX
− + γττ∂τX

i∂τX
i + 2γτσ∂τX

i∂σX
i + γσσ∂σX

i∂σX
i
)

= − 1

4πα′

(
2γσσ∂τX

− − 2γτσ∂σX
− − γσσ∂τXi∂τX

i + 2γτσ∂τX
i∂σX

i

+ γ−1
σσ (1− γ2

τσ)∂σX
i∂σX

i
)

[1.46]

We now write X−(τ, σ) = x−(τ) + Y −(τ, σ) and go to the Lagrangian

L = − 1

4πα′

∫ `

0
dσ
(

2γσσ∂τx
− − 2γσσ∂τY

− − 2γτσ∂σx
− − 2γτσ∂σY

−

− γσσ∂τXi∂τX
i + 2γτσ∂τX

i∂σX
i + γ−1

σσ (1− γ2
τσ)∂σX

i∂σX
i
)

[1.47]

By construction ∂σx− = 0, but we also have since we have already established that in our
gauge choice γσσ is independent of σ∫ `

0
dσ γσσ∂τY

− = γσσ∂τ

∫ `

0
dσ Y − = 0 [1.48]

as Y − has by construction mean value zero. Therefore, we find (1.3.11)

L = − 1

4πα′

∫ `

0
dσ
[
γσσ(2∂τx

− − ∂τXi∂τX
i)− 2γτσ(∂σY

− − ∂τXi∂σX
i)

+ γ−1
σσ (1− γ2

τσ)∂σX
i∂σX

i
]

[1.49]
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1.11 p 19: Eq. (1.3.13) The Open String Boundary Conditions

(1.2.28) is ∂σxµ(τ, 0) = ∂σxµ(τ, `) = 0. Writing this with derivatives with indices down-
stairs we get ∂σxµ = gaσ∂aX

µ = gσσ∂σX
µ + gστ∂τX

µ and so, inverting the metric
0 = −γττ∂σXµ + γτσ∂τX

µ at σ = 0 and σ = `.

1.12 p 22: Eq. (1.3.32) Regularising
∑
n n

This derivation is a delight to mathematicians.

∞∑
n=1

n =
∞∑
n=1

ne−εan = − d

dεa

∞∑
n=0

e−εan = − d

dεa

1

1− eεa

= − d

dεa

1

εa− 1
2!(εa)2 + 1

3!(εa)3 + · · ·
= − d

dεa

1

εa

1

1− 1
2εa+ 1

6(εa)2 + · · ·

= − d

dεa

1

εa

[
1−

(
1− 1

2
εa+

1

6
(εa)2

)
) +

(
1− 1

2
εa+

1

6
(εa)2

)2

+ · · ·

]

= − d

dεa

(
1

εa
− 1

2
+

1

12
εa+ · · ·

)
=

1

(εa)2
− 1

12
[1.50]

There is a rather entertaining “proof” of the fact that
∑∞

n=1 n = −1/12 that is due to
Ramanujan. First, let us call the sum S, i.e. S = 1 + 2 + 3 + 4 + · · · . Now we subtract from
this the sum 4S but not term by term, we subtract the terms 4S from each third term of S,
i.e.

S = 1 + 2 + 3 + 4 + 5 + 6 + · · ·
−4S = −4 − 8 − 12 + · · ·

S̃ = S − 4S = 1− 2 + 3− 4 + 5− 6 + · · · [1.51]

Now S̃ is just the alternating series so S̃ = 1/(1 + x)2 at x = 1. So

S − 4S = −3S = S̃ =
1

1 + 1

2

=
1

4
⇒ S = − 1

12
[1.52]

But, of course, even for physicists this is taking it a bit far.
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1.13 p 24: Eq. (1.3.43) The Regge Slope for Open Strings

We start by checking the Eigenvalue of S23 for the state (α2
−m + iα3

−m) |0; k〉 for a given m:

S23(α2
−m + iα3

−m) |0; k〉 = −i
∞∑
n=1

1

n

(
α2
−nα

3
n − α3

−nα
2
n

)
(α2
−m + iα3

−m) |0; k〉

= −i 1

m

(
α2
−mα

3
m − α3

−mα
2
m

)
(α2
−m + iα3

−m) |0; k〉

= −i 1

m

(
α2
−mα

3
miα

3
−m − α3

−mα
2
mα

2
−m
)
|0; k〉

= (α2
−m + iα3

−m) |0; k〉 [1.53]

where we have used [αim, α
n
j ] = mδijδm+n,0. So this state has spin one. Consider now

S23(α2
−m + iα3

−m)2 |0; k〉 = −i
∞∑
n=1

1

n

(
α2
−nα

3
n − α3

−nα
2
n

)
(α2
−m + iα3

−m)2 |0; k〉

= − i 1

m

(
α2
−mα

3
m − α3

−mα
2
m

)
(α2
−m + iα3

−m)(α2
−m + iα3

−m) |0; k〉

= − i 1

m

(
α2
−mα

3
m − α3

−mα
2
m

) (
α2
−mα

2
−m + iα2

−mα
3
−m + iα3

−mα
2
−m − α3

−mα
3
−m
)
|0; k〉

= − i 1

m

[
α2
−mα

3
m

(
iα2
−mα

3
−m + iα3

−mα
2
−m − α3

−mα
3
−m
)

− α3
−mα

2
m

(
α2
−mα

2
−m + iα2

−mα
3
−m + iα3

−mα
2
−m
) ]
|0; k〉

= − i 1

m
(imα2

−mα
2
−m + imα2

−mα
2
−m −mα2

−mα
3
−m − α2

−mα
3
−mα

3
mα

3
−m

−mα3
−mα

2
−m − α3

−mα
2
−mα

2
mα

2
−m − imα3

−mα
3
−m − imα3

−mα
3
−m) |0; k〉

= 2(α2
−mα

2
−m + iα2

−mα
3
−m + iα3

−mα
2
−m − α3

−mα
3
−m) |0; k〉

= 2(α2
−m + iα3

−m)2 |0; k〉 [1.54]

Similarly we find

S23(α2
−m + iα3

−m)N |0; k〉 = N(α2
−m + iα3

−m)N |0; k〉 [1.55]

Any other state at level N will contain at least one less factor of α2
−m + iα3

−m and as S23

only has non-zero Eigenvalue on that specific combination, it will give a spin lower than
N . Using the mass-shell condition (1.3.36) in D = 26, i.e. α′m2 = N − 1 we thus find

S23 ≤ N = α′m2 + 1 [1.56]

which is (1.3.43)
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1.14 p 29: Eq. (1.4.19) The Unoriented Strings

For the open string we have (1.3.22)

Xi = xi +
pi

p+
τ + i

√
2α′

+∞∑
n=−∞
n6=0

αin
n

exp

(
−nπicτ

`

)
cos

nπσ

`
[1.57]

Under the transformation σ → `− σ we the operator Xi transforms as

Xi →ΩXiΩ−1

= ΩxiΩ−1 + Ω
pi

p+
Ω−1τ + i

√
2α′

+∞∑
n=−∞
n6=0

ΩαinΩ−1

n
exp

(
−nπicτ

`

)
cos

nπσ

`
[1.58]

On the other hand we have cosnπσ/`→ cosnπ(`− σ)/` = (−1)n cosnπσ/` and so we see
that

ΩαinΩ−1 = (−1)nαin [1.59]

For the closed string we have (1.4.4)

Xi = xi +
pi

p+
τ + i

√
α′

2

+∞∑
n=−∞
n 6=0

{
α̃in
n

exp

[
−2nπi(σ + cτ)

`

]
+
αin
n

exp

[
+

2nπi(σ − cτ)

`

]}

[1.60]

and so as

exp

[
−2nπi(σ + cτ)

`

]
→ exp

[
+

2nπi(σ − cτ)

`

]
[1.61]

and

exp

[
+

2nπi(σ − cτ)

`

]
→ exp

[
−2nπi(σ + cτ)

`

]
[1.62]

we have

ΩαinΩ−1 = α̃in

Ωα̃inΩ−1 = αin [1.63]

Joe has these expressions not only for the Xi, but also for X0 and X1. You cannot deduce
this in the light-cone gauge.
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Chapter 2

Conformal Field Theory

2.1 p 33: Eq. (2.1.2) The Complex Coordinates

The inverse is

σ1 =
1

2
(z + z̄) , σ2 =

1

2i
(z − z̄) [2.1]

2.2 p 33: Eq. (2.1.3) The Complex Derivatives

This isn’t really a definition, but follows from Leibniz:

∂ = ∂z = ∂zσ
1∂1 + ∂zσ

2∂2 =
1

2
(∂1 − i∂2)

∂̄ = ∂z̄ = ∂z̄σ
1∂1 + ∂z̄σ

2∂2 =
1

2
(∂1 + i∂2) [2.2]

The inverse is

∂1 = ∂ + ∂̄ , ∂2 = i(∂ − ∂̄) [2.3]

2.3 p 33: Eq. (2.1.6) The Complex Metric

Just for the sake of it, we will drive it in two ways First,

ds2 = (dσ1)2 + (dσ2)2 =
1

4
(dz + dz̄)2 − 1

4
(dz − dz̄)2 = dzdz̄ [2.4]

writing ds2 = gzzdzdz + gzz̄dzdz̄ + gz̄zdz̄dz + gz̄z̄dz̄dz̄ we find

g.. =

(
0 1/2

1/2 0

)
[2.5]
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and its inverse

g.. =

(
0 2
2 0

)
[2.6]

The dots refer top the location of the indices.
The second way is to use the transformation rule of the metric:

gzz =
∂σa

∂z

∂σb

∂z
gab =

(
∂σ1

∂z

)2

g11 +

(
∂σ2

∂z

)2

g22 =

(
1

2

)2

+

(
1

2i

)2

= 0

gzz̄ =
∂σa

∂z

∂σb

∂z̄
gab =

∂σ1

∂z

∂σ1

∂z̄
g11 +

∂σ2

∂z

∂σ2

∂z̄
g22

=

(
1

2

)(
1

2

)
+

(
1

2i

)(
− 1

2i

)
=

1

2
[2.7]

etc.

2.4 p 33: Eq. (2.1.7) The Jacobian

We have

d2z = dzdz̄ = | ∂(z, z̄)

∂(σ1, σ2)
|dσ1dσ2 = |

(
∂z/∂σ1 ∂z/∂σ2

∂z̄/∂σ1 ∂z̄/∂σ2

)
|dσ1dσ2

= |
(

1 i
−i 1

)
|dσ1dσ2 = 2dσ1dσ2 [2.8]

Note also that

g = det

(
0 1/2

1/2 0

)
= −1

4
[2.9]

and so

(−g)1/2 =
1

2
[2.10]

2.5 p 36: Eq. (2.1.23) The Equation of Motion as Operator Equation

∂1∂̄1 : Xµ(z1, z̄1)Xν(z2, z̄2) : = ∂1∂̄1

[
Xµ(z1, z̄1)Xν(z2, z̄2) +

α′

2
ηµν ln |z12|2

]
= −πα′ηµνδ2(z − z′, z̄ − z̄′) +

α′

2
ηµν × 2πδ2(z − z′, z̄ − z̄′)

= 0 [2.11]
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2.6 p 36: Eq. (2.1.24) ∂∂̄ ln |z|2 = 2πδ2(z, z̄)

As per the text, this is obvious when z 6= 0. To show the normalisation, let us go back to σa

coordinates and integrate over the worldsheet. The RHS is

RHS =

∫
d2σ 2π

1

2
δ(σ1)δ(σ2) = π [2.12]

where we have used the delta function convention from p xviii. The LHS is

LHS =

∫
d2σ

1

2
(∂1 − i∂2)

1

2
(∂1 + i∂2) ln

(
σ2

1 + σ2
2

)
=

1

4

∫
d2σ (∂2

1 + ∂2
2) ln

(
σ2

1 + σ2
2

)
=

1

4

∫
d2σ

(
∂1

2σ1

σ2
1 + σ2

2

+ ∂2
2σ2

σ2
1 + σ2

2

)
=

1

2

∫
d2σ ∂a

ca
σ2

1 + σ2
2

= −1

2

∮
C

σ1dσ2 − σ2dσ1

σ2
1 + σ2

2

[2.13]

We have used the fact that we are in Euclidean space so that we don’t have to bother about
the location of the indices, and we have also used Stokes’ theorem in the last equation. Let
us now move to radial coordinates σ1 = r cos θ and σ2 = r sin θ so that

σ1dσ2 − σ2dσ1 = r cos θ(sin θdr + r cos θdθ)− r sin θ(cos θdr − r sin θdθ) = r2dθ [2.14]

and we find where we have used the delta function convention from p xviii. The LHS is

LHS =
1

2

∮
C

r2dθ

r2
=

1

2
×
∮
C
dθ = π [2.15]

and so LHS = RHS, proving (2.1.24)

2.7 p 38: Eq. (2.2.4) A Taylor Expansion

The Taylor expansion in two variables is

A(x, y) = A(x0, y0) +

∞∑
n−1

1

n!

n∑
k=0

(
n

k

)
∂kx∂

n−k
y A(x0, y0) [2.16]

In our case ∂x = ∂ and ∂y∂̄. We moreover have :∂∂̄X(z, z̄) · · · := 0 as an operator equation
and so the only terms contributing for a given n are those with k = 0 and k = n. This
immediately gives (2.2.4).
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2.8 p 39: Eq. (2.2.5) and (2.2.8) Subtractions and Contractions

Note that this is not without any humour. Subtractions have a positive sign +1
2α
′ηµiµj ln |zij |2

and contractions have a negative sign −1
2α
′ηµiµj ln |zij |2

2.9 p 39: Below Eq. (2.2.6) Normal Ordered Products Satisfy the Equa-
tion of Motion

Let us first show it for three fields, after which we will argue it to be the case for any
number of fields. Consider ∂1∂̄1 :Xµ1(z1, z̄1)Xµ2(z2, z̄2)Xµ3(z3, z̄3) :. We first write out the
definition of normal ordering

∂1∂̄1 :Xµ1(z1, z̄1)Xµ2(z2, z̄2)Xµ3(z3, z̄3) := ∂1∂̄1

[
Xµ1(z1, z̄1)Xµ

2 (z2, z̄2)Xµ
3 (z3, z̄3)

+
α′

2
ηµ1µ2 ln |z12|2 :Xµ3(z3, z̄3) : +

α′

2
ηµ1µ3 ln |z13|2 :Xµ2(z2, z̄2) :

+
α′

2
ηµ2µ3 ln |z23|2 :Xµ1(z1, z̄1) :

]
[2.17]

We have kept the normal ordering symbols around the single fields as it will be convenient
for when we generalise to more fields. We can now perform the derivatives. Using (2.1.19)
acting on the first term gives us two contact terms of the form

−πα′ηµ1µiδ2(z1i, z̄1i) :Xµj (zj , z̄j) : [2.18]

where (i, j) is either (2, 3) or (3, 2). These terms are cancelled by taking the derivatives of
the second and the third term and using (2.1.24), i.e. ∂∂̄ ln |z|2 = 2πδ2(z, z̄). The derivative
of the last term vanishes by the operator equation of motion ∂∂̄ :Xµ1(z1, z̄1) := 0.

We can now easily generalise this to n scalar fields

∂1∂̄1 :Xµ1(z1, z̄1)Xµ2(z2, z̄2) · · ·Xµn(zn, z̄n) : [2.19]

First we have the derivative on the not-normal order product. It will give n − 1 contact
terms. Then we look at the contractions, of which there are two types. Those involving
Xµ1 and one of the fields Xµi for i = 2, · · · , n will cancel with the contact terms. The
remaining contractions are between a Xµi and a Xµj for i, j 6= 1 and i 6= j. They result in
a term proportional to

∂1∂̄1 :Xµ1(z1, z̄1) · · ·Xµi−1(zi−1, z̄i−1)Xµi+1(zi+1, z̄i+1) · · ·
Xµj−1(zj−1, z̄j−1)Xµj+1(zj+1, z̄j+1) · · ·Xµn(zn, z̄n) : [2.20]

But that is just a the same as our original expression but with n−2 fields i.o. n fields. We’ve
shown this to be zero for n = 1, 2, 3 and so it follows that this term is zero by recursion and
thus the n-point normal ordered product satisfy the equation of motion as well.

— 46—



Joe’s Book (version of November 20, 2020) Notes from Stany M. Schrans

2.10 p 39: Eq. (2.2.10) The Product of Normal Ordered Operators

(2.2.10) has a factor of 2 compared to (2.2.8) because in (2.2.8) both derivatives can act
on : F : and so we need to avoid the double-counting. In (2.2.10) each derivative can
specifically act on one and only one of the operators.

2.11 p 40: Eq. (2.2.11) Calculating an OPE

Let us denote by Xµ(z1)Xν(z2) = −1
2α
′ηµν ln |z12|2 a contraction between two fields. We

then have

:∂Xµ∂Xµ : (z) :∂′Xν∂′Xν : (z′) = :∂Xµ∂Xµ(z)∂′Xν∂′Xν(z′) :

+ 4× ∂Xµ(z)∂′Xν(z′) :∂Xµ(z)∂′Xν : (z′)

+ 2× ∂Xµ(z)∂′Xν(z′)∂Xµ(z)∂′Xν(z′)

= ∂Xµ∂Xµ(z)∂′Xν∂′Xν(z′)

− 4
1

2
α′ηµν∂∂′ ln |z − z′|2 :∂Xµ(z)∂′Xν : (z′)

+ 2

(
1

2
α′ηµν∂∂′ ln |z − z′|2

)2

[2.21]

Now

∂∂′ ln |z − z′|2 = ∂

(
− 1

z − z′

)
=

1

(z − z′)2
[2.22]

and ηµνηµν = δµµ = D, we get

:∂Xµ∂Xµ : (z) :∂′Xν∂′Xν : (z′) ∼ Dα′/2

(z − z′)4
− 2α′

(z − z′)2
:∂Xµ(z)∂′Xµ : (z′)

∼ Dα′/2

(z − z′)4
− 2α′

(z − z′)2
:∂′Xµ∂′Xµ : (z′)− 2α′

z − z′
:∂′2Xµ∂′Xµ : (z′) [2.23]

where ∼ denotes up to regular terms and we have expanded :∂Xµ(z)∂′Xµ : (z′) in a Taylor
series in the last line.
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2.12 p 41: Eq. (2.3.5) The Ward Identity

We use the fact that ∂a(g1/2va(c)) = g1/2∇ava(c) as shown here

LHS = ∂a(
√
g va) = (∂a

√
g) va +

√
g∂av

a =
1

2
√
g
ggbc∂agbcv

a +
√
g∂av

a

=
√
g

(
1

2
gbc∂agbcv

a + ∂av
a

)
[2.24]

For the RHS we find

RHS =
√
g∇ava =

√
g
(
∂av

a + Γaabv
b
)

=
√
g

[
∂av

a +
1

2
(gac∂agcb + gac∂bgca − gac∂cgab) vb

]
=
√
g

(
∂av

a +
1

2
gac∂bgcav

b

)
[2.25]

The second and last term of the connection cancel after interchanging the dummy indices
a and c. This is now equal to the LHS.

To derive (2.3.5) we start from (2.3.4), which implies

0 =

∫
ddσg1/2ja(σ)∂aρ(σ) = −

∫
ddσ∂a(g

1/2ja(σ))ρ(σ)

= −
∫
ddσg1/2∇aja(σ)ρ(σ) [2.26]

2.13 p 42: Eq. (2.3.11) The OPE with the Conserved Current Deter-
mines the Transformation Law

For a holomorphic current (2.3.10) becomes∮
C
dz j(z)A(z0) =

2π

ε
δA(z0) [2.27]

with C a contour counter-clockwise around z0. We already see that the transformation
rule of an operator A(z0) under a symmetry is determined by its OPE of the corresponding
symmetry current, i.e. j(z)A(z0).

Now we have for a general function f(z)

Resz→z0f(z) =
1

2πi

∮
C
dz f(z) [2.28]

with C a contour counter-clockwise around z0. Therefore

Resz→z0j(z)A(z0) =
1

2πi

∮
C
dz j(z)A(z0) =

1

2πi

2π

ε
δA(z0) =

1

iε
δA(z0) [2.29]
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2.14 p 43: Eq. (2.3.14) Transformation of a Vertex Operator under a
Space-Time Translation

We have

jµ(z) :eik·X(0) : =
i

α′
∂Xµ :

∞∑
n=0

in

n!

(
k ·X(0)

)n
:

∼ i

α′
∂Xµ(z)Xν(0)kν :

∞∑
n=1

in

n!
n
(
k ·X(0)

)n−1
:

∼ i

α′

(
−α
′

2
ηµν∂ ln |z|2

)
kνi :eik·X(0) : ∼ kµ

2z
:eik·X(0) : [2.30]

Let us now define Vk(z) =:eik·X(z) :, what we will later see is a vertex operator. We can
then use (2.3.11) to find its transformation law under the space-time translation in the µ
direction:

δµVk(0) = iεResz→0j
µ(z)Vk(0) = iε

1

2πi

∮
C
jµ(z)Vk(0)

=
iε

2πi

∮
C

kµ

2z
Vk(0) =

iεkµ

2
Vk(0) [2.31]

2.15 p 43: Eq. (2.3.15) The Energy-Momentum Tensor

Let us first check that the action is indeed invariant under a world-sheet translation:

δS = δ
1

4πα′

∫
d2σ ∂aXµ∂aXµ =

1

4πα′

∫
d2σ 2∂aXµ∂aδXµ

=
1

2πα′

∫
d2σ ∂aXµ∂a(−εvb∂bXµ) = − εvb

2πα′

∫
d2σ ∂aXµ∂a∂bXµ

=
εvb

2πα′

∫
d2σ ∂a∂aX

µ∂bXµ = 0 [2.32]

where in the last line we have used the equations of motion ∂2Xµ = 0. Recall that the
symmetry is only required the equations of motion are satisfied. Indeed the corresponding
Noether charged is only conserved on shell.

Let us now derive the Noether current. How do we do that? Suppose you have
a Lagrangian L[φ] of some fields φ that is invariant under a continuous transformation
φ(x)→ φ′(x) = φ(x) + α∆φ. But as we can always add a total divergence to a Lagrangian
- it just gives a boundary term in the action, invariance means that under this transforma-
tion the Lagrangian is unchanged up to a potential total divergence. I.e. The Lagrangian
transforms as L → L+ α∂µJ µ, so α∆L = α∂µJ µ.
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Now, consider the transformation of the Lagrangian for the change of its field:

α∆L =
∂L
∂φ

δφ+
∂L

∂(∂µφ)
∂µδφ

=
∂L
∂φ

α∆φ+
∂L

∂(∂µφ)
∂µα∆φ

= α∂µ

(
∂L

∂(∂µφ)
∆φ

)
+ α

[
∂L
∂φ
− ∂µ

(
∂L

∂(∂µφ)

)]
∆φ [2.33]

The second term vanishes by the equations of motion. We now equate both forms of the
transformation of the Lagrangian

α∂µJ µ = α∆L = α∂µ

(
∂L

∂(∂µφ)
∆φ

)
[2.34]

and we see that

∂µ

[(
∂L

∂(∂µφ)
∆φ

)
− J µ

]
= 0 [2.35]

I.e. the Noether current

jµ =

(
∂L

∂(∂µφ)
∆φ

)
− J µ [2.36]

is conserved, ∂µjµ = 0.
Let us work this out for the worldsheet translation δσa = εva under which Xµ trans-

forms as a worldsheet scalar: δXµ = −εva∂aXµ. First we need to find how the Lagrangian
transforms and from there the corresponding J . This is quite easy. The Lagrangian is also
a scalar under worldsheet transformation and so it must transform in a way similar to Xµ,
i.e.

δL = −εva∂aL = −εva∂b(δbaL)⇒ J b = −εvaδbaL [2.37]

We also have, using the Lagrangian

L =
1

4πα′
∂aXµ∂aXµ [2.38]

that

∂L
∂(∂µφ)

∆φ ≡ ∂L
∂(∂bXµ)

∆Xµ =
1

2πα′
∂bXµ(−εva∂aXµ) = − 1

2πα′
εva∂bXµ∂aX

µ [2.39]
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We therefore find

jb = − 1

2πα′
εva∂bXµ∂aX

µ − (−εvaδbaL)

= − εva

2πα′

(
∂bXµ∂aX

µ − 1

2
δba∂

cXµ∂cXµ

)
[2.40]

Bringing the index b down gives

jb = − εva

2πα′

(
∂bXµ∂aX

µ − 1

2
δab∂

cXµ∂cXµ

)
[2.41]

which gives us the energy-momentum tensor ja ∝ vbTab with

Tab = − 1

α′

(
∂aXµ∂bX

µ − 1

2
δab∂

cXµ∂cXµ

)
[2.42]

which is (2.3.15b).

2.16 p 43: Eq. (2.4.1) The Energy-Momentum Tensor is Traceless

Using the complex metric we have

gabTab = gzzTzz + 2gzz̄Tzz̄ + gz̄z̄Tz̄z̄ [2.43]

The only non-vanishing components of the metric in complex coordinates are the off-
diagonal ones. Tracelessness thus implies Tzz̄ = 0.

2.17 p 43: Eq. (2.4.2) The Energy-Momentum Tensor Splits into a
Holomorphic and an Anti-holomorphic Part

Set b = z in the conservation equation 0 = ∂aTab = gac∂cTab. Because of the tracelessness
of the energy-momentum tensor the sum over a is only over z. As the metric is off-diagonal
the sum over c is then only over z̄ and the conservation equation therefore becomes ∂̄Tzz =
0. The same of course holds for ∂Tz̄z̄ = 0.

2.18 p 44: Eq. (2.4.6) The OPE with the Energy-Momentum Tensor

T (z)Xµ(0) = − 1

α′
:∂Xν∂Xν : (z)Xµ(0) = − 1

α′
2∂Xν(z)Xµ(0)∂Xν(z)

= − 2

α′
∂

(
−η

µν

2α′
ln |z|2

)
∂Xν(z) ∼ 1

z
∂µX(0) [2.44]

In the last line we have Taylor expanded ∂µX(z) and only kept the first term, as the higher
order corrections give terms in the OPE that are regular.
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2.19 p 44: Eq. (2.4.7) The Transformation of the Field Xµ

The Ward identity (2.3.11) tells us that the transformation of a field corresponding to the
conserved current T (z) is determined by the OPE of that current with that field. Thus

δXµ(w) = iεResz→wj
z(z)(Xµ(w) = iε

1

2πi

∮
C
iv(z)T (z)Xµ(w)

= − ε

2πi

∮
C

v(z)

z
∂Xµ(w) = −εv(w)∂Xµ(w) [2.45]

2.20 p 45: Fig 2.2. Examples of Conformal Transformations

It may be informative, or at least illustrative to give some examples of conformal transfor-
mations. The following are five pictures of how the contour lines of constant real part of z
transform under different conformal transformations.

 
 

 
 

 
 

Figure 2.1: Conformal transformation f(z) = z2,
√
z + 6 and 1/(z + 0.1). Contour lines for

Re(z) = cte
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As an artistic aside, mapping such conformal transformations can actually give very pretty
pictures. Below are just two more examples

 
 

 
 
 

 
 

Figure 2.2: Conformal transformation f(z) = z4−z3+z2−z+1
z4+z3+z2+z+1e

−z and z4−z3+z2−z+1
z4+z3+z2+z+1e

−z+z2−z3 .
Contour lines for Re(z) = cte

2.21 p 46: Eq. (2.4.12) Conformal Transformation of an Operator, I

From the residues theorem (2.3.11) we have, expanding v(z) in a Taylor series,

δA(z0) = iε
1

2πi

∮
C
j(z)A(z0) = iε

1

2πi

∮
C
iv(z)T (z)A(z0)

= − ε

2πi

∮
C

∞∑
k=0

(z − z0)k

k!
∂kv(z0)

∞∑
n=0

A(n)(z0)

(z − z0)n+1

= − ε

2πi

∞∑
k,n=0

1

k!

∂kv(z0)A(n)(z0)

(z − z0)n−k+1
= −ε

∞∑
n=0

1

n!
∂nv(z0)A(n) [2.46]
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as the residue picks up the k = n pole only. The same, of course, holds for the anti-
holomorphic part.

2.22 p 46: Eq. (2.4.14) Conformal Transformation of an Operator, II

We wish to determine the coefficients A(n)(w) in the OPE

T (z)A(w) ∼
∞∑
n=0

A(n)(w)

(z − w)n+1
[2.47]

for an operator that satisfies A′(z′) = ζ−hA(z) under a conformal transformation z′ = ζz.
Let us first go to an infinitesimal rescaling ζ = 1 + ε. Then z′ = (1 + ε)z = z + εv(z) for
v(z) = z. From (2.4.12), we have then that the only non-vanishing terms are

δA(z) = −ε
∞∑
n=0

1

n!
∂nv(z)A(n)(z)

= −ε
(

1

0!
∂0v(z)A(0)(z) +

1

1!
∂1v(z)A(1)(z)

)
= −ε(zA(0)(z) +A(1)(z)) [2.48]

But we also have the transformation law

A′(z′) = ζ−hA(z) = (1 + ε)−hA(z) = (1− hε)A(z) [2.49]

But we also have, to first oder in ε

A′(z′) = A′(z + εz = A′(z) + εz∂A′(z) = A′(z) + εz∂A(z) [2.50]

Therefore

(1− hε)A(z) = A′(z) + εz∂A [2.51]

and thus

δA(z) = A′(z)−A(z) = −εz∂A(z)− hεA(z) [2.52]

Comparing both results for δA(z) we see that

A(0)(z) = ∂A(z) and A(1)(z) = hA(z) [2.53]

which shows (2.4.14).
Similarly, under a translation z′ = z+ε = z+εv(z) for v(z) = 1, the only non-vanishing

term in (2.4.12) is

δA(z) = −ε∂0v(z)A(0)(z) = −εA(0)(z) [2.54]

Comparing this with δA(z) = −εv(z)∂A(z) = −ε∂A(z) we recover

A(0)(z) = ∂A(z) [2.55]
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2.23 p 46: Eq. (2.4.16) Conformal Transformation of a Primary Field

This should now be straightforward. Take the infinitesimal transformation z′ = z + εv(z).
We then have for a primary field, on the one hand

O′(z′) = O′(z + εv(z)) = O′(z) + εv(z)∂O′(z) = O′(z) + εv(z)∂O(z) [2.56]

and on the other hand

O′(z′) = (∂z′)−hO(z) = [∂(z + εv(z))]−hO(z) = (1 + ε∂v(z))−hO(z)

= (1− hε∂v(z))O(z) [2.57]

Equating both expressions for O′(z′) we get

δO(z) = O′(z)−O(z) = −εv(z)∂O(z)− hε∂v(z)O(z) [2.58]

and so, because v(z) is an arbitrary holomorphic function, comparing with (2.4.12)

O(0)(z) = ∂O(0)(z); O(1)(z) = hO(0)(z); O(n≥2)(z) = 0 [2.59]

and this corresponds to (2.4.16).

2.24 p 46: Eq. (2.4.17) Conformal Transformation of Typical Opera-
tors

T (z)Xµ(w) is given in (2.4.6). From this we get

T (z)∂Xµ(w) = ∂w

(
∂Xµ(w)

z − w

)
=
∂Xµ(w)

(z − w)2
+
∂(∂Xµ)(w)

z − w
[2.60]

i.e. ∂Xµ is a (1, 0) primary field. Taking one more derivative

T (z)∂2Xµ(w) = ∂w

[
∂Xµ(w)

(z − w)2
+
∂(∂Xµ)(w)

z − w

]
=

2∂Xµ(w)

(z − w)3
+

2∂Xµ(w)

(z − w)2
+
∂(∂2Xµ)(w)

z − w
[2.61]
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so this is a (2, 0) operator, but it is not primary because it has a term in (z − w)−3. Finally

T (z) :eik·X(w) := − 1

α′
:∂Xµ∂Xµ : (z)

∞∑
n=0

in

n!
: (k ·X)n : (w)

= − 1

α′

[ ∞∑
n=0

2nin

n!
kν∂X

µ(z)Xν(w) : (k ·X)n−1 : (w)

+

[ ∞∑
n=0

2n(n− 1)in

n!
kνkσ∂X

µ(z)Xν(w)∂Xµ(z)Xσ(w) : (k ·X)n−2 : (w)

]

= − 1

α′

[
2kν

(
− ηµνα′

2(z − w)

)
i

∞∑
n=1

in−1

(n− 1)!
:∂Xµ(z)(k ·X)n−1(w) :

+ kνkσ

(
− ηµνα′

2(z − w)

)(
−

δσµα
′

2(z − w)

)
i2
∞∑
n=2

in−2

(n− 2)!
: (k ·X)n−2(w) :

]

=
ikµ :∂µX(z)eik·X(w) :

z − w
+
α′kµkµ :eik·X(w) :

4(z − w)2

∼
α′k2

4 :eik·X(w) :

(z − w)2
+
∂ :eik·X(w) :

z − w
[2.62]

In the last line we have Taylor expanded∂Xµ(z)(k ·X)n−1(w). Thus, :eik·X(w) : is a primary
field with weight α′k2/4.

2.25 p 48: Eq. (2.4.23) Conformal Transformation of the Energy-
Momentum Tensor

The OPE of the energy-momentum tensor with itself is

T (z)T (w) ∼ D/2

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
[2.63]

Using (4.4.11) we immediately find from this that, writing

T (z)T (w) ∼
∞∑
n=0

T (n)(w)

(z − w)n+1
[2.64]

the only non-vanishing T (n)(z) are

T (3)(z) = D/2; T (1)(z) = 2T (z); T (0)(z) = ∂T (z) [2.65]
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Using this in (2.4.12) we find

δT (z) = − ε
[

1

3!
∂3v(z)T (3)(z) +

1

1!
∂1v(z)T (1)(z) +

1

0!
∂0v(z)T (0)(z)

]
= − ε

[
D

12
∂3v(z) + 2∂v(z)T (z) + v(z)∂T (z)

]
[2.66]

This is (2.4.23), but for some reason Joe has put the ε in the v(z) here.
It may be instructive to calculate this as well directly from the contour integration.

δT (w) = iε
1

2πi

∮
C
iv(z)T (z)T (w)

= iε
1

2πi

∮
C
iv(z)

[
D/2

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w

]
[2.67]

Using

1

2πi

∮
C

f(z)

(z − z0)n
=

1

2πi

∮
C
f(z)

(−1)n−1

(n− 1)!
∂n−1 1

z − z0

=
1

(n− 1)!

1

2πi

∮
C

∂n−1f(z)

z − z0
=

1

(n− 1)!
∂n−1f(z0) [2.68]

this gives

δT (w) = −ε
[
D

12
∂3v(w) + 2∂v(w)T (w) + v(w)∂T (w)

]
[2.69]

which is, of course, the same transformation rule.

2.26 p 48: Eq. (2.4.27) The Schwarzian Derivative

Let us check the infinitesimal form with f(z) = z′ = z + εv(z):

{z′, z} =
2∂3z′∂z′ − 3(∂2z′)2

2(∂z′)2
=

2ε∂3v(1 + ε∂v)− 3(ε∂2v)2

2(1 + ε∂v)2
= ε∂3v + o(ε2) [2.70]

Moreover

(∂z′)2T ′(z′) = (1 + ε∂v)2
[
T ′(z) + εv∂T ′(z)

]
= T ′(z) + εv∂T (z) + 2ε∂vT (z) + o(ε2) [2.71]

Therefore

T ′(z) + εv∂T (z) + 2ε∂vT (z) = T (z)− c

12
ε∂3v [2.72]

— 57—



Joe’s Book (version of November 20, 2020) Notes from Stany M. Schrans

and thus we recover

δT (z) = T ′(z)− T (z) = − c

12
ε∂3v − 2ε∂vT (z)− εv∂T (z) [2.73]

We will leave it as an exercise that the Schwarzian derivative satisfies the correct composi-
tion rule. Doing it here, does not really add any value.

2.27 p 49: Eq. (2.5.2) The Linear Dilaton Central Charge

We just focus on the additional contribution to central charge. It comes from the contrac-
tion of the double derivatives

VµVν∂
2Xµ(z)∂2Xµ(0) =VµVν∂

2
z∂

2
w

(
−α
′ηµν

2
ln |z|2

)
= −α

′

2

(
− 6

(z − w)4

)
=

6α′V 2/2

(z − w)4
[2.74]

2.28 p 49: Eq. (2.5.3) The Linear Dilaton Transformation

We now have

T (z)Xµ(0) =

(
− 1

α′
∂Xν∂Xν(z) + Vν∂

2Xν

)
Xµ(0)

= − 2

α′
∂Xν(z)Xµ(0)∂Xν(z) + Vν∂

2Xν(z)Xµ(0)

∼ − 2

α′

(
−α
′ηµν

2
∂ ln |z|2

)
∂Xν(z) + Vν

(
−α
′ηµν

2
∂2 ln |z|2

)
∼ α

′V µ/2

z2
+
∂Xµ(0)

z
[2.75]

This gives

Xµ(0) = ∂Xµ; Xµ(1) = α′V µ/2 [2.76]

and thus

δXµ(z) = −ε
(
v(z)∂Xµ(z)− α′V µ

2
∂v(z)

)
[2.77]

Here and in the remainder we will not explicitly write the normal ordering symbols. We
will always assume they are present, unless explicitly stated. Note the the OPE T (z)Xµ(0)
does have a second order pole but the numerator is not of the form hXµ(0), so under this
energy-momentum tensor it is not a primary field.
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2.29 p 50: Eq. (2.5.4) The bc Action is Conformally Invariant

Under a conformal transformation the fields b and c transforms as

δb = −ε(v∂b+ λ∂vb); δc = −ε(v∂c+ (1− λ)∂vc) [2.78]

for a v = v(z). We therefore have

δ(b∂̄c) = (δb)∂̄c+ b∂̄δc = −ε
[
(v∂b+ λ∂vb)∂̄c+ b∂̄(v∂c+ (1− λ)∂vc)

]
[2.79]

Let us collect the terms independent of λ, and ignoring −ε:

v∂b∂̄c+ b∂̄(v∂c) + b∂̄(∂vc) = v∂b∂̄c+ bv∂̄∂c+ b∂v∂̄c

= v∂b∂̄c+ bv∂̄∂c− ∂bv∂̄c− bv∂∂̄c = 0 [2.80]

by the fact that ∂̄v(z) = 0. Likewise for the terms in λ we find

∂vb∂̄c− b∂̄(∂vc) = ∂vb∂̄c− b(∂̄∂)vc− b∂v∂̄c = 0 [2.81]

again using ∂̄v(z) = 0.

2.30 p 50: Eq. (2.5.11) The Ghost Energy-Momentum Tensor

Let us check that the ghost fields are primary fields with the correct weights. The ghost
energy-momentum tensor can be written as

T (z) = (1− λ)∂bc(z)− λb∂c(z) [2.82]

Once more we don’t write the normal ordering symbols. Thus, using b(z)c(0) = c(z)b(0) ∼
1/z,

T (z)b(0) = (1− λ)∂bc(z)b(0)− λb∂c(z)b(0)

=
(1− λ)∂b(z)

z
+
λb(z)

z2
∼ λb(0)

z2
+
∂b(0)

z
[2.83]

where we have Taylor expanded b(z) in the last line. Similarly

T (z)c(0) = (1− λ)∂bc(z)c(0)− λb∂c(z)c(0)

= −(1− λ)c∂b(z)c(0) + λ∂cb(z)c(0)

=
(1− λ)c(z)

z2
+
λ∂c(z)

z2
∼ (1− λ)c(0)

z2
+
∂c(0)

z
[2.84]

and so b(z) and c(z) are indeed primary fields with weights λ and 1− λ respectively.
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2.31 p 51: Eq. (2.5.12) The Ghost Central Charge

We’ll just work out the central charge of the ghost energy-momentum tensor. I needs to
come from the double contractions in T (z)T (0):

T (z)T (0) = [(1− λ)∂bc(z)− λb∂c(z)] [(1− λ)∂bc(0)− λb∂c(0)]

= (1− λ)2∂bc(z)∂bc(0) + λ2b∂c(z)b∂c(0)

− λ(1− λ) [∂bc(z)b∂c(0) + b∂c(z)∂bc(0)]

∼ (1− λ)2∂b(z)c(0)c(z)∂b(0) + λ2b(z)∂c(0)∂c(z)b(0)

− λ(1− λ)

[
∂b(z)∂c(0)c(z)b(0) + b(z)c(0)∂c(z)∂b(0)

]
+ · · ·

= (1− λ)2

(
− 1

z2

)(
+

1

z2

)
+ λ2

(
+

1

z2

)(
− 1

z2

)
− λ(1− λ)

[(
− 2

z3

)(
1

z

)
+

(
1

z2

)(
− 2

z3

)]
=
−(1− λ)2 − λ2 + 4λ(1− λ)

z4
=
−6λ2 + 6λ− 1

z4
[2.85]

and so the central charge is given bu

c = −12λ2 + 12λ− 2 = −3(2λ− 1)2 + 1 [2.86]

2.32 p 51: Eq. (2.5.14) The Ghost Charge Current

This is obviously a symmetry of the action:

δ(b∂̄c) = (δb)∂̄c+ b(∂̄δc) = −iεb∂̄c+ iεb∂̄c = 0 [2.87]

This variation is zero and not a total divergence ∂µJ µ, so we have J µ = 0 and the Noether
current [??] is given by

jµ =

(
∂L

∂(∂µφ)
∆φ

)
− J µ ⇒ ∂L

∂(∂̄c)
∆c = iεbc⇒ j(z) = −bc(z) [2.88]
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2.33 p 51: Eq. (2.5.15) The Conformal Transformation of the Ghost
Charge, I

T (z)j(0) = [(1− λ)∂bc(z)− λb∂c(z)] (−bc(0))

= − (1− λ)

[
∂b(z)c(0) :c(z)b(0) : +c(z)b(0) :∂b(z)c(0) : +∂b(z)c(0)c(z)b(0)

]
+ λ

[
b(z)c(0) :∂c(z)b(0) : +∂c(z)b(0) :b(z)c(0) : +b(z)c(0)∂c(z)b(0)

]
∼ − (1− λ)

[
−cb(0) + z∂cb(0)

z2
+
∂bc(0)

z
− 1

z2

1

z

]
+ λ

[
∂cb(0)

z
− bc(0) + z∂bc(0)

z2
− 1

z

1

z2

]
∼ (1− λ)− λ

z3
+

(1− λ)cb(0)− λbc(0)

z2

+
(1− λ)(∂cb(0)− ∂bc(0)) + λ(∂cb(0)− ∂bc(0))

z

∼ 1− 2λ

z3
+
−bc(0)

z2
+
∂(−bc(0))

z
∼ 1− 2λ

z3
+
j(0)

z2
+
∂j(0)

z
[2.89]

2.34 p 51: Eq. (2.5.16) The Conformal Transformation of the Ghost
Charge, II

From the OPE T (z)j(0) we read off

j(2) = 1− 2λ; j(1) = j; j(0) = ∂j [2.90]

from which we readily find using (2.4.12)

δj(z) = −ε
[

1− 2λ

2
∂2v + j∂v + v∂j

]
[2.91]

Joe’s book just has the ε included in the v.

2.35 p 51: Eq. (2.5.17) The Conformal Transformation of the Ghost
Charge, III

The finite form of the conformal transformation follows from a calculation identical to that
of (2.4.26)
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2.36 p 52: Eq. (2.5.24) The Central Charge of the βγ System

We will not bother working this out as it should be straightforward by now. However we
will point out already here how the critical dimensions arise in a path integral quantisation
of the bosonic and the superstring.

For the bosonic string we have D fields Xµ, with central charge cX = D, and we then
have a bc ghost system with λ = 2, i.e. a central charge cbc = −3(2λ − 1)2 + 1 = −26.
Together the bosonic string has central charge

c = cX + cbc = D − 26 [2.92]

and this central charge vanishes for D = 26.
For the superstring we add D fermions ψ with central charge cψ = D/2 and a βγ ghost

system with λ = 3/2 and central charge cβγ = 3(2λ−1)2−1 = 11. The total central charge
of the superstring is thus

c = cX + cψ + cbc + cβγ = D +
D

2
− 26 + 11 =

3D

2
− 15 [2.93]

and this central charge vanishes for D = 10.
Of course, all this will have to be explained later, including the fact why the central

charge needs to vanish. Spoiler: this is to keep the theory anomaly free.

2.37 p 53: Eq. (2.6.4) The Complex Coordinates

For the complex coordinates z = exp
(
iσ2 + iσ1

)
we see that σ2 = −∞ which corresponds

to worldsheet time at minus infinity corresponds to the point z = 0. The fact that this is a
single point, irrespective of the value of σ1 will be important later when the state-operator
correspondence is discussed. It basically means that every asymptotic state at σ2 = −∞
can be mapped to the action of an operator at the origin of the complex plane.

2.38 p 53: Eq. (2.6.7) The Fourier Expansion

We can write (2.6.7.a) as

Tww(w) = −
∞∑

n=−∞
einwTn [2.94]

making manifest that it is just a Fourier expansion.
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2.39 p 54: Eq. (2.6.8) The Relation Between Lm and Tm

First we write Tzz in terms of w:

Tzz(z) =
∞∑

m=−∞

Ln
zm+2

=
∞∑

m=−∞
Lme

+i(m+2)w [2.95]

We now use (2.6.9) to write Tzz in terms of Tww and use ∂wz = ∂we
−iw = −ie−iw = −iz

Tzz(z) = (∂wz)
−2
(
Tww(w)− c

24

)
= (−iz)−2

(
Tww(w)− c

24

)
= − e−2iw

(
−

∞∑
m=−∞

eimwTm −
c

24

)

=

∞∑
m=−∞

ei(m+2)w
(
Tm +

c

24
δm,0

)
[2.96]

Comparing the two expressions for Tzz(z) gives

Lm = Tm +
c

24
δm,0 [2.97]

2.40 p 54: Eq. (2.6.9) The Relation Between Tzz and Tww

Tzz and Tww are related by a conformal transformation z = e−iw, so we can use (2.4.26)

(∂wz)
2Tzz(z) = Tww(w)− c

12
{z, w} [2.98]

The Schwarzian derivative is, using ∂wz = ∂we
−iw = −ie−iw = −iz etc

{z, w} =
2∂3

wz∂wz − 3(∂2
wz)

2

2(∂wz)2
=

2(iz)(−iz)− 3(−z)2

2(−iz)2
=

2− 3

−2
=

1

2
[2.99]

Therefore

Tww(w) = (∂wz)
2Tzz(z) +

c

24
[2.100]

2.41 p 54: Eq. (2.6.10) The Hamiltonian

We first wish to write T22 in terms of T (w). By definition (2.3.15)

T22 = − 1

α′

[
∂2X

µ∂2Xµ −
1

2
(∂1X

µ∂1Xµ + ∂2X
µ∂2Xµ)

]
=

1

2α′
(∂1X

µ∂1Xµ − ∂2X
µ∂2Xµ) [2.101]
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Now w = σ1 + iσ2 and w̄ = σ1 − iσ2 and therefore

∂1 = ∂1w∂ + ∂1w̄∂̄ = ∂ + ∂̄

∂2 = ∂2w∂ + ∂2w̄∂̄ = i(∂ − ∂̄)

[2.102]

where ∂ = ∂w and ∂̄ = ∂w̄ Thus

T22 =
1

2α′
[
(∂ + ∂̄)Xµ(∂ + ∂̄)Xµ − i(∂ − ∂̄)Xµi(∂ − ∂̄)Xµ

]
=

1

2α′
(
2∂Xµ∂Xµ + 2∂̄Xµ∂̄Xµ

)
= − (Tww(w) + Tw̄w̄(w̄)) [2.103]

Let us focus on the Tww(w) part. The contribution from Tw̄w̄(w̄) will then be straightfor-
ward. The integration of σ1 between 0 and 2π corresponds in the z = e−iw plane to a
contour integration around the origin, see fig. 2.3.b if that is not clear. But because of the
formula z = e−iw that integration is clockwise, and we pick up an extra sign to bring it to
the standard counter-clockwise form. The measure also changes from dσ1 = dw = idz/z.
So

H =

∫ 2π

0

dσ1

2π
T22 =

∫ 2π

0

dw

2π
(−Tww(w)) =

∮
idz

2πz

[
(∂wz)

2Tzz(z) +
c

24

]
= −

∮
dz

2πiz

[
−z2Tzz(z) +

c

24

]
= L0 −

c

24
[2.104]

Adding the Tw̄w̄(w̄) part gives

H = L0 + L̄0 −
c+ c̃

24
[2.105]

2.42 p 55: Fig 2.3 The Contracted Contour Integration

Start from (a) in the figure below with the three (counter-clockwise) contours C1, C2 and
C3.
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z = 0 C3 C2 C1

z2

C2

−C3

C1

C2

C1 − C3

(a) (b) (c)

Figure 2.3: Deforming Contours. By deforming C3 and C1 is follows that C1 − C3 is equivalent
to a contour around z2

Flip C3 to clockwise and deform it over C2 as drawn in (b) to become −C3. This
contour deformation does not cross any singularities so the result is the same before and
after deformation. Also deform C1 as drawn in (b). Now consider the sum of C1 and −C3.
On the top half the contours C1 and −C3 cancel one another and what we are left with is
a contour encircling the point z2 as drawn in (c).

2.43 p 55: Eq. (2.6.14) Switching Between OPEs and Commutation
Relations

We start from (2.6.12) but change the indices of the charges to letters as this is less con-
fusing. It is the radial ordering of the contours that determines the ordering of the corre-
sponding operators. So Qa(C1)Qb(C2)−Qa(C3)Qb(C2) means as operators on the Hilbert
space Q̂aQ̂b − Q̂bQ̂a = [Q̂a, Q̂b] as C1 is the most outward contour, i.e. the largest time,
and C3 is the most inward contour, i.e. the smallest time. Now we also have

Qa(C1)Qb(C2)−Qa(C3)Qb(C2) = Qb(C2)
[
Qa(C1)−Qa(C3)

]
= Qb(C2)Qa(C1 − C3) [2.106]

by the contour deformation of fig. 2.4. But, on the one hand the transformation of of an
operator is given by the commutation relation with the corresponding charge, δQ = [Q,A]
and on the other hand we have from (2.3.11) that δA(z) = 1

2πi

∮
dw j(w)A(z) with j(z)

the conserved current. Using a transformation under Qa on an operator Qb for a point on
C2 and the definition of the charges (2.6.11) we get

δQb{C2} = [Qa, Qb]{C2} =

∮
C2

dz2

2πi

∮
C1−C3

dz1

2πi
ja(z1)jb(z2) [2.107]

— 65—



Joe’s Book (version of November 20, 2020) Notes from Stany M. Schrans

But the latter part just picks up the residue of the OPE ja(z1)jb(z2) when z1 → z2. Thus

δQb{C2} =

∮
C2

dz2

2πi
Resz1→z2ja(z1)jb(z2) [2.108]

and so we find

[Q̂a, Q̂b] =

∮
C2

dz2

2πi
Resz1→z2ja(z1)jb(z2) [2.109]

Which is the relation that allows us to pass from OPEs to the commutation relations of
conserved charges.

2.44 p 56: Eq. (2.6.19) The Virasoro Algebra

Let us apply the link between the commutation relations of the conserved charges and the
OPE of the corresponding current Eq. (2.6.14) to derive one of the most important formula
of string theory, viz. the Virasoro Algebra satisfied by the Lm. Form the definition (2.6.6),
i.e. Lm =

∮
dz
2πiz

m+1T (z) and (2.6.14) we get, using repeatedly partial integration,

[Lm, Ln] =

∮
dz2

2πi
Resz1→z2 z

m+1
1 T (z1)zn+1

2 T (z2)

=

∮
dz2

2πi
Resz1→z2 z

m+1
1 zn+1

2

[
c/2

z4
12

+
2T (z2)

z2
12

+
∂T (z2)

z12

]
=

∮
dz2

2πi
Resz1→z2 z

m+1
1 zn+1

2

[
− c

12
∂3

1

1

z12
− 2T (z2)∂1

1

z12
+ ∂T (z2)

1

z12

]
=

∮
dz2

2πi
Resz1→z2

[ c
12
∂3

1z
m+1
1 zn+1

2 + 2∂1z
m+1
1 zn+1

2 T (z2) + zm+1
1 zn+1

2 ∂T (z2)
] 1

z12

=

∮
dz2

2πi

[ c
12

(m+ 1)m(m− 1)zm+n+1
2 + 2(m+ 1)zm+n+1T (z2)− ∂2z

m+n+2T (z2)
]

=

∮
dz2

2πi

[ c
12

(m3 −m)zm+n+1
2 +

[
2(m+ 1)− (m+ n+ 2)

]
zm+n+1T (z2)

]
=

∮
dz2

2πi

[ c
12

(m3 −m)zm+n+1
2 + (m− n)zm+n+1T (z2)

]
=

c

12
(m3 −m)δm+n,0 + (m− n)Lm+n [2.110]
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2.45 p 56: Eq. (2.6.24) The Transformation of Primary Fields

[Lm,On] =

∮
dz2

2πi
Resz1→z2 z

m+1
1 T (z1)zn+h−1

2 O(z2)

=

∮
dz2

2πi
Resz1→z2 z

m+1
1 zn+h−1

2

[
hO(z2)

z2
12

+
∂O(z2)

z12

]
=

∮
dz2

2πi
Resz1→z2 z

m+1
1 zn+h−1

2 [−hO(z2)∂1 + ∂O(z2)]
1

z12

=

∮
dz2

2πi

[
∂1z

m+1
1 zn+h−1

2 hO(z2) + zm+1
1 zn+h−1

2 ∂O(z2)
] 1

z12

=

∮
dz2

2πi

[
h(m+ 1)zm+n+h−1

2 O(z2)− (m+ n+ h)zm+n+h−1
2 O(z2)

]
=

∮
dz2

2πi
[(h− 1)m− n] zm+n+h−1

2 O(z2)

= [(h− 1)m− n]Om+n [2.111]

2.46 p 56: Eq. (2.6.25) The Open String Boundary

As w = σ1 + iσ2 the condition 0 ≤ Rew ≤ π is the same as σ1 ∈ [0, π]. Now

z = −e−iw = −e−i(σ1+iσ2) = −eσ2−iσ1
= −eσ2

cosσ1 + ieσ
2

sinσ1 [2.112]

Now σ1 ∈ [0, π] clearly implies that Im z ≥ 0. And vice-versa Im z ≥ 0 is only possible for
σ1 ∈ [0, π](mod 2π).

2.47 p 58: Eq. (2.7.2) The Single Valuedness of Xµ

We have

αµ0 − α̃
µ
0 =

√
2

α′

∮
dz

2π
∂Xµ +

√
2

α′

∮
dz̄

2π
∂̄Xµ

=

√
2

α′
1

2π

∮ [
dz∂Xµ + dz̄∂̄Xµ

]
=

√
2

α′
1

2π
i

∫
R
d2z

[
∂∂̄Xµ − ∂̄∂Xµ

]
= 0 [2.113]

where we have used the divergence theorem (2.1.9).
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2.48 p 58: Eq. (2.7.3) The Space-Time Momentum

The Noether current for the space-time translation is given in (2.3.13). The conserved
charge of a current ja is obtained by integrating over the entire space. Here, for closed
strings, this is an integration over σ1 between 0 and 2π in z coordinates this is the same
as integrating over a circle in complex z plane. So the conserved charge pµ correspond-
ing to the space-time translational invariance is just proportional to

∮
dz jµ. The anti-

holomorphic part adds a
∮
dz̄ ̃µ but with a minus sign because the contour has to be

switched to counter-clockwise. Thus, with jµ = (i/α′)∂Xµ and ̃µ = (i/α′)∂̄Xµ

pµ =
1

2πi

∮
(dz jµ − dz̄ ̃µ)

=
1

2πi

∮
dz

i

α′
(
dz ∂Xµ − dz̄∂̄Xµ

)
=

1

α′

(∮
dz

2π
∂Xµ −

∮
dz̄

2π
∂̄Xµ

)
=

1

α′

√
α′

2
(αµ0 + α̃µ0 ) =

√
2

α′
αµ0 =

√
2

α′
α̃µ0 [2.114]

2.49 p 58: Eq. (2.7.4) Integrating ∂Xµ

We write

∂Xµ = −i
√
α′

2

αµ0
z
− i
√
α′

2

∞∑
m=−∞
m6=0

αµm
zm+1

= −iα
′

2
pµ − i

√
α′

2
pµ −

∞∑
m=−∞
m 6=0

αµm
zm+1

[2.115]

Integrating gives

Xµ(z, z̄) = − i
√
α′

2
pµ ln z +

∞∑
m=−∞
m 6=0

1

m

αµm
zm

+ f(z̄) [2.116]

for any arbitrary function f(z̄). Similarly we have

Xµ(z, z̄) = − i
√
α′

2
pµ ln z̄ +

∞∑
m=−∞
m 6=0

1

m

α̃µm
z̄m

+ f̃(z) [2.117]

Combining both expressions we find (2.7.4) where xµ is just a constant.
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2.50 p 59: Eq. (2.7.7) Normal Ordering for L0

We have, first ignoring any normal ordering issues,

L0 = =

∮
dz

2πiz
z2T (z) = − 1

α′

∮
dz

2πi
z∂Xµ∂Xµ

= − 1

α′

∮
dz

2πi
z

(
−i
√
α′

2

∞∑
m=−∞

αµm
zm+1

)(
−i
√
α′

2

∞∑
n=−∞

αµn
zn+1

)

=
1

2

∞∑
m,n=−∞

∮
αµmα

µ
n

zm+n+1
=

1

2

∞∑
m=−∞

αµmαµ−m

=
1

2
αµ0αµ0 +

1

2

∞∑
m=1

αµmαµ−m +
1

2

∞∑
m=1

αµ−mαµm

=
1

4
α′pµ +

∞∑
m=1

αµ−mαµm + aX [2.118]

The aX is a constant we add – possibly non- zero, but it will turn out to be zero – of
interchanging the creation and annihilation operators in

∑∞
m=1 α

µ
mαµ−m. On p 22 we saw

that in the light-cone gauge this amounted to the zero-point energies and was proportional
to
∑∞

n=1 n which we regularised to −1/12. Here clearly the
∑∞

n=1 n from the commutation
relations [αµm, ανn] = mηµνδm+n, but we need a better treatment than what we have seen
before.

2.51 p 59: Eq. (2.7.9) aX = 0

First we have from (2.7.7)

L0 |0; 0〉 =

(
1

4
α′pµ +

∞∑
m=1

αµ−mαµm + aX

)
|0; 0〉 = aX |0; 0〉 [2.119]

By the fact that pµ |0; 0〉 = 0 and αµm |0; 0〉 = 0 for m > 0. But by the Virasoro algebra
L0 = [L1L−1 − L−1L1] and we have

L1 |0; 0〉 ∝
∞∑

n=−∞
αµ1−nαµn |0; 0〉 =

−1∑
n=−∞

αµ1−nαµn |0; 0〉

=

−1∑
n=−∞

αµnα
µ
1−n |0; 0〉 = 0 [2.120]
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by the fact, once more, that pµ |0; 0〉 = αµm |0; 0〉 = 0 for m > 0. Similarly

L−1 |0; 0〉 ∝
∞∑

n=−∞
αµ−1−nαµn |0; 0〉 =

−1∑
n=−∞

αµ−1−nαµn |0; 0〉

=
−1∑

n=−∞
αµnα

µ
−1−n |0; 0〉 = 0 [2.121]

Therefore L0 |0; 0〉 = [L1L−1 − L−1L1] |0; 0〉 = 0 and so also aX = 0.
Note that we have seen that |0; 0〉 is invariant under {L0, L1, L−1}. This means that

|0; 0〉 is invariant under the SL(2,R) subalgebra of the Virasoro algebra.

2.52 p 60: Eq. (2.7.11) The Creation-Annihilation Normal Ordering

For |z| > |z′|, i.e. the worldsheet time coordinate σ2 of z is at a later time than that of z′

we have

Xµ(z, z̄)Xν(z′, z̄′) =

xµ − iα′2 pµ ln |z|2 + i

√
α′

2

∞∑
m=−∞
m6=0

1

m

(
αµm
zm

+
α̃µm
z̄m

)

×

xν − iα′2 pν ln |z′|2 + i

√
α′

2

∞∑
n=−∞
n6=0

1

n

(
ανn
z′n

+
α̃νn
z̄′n

) [2.122]

We want to bring all annihilation operators ασk and α̃σk for k > 0 to the right of the creation
operators that have k < 0. So we need to keep track of the non-vanishing commutation
relations in the products. Let us first look at x and p as they don’t commute. Their products
give

−iα
′

2

(
xµpν ln |z′|2 + pµxν ln |z|2

)
[2.123]

We have defined p as a lowering operator and x as a raising operator, so we need the
former on the right. The above product thus becomes, using [xµ, pν ] = iηµν ,

− iα
′

2

(
xµpν ln |z′|2 + (xνpµ − iηµν) ln |z|2

)
= − iα

′

2

(
(xµpν ln |z′|2 + xνpµ ln |z|2

)
− α′

2
ηµν ln |z|2 [2.124]
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We can thus write(
xµ − iα

′

2
pµ ln |z|2

)(
xν − iα

′

2
pν ln |z′|2

)
= ◦
◦

(
xµ − iα

′

2
pµ ln |z|2

)(
xν − iα

′

2
pν ln |z′|2

)
◦
◦ −

α′

2
ηµν ln |z|2 [2.125]

The other part that has non-vanishing commutation relations are the sums. We can focus
on the "holomorphic" part αµ only as they commute with the α̃ν . The latter can just be
added. Focussing on that part we find( −1∑

m=−∞

1

m

αµm
zm

+

∞∑
m=1

1

m

αµm
zm

)( −1∑
n=−∞

1

n

αµn
z′n

+

∞∑
n=1

1

n

αµn
z′n

)
[2.126]

The only part of this that is not already in creation-annihilation normal ordering is the
combination of the sums

∑∞
m=1 and

∑−1
n=−∞. This can be written as

∞∑
m=1

1

m

αµm
zm

−1∑
n=−∞

1

n

ανn
z′n

=

∞∑
m=1

−1∑
n=−∞

1

mn

1

zmz′n
(ανnα

µ
m +mδm+n,0η

µν)

= ◦
◦

∞∑
m=1

1

m

αµm
zm

−1∑
n=−∞

1

n

ανn
z′n

◦
◦ − ηµν

∞∑
m=1

1

m

(
z′

z

)m
[2.127]

There is a similar contribution for the anti-holomorphic part. We can now bring all pieces
together and find

Xµ(z, z̄)Xν(z′, z̄′) = ◦
◦

xµ − iα′2 pµ ln |z|2 + i

√
α′

2

∞∑
m=−∞
m6=0

1

m

(
αµm
zm

+
α̃µm
z̄m

)

×

xν − iα′2 pν ln |z′|2 + i

√
α′

2

∞∑
n=−∞
n6=0

1

n

(
ανn
z′n

+
α̃νn
z̄′n

) ◦◦
− α′

2
ηµν ln |z|2 −

(
i

√
α′

2

)2

ηµν
∞∑
m=1

1

m

[(
z′

z

)m
+

(
z̄′

z̄

)m]

= ◦
◦Xµ(z, z̄)Xν(z′, z̄′)◦◦ +

α′

2
ηµν

{
− ln |z|2 +

∞∑
m=1

1

m

[(
z′

z

)m
+

(
z̄′

z̄

)m]}
[2.128]
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Now, we can write for |z| > |z′|

ln |z − z′|2 = ln z

(
1− z′

z

)
z̄

(
1− z̄′

z̄

)
= ln |z|2 + ln

(
1− z′

z

)
+ ln

(
1− z̄′

z̄

)
[2.129]

Using ln(1− x) = −
∑∞

n=1 x
2/n we get

ln |z − z′|2 = ln |z|2 −
∞∑
m=1

1

m

(
z′

z

)m
−
∞∑
m=1

1

m

(
z̄′

z̄

)m
[2.130]

and thus we obtain

Xµ(z, z̄)Xν(z′, z̄′) = ◦
◦Xµ(z, z̄)Xν(z′, z̄′)◦◦ −

α′

2
ηµν ln |z − z′|2 [2.131]

which is (2.7.11).

2.53 p 60: aX from the Normal Ordering

From ◦
◦Xµ(z, z̄)Xν(z′, z̄′)◦◦ = :Xµ(z, z̄)Xν(z′, z̄′) : it follows that

∞∑
k=−∞

Lk
zk+2

= T (z) = − 1

α′
: ∂Xµ∂Xµ : (z) = − 1

α′
◦
◦∂Xµ∂Xµ

◦
◦(z) [2.132]

Thus, using (2.7.1)

∞∑
k=−∞

Lk
zk+2

= − 1

α′
◦
◦

(
−i
√
α′

2

)2 ∞∑
m=−∞

αµm
zm+1

∞∑
n=−∞

αµn
zn+1

◦
◦

=
1

2

∞∑
m,n=−∞

◦
◦α

µ
mαµn◦◦

zm+n+2
=

1

2

∞∑
k=−∞

∞∑
m=−∞

◦
◦α

µ
mαµk−m◦◦

zk+2
[2.133]

Therefore

Lk =
1

2

∞∑
m=−∞

◦
◦αµmαµk−m

◦
◦ [2.134]

and in particular

L0 =
1

2

∞∑
m=−∞

◦
◦αµmαµ−m

◦
◦ [2.135]

which gives (2.7.7) with aX = 0.
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2.54 p 61: Eq. (2.7.15) The Virasoro Generators for the Linear Dilaton
CFT

Lm =

∮
dz

2πiz
zm+2T (z) =

∮
dz

2πiz
zm+2

(
− 1

α′
∂Xµ∂Xµ + Vµ∂

2Xµ

)
[2.136]

The first part is just the same as for the standardXµ CFT and gives Lm = 1
2

∑∞
n=−∞

◦
◦α

µ
nαµm−n◦◦.

The second part gives

Vµ

∮
dz

2πiz
zm+2∂

(
−i
√
α′

2

) ∞∑
k=−∞

αµk
zk+1

= i

√
α′

2

∞∑
k=−∞

(k + 1)Vµα
µ
k

∮
dz

2πi

1

zm−k+1

= i

√
α′

2
(m+ 1)Vµα

µ
m [2.137]

Combining the two parts gives (2.7.15)

2.55 p 61: Eq. (2.7.17) The bc Ghost Commutators

The ghost components are given by

bm =

∮
dz

2πi
zm+λ−1b(z) and cm =

∮
dz

2πi
zm−λc(z) [2.138]

Therefore

{bm, cn} =

∮
dz2

2πi
Resz1→z2z

m+λ−1
1 b(z1)zn−λ2 c(z2)

=

∮
dz2

2πi
Resz1→z2z

m+λ−1
1 zn−λ2

1

z1 − z2

=

∮
dz2

2πi
zm+n−1

2 = δm+n,0 [2.139]

2.56 p 61: Eq. (2.7.18) The bc Vacuum States

Because {b0, c0} = 1 a state cannot be both annihilated by b0 and c0. Indeed, if there were
such a state, say |0〉 then it would satisfy b0 |0〉 = c0 |0〉 = 0 and hence also (b0c0+c0b0) |0〉 =
0. But this is also {b0, c0} |0〉 = |0〉. This means that |0〉 = 0, i.e. there exists no such state.

So let us call |↓〉 the state annihilated by bm and cm for m > 0 and by b0. Let us then
call c0 |↓〉 = |↑〉. We then have c0 |↑〉 = c0c0 |↓〉 = 0 as c2

0 = 0. Let us now act with b0 on |↑〉.
What does it give us? Well b0 |↑〉 = b0c0 |↓〉 = (1− c0b0) |↓〉 = |↓〉. All this gives the relations
(2.7.18).
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2.57 p 61: Eq. (2.7.19) The bc Virasoro Generators

Lk =

∮
dz

2πi
zk+1T (z) =

∮
dz

2πi
zk+1 [(1− λ)∂bc− λb∂c]

=

∮
dz

2πi
zk+1

∞∑
m,n=−∞

bmcn

[
(1− λ)

(
∂

1

zm+λ

)
1

zn+1−λ − λ
1

zm+λ

(
∂

1

zn+1−λ

)]

=
∞∑

m,n=−∞
bmcn [−(1− λ)(m+ λ) + λ(n+ 1− λ)]

∮
dz

2πi
zk+1−m−λ−n−1+λ−1

=
∞∑

m,n=−∞
[λ(m+ n)−m] bmcn

∮
dz

2πi
zk−m−n−1

=
∞∑

m,n=−∞
[λ(m+ n)−m] bmcnδm+n−k,0 =

∞∑
m=−∞

[λk −m] bmck−m [2.140]

We now bring this into creation-annihilation normal ordering. This only is an issue for
k = 0 and thus introduces a constant times δk,0:

Lk =

∞∑
m=−∞

[λk −m] ◦◦bmck−m◦◦ + δk,0a
g [2.141]

Thus for L0 we have

L0 = −
∞∑

m=−∞
mbmc−m = −

[ −1∑
m=−∞

mbmc−m +
∞∑
m=1

mbmc−m

]

= −
∞∑

m=−∞
mbmc−m = −

[ −1∑
m=−∞

mbmc−m +

∞∑
m=1

m(−c−mbm + 1)

]

= −
∞∑

m=−∞
m◦◦bmc−m◦◦ −

∞∑
m=1

m [2.142]

We would be tempted to use the heuristic
∑∞

m=1m = −1/12 here again, but this happens
not to be correct this time.

2.58 p 61: Eq. (2.7.21) The bc Normal Ordering Constant ag

On the one hand we have

L0 |↓〉 =

(
−

∞∑
n=−∞

n◦◦bnc−n◦◦ + ag

)
|↓〉 = ag |↓〉 [2.143]
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and on the other hand we have 2L0 = [L1, L−1]. We first compute

L−1 |↓〉 =

∞∑
n=−∞

(−λ− n)◦◦bnc−1−n◦◦ |↓〉

= −

( −2∑
n=−∞

(λ+ n)bnc−1−n + (λ− 1)b−1c0 +
∞∑
n=0

(λ+ n)bnc−1−n

)
|↓〉

= − (λ− 1)b−1c0 |↓〉 = −(λ− 1)b−1 |↑〉 [2.144]

We have used the fact that cm |↓〉 = 0 for m > 0, that bn |↓〉 = 0 for n ≥ 0 and that
b0 |↓〉 = |↑〉. Continuing we find

L1L−1 |↓〉 =

∞∑
n=−∞

(λ− n)◦◦bnc1−n◦◦ (−(λ− 1)b−1) |↑〉

= − (λ− 1)

[ −1∑
n=−∞

(λ− n)bnc1−n + λb0c1 −
∞∑
n=1

(λ− n)c1−nbn

]
b−1 |↑〉

= − (λ− 1) [0 + λb0c1b−1 + 0] |↑〉 = −(λ− 1)λb0(−b−1c1 + 1) |↑〉
= − λ(λ− 1)b0 |↑〉 = −λ(λ− 1) |↓〉 [2.145]

We also have

L1 |↓〉 =
∞∑

n=−∞
(λ− n)◦◦bnc1−n◦◦ |↓〉

=

(
0∑

n=−∞
(λ− n)bnc1−n −

∞∑
n=1

(λ− n)c1−nbn

)
|↓〉

= = 0 [2.146]

We conclude that

2ag |↓〉 = [L1, L−1] |↓〉 = −λ(λ− 1) |↓〉 [2.147]

and thus

ag =
1

2
λ(1− λ) [2.148]
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2.59 p 62: ag from Normal Ordering

We start by comparing : b(z)c(z′ :) and ◦◦b(z)c(z′)◦◦

◦
◦b(z)c(z′)◦◦ =

∞∑
m=−∞

∞∑
n=−∞

◦
◦bmcn◦◦

zm+λz′n+1−λ

=

∞∑
m=−∞

0∑
n=−∞

◦
◦bmcn◦◦

zm+λz′n+1−λ +

∞∑
m=−∞

∞∑
n=1

◦
◦bmcn◦◦

zm+λz′n+1−λ

=
−1∑

m=−∞

0∑
n=−∞

◦
◦bmcn◦◦

zm+λz′m+1−λ +
∞∑
m=0

0∑
n=−∞

◦
◦bmcn◦◦

zm+λz′n+1−λ

+
−1∑

m=−∞

∞∑
n=1

◦
◦bmcn◦◦

zm+λz′m+1−λ + +
∞∑
m=0

∞∑
n=1

◦
◦bmcn◦◦

zm+λz′n+1−λ [2.149]

To bring this in creation-annihilation normal ordering, we only have to change the order
of the ghost operators for the second term

◦
◦b(z)c(z′)◦◦ = · · · −

∞∑
m=0

0∑
n=−∞

cnbm
zm+λz′n+1−λ + · · · [2.150]

Here · · · represent the first, third and fourth term. Thus

◦
◦b(z)c(z′)◦◦ = · · · −

∞∑
m=0

0∑
n=−∞

(−cnbm + δm+n,0)

zm+λz′n+1−λ + · · ·+

= · · ·+
∞∑
m=0

0∑
n=−∞

bmcn
zm+λz′m+1−λ −

∞∑
m=0

0∑
n=−∞

δm+n,0

zm+λz′n+1−λ + · · · [2.151]

Therefore

◦
◦b(z)c(z′)◦◦ = b(z)c(z′)−

∞∑
m=0

1

zm+λz′−n+1−λ = b(z)c(z′)− 1

zλz′1−λ

∞∑
m=0

(
z′

z

)m
= b(z)c(z′)− 1

zλz′1−λ
1

1− z′/z
= b(z)c(z′)−

( z
z′

)1−λ 1

z − z′
[2.152]

Now from (2.5.7) we have : b(z)c(z′) := b(z)c(z′)− 1/(z − z′) and thus

: b(z)c(z′) := ◦
◦b(z)c(z′)◦◦ +

( z
z′

)1−λ 1

z − z′
− 1

z − z′

= ◦
◦b(z)c(z′)◦◦ +

(z/z′)1−λ − 1

z − z′
[2.153]
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Note, en passant that

: bc : (z) = lim
z′→z

: b(z)c(z′) := lim
z′→z

◦
◦b(z)c(z′)◦◦ + lim

z′→z

(z/z′)1−λ − 1

z − z′

= ◦
◦bc◦◦(z) +

1− λ
z

[2.154]

From this we find

: ∂b(z)c(z′) := ◦
◦∂b(z)c(z′)◦◦ +

(1− λ)(z/z′)1−λ

z(z − z′)
− (z/z′)1−λ − 1

(z − z′)2
[2.155]

and thus taking z′ → z

: ∂bc : (z) = ◦
◦∂bc◦◦(z)−

(1− λ)λ

2z2
[2.156]

Similarly we find

: b∂c : (z) = ◦
◦b∂c◦◦(z)−

(1− λ)(2− λ)

2z2
[2.157]

Therefore

: T (z) := (1− λ) : ∂bc : −λ : b∂c :

= (1− λ)◦◦∂bc◦◦(z)−
(1− λ)2λ

2z2
− λ◦◦b∂c◦◦(z) +

(1− λ)(2− λ)λ

2z2

= ◦
◦T (z)◦◦ −

λ(1− λ) [(1− λ)− (2− λ)]

2z2
= ◦
◦T (z)◦◦ +

λ(1− λ)

2z2
[2.158]

From this we immediately see that

Lm =
∞∑

n=−∞
(mλ− n)◦◦bncm−n◦◦ +

λ(1− λ)

2
δm,0 [2.159]

and thus indeed ag = 1
2λ(1− λ).

2.60 p 62: Eq. (2.7.22) The Ghost Number Operator

Ng =
1

2πi

∫ 2π

0
dσ1j(σ) =

1

2πi

∫ 2π

0
dwj(w) [2.160]

From (2.5.17) we have

(∂wz)jz(z) = jw(w) +
2λ− 1

2

∂2
wz

∂wz
[2.161]
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with z = e−iw we have ∂wz = −iz and ∂2
wz = −z so that

−izjz(z) = jw(w) +
2λ− 1

2

−z
−iz

⇒ jw(w) = −izj(z) + i
2λ− 1

2
[2.162]

Using this and dw = idz/z we have

Ng =
1

2πi

∮
idz

z
i

(
−zj(z) +

2λ− 1

2

)
= − 1

2πi

∮
dz

(
−j(z) +

2λ− 1

2z

)
[2.163]

We now use [2.154]

Ng = − 1

2πi

∮
dz

(
: bc : (z) +

2λ− 1

2

)
= − 1

2πi

∮
dz

(
◦
◦bc◦◦(z) +

1− λ
z

+
2λ− 1

2z

)
[2.164]

Let us first quickly do the last two terms. They give

− 1

2πi

∮
dz

1

2z
= −1

2
[2.165]

The first terms gives

− 1

2πi

∮ ∞∑
m=−∞

∞∑
n=−∞

◦
◦bmcn◦◦

zm+λ+n+1−λ = − 1

2πi

∮ ∞∑
m=−∞

∞∑
n=−∞

◦
◦bmcn◦◦

zm++n+1

= −
∞∑

m=−∞

∞∑
n=−∞

◦
◦bmcn◦◦δm+n,0 = −

∞∑
m=−∞

◦
◦bmc−m◦◦

= −
−1∑

m=−∞

◦
◦bmc−m◦◦ − ◦◦b0c0

◦
◦ −

∞∑
m=1

◦
◦bmc−m◦◦

= −
−1∑

m=−∞
bmc−m + c0b0 +

∞∑
m=1

c−mbm =
∞∑
m=1

(c−mbm − b−mcm) + c0b0 [2.166]

Combining both contributions we find

Ng =

∞∑
m=1

(c−mbm − b−mcm) + c0b0 −
1

2
[2.167]
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2.61 p 62: Eq. (2.7.23) The Ghost Number of the Ghost Fields

Let us first check [Ng, bm]:

[Ng, bm] = [

∞∑
n=1

(c−nbn − b−ncn) + c0b0 −
1

2
, bm]

=
∞∑
n=1

[c−nbn, bm]−
∞∑
n=1

[b−ncn, bm] + [c0b0, bm] [2.168]

Now

[c`bn, bm] = c`bnbm − bmc`bn = −c`bmbn − bmc`bn = −{c`, bm}bn = −δ`+m,0bn [2.169]

and

[b`cn, bm] = b`cnbm − bmb`cn = b`cnbm + b`bmcn = b`{cn, bm} = δm+n,0b` [2.170]

Thus

[Ng, bm] =
∞∑
n=1

(−δm−n,0bn − δm+n,0b−n)− δm,0b0 [2.171]

Let us first take m > 0. In that case, only the first term survives as δm+n,0 has no solution
for m > 0 and n ≥ 1 and also δm>0,0 = 0. Thus [Ng, bm>0] = −bm. Similarly, for m < 0
only the second term survives and we find [Ng, bm<0] = −bm. Finally for m = 0 only the
third term survives and we find [Ng, b0] = −b0. In summary we have

[Ng, bm] = −bm [2.172]

Consider next [Ng, cm]:

[Ng, cm] = [
∞∑
n=1

(c−nbn − b−ncn) + c0b0 −
1

2
, cm]

=

∞∑
n=1

[c−nbn, cm]−
∞∑
n=1

[b−ncn, cm] + [c0b0, cm] [2.173]

Now

[c`bn, cm] = c`bncm − cmc`bn = c`bncm + c`cmbn = c`{bn, bm} = δm+n,0c` [2.174]

and

[b`cn, cm] = b`cncm − cmb`cn = −b`cmcn − cmb`cn = −{b`, cm}cn = −δ`+m,0cn [2.175]
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Thus

[Ng, cm] =

∞∑
n=1

(δm+n,0c−n + δm−n,0cn) + δm,0c0 [2.176]

Let us first takem > 0. In that case, only the second term survives as δm+n,0 has no solution
for m > 0 and n ≥ 1 and also δm>0,0 = 0. Thus [Ng, cm>0] = cm. Similarly, for m < 0 only
the first term survives and we find [Ng, cm<0] = cm. Finally for m = 0 only the third term
survives and we find [Ng, c0] = −c0. In summary we have

[Ng, cm] = cm [2.177]

2.62 p 62: Eq. (2.7.24) The Ghost Number of the Vacuum

Ng |↓〉 =

( ∞∑
n=1

(c−nbn − b−ncn) + c0b0 −
1

2

)
|↓〉 = −1

2
|↓〉 [2.178]

and

Ng |↑〉 =

( ∞∑
n=1

(c−nbn − b−ncn) + c0b0 −
1

2

)
|↑〉 = c0 |↓〉 −

1

2
|↑〉

= |↑〉 − 1

2
|↑〉 =

1

2
|↑〉 [2.179]

2.63 p 63: Eq. (2.8.1) From the Semi-Infinite Cylinder to the Unit Disk

Recall we that have w = σ1 + iσ2. We are considering the semi-infinite cylinder with
Imw = σ2 ≤ 0. The z coordinate is defined as z = e−iw = e−iσ

1+σ2
so that constant

world-sheet time σ2 corresponds to circles around the origin in the z-plane. Now σ2 →∞
corresponds to z → 0 and σ2 = 0 corresponds to z = e−iσ

1
, i.e. the unit circle. An initial

state defined at σ2 = Imw → −∞ thus corresponds to an operator acting on the origin of
the complex plane.
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|A〉
σ2 = Imw → −∞

σ2 = Imw = 0

z = 0

A
|z| = 1

z = e−iw

Figure 2.4: Mapping the semi-infinite cylinder to the unit disk. The points Imw = σ2 → −∞
correspond to the origin in the z-plane. The points Imw = σ2 →= 0 correspond to the points on
the unit disk in the z-plane

2.64 p 63: The State-Operator Isomorphism in 2d-CFTs

Let us clarify a bit why this is special and how it differs from an ordinary QFT. In an
ordinary QFT we can of course obtain an asymptotic state by acting with an operator on
the vacuum of the theory, i.e. |Φ〉 = limt→−∞Φ |0〉. In a 2d-CFT the inverse is also true
because the states evolve radially from the origin. Any state in the Hilbert space can be
evolved back with the Hamiltonian to the origin and that state can be created by the action
of an operator at the origin. Thus any state in the Hilbert space of a CFT corresponds to a
given operator as well. That is the isomorphism between states and operators in a 2d-CFT.

For a general QFT it is not true that we can evolve any state of the Hilbert space to a
single point. We can of course evolve it to t→ −∞, but there is still a (D− 1)-dimensional
hypersurface. So it is not clear where the operator acts exactly. In a QFT if two wave-
packets evolve back in time in opposite directions, they don’t end up in a single point, so
this becomes inherently non-local. In a CFT both those wave packets will end up in the
origin.

Another way to look at this is that in a CFT t → −∞ is exactly one point, the origin.
We can thus compute correlation functions between fields at that point and other fields. In
an ordinary QFT this is not possible.

Because of the isomorphism between states and operators in a CFT we can use either
approach to make calculations, depending on which was is easier.

2.65 p 63: Eq (2.8.2) The Unit Operator and the Ground State

I personally find that the subtlety of this argument is not very clear in Joe’s book, so it
is worthwhile repeating it here. We consider the unit operator 1. It has trivial OPE with
∂Xµ(z), i.e. ∂Xµ(z)1 = ∂Xµ(z) and the same for ∂̄Xµ. We know that the operator 1 cor-

— 81—



Joe’s Book (version of November 20, 2020) Notes from Stany M. Schrans

responds to a certain state in the Hilbert space because of the state-operator isomorphism.
Let us call that state |?〉 and work out what it is. Let us work out the action of αµm for m ≥ 0
on that state. By the isomorphism we know that, using (2.7.2a),

αµm |?〉 ≡
∮

dz

2πi

√
2

α′
zm∂Xµ(z)1 [2.180]

The contour is a circle around the origin within the unit disk. The unit operator 1 acts on
the origin as vertex operator. Within the contour ∂Xµ is holomorphic ∂̄(∂Xµ) = 0. Indeed,
as always ∂̄∂Xµ should be viewed as an operator equation within an expectation value

〈∂̄∂Xµ · · · 〉 = contact terms [2.181]

where only non-zero terms come from possible contact terms. Review the discussion on
pages 35 and 36, leading to (2.1.20) if this is not clear. But as, by construction, the only
operator within the contour is the unit operator at the origin, there are no contact terms,
and so indeed ∂̄(∂Xµ) = 0 and ∂X is holomorphic and thus has no divergences within the
contour1. In other words, we know that |?〉 satisfies

αµm |?〉 = 0 for m ≥ 0 [2.182]

But that is exactly the definition of the string ground state |0; 0〉, we thus have the equiva-
lence

1 ≡ |0; 0〉 [2.183]

2.66 p 64: Eq (2.8.4) The Isomorphism for General States

We can repeat the analysis of (2.8.2) when the charge on the contour is αµ−m with m > 0,
i.e. it corresponds to a creation operator. We still have that ∂Xµ is holomorphic as within
the contour, there is only the unit operator, acting at the origin. So we have from (2.7.2a)

αµ−m =

√
2

α′

∮
1

2π
z−m∂Xµ(z) [2.184]

1This has confused me for a long time. There seems to be a contradiction with the fact that we
expand ∂Xµ in a Laurent series ∂Xµ(z) = −i

√
α′/2

∑∞
m=−∞ αµm/z

m+1 and the fact that in our
case at hand we find that ∂Xµ is holomorphic and thus has no divergence and a Taylor expansion
would suffice. There is of course no contradiction, what we are showing is that ∂Xµ is holomorphic
within the contour and so that in that region necessarily αµm ≡ 0 for m ≥ 0. All of this is, of course,
to be viewed as operator equations.
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Now ∂Xµ(z) is holomorphic within the contour, so it doesn’t have a pole. But z−m does
have a pole. In order to extract the simple pole we write

z−m =
(−1)m−1

(m− 1)!
∂m−1z−1 [2.185]

and we perform a partial integration

αµ−m =

√
2

α′

∮
1

2π

1

(m− 1)!

1

z
∂m−1∂Xµ(z)

=

√
2

α′
i

(m− 1)!

∮
1

2πi

∂mXµ(z)

z

=

√
2

α′
i

(m− 1)!
∂mXµ(0) [2.186]

This gives us the isomorphism

αµ−m |0, 0〉 ≡
√

2

α′
i

(m− 1)!
∂mXµ(0) for m > 0 [2.187]

2.67 p 64: Eq (2.8.6) The Isomorphism for General States with an
Operator Acting at the Origin, I

Consider for m > 0

αµ−m : A(0) :=

√
2

α′

∮
dz

2π

1

zm
: ∂Xµ :: A(0) : [2.188]

We now use (2..2.9)

: F : : G : = : FG : +
∑

cross-contractions [2.189]

αµ−m : A(0) :=

√
2

α′

∮
dz

2π

1

zm
: ∂XµA(0) : +

∑
cross-contractions

= : αµ−mA(0) : +
∑

cross-contractions [2.190]

We thus need to show that the cross-contractions don’t contribute. Let us consider such a
cross contraction. It would come from a factor ∂kXν(0) with k ≥ 0 in : A(0) :. So we write
: A(0) :=: ∂kXν(0)Ã(0) :. The cross-contraction therefore is proportional to

∂Xµ(z)∂kXν(0) : Ã(0) :=
k!

zk+1
: Ã(0) : [2.191]
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and so the contribution from this cross-contraction is proportional to∮
dz

2π

1

zm
1

zk+1
: Ã(0) :=

∮
dz

2π

1

zm+k+1
: Ã(0) : [2.192]

But with m > 0 and k ≥ 0 this has at a double pole 1/z2 or a higher pole. We cannot use
the partial integration trick2 to extract a simple pole as : Ã(0) : does not depend on z. As
a result this integral is zero as we set out to show.

2.68 p 65: Eq (2.8.7) The Isomorphism for General States with an
Operator Acting at the Origin, II

We have for m > 0

αµ−m |A〉 =αµ−m : A(0) : |0〉 =: αµ−mA(0) : |0〉

=

√
2

α′

∮
dz

2π
z−m : ∂Xµ(z)A(0) : |0〉 : [2.193]

The normal order product : ∂Xµ(z)A(0) : |0〉 : ensures that this factor has no singularities
as z → 0, and so we can apply exactly the same reasoning as for the derivation of (2.8.4).
We rewrite z−m, use partial integration and get (2.8.7).

2.69 p 65: Eq (2.8.10) The Ghost Operators Acting on the Ground
State

From (2.8.2) we know that the state |0〉 corresponds to the unit operator. We now have,
for λ = 2

bm |0〉 ≡
∮

dz

2πi
zm+1b(z)1 =

∮
dz

2πi
zm+1b(z) = 0 for m+ 1 ≥ 0 [2.194]

This is because 〈∂̄ · · · 〉 = contact terms, but there is no operator in the contour and so
no contact terms. Therefore b(z) is holomorphic inside the contour and has therefore no
divergences. This is exactly the same argument we used for the holomorphicity of ∂Xµ(z)
in (2.8.2).

Likewise we have

cm |0〉 ≡
∮

dz

2πi
zm−2c(z)1 =

∮
dz

2πi
zm−2x(z) = 0 for m− 2 ≥ 0 [2.195]

because c(z) is holomorphic inside the contour.

2We can in fact use it, but then we find something of the form
∮

(dz/z)∂m+k : Ã(0) : which is
zero because : Ã(0) : does not depend on z. This is, of course, just another way to say that the
integral vanishes.
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2.70 p 65: Eq (2.8.11) The Ground State and the Ghost Ground State

It is easily checked that |0〉 = b−1 |↓〉 satisfies (2.8.10). Indeed, for m ≥ −1

bm |0〉 = bmb−1 |↓〉 = −b−1bm |↓〉 = 0 [2.196]

This follows from (2.7.18a), i.e. bm |↓〉 = 0 for m ≥ 0 and m = −1 it follows from b2−1 = 0.
Similarly for m ≥ 2

cm |0〉 = cmb−1 |↓〉 = −b−1cm |↓〉 = 0 [2.197]

from (2.7.18c) i.e. cm |↓〉 = 0 for m > 0.

2.71 p 65: The Ghost Number of the Ground State

Ng |0〉 =Ngb−1 |↓〉 =

( ∞∑
m=1

(c−mbm − b−mcm) + c0b0 −
1

2

)
b−1 |↓〉

=

(
−b−1c1 −

1

2

)
b−1 |↓〉 = −b−1(−b−1c1 + 1) |↓〉 − 1

2
b−1 |↓〉

= − 3

2
b−1 |↓〉 = −3

2
|0〉 [2.198]

We also have Ng |↓〉 = −1
2 |↓〉 from (2.7.24).

What operator does the ghost ground state |↓〉 correspond to? We first note that

|↓〉 = c1b−1 |↓〉 = c1 |0〉 [2.199]

As |0〉 corresponds to the unit operator 1 we have

|↓〉 ≡
∮

dz

2πi
z1−2c(z)1 =

∮
dz

2πi
z−1c(z) = c(z) [2.200]

and we see that, under the state-operator isomorphism, the ghost number −1/2 state |↓〉
indeed corresponds to the ghost number 1 operator c(z).

2.72 p 65: Eq (2.8.16) The Complex Coordinates for the Open String

In w = σ1 + iσ2 coordinates the open string σ1 = Rew ∈ [0, π] and σ2 = Imw ∈ ]−∞, 0].
We map this using the conformal transformation z = −e−iw to the upper half unit disk.
Indeed the points sigma2 = −∞ corresponds to the origin z = 0; the points σ2 = 0
correspond to the unit circle z = −e−iσ1

with σ1 ∈ [0, π]. For (σ1, σ2) = (0, 0) we have
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z = −1, for (σ1, σ2) = (π/2, 0) we have z = i and for (σ1, σ2) = (0, π) we have z = 1
and so the semi-infinite strip in the w-plane is mapped to the upper-half half-disk in the
z-plane.

|A〉
σ2 = Imw → −∞

σ2 = Imw = 0

z = 0

A

|z| = 1

z = −e−iw

Figure 2.5: Mapping the semi-infinite strip to the upper-half unit disk. The points Imw = σ2 →
−∞ correspond to the origin in the z-plane. The points Imw = σ2 →= 0 correspond to the points
on the unit disk in the upper-half z-plane

An operator on the boundary in the z-plane has Im z = 0. From

z = −e−iw = −eσ2−iσ1
= −eσ2

(cosσ1 − i sinσ1) [2.201]

we see that a point Im z = 0 corresponds to sinσ1 = 0 or hence σ1 = 0 or π. A point on
the boundary of the upper-half unit disk thus corresponds to one of the end-points of the
open string.

2.73 p 66: Eq (2.8.17) The State-Operator Mapping: from Operator to
State

I developed a better understanding of the state-operator mapping from the path integral
approach by reading David Tong’s lectures on string theory and so I find it worthwhile to
summarise what he has to say about it here.

Let us start with ordinary quantum mechanics. A wavefunction ψ(x) = 〈ψ|x〉 describes
the probability to find a particle at x at a given time3. To describe a propagation of a
particle that was initially at time τi and position xi to a later time τf and position xf , we
use the propagator

G(xf , xi) =

∫ x(τf )=xf

x(τi)=xi

Dx eiS [2.202]

3The probability is of course |ψ(x)|2, but that is a petty detail in this discussion. We will also
ignore all normalisation factors in this discussion
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If our system starts in a state ψi(xi) at time τi then it will evolve to ψf (xf ) at time τf
according to

ψf (xf ; τf ) =

∫
dxiG(xf , xi)ψi(xi; τi) =

∫
dxi

∫ x(τf )=xf

x(τi)=xi

DxeiSψi(xi; τi) [2.203]

From that we learn that

1. The wavefunction ψf at xf follows from the path integral restricting to paths that
have x(τf ) = τf ;

2. The path integral is weighted by the initial state ψi(xi; τi) and we also integrate over
all initial positions xi.

Let us now translate this to quantum field theory. The coordinates x are replaced by
the fields φ and so a wave function ψ(x) becomes a wavefunctional Ψ[φ(σ)]. Here σ are
the coordinates on the semi-infinite cylinder describing a closed string. Starting with a
wavefunctional Ψi[φi(σ)] at time τi, we can use [2.203] to write down how it will evolve

Ψf [φf (σ), τf ] =

∫
Dφi

∫ φ(τf )=φf

φ(τi)=φi

Dφ e−S[φ]Ψi[φi(σ), τi] [2.204]

where we have gone to Euclidean space for convenience. Let us now go from the semi-
infinite cylinder to the complex plane. States are defined on circles of constant radius, say
|z| = r and evolution happens via the dilatation operator L0 + L̄0. Take an initial state
that is defined on ri. Eq [2.204] tells us to integrate over all field configurations with
boundaries φ(τi) = φ(ri) = φi and φ(τf ) = φ(rf ) = φf . These are configurations on the
edges of an annulus with inner radius ri and outer radius rf , see the figure below. We
also need to integrate over all boundary conditions at time τi, i.e. over all Dφi. The state
Ψf [φf (σ), τf ] with a given boundary condition φb at time τf , or equivalently radius rf , is
thus obtained by evolving all possible states at time τi, or equivalently radius ri, to time τf
and corresponding boundary condition. This is, of course, exactly how the path integral
approach in QM works. But it is worth repeating.

ri rf

Figure 2.6: From Operator to State. Integration over an annulus between ri at τi and rf at τf
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We thus get

Ψf [φf (σ), rf ] =

∫
Dφi

∫ φ(rf )=φf

φ(ri)=φi

Dφ e−S[φ]Ψi[φi(σ), ri] [2.205]

Once again we see that the wavefunctional at radius rf is given by a path integral weighted
by the wavefunctional at an "earlier" radius ri with boundary conditions φi and φf and that
being integrated over all possible initial field configurations φi.

Let us now consider the infinite past, i.e. σ2 → −∞, or equivalently z = 0. As ri = 0
we must now integrate over the entire disk with |z| ≤ rf , rather than over an annulus. The
weighting of the path integral is now changed by something acting at the point z = 0. That
is exactly what we mean by a local operator. This means that if we have a local operator
A(z) we can define a wave functional

ΨA[φf ; r] =

∫ φ(r)=φf

Dφ e−S[φ]A(0) [2.206]

We are integrating over all field configurations within the disc, including all fields at the
origin z = 0, which is analogous to integrating over the boundary of the inner circle

∫
Dφi.

A wavefunctional is nothing but the Schrödinger picture of a state, so this is the state-
operator isomorphism explained in terms of path integrals.

One may wonder why we use a path integral here, and not in the earlier derivation
of this isomorphism. But it only looks like we didn’t use the path integral in the previous
derivation. Indeed, in that derivation we always used operator equations (e.g. to argue
that ∂Xµ(z) was holomorphic within the contour). But operator equations are equations
valid in expectation values and expectation values can be calculated via a path integral.
We have gone full circle.

2.74 p 67: Eq (2.8.18) The State-Operator Mapping: from State to
Operator

Joe is very brief on this, so let’s explain it a little bit more slowly. As you will see it isn’t as
magical as it sounds. So we consider an annular region where z is between r and 1 as in
the figure below.
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r

φ′b

φb

Figure 2.7: From State to Operator. Integration over an annulus between r and 1 with respective
boundary conditions φ′b and φb

On the inner circle at radius r we have boundary conditions φ′b, on the outer circle
with radius 1 we have boundary conditions φb. Now note first that if we have a state on
the inner circle evolving over time this is described in quantum theory by e−Ht where H
is the Hamiltonian and t is the parameter. For our worldsheet the Hamiltonian is given by
(2.6.10) i.e.

H = L0 + L̄0 +
c+ c̃

24
[2.207]

and t ≡ σ2. As z = e−iw = eσ
2−iσ1

we see that |z| = r = eσ
2
. The upshot of all of this is

that time evolution is described by r−L0−L̄0 , where we have assumed that we are working
in the critical dimension, c = c̃ = 0.

Let us now turn to Eq (2.8.18)∫
[Dφ′b] [Dφi]φ′btoφbe

−S[φi]rL0+L̄0Ψ[φ′b] [2.208]

This is a path integral over the annulus from |z| = r with boundary conditions φ′b to |z| = 1
with boundary conditions φb, with the action contribution e−S[φi] weighted by a factor
rL0+L̄0Ψ[φ′b]. We moreover integrate over all possible field configurations φ′b of the inner
circle. Now the path integral over the annulus

∫
[Dφ′b] [Dφi]φ′btoφb exp(−S[φi]) just takes

the operator it is acting on, viz. rL0+L̄0Ψ[φ′b], and brings it to the outer circle, where the
boundary condition is φb. But this evolution can also be described, as we have just seen,
by the evolution operator, r−L0−L̄0 . Thus the effect of the path integral can be written as
acting on the operator

r−L0−L̄0

(
rL0+L̄0Ψ[φ′b]

)
→ Ψ[φb] [2.209]

We have evolved from the inner circle to the outer circle and so the wavefunctional is now
taken with the outer boundary conditions. We thus find that this expression gives us Ψ[φb],
i.e.

Ψ[φb] =

∫
[Dφ′b] [Dφi]φ′btoφbe

−S[φi]rL0+L̄0Ψ[φ′b] [2.210]
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If we now take the limit of r → 0, then the annulus becomes a disk. In this limit the path
integral over the inner circle

∫
[Dφ′b] can be seen as the definition of some local operator at

z = 0. As we have seen the path integral with this local operator then results in the state
Ψ[φb] and this is how construct the operator when we are given a state.

2.75 p 67-68: The State-Operator Mapping for the Scalar Field Xµ:
The Ground State

I find it more useful for this case, to describe the entire example rather than to focus on
individual equations. We take a single free real scalar field X. The boundary condition
of X is given by determining the value of the field on the unit circle, which we write as a
Fourier expansion in the polar angle θ

Xb(θ) =

∞∑
n=−∞

Xne
inθ [2.211]

Requiring the field to be real leads to X∗n = X−n. The boundary conditions is thus fully
determined by the Xn and so is the wavefunctional on the boundary Ψ[Xb] = Ψ[{Xn}].

Let us identify the state corresponding with the unit operator 1 with that given bound-
ary. By (2.8.17) this is given by

Ψ1[Xb] =

∫
[DXi]Xb exp

(
− 1

2πα′

∫
d2z∂Xi∂̄Xi

)
1

=

∫
[DXi]Xb exp

(
− 1

2πα′

∫
d2z∂Xi∂̄Xi

)
[2.212]

Note that i is not and index here, it just means that it is the value of the field X in the
interior of the unit disk. Xi should also not be confused with the Xn. This is a Gaussian
integral, but with unusual boundary conditions. We can turn this into a Gaussian integral
with standard boundary conditions by splitting the Xi as follows

Xi = Xcl +X ′i [2.213]

where Xcl is defined as

Xcl = X0 +

∞∑
n=1

(znXn + z̄nX−n) [2.214]

with z = einθ. The reason split Xi with this definition of Xcl is because (1) Xcl satisfies
the equation of motion ∂̄∂Xcl = 0 and (2) X ′i = 0 on the boundary. The former should be
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obvious and the latter is easily seen form rewriting [2.211] in terms of z:

Xb(θ) =

−1∑
n=−∞

Xne
inθ +X0 +

∞∑
n=1

Xne
inθ

=
∞∑
n=1

X−ne
−inθ +X0 +

∞∑
n=1

Xne
inθ

=X0 +

∞∑
n=1

(znXn + z̄nX−n) = Xcl [2.215]

Thus

(Xi)b = Xcl + (X ′i)b ⇔ Xcl = Xcl + (X ′i)b ⇒ (X ′i)b = 0 [2.216]

We can now write the action as

S[Xi] =
1

2πα′

∫
d2z∂(Xcl +X ′i)∂̄(Xcl +X ′i)

=
1

2πα′

∫
d2z

(
∂Xcl∂̄Xcl + ∂X ′i∂̄X

′
i

)
[2.217]

The cross terms vanish by construction that Xcl satisfies the equation of motion, after
partial integration. Let us first work out∫

d2z∂Xcl∂̄Xcl =

∫
d2z

∞∑
m=1

mzm−1Xm

∞∑
n=1

nz̄n−1X−n

=
∞∑

m,n=1

mnXmX−n

∫
d2z zm−1z̄n−1 [2.218]

The integral is easily evaluated in polar coordinates. Recall that the measure is d2z =
2dxdy = 2rdrdθ. Thus∫

d2z zm−1z̄n−1 = 2

∫ 2π

0
dθ

∫ 1

0
rdr

(
reiθ

)m−1 (
re−iθ

)n−1

= 2

∫ 2π

0
ei(m−n)θdθ

∫ 1

0
rm+n−1dr [2.219]

for m 6= n the θ integration vanishes, whilst for m = n it is just 2π. The r integration is just
1/(m+ n). Thus ∫

d2z zm−1z̄n−1 = δm−n,0
2π

m+ n
[2.220]
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and so

1

2πα′

∫
d2z∂Xcl∂̄Xcl =

1

2πα′

∞∑
m,n=1

mnXmX−nδm−n,0
2π

m+ n

=
1

α′

∞∑
m=1

mXmX−m [2.221]

We can thus write [2.212] as

Ψ1[Xb] = e−Scl

∫
[DX ′i]Xb=0 exp

(
− 1

2πα′

∫
d2z∂X ′i∂̄X

′
i

)
[2.222]

where

Scl =
1

α′

∞∑
m=1

mXmX−m [2.223]

So we have rewritten the path integral in terms of the X ′i coordinates that vanish on the
boundary of the unit disk. The impact of the boundary conditions now resides completely
in Scl that we can take out of the path integral. The remaining path integral is just a
constant, independent of the boundary conditions, so we can write

Ψ1[Xb] ∝ exp

(
− 1

α′

∞∑
m=1

mXmX−m

)
[2.224]

Now, if we have acted correctly then this state corresponds to the ground state of the
theory, as the operator we started with was the unit operator. To check that it is indeed
the ground state we need to check that Ψ1[Xb] is annihilated by αn for n ≥ 0. Recall that
we are working in the Schrödinger picture so we need anmmutation relations [a, a†] = 1
and when acting on wave functions ψ(x) they are represented by a = (ix + p)/

√
2 and

a† = (ix − p)/
√

2 as one easily checks. Here p = i∂x when acting on wavefunctions. We
now claim that in our case, in the Schrödinger picture we have

αn = − in√
2α′

X−n − i
√
α′

2

∂

∂Xn

α̃n = − in√
2α′

Xn − i
√
α′

2

∂

∂X−n
[2.225]

and that these satisfy the commutation relations

[αm, αn] = mδm+n,0 and [αm, α̃n] = 0 [2.226]
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when acting on wavefunctional Φ[{Xk}]. This is easily checked. First we note that with
m 6= −n we immediately see that [αm, αn] = 0. This is because in that case ∂X−n/∂Xm =
∂X−m/∂Xn = 0. So we need to check [αm, α−m] = m:

[αm, α−m]Φ[{Xk}] = [− im√
2α′

X−m − i
√
α′

2

∂

∂Xm
,
im√
2α′

Xm − i
√
α′

2

∂

∂X−m
]Φ[{Xk}]

=
m

2

[
−X−m

∂

∂X−m
+

∂

∂Xm
Xm −Xm

∂

∂Xm
+

∂

∂X−m
X−m

]
Φ[{Xk}]

=
m

2

[
−X−m

∂

∂X−m
+ 1 +Xm

∂

∂Xm
−Xm

∂

∂Xm
+ 1 +X−m

∂

∂X−m

]
Φ[{Xk}]

=mΦ[{Xk}] [2.227]

We will leave it as an exercise to the reader to show that [α̃m, α̃n] = mδm+n,0 and [αm, α̃n] =
0. It now remains to show that Ψ1[Xb] is the ground state, i.e. that it satisfies

αmΨ1[Xb] = α̃mΨ1[Xb] = 0 for m ≥ 0 [2.228]

Let us work this out. Take m ≥ 0

αmΨ1[Xb] =

(
− im√

2α′
X−m − i

√
α′

2

∂

∂Xm

)
exp

(
− 1

α′

∞∑
n=1

nXnX−n

)
[2.229]

Focus on the second term:

− i
√
α′

2
exp

(
− 1

α′

∞∑
n=1

nXnX−n

)(
− 1

α′

∞∑
n=1

nδm,nX−n

)

=
im√
2α′

X−m exp

(
− 1

α′

∞∑
n=1

nXnX−n

)
[2.230]

and this exactly cancels the first term. It should be obvious from this that we also have
α̃mΨ1[Xb] = 0 for m ≥ 0. So we can indeed identify

Ψ1[Xb] = exp

(
− 1

α′

∞∑
n=1

nXnX−n

)
≡ |0, 0〉 [2.231]

as the ground state.

2.76 p 68: Eq (2.8.28) The State-Operator Mapping for the Scalar Field
Xµ: The State for the Operator ∂kXµ

Let us now work out the state corresponding to the operator ∂kX for a single real scalar
field. We start from (2.8.17), or in these notes [2.206]. Replicating what we had for the
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unit operator in [2.212] we have

Ψ∂kX [Xb] =

∫
[DXi]Xb exp

(
− 1

2πα′

∫
d2z∂Xi∂̄Xi

)
∂kXi(0) [2.232]

We again use the split [2.213]

Xi = Xcl +X ′i [2.233]

where Xcl is defined in [2.234], i.e.

Xcl = X0 +

∞∑
n=1

(znXn + z̄nX−n) [2.234]

We urge the reader to review the derivation of the state for the unit operator if necessary.
The whole derivation is similar but for the extra operator ∂kXi = ∂kXcl + ∂kX ′i. Now, one
easily sees that

∂kXcl(0) = ∂k

[
X0 +

∞∑
n=1

(znXn + z̄nX−n)

] ∣∣∣∣∣
z=0

= k!Xk [2.235]

If this is not clear, just work out a few examples, ∂Xcl(0), ∂2Xcl(0), etc. We can now just
use [2.222] to write

Ψ∂kX [Xb] = e−Scl

∫
[DX ′i]Xb=0 exp

(
− 1

2πα′

∫
d2z∂X ′i∂̄X

′
i

)
∂k(Xcl +X ′i)(0) [2.236]

with again

Scl =
1

α′

∞∑
m=1

mXmX−m [2.237]

Thus

Ψ∂kX [Xb] = k!Xke
−Scl

∫
[DX ′i]Xb=0 exp

(
− 1

2πα′

∫
d2z∂X ′i∂̄X

′
i

)
+ e−Scl

∫
[DX ′i]Xb=0 exp

(
− 1

2πα′

∫
d2z∂X ′i∂̄X

′
i

)
∂kX ′i(0) [2.238]

For some reason that escapes me, the second term will not contribute. What we can say is
that the path integral is independent of the boundary and hence proportional to the ground
state. We have

|∂kX〉 =Ψ∂kX [Xb] = k!XkΨ1 + βΨ1 [2.239]
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We want to show that this is the first excited state α−k |0〉. Let us work this out in the
Schrödinger picture:

α−k |0〉 =

(
ik√
2α′

Xk − i
√
α′

2

∂

∂X−k

)
exp

(
− 1

α′

∞∑
n=1

nXnX−n

)

=
ik√
2α′

Xk exp

(
− 1

α′

∞∑
n=1

nXnX−n

)

− i
√
α′

2
exp

(
− 1

α′

∞∑
n=1

nXnX−n

)(
− 1

α′

∞∑
n=1

nXnδ−k,−n

)

= ik

√
2

α′
Xk exp

(
− 1

α′

∞∑
n=1

nXnX−n

)
= ik

√
2

α′
XkΨ1 [2.240]

and so, if we assume that β = 0 we have

|∂kX〉 = k!XkΨ1 = k!
1

ik

√
α′

2
α−k |0〉 = −i(k − 1)!

√
α′

2
α−k |0〉 [2.241]

which is (2.8.28).

Because it isn’t clear to me a priori that we can set β = 0, let us show that α−k |0〉 ∼
|∂kX〉 in another way. Let us act on this state with the annihilation operator αn for n ≥ 0.
On the one hand we know that

αnα−k |0〉 = (α−kαn + δn−k) |0〉 = δn−k |0〉 [2.242]

Let us reproduce this from the path integral approach

αnΨ∂kX [Xb] ∼
∫

[DXi]Xb e
−S[X]

∮
dw

2πi
wn∂X(w) ∂kXi(0) [2.243]

Let us not be confused here. As all of this is valid as operator equations, it needs to be
valid within a path integral weighted by the exponential of (minus) the action. So the
factor containing the exponential should not be inside the contour integral, and we should
not take its OPE with ∂X(w). Now ∂X(w) ∂kXi(0) ∝ w−k−1 as is easily checked. We thus
find

αnΨ∂kX [Xb] ∝
∫

[DXi]Xb e
−S[X]

∮
dw

2πi
wnw−k−1

=

∫
[DXi]Xb e

−S[X]

∮
dw

2πi

1

wk−n+1
[2.244]

and this is zero unless k = n so that we recover indeed αnΨ∂kX [Xb] ∝ δn−kΨ1[Xb]. This
thus also means that β = 0.
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2.77 p 70: Eq (2.9.3) The OPE of Three Operators

The OPE of the product of three operators

Ai(0)Aj(1)Ak(z) [2.245]

Will have potential singularities as z → 0 and as z → 1 via their OPEs. These OPEs have
radius of convergence respectively |z|, 1 and |1− z| < z, see the figure

0 1

z

Figure 2.8: Radius of Convergence for the OPEs Ai(0)Aj(1)Ak(z)

We can perform the OPEs in two ways. First we can perform the Aj(1)Ak(z) OPE and then
perform the OPE that result with Ai(0). This gives

Ai(0)Aj(1)Ak(z) =Ai(0)
∑
`

(1− z)h`−hj−hkc`jkA`(1− z)

=
∑
`

∑
m

(1− z)h`−hj−hk(1− z)hm−hi−h`c`jkcmi` Am(1− z)

=
∑
`,m

(1− z)hm−hi−hj−hkc`jkcmi`Am(1− z) [2.246]

Or we can first perform the Ai(0)Ak(z) OPE and then perform the OPE that result with
Aj(1), giving

Ai(0)Aj(1)Ak(z) =Aj(1)
∑
`

zh`−hi−hkc`ikA`(z)

=
∑
`,m

zh`−hi−hk(1− z)hm−hj−h`c`ikcmj`Am(1− z) [2.247]

These two expressions need to be equal. As the An are chosen to be a complete basis for
the local operators, this implies that∑

`

(1− z)hm−hi−hj−hkc`jkcmi` =
∑
`

zh`−hi−hk(1− z)hm−hj−h`c`ikcmj` [2.248]
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As an aside, we can of course repeat the same analysis for the product of four local
operators. In that case it is convenient to work with a four-point function defined as

G`knm(x) = z2hk〈Ak(∞)A`(1)An(x)Am(0)〉 [2.249]

Applying the same methodology i.e. requiring that the result via the s, t, and u channels
has to be the same gives a set of equations that are schematically of the form

p

k

`

m

n

∑
p C

p
nmC`pk ×

| | |

p

k m

` n

∑
p C

p
n`Cmpk ×

| | |

k

`

m

n

p
∑
p C

p
nkC`pm ×

Figure 2.9: Conformal Bootstrap Equations from Four-Point Functions)

These equations are known as the conformal bootstrap equations and can be used to derive
the conformal transformation properties of all the operators and this is tantamount to
solving the conformal field theory completely.

2.78 p 72: Eq (2.9.14) Non-Highest Weight States in Unitary CFTs

A non-highest weights states can by definition be obtained by the action of a combination
of L−m with m > 0 on a highest weights state. Let us call that highest weight state |O〉 with
highest weight hO. The non-highest weight state is then of the form L−k1L−k2 · · ·L−kn |O〉.
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Note that some of the L−ki can be equal to one another. The weight of that state is then

L0L−k1L−k2 · · ·L−kn |O〉 = (L−k1L0 + k1L−k1)L−k2 · · ·L−kn |O〉
= [k1L−k1L−k2 · · ·L−kn + L−k1(L−k2L0 + k2L−k2) · · ·L−kn ] |O〉
= [(k1 + k2 + · · · kn)L−k1L−k2 · · ·L−kn + L−k1L−k2 · · ·L−knL0] |O〉
= (k1 + k2 + · · · kn + hO)L−k1L−k2 · · ·L−kn |O〉 [2.250]

and so has weight hO + k1 + k2 + · · · kn which is positive and larger that hO as all the ki
are positive.

2.79 p 72: Eq (2.9.15) hO = 0 Operators

From (2.9.14) we have that if hO = 0 then L−1 · O = 0. But (2.9.7) tells us that L−1 · O =
∂O. and so ∂O = 0.

2.80 p 73: The Normal Ordering Constants from the State-Operator
Mapping

For any theory we have for the state corresponding to the unit operator by definition
L0 |0〉 = 0. For the Xµ theory the state |0〉 is also the ground state. Now using (2.7.7)
we have

L0 =
α′p2

4
+
∞∑
n=1

αµ−nαµn + aX [2.251]

and so L0 |0〉 immediately implies aX = 0.
For the bc system we have |0〉 = b−1 |↓〉. From L0 |0〉 = 0 and (2.7.19) we thus find

0 =

(
−

∞∑
n=−∞

n ◦◦bnc−n◦◦ + ag

)
b−1 |↓〉

=

[
−

−2∑
n=−∞

nbnc−n − (−1)b−1c1 + 0 +

∞∑
n=1

nc−nbn + ag

]
b−1 |↓〉

= (−c1b−1 + 1 + ag)b−1 |↓〉 = (1 + ag) |↓〉 [2.252]

and so ag = 0.
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Chapter 3

The Polyakov Path Integral

Open Questions

I have a number of unanswered points for this chapter. They are briefly mentioned here and
more detail is given under the respective headings. Any help in resolving them can be sent to
hepnotes@hotmail.com and is more than welcome.

♣ (3.4.22) In expanding lnZ[δ + h]/Z[δ] to second order in h we are considering the term in (hT )2, but we are
ignoring the term in h2δ2S/δg2|g=δ . Why can we do that? It may be related to the fact that this term gives a
contact term (two delta functions) and that this does not contribute. But I am still confused why that would be
the case.

♣ (3.6.18) I have not found a (relatively) simple proof of the equation [∇2Xµeik·X ]r = (iα′γ/4)R[eik·X ]r . I
have provided a detailed, but certainly worthwhile, exposition on this subject of around 20 pages that ends with
very strong circumstantial evidence that is equation is correct. But any more direct proof is certainly welcome.

3.1 p 79: Fig 3.4 Open String Processes

The figure below shows the 3D views of the 2D slices of the open string processes shown
in fig 3.4.
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Figure 3.1: 3D view of open string processes

3.2 p 82: Eq (3.2.3b) The Weyl Invariance of the Euler Number

We wish to show that the Euler term

χ =
1

4π

∫
M
d2σ
√
gR+

1

2π

∫
∂M

ds k [3.1]

with k the geodesic curvature given by

k = ±tanb∇atb [3.2]

is invariant under a Weyl rescaling. From (1.2.32) we know that under a Weyl rescaling
g′ab = e2ω(σ)gab the Riemann curvature transforms, in Euclidean spacetime, as√

g′R′ =
√
g(R− 2∇2ω) =

√
g(R− 2∇a∂aω) [3.3]

We have used the fact that ω is a scalar so the ∇aω = ∂aω. From [1.7] we also know how
a connection transforms under a Weyl rescaling

Γ′abc = Γabc + gad (gcd∂bω + gbd∂cω − gbc∂dω)

= Γabc + δac ∂bω + δab ∂cω − γadγbc∂dω [3.4]
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The tangent and normal vectors ta and na are normalised, gabtatb = ∓1 (with the minus
sign for timelike boundaries and the plus sign for spacelike boundaries). Therefore

∓1 = g′abt
′at′b = e2ωt′at′b [3.5]

and similarly for na. This can be satisfied if

t′a = e−ωta and n′a = e−ωna [3.6]

From this we find that

n′a = g′abn
′b = e2ωγabe

−ωnb = eωna [3.7]

The term with the geodesic curvature then becomes

k′ = ± t′an′b∇at′b = ±t′an′b(∂at′b + Γ′bact
′c)

= ± e−ωtaeωnb
[
∂a(e

−ωtb) + (Γbac + δbc∂aω + δba∂cω − γbdγac∂dω)e−ωtc
]

= ± tanbe−ω
(
−∂aωtb + ∂at

b + Γbact
c + ∂aωt

b + δba∂cωt
c − γbdγac∂dωtc

)
= e−ω(k ∓ tanbγbdγac∂dωtc) = e−ω(k ∓ tatanb∂bω) [3.8]

where we have used that the tangent and normal vectors are orthonormal tana = 0. Now,
if tata = −1 then we are to chose the upper sign, which is minus and so the second term
in the brackets gets a plus sign. If tata = +1 we need to take the lower sign and we once
again find a plus sign for the second term. Thus

k′ = e−ω(k + na∂aω) [3.9]

It remains to work out the transformation of ds. We have

ds′2 = g′abdx
′adx′b = e2ωdxadxb = e2ωds2 [3.10]

and thus

ds′ = eωds [3.11]

Bringing everything together we have

χ′ =
1

4π

∫
M
d2σ

√
g′R′ +

1

2π

∫
∂M

ds′ k′

=
1

4π

∫
M
d2σ
√
g(R− 2∇2ω) +

1

2π

∫
∂M

eωdse−ω(k + na∂aω)

=
1

4π

∫
M
d2σ
√
gR+

1

2π

∫
∂M

ds k +
1

2π

[
−
∫
M
d2σ
√
g∇a∂aω +

∫
∂M

ds na∂aω

]
=χ [3.12]

where the term between brackets vanishes due to Stokes’ theorem∫
M
d2σ
√
g∇ava =

∫
∂M

ds nava [3.13]
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3.3 p 83: Eq (3.2.7) String Coupling Constants

The figure below shows the appearance of a closed string handle on an open string and the
contributions of the Euler number to the open and closed string interactions.

Figure 3.2: String coupling constants and handles

3.4 p 85: Eq (3.3.6) The Relations Between the Ricci Scalar and the
Riemann Tensor in 2D

Just as we showed for p16 that Rab = 1
2gabR using Mathematica, it is also convenient to

show that

Rabcd =
1

2
(gacgbd − gadgbc)R [3.14]

using Mathematica. One just needs to be careful that Rabcd = gaeR
e
bcd. Here our test

functions are tt[a, b, c, d] and we check that the sum of their absolute values is zero, which

— 102—



Joe’s Book (version of November 20, 2020) Notes from Stany M. Schrans

will of course ensure that they are all zero by themselves.

In[151]:= Clear[G, dG, gu, g, dg, ddg, dgu, R, Rd, RR, m, mu, tt];

m = {{g11[x, y], g12[x, y]}, {g12[x, y], g22[x, y]}};

g21[x_, y_] := g12[x, y];

mu = Inverse[m];

g[a_, b_] := m[[a, b]]

gu[a_, b_] := mu[[a, b]]

dg[1, a_, b_] := D[g[a, b], x]

dg[2, a_, b_] := D[g[a, b], y]

dgu[1, a_, b_] := D[gu[a, b], x]

dgu[2, a_, b_] := D[gu[a, b], y]

ddg[1, 1, a_, b_] := D[D[g[a, b], x], x]

ddg[1, 2, a_, b_] := D[D[g[a, b], x], y]

ddg[2, 1, a_, b_] := D[D[g[a, b], y], x]

ddg[2, 2, a_, b_] := D[D[g[a, b], y], y]

G[a_, b_, c_] := (1 / 2) * Sum[gu[a, d] * (dg[b, c, d] + dg[c, b, d] - dg[d, b, c]), {d, 2}]

dG[e_, a_, b_, c_] := Simplify[(1 / 2) * Sum[dgu[e, a, d] * (dg[b, c, d] + dg[c, b, d] - dg[d, b, c])

+ gu[a, d] * (ddg[e, b, c, d] + ddg[e, c, b, d] - ddg[e, d, b, c]), {d, 2}]]

R[a_, b_, c_, d_] := Simplify[dG[c, a, d, b] - dG[d, a, c, b]

+ Sum[G[a, c, e] * G[e, d, b] - G[a, d, e] * G[e, c, b], {e, 2}]]

R[a_, b_ ] := Simplify[Sum[R[c, a, c, b], {c, 2}]]

RR = Simplify[Sum[ gu[a, b] * R[a, b], {a, 2}, {b, 2}] ];

tt[a_, b_, c_, d_] :=

Sum[g[a, e] * R[e, b, c, d], {e, 2}] - (1 / 2) * (g[a, c] * g[b, d] - g[a, d] * g[b, c] ) * RR

In[171]:= Sum[ Simplify[Abs[tt[a, b, c, d]]], {a, 2}, {b, 2}, {c, 2}, {d, 2}]

Out[171]= 0

Figure 3.3: Mathematica code for the relationship between R and Rabcd in 2D

3.5 p 85: Eq (3.3.8) The Residual Conformal Symmetry after Gauge
Fixing

We first consider a diffeomorphism z′ = f(z) with f(z) a holomorphic function. Under this
transformation we have

ds′2 = dz′dz̄′ =
∂f(z)

∂z
dz
∂̄f̄(z̄)

∂z̄
dz̄ = |∂f(z)|2dzdz̄ [3.15]

Next we also perform a Weyl transformation g′′ab = e−2ω(z,z̄)g′ab. This gives

ds′′2 = e−2ω(z,z̄)ds′2 = e−2ω(z,z̄)|∂f(z)|2dzdz̄ = e−2ω(z,z̄)|∂f(z)|2ds2 [3.16]
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If we now chose ω = ln |∂f(z)| we get

ds′′2 = exp [−2 ln |∂f(z)|] |∂f(z)|2ds2 = ds2 [3.17]

so that the combinations of a holomorphic diffeomorphism and a Weyl transformation
leaves the metric invariant.

3.6 p 87: Footnote 2 The Gauge Invariance of the Delta Function

The delta function δ(g − g′) forces g′ab to be equal to gab at every point on the worldsheet.
But the diffeomorphism (3.3.10) is invertible as we can as well express g in terms of gξ. So
by definition if g′ab(σ

′) = gab(σ) then so is g′ξab(σ
′) = gξab(σ) and vice versa.

3.7 p 88: Eq (3.3.16) The Infinitesimal Transformation of the Metric

We need to work out

δgab(σ) = g′ab(σ)− gab(σ) [3.18]

for an infinitesimal version of (3.3.10), i.e. with e2ω = 1 + 2ω and σ′a = σa + δσa First, we
see that

∂σa

∂σ′b
= δab − ∂bδσa [3.19]

Thus, to first order,

δgab(σ) = g′ab(σ)− gab(σ) = g′ab(σ
′ − δσ)− gab(σ)

= g′ab(σ
′)− δσc∂cg′ab(σ′)− gab(σ)

= (1 + 2ω)(δca − ∂aδσc)(δdb − ∂bδσd)gcd(σ)− δσc∂cgab(σ′)− gab(σ)

= δcaδ
d
b gcd − δdb∂aδσcgcd − δca∂bδσdgcd + 2ωδcaδ

d
b gcd − δσc∂cgab − gab

= 2ωgab − ∂aδσcgbc − ∂bδσdgad − δσc∂cgab [3.20]

We now use δσa = gabδσb:

δgab(σ) = 2ωgab − ∂a(gcdδσd)gbc − ∂b(gcdδσc)gad − δσc∂cgab
= 2ωgab − ∂agcdδσdgbc − ∂aδσdgcdgbc − ∂bgcdδσcgad − gcd∂bδσcgad − δσc∂cgab
= 2ωgab + δσdg

cd∂agbc − ∂aδσdδdb + δσcg
cd∂bgad − ∂bδσcδca − δσc∂cgab

= 2ωgab − ∂aδσb − ∂bδσa + δσdg
cd∂agbc + δσcg

cd∂bgad − gcdδσd∂cgab
= 2ωgab − ∂aδσb − ∂bδσa + δσdg

cd(∂agbc + ∂bgac − ∂cgab) [3.21]

— 104—



Joe’s Book (version of November 20, 2020) Notes from Stany M. Schrans

Let us now work out ∇aδσb +∇bδσa keeping in mind that because the indices are down-
stairs, the connection gets a minus sign

∇aδσb +∇bδσa = ∂aδσb − Γcabδσc + ∂bδσa − Γcbaδσc

= ∂aδσb + ∂bδσa − (Γcab + Γcba)δσc

= ∂aδσb + ∂bδσa − 2Γdabδσd

= ∂aδσb + ∂bδσa − δσdgcd(∂agbc + ∂bgac − ∂cgab) [3.22]

and we see that indeed

δgab(σ) = 2ωgab −∇aδσb −∇bδσa [3.23]

If we now just fill in the definition of P1 in (3.3.16) we get

δgab = 2δωgab −∇cδσcgab − (∇aδσb +∇bδσa − gab∇cδσc)
= 2δωgab −∇aδσb −∇bδσa [3.24]

Which shows that the first and second line of (3.3.16) are equal.
Let us now show that P1 takes vectors into traceless symmetric tensors. First, it is

obvious from the definition (3.3.17) that

(P1δσ)ab = (P1δσ)ba [3.25]

Next, also the tracelessness is obvious

gab(P1δσ)ab = gab
1

2
(∇aδσb +∇bδσa − gab∇cδσc)

=
1

2
(2∇aδσa − δaa∇cδσc) = 0 [3.26]

But notice that the tracelessness is only valid in two dimensions.

3.8 p 88: Eq (3.3.18) The Faddeev-Popov Determinant

Even though the derivation is Joe’s book is detailed, let’s do it again, just for the sake of it.
From (3.3.11) we have that

∆−1
FP(g) =

∫
[dδω dδσ] δ(g − ĝξ) [3.27]

We have a functional integration over the diffeomorphism parameters δσa and over the
Weyl parameter δω. Recall that ĝ is the fiducial metric and ĝξ is the fiducial metric after
a gauge transformation. We are thus integrating over all possible gauge transformations,
fixing the gauge transformed metric to be the fiducial metric.
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Now ĝ − ĝξ is simply the change from the fiducial metric to its gauge transformed. For
an infinitesimal transformation this is given by (3.3.16):

ĝ − ĝξ = −δĝ = −(2δω − ∇̂ · δσ)ĝ + 2P̂1δσ [3.28]

Notice that everything has to be w.r.t. the fiducial metric, including ∇ as it contains a
connection and hence depends on the fiducial metric as well. Notice also that this is to be
viewed as a two-component "tensor", i.e.

ĝab − ĝξab = −δĝab = −(2δω − ∇̂ · δσ)ĝab + 2(P̂1δσ)ab [3.29]

That takes us to the first equation in (3.3.18)

∆−1
FP(g) =

∫
[dδω dδσ] δ

[
− (2δω − ∇̂ · δσ)ĝ + 2P̂1δσ

]
[3.30]

Next, we rewrite the delta function in its integral representation, more exactly the delta
functional,

δ
[
− (2δω − ∇̂ · δσ)ĝ + 2P̂1δσ

]
=

1

2π

∫
[dp] exp

{
i

∫
d2σ
√
ĝ p.
[
− (2δω − ∇̂ · δσ)ĝ + 2P̂1δσ

]}
[3.31]

Here p is a two-component variable and p ·X = pabXab. We now set pab = 2πβab and this
gives

δ
[
− (2δω − ∇̂ · δσ)ĝ + 2P̂1δσ

]
=

∫
[dβ] exp

{
2πi

∫
d2σ

√
ĝ β.
[
− (2δω − ∇̂ · δσ)ĝ + 2P̂1δσ

]}
[3.32]

and therefore That takes us to the first equation in (3.3.18)

∆−1
FP(g) =

∫
[dδω dδσdβ] exp

{
2πi

∫
d2σ

√
ĝ β.
[
− (2δω − ∇̂ · δσ)ĝ + 2P̂1δσ

]}
[3.33]

This is the second equation of (3.3.18). We can now perform the β integration∫
[dδω] exp

(
−4πi

∫
d2σ
√
ĝβabĝabδω

)
=

1

2π
δ
(

4πβabĝab

)
[3.34]

The delta function δ
(
4πβabĝab

)
now forces βab to be traceless and takes away one of the

three degrees of freedom. Calling the traceless β now β′ and ignoring a normalisation
factor we have

∆−1
FP(g) =

∫
[dδσdβ′] exp

{
2πi

∫
d2σ

√
ĝ β′ ·

[
(∇̂ · δσ) ĝ + 2P̂1δσ

]}
[3.35]
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but β′ · ĝ = β′abĝab = 0 as β′ is traceless. Thus

∆−1
FP(g) =

∫
[dδσdβ′] exp

[
4πi

∫
d2σ

√
ĝ β′ab(P̂1δσ)ab

]
[3.36]

which is (3.3.18).

3.9 p 89: Eq (3.3.21) The Faddeev-Popov Action

We use (A.2.28) from the appendix. For x and y c-numbers and ψ and χ Grassmann
numbers we have ∫ ∞

−∞
dx

∫ ∞
−∞

dy e2πiλxy =
1

λ
=

[∫
dψ

∫
dχ eλψχ

]−1

[3.37]

Using this in (3.3.18) gives

∆−1
FP(g) =

[∫
[db dc] exp

(
2

∫
d2σ

√
ĝ bab(P̂1c)ab

)]−1

[3.38]

The sign and normalisation is just a convention, so that we can write

∆FP(g) =

∫
[db dc] exp

(
− 1

2π

∫
d2σ

√
ĝ bab(P̂1c)ab

)
[3.39]

Furthermore

bab(P̂1c)ab = bab
1

2

(
∇̂acb + ∇̂bcb − gab∇̂ccc

)
= bab∇̂acb [3.40]

where we have used the fact that bab is traceless, so that the last term vanishes, and sym-
metric so that the first two terms are identical.

3.10 p 89: Eq (3.3.24) The Faddeev-Popov Action in the Conformal
Gauge

From (3.3.21) we have in complex coordinates, where the metric is off-diagonal

Sg =
1

2π

∫
d2σ

√
ĝ
(
bzz∇̂zcz + bz̄z̄∇̂z̄cz̄

)
[3.41]

Also

∇̂zcz = gzz̄∇̂z̄cz = gzz̄
(
∂z̄c

z + Γ̂zz̄ac
a
)

= gzz̄
(
∂z̄c

z + Γ̂zz̄zc
z + Γ̂zz̄z̄c

z̄
)

[3.42]
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But, using the fact that the metric is off-diagonal in complex coordinates,

Γzzz̄ =
1

2
gza(∂zgz̄a + ∂z̄gza − ∂agzz̄) =

1

2
gzz̄(∂zgz̄z̄ + ∂z̄gzz̄ − ∂z̄gzz̄) = 0 [3.43]

Similarly

Γzz̄z̄ =
1

2
gza(∂z̄gz̄a + ∂z̄gz̄a − ∂agz̄z̄) = 0 [3.44]

because with a = z we have gzz = 0 and with a = z̄ we have gz̄z̄ = 0. Thus

∇̂zcz = gzz̄∇̂z̄cz = gzz̄∂̂z̄c
z [3.45]

This also proves the claim that in a conformal gauge the covariant z̄ derivative of a tensor
with only covariant z indices reduces to the ordinary derivative. In the conformal gauge
we
√
ĝ = e2ω and gzz̄ = e−ω so that

Sg =
1

2π

∫
d2σ e2ω

(
bzze

−2ω∇z̄cz + bz̄z̄e
−2ω∇̂zcz̄

)
=

1

2π

∫
d2σ

(
bzz∇z̄cz + bz̄z̄∇zcz̄

)
=

1

2π

∫
d2σ

(
bzz∂z̄c

z + bz̄z̄∂zc
z̄
)

[3.46]

which is (3.3.24).

3.11 p 90-91: The Anomaly of a Global Scale Symmetry

This is a rather long detour on the anomaly of a global scale symmetry. It is taken almost
verbatim from my QFT notes. Some of the conventions may therefore be different. This is
a.o. the case of the signature which is mostly negative, as is pretty standard in QFT texts.

There is an important symmetry of the classical level that can become anomalous at
the quantum level. This is the scale invariance of massless field theories with dimension-
less couplings. In fact, it is not difficult to understand that these theories can have such
an anomaly. Indeed, these theories have no mass scales at all, but when we renormalise
the theory we introduce a renormalisation scale and we see that the theory becomes de-
pendent on that mass scale, e.g. via the running of the coupling constants. We can derive
this dependence on the renormalisation scale via the Callan-Symanzik equations and the
renormalisation equations. Here we will show how this dependence on a mass scale in the
quantum theory can be described via the anomaly of a classically conserved current, the
energy-momentum tensor.
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THE CLASSICAL ENERGY-MOMENTUM TENSOR

Before we discuss the anomalous breaking of scale invariance, we need a better under-
standing of the energy-momentum tensor. There are actually different ways to derive the
energy-momentum tensor.

The traditional way to derive the energy momentum tensor Tµν is from Noether’s the-
orem, where it is the current corresponding translation invariance xµ → xµ + aµ. A La-
grangian invariant under this symmetry transforms as L → L + aν∂µ(δµνL) and this leads
to the conserved current

Tµν =
∂L

∂(∂µφ)
∂νφ− ηµνL [3.47]

This energy-momentum tensor is called the Canonical Energy-Momentum Tensor. This
construction does not guarantee that the energy-momentum tensor is symmetric. There
is in fact no reason for it to be symmetric, nor, as it so happens, gauge invariant, but it
turns out that we can always make it symmetric and gauge-invariant by adding a total
divergence to it. This total divergence does not affect the conserved charge, so the physics
remains the same. We define

Θµν = Tµν + ∂σΣµνσ [3.48]

for some Σµνσ that is antisymmetric between µ and σ. We the see that ∂µΘµν = ∂µT
µν +

∂µ∂
σΣµνσ = ∂µT

µν and so Θµν is conserved if Tµν is conserved.
Let us now consider a scale transformation of the space-time coordinates x −→ λx for

some positive λ. We define the scalar field to transform as φ(x) −→ λφ(λx), but we prefer
to write this in the more general form

φ(x) −→ e−Dσφ(e−σx) [3.49]

with D = 1 the mass dimension of the field. This definition allows us to generalise the
scaling transformation to fermions and to gauge fields. Theories that have no dimensionful
couplings will be invariant under such a transformation and we say that the theory has
scale invariance. The conserved current corresponding to this invariance is the so-called
dilatation current Dµ. The notation should not be confused with the covariant derivative!
The dilatation current is related to the symmetric energy-momentum tensor in a simple
way

Dµ = Θµνxν [3.50]

Taking the divergence of the dilatation current we find

∂µD
µ = (∂µΘµν)xν + Θµνηµν = Θµ

µ [3.51]

We thus see that scale-invariance of the theory is equivalent to the tracelessness of the
energy-momentum tensor. Pay attention to the fact that we have not explicitly derived the
form of the dilatation current. It is in fact not straightforward to do so, but we can obtain
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this result from another method. If we couple the field theory to an gravitational field
gµν(x) we can then define the energy-momentum tensor as the functional derivative of the
matter action w.r.t. the gravitational field

Θµν =
2
√
g

δSM[φ]

δgµν
[3.52]

where g = det gµν . This is a manifestly symmetric and gauge-invariant tensor. Under a
scale transformation x −→ eσx we can find the transformation of the gravitational field
by requiring the invariance of the line element ds2 = g′µν(x′)dx′µdx′ν = gµν(x)dxµdxν . We
find g′µνe

−2σdxµdxν = gµνdx
µdxν or

gµν(x) −→ g′µν(x′) = e2σgµν(x) [3.53]

How does the matter action transform under such a scale transformation? We can find
this using the chain rule. Consider an infinitesimal rescaling gµν −→ (1 + 2σ)gµν or hence
δgµν = 2σgµν . We have

δSM =
δSM
δgµν

δgµν

δσ
=
δSM
δgµν

2gµν = gµν
√
gΘµν =

√
gΘµ

µ [3.54]

and we see indeed that the action is invariant under scaling transformations provided the
energy-momentum tensor is traceless.

In QED the symmetric energy-momentum tensor is given by

Θµν = −FµσF νσ +
1

4
gµνF ρσFρσ +

1

2
ψ̄i(γµDν + γνDµ)ψ − ηµνψ̄(i6D −m)ψ [3.55]

One can check that this is gauge-invariant and that it leads to the classical expression for
the total energy

H =

∫
d3x T 00 =

∫
d3x

[
1

2
(E2 +B2) + ψ†(−iγ0γ ·∇+ γ0m)ψ

]
[3.56]

Note that these formulae are valid at the classical level in any dimensions d. Taking the
trace of the energy-momentum tensor we find

Θµ
µ =− FµσFµσ +

1

4
δµµF

ρσFρσ +
1

2
ψ̄i(26D)ψ − δµµψ̄(i6D −m)ψ

=
d− 4

4
FµνFµν + (1− d)ψ̄i6Dψ + dmψ̄ψ

=
d− 4

4
FµνFµν + (1− d)ψ̄mψ + dmψ̄ψ =

d− 4

4
FµνFµν +mψ̄ψ [3.57]
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We have used the equations of motion as the symmetry is only valid for on-shell particles.
We see that in four dimensions the energy-momentum tensor is traceless for a massless
theory, as we expect for a theory that has no dimensionful coupling.

THE ENERGY-MOMENTUM TENSOR AND THE SCALE ANOMALY

We know from the previous discussion on renormalisation that the scale invariance is bro-
ken at the quantum level and that this shows up a.o. in the running of the coupling constant
λ̄(p, λ). This is given by the renormalisation group equation

d

d log p/M
λ̄(p, λ) = β(λ̄) with initial condition λ̄(M,λ) = λ [3.58]

Let us translate this to our case at hand. We have x′ = e−σx, so p′ = e+σp. A rescaling of
the momentum from a renormalisation scale M to a momentum p is thus a multiplication
by e+σ. Thus log p/M is essentially log e+σ = σ. Replacing λ by the coupling constant g we
find

dḡ

dσ
= β [3.59]

To first order we can replace β(ḡ) by β(g) and as this is independent of σ we can integrate
the differential equation immediately to get ḡ = σβ + cte. The initial conditions are that
ḡ = g when there is no re-scaling, i.e. when σ = 0. Therefore cte = g. We thus find that
the coupling constant runs as follows

g −→ g′ = g + σβ(g) [3.60]

Under such a rescaling the Lagrangian picks up a change

δL =
∂L
∂g
δg = σβ(g)

∂L
∂g

[3.61]

All other changes are zero because at fixed coupling constant, i.e. at the classical level,
the Lagrangian is assumed to be scale invariant. As the change of the Lagrangian under a
scale transformation is, according to [3.51], equal to the total divergence of the dilatation
current, or equivalently to the trace of the energy-momentum tensor, we have

∂µD
µ = Θµ

µ = β(g)
∂L
∂g

[3.62]

The trace of the energy-momentum tensor is thus proportional to the β function of the
theory. This is the general form of the trace anomaly.

Let us work this out for QED. The Lagrangian is

L[ψ,A] = ψ̄(i6 ∂ −m0)ψ − 1

4
FµνF

µν − eψ̄γµAµψ [3.63]
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Let us redefine the gauge field as eAµ −→ Aµ. The Lagrangian then becomes

L[ψ,A] = ψ̄(i6 ∂ −m0)ψ − 1

4e2
FµνF

µν − ψ̄γµAµψ [3.64]

The advantage of this redefinition is that the coupling e now only appears in the kinetic
term of the gauge field. We then immediately find

∂L
∂e

=
∂

∂e

[
− 1

4e2
FµνF

µν + · · ·
]

=
1

2e3
FµνF

µν [3.65]

and thus we find for the trace of the energy momentum tensor

Θµ
µ =

β(e)

2e3
FµνF

µν [3.66]

This derivation of the trace anomaly for QED was quite heuristic. We should be able to
recover the same result from perturbation theory and so we now evaluate the trace of the
energy-momentum tensor explicitly to one-loop order.

We are thus interested in calculating the expectation value 〈Θµ
µ〉. Let us first think

about how we expect the result to be as it will guide us to the right answer. We will use the
background field method. The idea there is to split the gauge field in a fixed background
field Aa

µ and a fluctuating fieldAaµ and integrate out the fluctuation field in the path integral
for the expectation value. From (3.66) we expect the lowest order result to be quadratic
in the background field and to be of the form

〈Θµ
µ〉 = C

∫
d4k

(2π)4
Aµ(−k)(k2gµν − kµkν)Aν(k) [3.67]

with C some constant. In fact, working out the details, one would find C = β(e)/e3 to be
in full agreement with (3.66).

As we will use dimensional regularisation for the divergent integrals, let us first remind
ourselves of the formula for the trace for an arbitrary dimension d, (3.57). For massless
fermions this is

Θµ
µ =− 4− d

4
FµνFµν + (1− d)ψ̄i6Dψ [3.68]

What are the Feynman diagrams contributing to 〈Θµ
µ〉 with two external background

fields? If we denote the insertion of the trace of the energy-momentum tensor in a Feyn-
man diagram by and an external background field by then we can have the
insertion at three places (+ symmetric diagrams):

kk

+ + [3.69]

— 112—



Joe’s Book (version of November 20, 2020) Notes from Stany M. Schrans

It turns out that the contributions of the first two diagrams cancel. A simple way to under-
stand this is to look at the difference between the two diagrams. The second diagram has
the operator Θµ

µ inserted in stead of a vertex. Because we need one gauge-field external to
that, it takes the gauge field form the covariant derivative, i.e. (1− d)× i× (−ieψ̄γµψ)Aµ.
The two fermions become propagators and so this operator insertion contributes a factor
(1 − d)eγµ to the diagram. Consider now the first diagram. The operator is now replaced
by an ordinary vertex (−ieγµ) , but we have an additional fermion propagator i/6 p and and
operator inserted at the end of that vertex. As we have already two gauge fields, the only
contribution from that operator now comes from the partial derivative (1 − d)ψ̄iγµ∂ψ. In
momentum space the partial derivate brings down a factor ipµ and so we have a factor

(−ieγµ)
i

6 p
(1− d)× i× i6 p = −(1− d)eγµ [3.70]

contributing to the Feynman diagram. All other factors in the matrix elements of the first
two diagrams are identical, so that they are indeed equal and opposite and hence sum to
zero. The third diagram corresponds to two external fields emanating from the operator
so the lowest order contribution comes from the quadratic field strength term. This term
is actually zero in four dimensions, but we see that it combines with a fermion loop that
is divergent in four dimensions and so the product may be finite! This fermion loop is the
photon self-energy and we only need its divergent term by virtue of the fact that the self-
energy gets multiplied by the (4− d) in front of the quadratic field strength in the inserted
operator. The one-loop photon self-energy is a standard calculation in any QED text book.
The details are e.g. available in my QFT Notes. The result is i(k2gµν − kµknu)Π2(k2) with

Π2(k2) =
d→4

−2α

π

∫ 1

0
dx x(1− x)(

2

ε
− log ∆(k2) + log 4π − γ + o(ε)) [3.71]

The divergent part is then simply

Π2(k2) ∼ − 2

π

e2

4π

∫ 1

0
x(1− x)

2

4− d
=

e2

2π2

(
1

2
− 1

3

)
2

4− d
= − e2

12π2

2

4− d
[3.72]

We can now write the amplitude for the third diagram. We have two external background
fields from the −(4 − d)/4 × FµνFµν . There is a factor of two for symmetry reasons so
that gives in momentum space −2 × (4 − d)/4 × Aµ(−k)(k2gµσ − kµkσ)Aσ(k). Next we
have a gauge field propagator −i/k2 and then we have the self-energy i(k2gνσ − kνkσ) ×
(−e2/12π2 × 2/(4− d)). Bringing it together we find

M3 =

∫
d4k

(2π)4

(
−2

4− d
4

Aµ(−k)(k2gµσ − kµkσ)Aσ(k)

)(
−i
k2

)
×
(
−i e2

12π2

2

4− d
(k2δνσ − kσkν)

)
=

e2

12π2

∫
d4k

(2π)4
Aµ(−k)k2

(
gµσ − kµkσ

k2

)(
δνσ −

kσk
ν

k2

)
Aσ(k) [3.73]
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Now Pµν = gµν − kµkν/k2 is a projection operator, i.e.

PµσP ν
σ =

(
gµσ − kµkσ

k2

)(
δνσ −

kσk
ν

k2

)
= gµν − kµkν

k2
− kµkν

k2
+
k2kµkν

(k2)2

=gµν − kµkν

k2
= Pµν [3.74]

Therefore

M3 =
e2

12π2

∫
d4k

(2π)4
Aµ(−k)

(
k2gµν − kµkν

)
Aν(k) [3.75]

This is indeed of the form (3.76)

〈Θµ
µ〉 = C

∫
d4k

(2π)4
Aµ(−k)(k2gµν − kµkν)Aν(k) [3.76]

To find C let us recall that we absorbed the electric charge in the gauge field, so that

C =
1

12π2
[3.77]

and we find that this agrees with (3.66) when we use the QED β function, β = e3/12π2,
i.e.

C =
β(e)

e3
=

e3

12π2
e3 =

1

12π2
[3.78]

It is now straightforward to generalise this discussion to QCD. In a non-abelian gauge
theory the energy-momentum tensor is the obvious generalisation of (3.55) where we
replace the abelian field strength by the non-abelian one. In the massless case it becomes

Θµν = −F aµσF a νσ +
1

4
gµνF a ρσF aρσ +

1

2
ψ̄i(γµDν + γνDµ)ψ − gµνψ̄i6Dψ [3.79]

The trace is then the generalisation of (3.68) with m = 0

Θµ
µ =− 4− d

4
F aµνF aµν + (1− d)ψ̄i6Dψ [3.80]

where the fermion contributions vanishes because of the equation of motion, but also does
not contribute to the one-loop result as in the case of QED. In an expectation value this
becomes the generalisation of (3.76)

〈Θµ
µ〉 = C

∫
d4k

(2π)4
Aa
µ(−k)(k2gµν − kµkν)Aa

ν(k) [3.81]
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with C = β(g)/g3 and β(g) the QCD β function given by β = −b0g3/(4π)2 and b0 =
(11− 2nF /3) for QCD.

Just as it is the case for the axial anomaly, we can find the trace anomaly using different
methods. The anomaly will then always occur as a certain “pathology” of the chosen reg-
ularisation scheme. For example, if one uses Pauli-Villars regularisation, which introduces
heavy fermions, we will find that the trace anomaly comes from the mass term MΦΦ from
the heavy fermions. The loop diagram with this term inserted will have a finite result as
we take M to infinity. It may seem at first sight that each regularisation scheme brings out
the trace anomaly in a different way, just as it happens for the axial anomaly, but at the
end the anomaly cannot be gotten rid of. It is an inherent part of those field theories and
the classical symmetries cannot all automatically be promoted to quantum symmetries.
One would need special cases of the theory, e.g. by combining certain fields, to ensure the
symmetry still exists at the quantum level.

3.12 p 92: Eq (3.4.6) Weyl Invariance of an Expectation Value

This is straightforward, but sometimes it is good to emphasise the straightforward. A Weyl
transformation has g′ab(σ

′) = e2ω(σ)gab(σ) and σ′ = σ. Thus under an infinitesimal Weyl
transformation

δgab(σ) = g′ab(σ)− gab(σ) = g′ab(σ
′)− gab(σ) = [1 + 2ω(σ)] gab(σ)− gab(σ)

= 2ω(σ)gab(σ) [3.82]

Therefore

δW 〈 · · · 〉g =

〈
− 1

4π

∫
d2σ
√
g2δωgabT

ab · · ·
〉

= − 1

2π

∫
d2σ
√
gδω 〈gabT ab · · ·〉 [3.83]

3.13 p 92: Eq (3.4.8) The General Form of the Weyl Anomaly

Let us count some dimensions. The Polyakov action is

S = − 1

4πα′

∫
M
d2σ
√
ggab∂aX

µ∂bXµ [3.84]

We need to make a difference between world-sheet dimensions, which we will denote by
[ ], and space-time dimensions which we will denote by J K. Here α′ has unit of space-time
length squared, see page 11, i.e. Jα′K, but world-sheet dimension zero, [α′] = 0. The
metric had worldsheet dimension [gab] = [gab] = 0. This follows e.g. from the line element
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ds2 = gabdσ
adσb as [ds] = [dσa] = 1 as they are both a (worldsheet) length. Thus from the

Polyakov action we have that [Xµ] = 0. This means that the energy-momentum tensor

T ab = − 1

α′

(
∂aXµ∂bXµ −

1

2
gab∂cXµ∂cXµ

)
[3.85]

has [T ] = −2, as [∂a] = −1. The Riemann curvature is of the form ∂Γ + ΓΓ with Γ of the
form gad∂bgdc. Thus R has two derivatives and [R] = −2. From T aa = a1R we thus find that
a1 is dimensionless.

Let us next consider other terms that could be added to T aa . A term of the form a2R
2

would have two more derivatives and so [a2] = +2. If we would put in a high momentum
cut-off Λ in the theory then a2 would scale as Λ−2 and so vanish as we take the cut-off to
infinity. The same reasoning is valid for higher order terms of R of for terms that include
(worldsheet invariant) combinations of ∂a. They would all lead to coefficients a with a
positive dimension and so these coefficients would all vanish in a high momentum cut-off.

3.14 p 92: Eq (3.4.9) The General Form of the Weyl Anomaly in Com-
plex Coordinates, I

In the conformal gauge we have gab = e2ω this means that the only non-zero components
of the metric tensor in complex coordinates are

gzz̄ =
1

2
e2ω and gzz̄ = 2e−2ω [3.86]

Therefore

gabTab = 2gzz̄Tzz̄ = 4e−2ωTzz̄ [3.87]

and thus

4e−2ωTzz̄ = a1R ⇒ Tzz̄ =
e2ω

4
a1R =

a1

2
gzz̄R [3.88]

3.15 p 92: Eq (3.4.10) The General Form of the Weyl Anomaly in Com-
plex Coordinates, II

∇z̄Tzz̄ =
aa
2
∇z̄(gzz̄R) =

aa
2
gzz̄∇z̄R =

aa
2
gzz̄∂

z̄R =
aa
2
∂zR [3.89]

We have used that the covariant derivative of the metric is zero and that the curvature is a
scalar so that its covariant derivative is equal to its ordinary derivative.
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3.16 p 93: Eq (3.4.11) The General Form of the Weyl Anomaly in Com-
plex Coordinates, III

The conservation equation in curved metric is (for b = z)

0 = ∇aTab = ∇zTzz +∇z̄Tz̄z [3.90]

In case you are wondering, as I did for a brief moment, why the conservation equation is in
terms of covariant derivatives and not ordinary derivatives, remember that the conserved
charge follows from Stokes’ theorem, which requires the covariant derivative.

3.17 p 93: Eq (3.4.12) The Actual Form of the Weyl Anomaly in Com-
plex Coordinates, I

Using (1.2.32) we find that √
g′R′ =

√
g(R− 2∇2ω) [3.91]

For an infinitesimal Weyl transformation g′ab(σ
′) = e2δωgab(σ) = (1 + 2δω)gab(σ) we have

for the RHS of (3.4.11)

δWRHS = −a1

2
∂zδWR [3.92]

now

δWR =R′(σ)−R(σ) =

√
g

g′
(R− 2∇2ω)−R

= e−2ω(R− 2∇2ω)−R = (1− 2δω)(R− 2∇2δω)−R
= − 2δωR− 2∇2δω [3.93]

Therefore

δWRHS = −a1

2
∂z(−2δωR− 2∇2δω) [3.94]

We now expand this near a flat worldsheet, where we have R = 0 and ∇2 = 2gzz̄∇z∇z̄ =
4∂z∂z̄. This gives

δWRHS = −a1

2
∂z(−2× 4∂z∂z̄δω) = 4a1∂

2
z∂z̄δω [3.95]
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3.18 p 93: Eq (3.4.15) The Actual Form of the Weyl Anomaly in Com-
plex Coordinates, II

Combining (3.4.12) and (3.4.14) we find

4a1∂
2
z∂z̄δω = ∇z

(
− c

6
∂2
zδω

)
= − c

6
gzz̄∂z̄∂

2
zδ = − c

3
∂z̄∂

2
zδω [3.96]

and so

a1 = − c

12
[3.97]

3.19 p 93: Eq (3.4.16a) The Ricci Scalar in the Conformal Gauge

The conformal gauge is

gab = e2ω(σ)δab [3.98]

Direct calculation gives the following values for the connections

Γ1
11 = − Γ1

22 = Γ2
12 = Γ2

21 = ∂1ω

Γ1
12 = Γ1

21 = −Γ2
12 = Γ2

22 = ∂2ω [3.99]

The non-zero components of the Riemann curvature tensor are

R1
221 = −R1

212 = R2
112 = R2

121 = (∂2
1 + ∂2

2)ω = ∂a∂aω [3.100]

and of the Ricci tensor

R11 = R22 = −∂a∂aω [3.101]

This then leads to the Ricci scalar

R = −2e−2ω∂a∂aω [3.102]

3.20 p 93: Eq (3.4.16b) The Laplacian in the Conformal Gauge

We know that in complex coordinates, see e.g. [3.96],

∇2 = gab∇a∇b = 2gzz̄∇z∇z̄ = 2gzz̄∂z∂z̄ [3.103]

Thus

∇2 = gab∂a∂b = e−2ω∂a∂a [3.104]
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3.21 p 93: Eq (3.4.17) The Weyl Variation of Z[g]

From (3.4.6) we have, where ĝ denotes the conformal gauge, ĝab = e2ωδab,

δWZ[ĝ] = − 1

2π

〈∫
d2σ

√
ĝ δω a1R · · ·

〉
=
a1

π

〈∫
d2σe−2ωδω e−2ω∂a∂aω · · ·

〉
=
a1

π

∫
d2σ δω ∂a∂aω Z[ĝ] [3.105]

3.22 p 93: Eq (3.4.18) Z[g] in the Conformal Gauge

It is easiest to check that (3.4.18) is a solution of (3.4.17):

δWZ[e2ωδ. .] = δWZ[δ. .]e
−a1

2π

∫
d2σ ∂aω∂aω

=Z[δ. .]e
−a1

2π

∫
d2σ ∂aω∂aωδW

(
− a1

2π

∫
d2σ ∂aω∂aω

)
=Z[e2ωδ. .]

(
− a1

2π

∫
d2σ 2∂aδω∂aω

)
=
a1

π
Z[e2ωδ. .]

∫
d2σ δω∂a∂aω [3.106]

We have used partial integration in the last line.

3.23 p 94: Eq (3.4.19) Z[g] for an Arbitrary Metric

Let us check that (3.4.19) reduces to (3.4.18) in the conformal gauge

Z[g]
∣∣∣
g=e2ωδ. .

=Z[δ. .] exp

{
a1

8π

∫
d2σ

∫
d2σ′ e2ω(σ)

[
−2e−2ω(σ)∂a∂aω(σ)

]
× G(σ, σ′)e2ω(σ′)

[
−2e−2ω(σ′)∂′a∂

′
aω(σ′)

]}

=Z[δ. .] exp

[
a1

2π

∫
d2σ

∫
d2σ′ ∂a∂aω(σ)G(σ, σ′)∂′a∂

′
aω(σ′)

]
=Z[δ. .] exp

[
a1

2π

∫
d2σ

∫
d2σ′ ω(σ)∂a∂aG(σ, σ′)∂′a∂

′
aω(σ′)

]
[3.107]
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where we have used partial integration in the last line. We now use (3.4.16b) and (3.4.20)
to rewrite

∂a∂aG(σ, σ′) = e2ω∇2G(σ, σ′) = e2ωg−1/2δ2(σ − σ′)
= e2ωe−2ωδ2(σ − σ′) = δ2(σ − σ′) [3.108]

Thus

Z[g]
∣∣∣
g=e2ωδ. .

=Z[δ. .] exp

[
a1

2π

∫
d2σ

∫
d2σ′ ω(σ)δ2(σ − σ′)∂′a∂′aω(σ′)

]
=Z[δ. .] exp

[
a1

2π

∫
d2σ ω(σ)∂a∂aω(σ)

]
=Z[δ. .] exp

[
− a1

2π

∫
d2σ ∂aω(σ)∂aω(σ)

]
[3.109]

where we have, once more, used partial integration in the last line. Note also that (3.4.19)
is manifestly diffeomorphism invariant. Indeed R and G are scalar functions and the mea-
sure in the integrals is the diffeomorphism invariant measure d2σ

√
g.

3.24 p 94: Eq (3.4.21) The Second Way to Calculate the Variation of
Z[g], I

We first compute the Ricci scalar in the linear limit. If gab = δab + hab then in complex
coordinates we need a linear deformation from gzz = gz̄z̄ = 0 and gzz̄ = 1/2. Thus

g. . =

(
hzz

1
2 + hzz̄

1
2 + hzz̄ hz̄z̄

)
[3.110]

The inverse metric is

g. . =

(
−4hz̄z̄ 2(1− 2hzz̄)

2(1− 2hzz̄) −4hzz

)
[3.111]

This is easily checked by multiplying the two matrices with one another and showing that
they are equal to the identity matrix plus terms of second order in h. To calculate the
determinant

√
g we first revert to the ordinary worldsheet coordinates. We have

ds2 = gzzdz dz + gz̄z̄dz̄ dz̄ + 2gzz̄dz dz̄

=hzz(dσ
1 + idσ2)2 + hz̄z̄(dσ

1 − idσ2)2 + (1 + 2hzz̄(dσ
1 + idσ2)(dσ1 − idσ2)

= (1 + hzz + hz̄z̄ + 2hzz̄)dσ
1dσ1 + (1− hzz − hz̄z̄ + 2hzz̄)dσ

2dσ2

+ 2i(hzz − hz̄z̄)dσ1dσ2 [3.112]
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and therefore

g11 = 1 + hzz + hz̄z̄ + 2hzz̄

g22 = 1− hzz − hz̄z̄ + 2hzz̄

g12 = i(hzz − hz̄z̄) [3.113]

The determinant is therefore

g = (1 + hzz + hz̄z̄ + 2hzz̄)(1− hzz − hz̄z̄ + 2hzz̄) + (hzz − hz̄z̄)2

= 1 + 4hzz̄ + o(h2) [3.114]

and
√
g = 1 + 2hzz̄ + o(h2) [3.115]

Messy calculations are best left to Mathematica. The calculation of R is rather messy; the
code is shown in fig. 3.24. The result of this Mathematica calculation is given in fig. 3.4.
Just focussing on the linear terms, the result is quite simple

R = 4∂2
z̄hzz + 4∂2

zhz̄z̄ − 8∂z∂z̄hzz̄ + o(h2) [3.116]

As per Joe’s book we now focus on the terms with hz̄z̄ only. This means that to first
order we can take

√
g = 1 and R = 4∂2

zhz̄z̄. Moreover the solution of (3.4.20) is something
we already know; it is given by (2.1.24), i.e. ∂∂̄ ln |z|2 = 2πδ2(z, z̄). Using∇2 = 2∂∂̄+o(h)
we get

G(σ, σ′) =
1

4π
ln |z − z′|2 [3.117]

We can now use all this in (3.4.19):

Z[g] =Z[δ] exp
a1

8π

∫
1

2
d2z

∫
1

2
d2z′ × 1× 4∂2

zhz̄z̄(z, z̄)×
1

4π
ln |z − z′|2 × 1× 4∂2

z′hz̄z̄(z
′, z̄′)

=Z[δ] exp
a1

8π2

∫
d2z

∫
d2z′ ∂2

zhz̄z̄(z, z̄) ln |z − z′|2∂2
z′hz̄z̄(z

′, z̄′) [3.118]

Using partial integration and g = δ + h this gives

ln
Z[δ + h]

Z[δ]
=

a1

8π2

∫
d2z

∫
d2 z′hz̄z̄(z, z̄)∂

2
z′∂

2
z (ln |z − z′|2)hz̄z̄(z

′, z̄′) [3.119]

Now ∂2
z′∂

2
z ln |z − z′|2 = −6/(z − z′)4 so that we find (3.4.21).

ln
Z[δ + h]

Z[δ]
= −3a1

4π2

∫
d2z

∫
d2 z′

hz̄z̄(z, z̄)hz̄z̄(z
′, z̄′)

(z − z′)4
[3.120]
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In[201]:= (* 2D gravity: R linearised *)

Clear[h, G, dG, gu, g11, g22, g12, g21, g, dg, ddg, dgu, R, RR, m, mu];

m = {{g11[x, y], g12[x, y]}, {g12[x, y], g22[x, y]}};

g11[x_, y_] := hz[x, y]

g22[x_, y_] := hb[x, y]

g12[x_, y_] := 1 / 2 + h[x, y]

g21[x_, y_] := g12[x, y];

mu = {{-4hb[x, y], 2 - 4h[x, y]}, {2 - 4h[x, y], -4hz[x, y]}};

g[a_, b_] := m[[a, b]]

gu[a_, b_] := mu[[a, b]]

dg[1, a_, b_] := D[g[a, b], x]

dg[2, a_, b_] := D[g[a, b], y]

dgu[1, a_, b_] := D[gu[a, b], x]

dgu[2, a_, b_] := D[gu[a, b], y]

ddg[1, 1, a_, b_] := D[D[g[a, b], x], x]

ddg[1, 2, a_, b_] := D[D[g[a, b], x], y]

ddg[2, 1, a_, b_] := D[D[g[a, b], y], x]

ddg[2, 2, a_, b_] := D[D[g[a, b], y], y]

G[a_, b_, c_] := (1 / 2) * Sum[gu[a, d] * (dg[b, c, d] + dg[c, b, d] - dg[d, b, c]), {d, 2}]

dG[e_, a_, b_, c_] := Simplify[(1 / 2) * Sum[dgu[e, a, d] * (dg[b, c, d] + dg[c, b, d] - dg[d, b, c])

+ gu[a, d] * (ddg[e, b, c, d] + ddg[e, c, b, d] - ddg[e, d, b, c]), {d, 2}]]

R[a_, b_, c_, d_] := Simplify[dG[c, a, d, b] - dG[d, a, c, b]

+ Sum[G[a, c, e] * G[e, d, b] - G[a, d, e] * G[e, c, b], {e, 2}]]

R[a_, b_ ] := Simplify[Sum[R[c, a, c, b], {c, 2}]]

RR = Expand[Sum[ gu[a, b] * R[a, b], {a, 2}, {b, 2}] ];

In[225]:= RR

Out[225]= -8h(0,1)[x, y] hz(0,1)[x, y] + 16h[x, y] h(0,1)[x, y] hz(0,1)[x, y] - 8hz[x, y] hb(0,1)[x, y] hz(0,1)[x, y] -

8hb[x, y] hz(0,1)[x, y]2 + 4hz(0,2)[x, y] - 16h[x, y] hz(0,2)[x, y] + 16h[x, y]2 hz(0,2)[x, y] -

16hb[x, y] hz[x, y] hz(0,2)[x, y] + 16h(0,1)[x, y] h(1,0)[x, y] - 32h[x, y] h(0,1)[x, y] h(1,0)[x, y] +

16hz[x, y] hb(0,1)[x, y] h(1,0)[x, y] - 32h[x, y] hz[x, y] hb(0,1)[x, y] h(1,0)[x, y] +

32h[x, y]2 hz[x, y] hb(0,1)[x, y] h(1,0)[x, y] - 32hb[x, y] hz[x, y]2 hb(0,1)[x, y] h(1,0)[x, y] +

32h[x, y] hb[x, y] hz(0,1)[x, y] h(1,0)[x, y] - 32h[x, y]2 hb[x, y] hz(0,1)[x, y] h(1,0)[x, y] +

32hb[x, y]2 hz[x, y] hz(0,1)[x, y] h(1,0)[x, y] + 32h[x, y] hz[x, y] h(0,1)[x, y] hb(1,0)[x, y] -

32h[x, y]2 hz[x, y] h(0,1)[x, y] hb(1,0)[x, y] + 32hb[x, y] hz[x, y]2 h(0,1)[x, y] hb(1,0)[x, y] -

4hz(0,1)[x, y] hb(1,0)[x, y] - 8h[x, y] hz(0,1)[x, y] hb(1,0)[x, y] + 48h[x, y]2 hz(0,1)[x, y] hb(1,0)[x, y] -

32h[x, y]3 hz(0,1)[x, y] hb(1,0)[x, y] - 16hb[x, y] hz[x, y] hz(0,1)[x, y] hb(1,0)[x, y] +

32h[x, y] hb[x, y] hz[x, y] hz(0,1)[x, y] hb(1,0)[x, y] - 8h(1,0)[x, y] hb(1,0)[x, y] +

16h[x, y] h(1,0)[x, y] hb(1,0)[x, y] - 8hz[x, y] hb(1,0)[x, y]2 + 16hb[x, y] h(0,1)[x, y] hz(1,0)[x, y] -

32h[x, y] hb[x, y] h(0,1)[x, y] hz(1,0)[x, y] + 32h[x, y]2 hb[x, y] h(0,1)[x, y] hz(1,0)[x, y] -

32hb[x, y]2 hz[x, y] h(0,1)[x, y] hz(1,0)[x, y] + 4hb(0,1)[x, y] hz(1,0)[x, y] +

8h[x, y] hb(0,1)[x, y] hz(1,0)[x, y] - 48h[x, y]2 hb(0,1)[x, y] hz(1,0)[x, y] +

32h[x, y]3 hb(0,1)[x, y] hz(1,0)[x, y] + 16hb[x, y] hz[x, y] hb(0,1)[x, y] hz(1,0)[x, y] -

32h[x, y] hb[x, y] hz[x, y] hb(0,1)[x, y] hz(1,0)[x, y] - 8hb[x, y] hb(1,0)[x, y] hz(1,0)[x, y] -

8h(1,1)[x, y] + 32h[x, y] h(1,1)[x, y] - 32h[x, y]2 h(1,1)[x, y] + 32hb[x, y] hz[x, y] h(1,1)[x, y] +

4hb(2,0)[x, y] - 16h[x, y] hb(2,0)[x, y] + 16h[x, y]2 hb(2,0)[x, y] - 16hb[x, y] hz[x, y] hb(2,0)[x, y]

Figure 3.4: Mathematica code and result for R with a linearised metric
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3.25 p 94: Eq (3.4.22) The Second Way to Calculate the Variation of
Z[g], II

Let us do this "symbolically" as it will be a mess to track all indices. We can extract the
exact contribution, i.e. the contribution quadratic hz̄z̄ in order to compare with (3.4.21) at
the appropriate times. From (3.3.22) we have

Z[δ + h] =

∫
[dX db dc ]e−S[X,b,c,δ+h] [3.121]

Here S[X, b, c, δ + h] is the sum of the matter and ghost actions. Now

S[X, b, c, δ + h] =S[X, b, c, δ] + h
δS[X, b, c, g]

δg

∣∣∣∣∣
g=δ

+ o(h2) [3.122]

But from (3.4.5) we know that δS/δg = (
√
g/4π)T by definition of the energy-momentum.

From [3.115] we know that
√
g = 1 + 2hzz̄ + o(h2). As we are only interested in contribu-

tions that are second order in hz̄z̄, we can simply take
√
g = 1 for our purposes.

Thus

S[X, b, c, δ + h] = S[X, b, c, δ] +
h

4π
T + o(h2) [3.123]

and so

Z[δ + h] =

∫
[dX db dc ] exp−

(
S[X, b, c, δ] +

h

4π
T + o(h2)

)
[3.124]

From this we have

ln
Z[δ + h]

Z[δ]
= ln

∫
[dX db dc ]e−(S[X,b,c,δ]+ h

4π
T+o(h2))

Z[δ]

= ln

∫
[dX db dc ]e−S[X,b,c,δ]

[
1− (1/2)(hT/4π)2 + · · ·

]
Z[δ]

∼ ln

[
1− 1

2(4π)2Z[δ]

∫
[dX db dc ]e−S[X,b,c,δ]h2T 2

]
=

1

2(4π)2Z[δ]

∫
[dX db dc ]e−S[X,b,c,δ]h2T 2

=
1

2(4π)2Z[δ]

〈
h2T 2

〉
δ

[3.125]

Here 〈 〉δ means that the expectation value is taken with a Euclidean metric, g = δ. In
the second line, we have only written down explicitly the contribution quadratic in h; all
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the other contributions are in the dots. In the third line we have ignored all these other
contributions as they play no rôle in what we wish to show. Let us now plug in the indices.
We wish to compare with (3.4.21) so need the contribution hz̄z̄. Now hT = habTab and as
hzz ∼ hz̄z̄ we have

hzzTzz = gzz̄gzz̄hz̄z̄Tzz = 4hz̄z̄Tzz + o(h2) [3.126]

Thus the contribution we are looking for is

ln
Z[δ + h]

Z[δ]
=

1

2(4π)2Z[δ]

〈
4

∫
1

2
d2zhz̄z̄(z, z̄)Tzz(z)4

∫
1

2
d2z′hz̄z̄(z

′, z̄′)Tzz(z
′)

〉
δ

=
1

8π2Z[δ]

∫
d2z

∫
d2z′ hz̄z̄(z, z̄)hz̄z̄(z

′, z̄′)
〈
Tzz(z)Tzz(z

′)
〉
δ

[3.127]

where we have used 2d2z = d2σ.
But assuming this is correct, we can now use the T (z)T (z′) OPE

T (z)T (z′) ∼ c/2

(z − z′)4
+

2T (z′)

(z − z′)2
+
∂T (z′)

z − z′
[3.128]

The last two terms don’t contribute because 〈T (z′)〉 = 〈∂T (z′)〉 = 0 as in terms of cre-
ation and annihilation operators either |0〉 or 〈0| will be annihilated by one of the Virasoro
generators. We thus conclude that

ln
Z[δ + h]

Z[δ]
=

1

8π2Z[δ]

∫
d2z

∫
d2z′

hz̄z̄(z, z̄)hz̄z̄(z
′, z̄′)

(z − z′)4
〈c/2〉

=
c

16π2

∫
d2z

∫
d2z′

hz̄z̄(z, z̄)hz̄z̄(z
′, z̄′)

(z − z′)4
[3.129]

where we have used the fact that

〈c/2〉 =
c

2

∫
[dX db dc ]e−S[X,b,c,δ] =

c

2
Z[δ] [3.130]

and the Z[δ] cancels the Z[δ] in the denominator of the pre-factor.
Comparing this with (3.4.21) gives

−3a1

4π2
=

c

16π2
⇒ c = −12a1 [3.131]

which is again (3.4.15).
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All of this derivation seems ok, but there is one concern. The expansion of the action
[3.123] has a second order term in h, viz. (1/2)h2δ2S/δg2|g=δ. That term should have a
contribution in [3.124] and in the subsequent formulae. It isn’t clear to me why we can
ignore it.

3.26 p 95: Theories with a Quantum Anomaly

One may well wonder why there is so much emphasis that string theory needs to be
anomaly free, and have a zero β function, whilst that is not the case in QED and QCD.
Indeed in (massless) QED and QCD there is no dimensional scale, but the renormalisation
group introduces one and this cause a scale anomaly. Why is it no problem there?

The difference between string theory and QED/QCD is that in the former case the scale
invariance is local; it is a gauge redundancy and if there is an anomaly the result is that
the gauge symmetry is broken, with implications for e.g. unitarity. In QED/QCD the scale
invariance is global. If it is broken, it has no impact on unitarity. It only indicates that, even
if in the classical Lagrangian, there is no length scale, the quantum theory has an effective
length scale. This then is an indication that these theories are probably just effective field
theories of a more fundamental theory. String theory?

3.27 p 95: Eq (3.4.26) The Energy-Momentum Tensor of the Cosmo-
logical Term

The cosmological constant adds an additional term to the energy momentum tensor:

T abct (σ) =
4π
√
g

δSct

δgab(σ)
=

4π
√
g

δ

δgab(σ)
b

∫
d2σ′
√
g

=
4π
√
g
b

∫
d2σ′

1

2
g−1/2(σ′)

δg(σ′)

δgab(σ)

=
2πb
√
g

∫
d2σ′ g−1/2(σ′)g(σ′)gab(σ′)δ2(σ − σ′)

=
2πb
√
g

√
ggab(σ) = 2πbgab [3.132]

The extra factor in the trace becomes

gabT
ab
ct (σ) = 2πbδab = 4πb [3.133]
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3.28 p 96: Eq (3.4.27) The Most General Form δW lnZ[g] with Bound-
ary Terms

Let us identify all the contributions in (3.4.27). The term with a1 is just the contribution
(3.4.8) that is linear in the Ricci scalar. The term with a2 is the contribution from a possible
cosmological constant. The terms with a3, a4 and a5 come from the boundary term in Euler
number contribution to the action, i.e. the second term in (3.2.3b)

ξ =
1

4π

∫
M
d2σ
√
gR+

1

2π

∫
∂M

kds [3.134]

To see this note that [3.9] and [3.11] imply that under a Weyl transformation kds trans-
forms as

kds→ e−ω(k + na∂aω)eωds = (k + na∂aω)ds [3.135]

which explains the possible appearance of the a4 and the a5 term. The a3 term is just a
constant contribution, similar to a2.

3.29 p 96: Eq (3.4.29) The Weyl Transformation of the Counterterms

Let us look at the transformation of the first term to start with:

δW

(∫
M
d2σ b1

√
g

)
=

∫
M
d2σ b1

1

2
g−1/2δWg =

∫
M
d2σ b1

1

2
g−1/2ggabδWgab

=

∫
M
d2σ b1

1

2

√
ggab2δωgab = 2

∫
M
d2σ b1

√
gδω [3.136]

The first term in the boundary part of the counterterms transforms as∫
∂M

b2ds→
∫
∂M

b2(1 + δω)ds ⇒ δW

(∫
∂M

b2ds

)
=

∫
∂M

b2δωds [3.137]

where we have again used [3.11], i.e. ds → eωds. The second term in the boundary part
of the counterterms transforms, using [3.135], as∫

∂M
b3kds→

∫
∂M

b3(k + na∂aδω)ds [3.138]

Hence

δW

(∫
∂M

b3kds

)
=

∫
∂M

b3n
a∂aδωds [3.139]

Bringing the three transformations together we find indeed (3.4.29).
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3.30 p 96: Eq (3.4.30) The Wess-Zumino Consistency Condition

From (3.4.27) with only the terms with a1 and a4 we have, using the known transformation
of
√
g, R and kds,

δω1δω2Z[G] = δω1

[
− 1

2π

∫
M
d2σ
√
g a1Rδω2 −

1

2π

∫
∂M

ds a4kδω2

]
= − 1

2π

∫
M
d2σ

1

2
g−1/2ggab2δω1gab a1Rδω2 −

1

2π

∫
M
d2σ
√
g a1(−2∇2δω1)δω2

− 1

2π

∫
∂M

ds a4n
a(∂aδω1)δω2

= − a1

π

∫
M
d2σ
√
g Rδω1δω2 +

a1

π

∫
M
d2σ
√
g a1δω2∇2δω1

− a4

2π

∫
∂M

ds naδω2∂aδω1δω2

= − a1

π

∫
M
d2σ
√
g Rδω1δω2 −

a1

π

∫
M
d2σ
√
g a1(∂aδω2)(∂aδω1)

+
a1

π

∫
M
d2σ∇a

[√
g a1δω2(∂aδω1)

]
− a4

2π

∫
∂M

ds naδω2∂aδω1 [3.140]

In the last line we have used partial integration in the second term and the used the fact
that the covariant derivative of the metric is zero so that also ∇a

√
g = 0 and also the fact

that δωi are scalars so that ∇aδωi = ∂aδωi. We can now use Stokes theorem on the third
term and find

δω1δω2Z[G] = − a1

π

∫
M
d2σ
√
g Rδω1δω2 −

a1

π

∫
M
d2σ
√
g a1(∂aδω2)(∂aδω1)

+
2a1 − a4

π

∫
∂M

ds naδω2∂aδω1 [3.141]

The first two terms are symmetric in δω1 and δω2, the latter is not and requires 2a1 = a4.

3.31 p 97: Eq (3.4.31) The Central Charge is Constant

This follows immediately from the last line of [3.140] where we have used partial integra-
tion. If we replace a1 by −C(σ)/12 one would get an extra term

−a1

π

∫
M
d2σ
√
g
(
− ∂aC(σ)

12

)
δω2(∂aδω1) [3.142]

where we have used the fact that C(σ) is a scalar so that ∇aC(σ) = ∂aC(σ). This addi-
tional term is not symmetric in δω1 and δω2 and so needs to vanish by the Wess-Zumino
consistency condition. This implies that ∂aC(σ) = 0.
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3.32 p 98: Fig 3.8 Scattering of Closed Strings

I had initially struggled with the representation of the representation of a scattering of
strings as a sphere with small holes, but it is actually trivial. In the hope of sparing the
same anguish for other people, let me explain why very slowly.

We consider a closed string as a semi-infinite cylinder. The cylinder worldsheet co-
ordinates are w = σ1 + iσ2. The periodic boundary conditions for the closed string are
σ1 ≡ σ1 + 2π. We rename for convenience σ2 = −2πt. The asymptotic in-state is just
obtained by taking t→∞.

We now consider the conformal transformation

z = e−iw = e−i(σ
1+iσ2) = e−iσ

1−2πt [3.143]

We see that equal t curves corresponds to circles of radius e−2πt in the complex plane. The
asymptotic state t→∞ corresponds to z = 0. At t = 0 the circle is the unit circle, |z| = 1.
A closed string evolving from its asymptotic in-state to t = 0 thus corresponds to point –
i.e. a circle of infinitesimal radius – evolving to a unit circle. This is the same discussion
we had around (2.8.1), see also fig. 2.4 of these notes. Pictorially we have

t→∞

t = 0

t1

t2

t3

t = 0t1 t2 t3

z = e−iw

Figure 3.5: Mapping the semi-infinite cylinder to the unit disk. Evolving from t =∞ to t = 0 via
t1, t2 and t3 corresponds to circles of increasing radius e−2 piti in he complex plane.

Now there is no conformal transformation between fig 3.8a and fig 3.8b and that is what
caused my initial confusion. Topologically, both pictures are equivalent. The picture of
four cylinders interacting is nothing but a very stretched out sphere. The states at any time
correspond to circles on the surface of a sphere. At t→∞ these are just infinitesimal holes.
As t evolves these holes becomes circles of growing radius.
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Figure 3.6: Closed string scattering amplitude. The asymptotic states correspond to holes on a
sphere.

The process of four strings starting from asymptotic in-states and then interacting, thus
corresponds to a worldsheet of a sphere but with four holes corresponding to the insertion
of the four asymptotic in-states.

For open strings, almost the same applies word for word. The only difference is that
the conformal transformation from w to z has an extra minus sign, i.e.

z = −e−iw = −e−iσ1+σ2
[3.144]

As the open string has 0 ≤ σ1 ≤ π this then means that for a given σ2 = −2πt this
corresponds to a semi-circle in the upper half plane. As per fig 3.9. a scattering of four open
strings can then be represented as a desk with small dents at the boundary, corresponding
to the asymptotic in-states.

3.33 p 100: Compact Connected Topologies

Let us, for convenience summarise the different compact connected 2D topologies, oriented
or unoriented. This is done in table 3.3. In that table "o" stands for an oriented surface
and "u" for an unoriented surface. The first line, a surface without boundaries, holes or
cross-caps is just a sphere with g handles. The other surfaces are a sphere with extra holes
and cross-caps.

— 129—



Joe’s Book (version of November 20, 2020) Notes from Stany M. Schrans

boundaries orientation handles holes cross-caps
– o g 0 0
X o g h 0
– u g 0 c
X u g h c

Table 3.1: 2D compact connected surfaces with g = # handles, h = # holes and c = # cross-caps

Let us illustrate the effect of boundaries this with some examples when g = 0 in fig.
3.33. We will ignore cross-caps for now. When g = 0 then we simply have the sphere. With
one boundary, the surface is just the disk. Where is the hole, you may ask? Just perform
the conformal transformation z → 1/z. Thus z = e−iσ

1+σ2
which for σ2 between −∞ and

0 describes the unit disk becomes 1/z = eiσ
1−σ2

which becomes the full complex plane,
outside of the unit disk. In that representation, the unit disk is hole. Similarly when there
are two boundaries, then the surface is the annulus. With three boundaries, the surface
looks like a pair of pants.

Figure 3.7: 2D compact connected surfaces with (g, h, c) and g = # handles, h = # holes and
c = # cross-caps

Let us get back to the cross-cap. Around that point, which for convenience we take
to be at z = 0 we identify z with −1/z̄. In this case a point on a sphere with radius r is
identified with an antipodal point on a sphere with radius 1/r. This is explained in more
detail later in these notes, see fig. 6.5.

Let us illustrate this with two more examples. The first example has (g, b, c) = (0, 1, 1). It
is an unoriented surface with no handles and one boundary. It is simply the Möbius strip.
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Figure 3.8: Möbius strip: unoriented surface with no handles and one boundary

The second example has (g, b, c) = (0, 0, 2). It is an unoriented surface with two cross-
caps, no handles and no boundaries. It is the infamous Klein bottle.

Figure 3.9: Klein bottle: unoriented surface with two cross-caps, no handles and no boundaries

3.34 p 102: Eq (3.6.3) The Normalisation of the First Excited States

The coefficient gc is just the same string coupling constant as for the tachyon vertex opera-
tor. The coefficient 2/α′ comes from the state-operator mapping (2.8.7). Each holomorphic
and anti-holomorphic modes contributes a factor

√
2/α′.

3.35 p 102: Eq (3.6.4) The On-Shell Condition for the First Excited
States

The first excited stated are tensors of weight h = h̃ = 1 +α′k2/4. By conformal invariance,
these weights have to be equa to one, and so this implies that m2 = −k2 = 0 and we
recover the massless states.
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3.36 p 103: Eq (3.6.7) The Weyl Transformation of a Renormalised
Operator

This is just Leibniz:

δW[F ]r = δWe
1
2

∫
d2σ d2σ′∆(σ,σ′) δ

δXµ(σ)
δ

δXµ(σ′)F

= δW

[
1

2

∫
d2σ d2σ′∆(σ, σ′)

δ

δXµ(σ)

δ

δXµ(σ′)

]
e

1
2

∫
d2σ d2σ′∆(σ,σ′) δ

δXµ(σ)
δ

δXµ(σ′)F

+ e
1
2

∫
d2σ d2σ′∆(σ,σ′) δ

δXµ(σ)
δ

δXµ(σ′) δWF

=
1

2

∫
d2σ d2σ′

(
δW∆(σ, σ′)

) δ

δXµ(σ)

δ

δXµ(σ′)
[F ]r + [δWF ]r [3.145]

3.37 p 103: Eq (3.6.8) The Weyl Transformation for the Tachyon Vertex
for the Polyakov String

with δWgab = 2δωgab we find, using (3.6.7)

δWV0 = 2gc

∫
d2σδW

√
g
[
eik·X(σ)

]
r

= 2gc

∫
d2σ

{
1

2
g−1/2ggab2δωgab

[
eik·X(σ)

]
r

+
√
g
[
δWe

ik·X(σ)
]

r

+
1

2

√
g

∫
d2σ′d2σ′′ δW∆(σ′, σ′′)

δ

δXµ(σ′)

δ

δXµ(σ′′)

[
eik·X(σ)

]
r

}

= 2gc

∫
d2σ

{
√
g2δω

[
eik·X(σ)

]
r

+
1

2

√
g

∫
d2σ′d2σ′′ δW∆(σ′, σ”)(−k2)δ2(σ − σ′)δ2(σ − σ′′)

[
eik·X(σ)

]
r

}

= 2gc

∫
d2σ

{
√
g2δω

[
eik·X(σ)

]
r
− k2

2

√
gδW∆(σ, σ)

[
eik·X(σ)

]
r

}

= 2gc

∫
d2σ
√
g

(
2δω − k2

2
δW∆(σ, σ)

)[
eik·X(σ)

]
r

[3.146]

We have also used the fact that δWe
ik·X = 0 as there is no metric component in that

expression.
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3.38 p 103: Eq (3.6.11) The Weyl Transformation of the Geodesic Dis-
tance, I

This formula is a simplified case of (3.6.16). We derive the latter formula in detail and
(3.6.11) will be derived along the way. We thus refer to that note for details. See in
particular [3.157].

3.39 p 105: Eq (3.6.15) The Weyl Transformation of the Geodesic Dis-
tance, II

This explanation is from the Physics StackExchange1 and is from "Trimok". Credit to him
for working this out.

As is explained in the text, the diffeomorphism symmetry is not anomalous as we can
find a regularisation scheme that preserves that symmetry. We are thus only conserved
with the Weyl symmetry and can chose a metric in the conformal gauge gab = e2ωδab and
investigate if under a transformation ω → ω + δω the theory is anomalous.

Note that in the conformal gauge the connection becomes

Γcab =
1

2
gcd(∂agbd + ∂bgad − ∂dgab)

=
1

2
e−2ωδcd2e2ω(δbd∂aω + δad∂bω − δab∂dω)

= δcb∂aω + δca∂bω − δab∂cω [3.147]

and so

∇a∂bω = ∂a∂bω − Γcab∂cω = ∂a∂bω + o
(
(∂ω)2

)
[3.148]

We will later argue that at very short separation we can ignore terms of second and higher
order in ∂ω for the Weyl transformations of the objects we are interested in, so that we can
freely interchange the covariant and the partial derivative when acting on ∂aω.

At very short separation, the distance between two points on the world-sheet is given
in the conformal gauge by (3.6.9)

d2(σ, σ′) ≈ (σ − σ′)2e2ω(σ) [3.149]

We can make this more precise as

d(σ, σ′) =

∫ σ′

σ
dz eω(z) [3.150]

1https://physics.stackexchange.com/questions/73393/a-question-about-the-higher-order-weyl-
variation-for-the-geodesic-distance
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where z is some parameter describing the geodesic between the two points on the world-
sheet. First we expand ω(z) around σ:

d(σ, σ′) = eω(σ)

∫ σ′

σ
dz exp

[
(z − σ)a∂aω +

1

2
(z − σ)a(z − σb)∂a∂bω + o

(
(z − σ)3

)]
= eω(σ)

∫ σ′

σ
dz

[
1 + (z − σ)a∂aω +

1

2
(z − σ)a(z − σb)∂a∂bω + q

(
(∂ω)2

)]
[3.151]

Here q
(
(∂ω)2

)
denotes contributions that are quadratic in ∂ω or higher order. As already

mentioned, we will argue later that they don’t contribute that the Weyl transformation of
the objects we are investigating. We can easily integrate this. Use∫ σ′

σ
dz = σ′ − σ = |σ′ − σ|∫ σ′

σ
dz (z − σ)a∂aω =

∫ σ′−σ

0
dy ya∂aω =

1

2
|σ′ − σ| × (σ − σ′)a∂aω∫ σ′

σ
dz (z − σ)aω(z − σ)b∂a∂bω =

∫ σ′−σ

0
dy yayb∂a∂bω

=
1

3
|σ′ − σ| × (σ′ − σ)a(σ′ − σ)b∂a∂bω [3.152]

to find

d(σ, σ′) = eω(σ)|σ′ − σ| ×
[
1 +

1

2
(σ − σ′)a∂aω +

1

6
(σ′ − σ)a(σ′ − σ)b∂a∂bω + o

(
(∂ω)2

)]
= eω(σ)|σ′ − σ| e

1
2

(σ−σ′)a∂aω+ 1
6

(σ′−σ)a(σ′−σ)b∂a∂bω+q
(

(∂ω)2
)

[3.153]

In the last line, we have raised it again to an exponential. From this we find that

∆(σ, σ′) =
α′

2
ln d2(σ, σ′)

=
α′

2
ln

[
e2ω(σ)(σ′ − σ)2 e(σ−σ′)a∂aω+ 1

3
(σ′−σ)a(σ′−σ)b∂a∂bω+q

(
(∂ω)2

)]
=α′

[
ω(σ) + ln

(
σ − σ′

)
+

1

2
(σ − σ′)a∂aω +

1

6
(σ′ − σ)a(σ′ − σ)b∂a∂bω + q

(
(∂ω)2

)]
=α′

[
ω(σ) +

1

2
(σ − σ′)a∂aω +

1

6
(σ′ − σ)a(σ′ − σ)b∂a∂bω + q̃

(
(∂ω)2

)]
[3.154]

Here q̃
(
(∂ω)2

)
also includes any possible contributions that don’t depend on ω, viz ln(σ − σ′).

We now have a concern as ∆(σ, σ′) should be symmetric for the interchange of σ with σ′,
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but the above expression is manifestly not. This is easily remedied by making it symmetric,
giving

∆(σ, σ′) =α′

[
1

2

(
ω(σ) + ω(σ′)

)
+

1

4
(σ′ − σ)a

(
∂aω(σ)− ∂′aω(σ′)

)
+

1

12
(σ′ − σ)a(σ′ − σ)b

(
∂a∂bω(σ) + ∂′a∂

′
bω(σ′)

)
+ q̃
(
(∂ω)2

)]
[3.155]

We can now this equation to calculate the Weyl transformation of ∆(σ, σ′) and its deriva-
tives. First we have

δW∆(σ, σ′) =α′
[

1

2

(
δω(σ) + δω(σ′)

)
+ o(σ − σ′)

]
= α′

[
δω(σ) + o(σ − σ′)

]
[3.156]

Note that the ω dependent terms in q̃
(
(∂ω)2

)
are of the order o

(
(σ′ − σ)2

)
. Thus in the

limit σ′ → σ we have

δW∆(σ, σ′)
∣∣∣
σ′→σ

=α′δω(σ) [3.157]

which is (3.6.11). Next we have from [3.155], expanding σ′ around σ

∂aδW∆(σ, σ′) =α′
[

1

2
∂aδω(σ) +

1

4

(
∂aω(σ)− ∂′aω(σ′)

)
+ o(σ′ − σ)

]
=

1

2
α′∂aδω(σ) + o(σ′ − σ) [3.158]

which is when σ′ → σ

∂aδW∆(σ, σ′)
∣∣∣
σ′→σ

=
1

2
α′∂aδω(σ) [3.159]

i.e. (3.6.15a).
Let us now go back to [3.155] and calculate

∂′bδW ∆(σ, σ′) =α′

[
1

2
∂′bδω(σ′) +

1

4

(
∂bδω(σ)− ∂′bδω(σ′)

)
− 1

4
(σ′ − σ)a∂′a∂

′
bδω(σ′)

+
1

6
(σ′ − σ)a

(
∂a∂bδω(σ) + ∂′a∂

′
bδω(σ′)

)
+ o
(
(σ′ − σ)2

)]
[3.160]

From this we have

∂a∂
′
bδW ∆(σ, σ′) =α′

[
1

4
∂a∂bδω(σ) +

1

4
∂′a∂

′
bδω(σ′)− 1

6

(
∂a∂bδω(σ) + ∂′a∂

′
bδω(σ′)

)
+ o(σ′ − σ)

]

=α′

[
1

6
∂a∂bδω(σ) + o(σ′ − σ)

]
[3.161]
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and in the limit σ′ → σ this is

∂a∂
′
bδW ∆(σ, σ′)

∣∣∣
σ′→σ

=
1

6
α′∂a∂bδω(σ) [3.162]

Replacing the partial derivative by a covariant derivative, see [3.148] we get

∂a∂
′
bδW ∆(σ, σ′)

∣∣∣
σ′→σ

=
1

6
α′∇a∂bδω(σ) [3.163]

which is (3.6.15b) with γ = −3/2.
Let us go back to [3.155] and calculate

∂b∂aδW ∆(σ, σ′) =α′∂b

[
1

2
∂aδω(σ)− 1

4

(
∂aδω(σ)− ∂′aδω(σ′)

)
+

1

4
(σ′ − σ)c∂a∂cδω(σ)

− 1

6
(σ′ − σ)c

(
∂a∂cδω(σ) + ∂′a∂

′
cδω(σ′)

)
+ o
(
(σ′ − σ)2

)]

=α′

[
1

2
∂a∂bδω(σ)− 1

4
∂a∂bδω(σ)− 1

4
∂a∂bδω(σ)

+
1

6

(
∂a∂bδω(σ) + ∂′a∂

′
bδω(σ′)

)
+ o(σ′ − σ)

]
=

1

3
α′∂a∂bδω(σ) + o(σ′ − σ) [3.164]

Taking σ′ → σ and using the fact that we can freely replace the covariant derivative with
the partial derivative in this case again, we find

∂a∂bδW ∆(σ, σ′)
∣∣∣
σ′→σ

=
1

3
α′∇a∂bδω(σ) [3.165]

which is (3.6.15c) with γ = −2/3.

We have claimed that we can ignore terms quadratic (and higher) in ∂aω and in terms
that don’t depend on ω. The latter we can trivially ignore as we are concerned with the
Weyl variation of ∆ and so terms that don’t depend on ω don’t change under a Weyl
transformation. To argue that we can ignore the terms quadratic in ∂aω requires a bit more
thinking. Every such term necessarily contains something like (σ′ − σ)a(σ′ − σ)b∂aω∂bω.
Now if we take one derivative, then we are left with a σ′ − σ factor and that vanishes
when σ′ → σ. If we take two derivatives, the only term that does not automatically vanish
when σ′ → σ is when the two derivatives act on (σ′ − σ)a(σ′ − σ)b. We are then left with
something of the form ∂aω∂bω. But we can always select an inertial frame, i.e. one with
ω = cte so that ∂aω = 0 and this term does not contribute as well. As our results have all
been expressed in a covariant form (we wrote them in terms of ∇a∂bω and not in terms
of ∂a∂bω), the result obtained in an inertial frame, is valid in any other frame. This shows
that we were indeed justified in ignoring terms in quadratic and higher order of ∂aω.
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3.40 p 105: Eq (3.6.16) The Weyl Transformation for the Massless Ver-
tex Operator for the Polyakov String

This is a subtle and long calculation, so fasten you seatbelts. There were some points
that were obscure to me and I posted them on the Physics Stack Exchange. This time my
gratitude goes to "Wakabaloola" for helping clarifying these issues. At the end of the day
it is always gratifying to see how all the details of a calculation conspire to give the final
result. This was, if I am permitted a personal note, particularly the case for this calculation.

Some preliminaries first. Under an infinitesimal Weyl transformation

δWgab = 2δωgab [3.166]

we also have

δWg
ab = −2δωgab [3.167]

and

δW
√
g =

1

2
g−1/2δWg =

1

2
g−1/2ggabδWgab =

1

2
g−1/2ggab2δωgab =

√
g 2δω [3.168]

This implies that

δW(
√
ggab) = δW(

√
g)gab +

√
gδWg

ab =
√
g2δωgab − 2

√
gδωgab = 0 [3.169]

The antisymmetric tensor εab also transforms non-trivially under a Weyl transformation.
Indeed, from

√
g ε12 = 1 we have

(δW
√
g)ε12 +

√
g(δWε

12) = 0 ⇒ δWε
12 = −2δωε12 [3.170]

and thus more generally

δWε
ab = −2δωεab [3.171]

But we will only need the relation

δW(
√
gεab) = 0 [3.172]

From (1.2.32) we also know that
√
g′R′ =

√
g(R− 2∇2δω) so that

δW(
√
gR) = −2

√
g∇2δω [3.173]
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After all these preliminaries, let us now work out Weyl transformation of (3.6.14),
using the above and also (3.6.7)

δWV1 =
gc
α′

∫
d2σ

{(
δW(
√
ggab)sµν + iδW(

√
gεab)aµν

) [
∂aX

µ∂bX
νeik·X(σ)

]
r

+ α′φδW

(√
gR
) [
eik·X(σ)

]
r

+
√
g(gabsµν + iεabaµν)

1

2

∫
d2σ′d2σ′′δW∆(σ′, σ′′)

δ

δXλ(σ′)

δ

δXλ(σ′′)

[
∂aX

µ∂bX
νeik·X(σ)

]
r

+
√
gα′φR

1

2

∫
d2σ′d2σ′′δW∆(σ′, σ′′)

δ

δXλ(σ′)

δ

δXλ(σ′′)

[
eik·X(σ)

]
r

}
[3.174]

Recall that δWe
ik·X(σ) = δW∂aX

µ∂bX
νeik·X(σ) = 0, as there is no metric dependence in

these operators. We have just seen that the first line vanishes and so can write

δWV1 =
gc
α′

∫
d2σ

{
− 2α′φ

√
g(∇2δω)

[
eik·X(σ)

]
r

+
1

2

√
g(gabsµν + iεabaµν)

∫
d2σ′d2σ′′δW∆(σ′, σ′′)

δ

δXλ(σ′)

δ

δXλ(σ′′)

[
∂aX

µ∂bX
νeik·X(σ)

]
r

+
1

2

√
gα′φR

∫
d2σ′d2σ′′δW∆(σ′, σ′′)

δ

δXλ(σ′)

δ

δXλ(σ′′)

[
eik·X(σ)

]
r

}
[3.175]

Let us for convenience work out the different lines separately.
We start with the first line

J1 = − 2gcφ

∫
d2σ
√
g(∇2δω)

[
eik·X(σ)

]
r

= −2gcφ

∫
d2σ
√
g(∇a∂aδω)

[
eik·X(σ)

]
r

= − 2gcφ

∫
d2σ
√
g
{
∇a
(
∂aδω

[
eik·X(σ)

]
r

)
− ∂aδω∇a

[
eik·X(σ)

]
r

}
= − 2gcφ

∫
d2σ∂a

(√
g∂aδω

[
eik·X(σ)

]
r

)
+ 2gcφ

∫
d2σ
√
g∂aδω∇a

[
eik·X(σ)

]
r

= + 2gcφ

∫
d2σ
√
g∂aδω∇a

[
eik·X(σ)

]
r

[3.176]

where we have used ∂a(
√
gva) =

√
g∇ava and ∇a

√
g = 0. We can now replace the

covariant derivative by a partial derivative as it acts on a scalar and partial integrate the
other derivative

J1 = − 2gcφ

∫
d2σδω∂a

(√
g∂a

[
eik·X(σ)

]
r

)
= − 2gcφ

∫
d2σδω

√
g∇a∂a

[
eik·X(σ)

]
r

[3.177]
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We now have

∇a∂aeik·X =∇a(ikµ∂aXµ)eik·X

= ikµ(∇a∂aXµ)eik·X + (ikµ∂aXµ)(ikν∇aXν)eik·X

= ikµ∇2Xµe
ik·X − kµkν∂aXµ∂

aXνe
ik·X [3.178]

We have freely replaced ∂a by ∇a and vice-versa when they are acting on worldsheet
scalars. Therefore, using (3.6.18),[

∇a∂aeik·X
]

r
= ikµ

[
∇2Xµe

ik·X
]

r
− kµkν

[
∂aXµ∂

aXνe
ik·X

]
r

= ikµ ×
(
−iα

′

6
kµR

[
eik·X(σ)

]
r

)
− kµkν

[
∂aXµ∂

aXνe
ik·X

]
r

=
α′

6
k2R

[
eik·X(σ)

]
r
− kµkνgab

[
∂aXµ∂bXνe

ik·X
]

r
[3.179]

and thus

J1 = −gcα
′

3
k2φ

∫
d2σ
√
g δω R

[
eik·X(σ)

]
r

+ 2gck
µkνφ

∫
d2σ
√
g δω gab

[
∂aXµ∂bXνe

ik·X
]

r

=
gc
2

∫
d2σ
√
g δω

{
− 2α′

3
k2φR

[
eik·X(σ)

]
r

+ gab(4kµkνφ)
[
∂aXµ∂bXνe

ik·X
]

r

}
[3.180]

Before we tackle the second, more difficult, line of [3.175], let us do the easier third
line

J3 =
gc
2
φ

∫
d2σd2σ′d2σ′′

√
gRδW∆(σ′, σ′′)

δ

δXλ(σ′)

δ

δXλ(σ′′)

[
eik·X(σ)

]
r

=
gc
2
φ

∫
d2σd2σ′d2σ′′

√
gRδW∆(σ′, σ′′)(−k2)δ2(σ − σ′)δ2(σ − σ′′)

[
eik·X(σ)

]
r

= − gc
2
φk2

∫
d2σ
√
gRδW∆(σ, σ)

[
eik·X(σ)

]
r

= −gc
2
φk2

∫
d2σ
√
gRα′δω

[
eik·X(σ)

]
r

=
gc
2

∫
d2σ
√
gδω(−α′k2φR)

[
eik·X(σ)

]
r

[3.181]

Finally, the second line of [3.175], is

J2 =
gc
2α′

∫
d2σ
√
g(gabsµν + iεabaµν)J̃2 [3.182]

with

J̃2 =

∫
d2σ′d2σ′′δW∆(σ′, σ′′)

δ

δXλ(σ′)

δ

δXλ(σ′′)

[
∂aX

µ∂bX
νeik·X(σ)

]
r

[3.183]
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Let us first consider the contribution where the functional derivatives both act on the ex-
ponential This gives

J̃2a =

∫
d2σ′d2σ′′δW∆(σ′, σ′′)

(
ikλδ2(σ′ − σ)

)(
ikλδ

2(σ′′ − σ)
) [
∂aX

µ∂bX
νeik·X(σ)

]
r

= − k2δW∆(σ, σ)
[
∂aX

µ∂bX
νeik·X(σ)

]
r

= − α′k2δω(σ)
[
∂aX

µ∂bX
νeik·X(σ)

]
r

[3.184]

where we have used (3.6.11). Thus we have a contribution

J2a = − gc
2
k2

∫
d2σ
√
gδω(gabsµν + iεabaµν)

[
∂aX

µ∂bX
νeik·X(σ)

]
r

=
gc
2

∫
d2σ
√
gδω

(
gab(−k2sµν) + iεab(−k2aµν)

) [
∂aX

µ∂bX
νeik·X(σ)

]
r

[3.185]

Next, take the case where only one of the functional derivatives acts on the exponential.
There are four possible combinations

J̃2b =

∫
d2σ′d2σ′′δW∆(σ′, σ′′)

{
δµλ∂aδ

2(σ′ − σ)ikλδ2(σ′′ − σ)
[
∂bX

νeik·X(σ)
]

r

+ δνλ∂bδ
2(σ′ − σ)ikλδ2(σ′′ − σ)

[
∂aX

µeik·X(σ)
]

r

+ ηλµ∂aδ
2(σ′′ − σ)ikλδ

2(σ′ − σ)
[
∂bX

νeik·X(σ)
]

r

+ ηλν∂bδ
2(σ′′ − σ)ikλδ

2(σ′ − σ)
[
∂aX

µeik·X(σ)
]

r

}
[3.186]

We can already perform one of the integrations:

J̃2b = i

∫
d2σ′δW∆(σ′, σ)

{
kµ∂aδ

2(σ′ − σ)
[
∂bX

νeik·X(σ)
]

r

+ kν∂bδ
2(σ′ − σ)

[
∂aX

µeik·X(σ)
]

r

}
+ i

∫
d2σ′′δW∆(σ, σ′′)

{
kµ∂aδ

2(σ′′ − σ)
[
∂bX

νeik·X(σ)
]

r

+ kν∂bδ
2(σ′′ − σ)

[
∂aX

µeik·X(σ)
]

r

}
[3.187]
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Change the integration variable from σ′′ to σ′ and use the symmetry ∆(σ, σ′) = ∆(σ′, σ)

J2b =
gc
2α′

∫
d2σd2σ′

√
g(gabsµν + iεabaµν)× 2iδW∆(σ′, σ)

×
[
kµ∂aδ

2(σ′ − σ)
[
∂bX

νeik·X(σ)
]

r
+ kν∂bδ

2(σ′ − σ)
[
∂aX

µeik·X(σ)
]

r

]
=
igc
α′

∫
d2σd2σ′

√
g(gabsµν + iεabaµν)δW∆(σ′, σ)

×
[
kµ∂aδ

2(σ′ − σ)
[
∂bX

νeik·X(σ)
]

r
+ kν∂bδ

2(σ′ − σ)
[
∂aX

µeik·X(σ)
]

r

]
[3.188]

We can now perform another partial integration to free up the last delta function. However,
it is convenient to first use the chain rule for derivatives of delta functions2 in order to
change the ∂a into a ∂′a:

∂aδ
2(σ′ − σ) = −∂′aδ2(σ′ − σ) [3.189]

We perform the chain rule on the derivative of the delta function and partially integrate.

2To see that this is correct, evaluate I =
∫
dx dy f(x)g(y)∂xδ(x− y) in two ways. First

I1 = −
∫
dx dy f ′(x)g(x)δ(x− y) = −

∫
dx f ′(x)g(x)

Alternatively

I2 = −
∫
dx dy f(x)g(y)∂yδ(x− y) =

∫
dx dy f(x)g′(y)δ(x− y) =

∫
dx f(x)g′(x)

Now

I2 − I1 =

∫
dx
[
f(x)g′(x) + f ′(x)g(x)

]
=

∫
dx

d

dx

[
f(x)g(x)

]
= 0

which shows that ∂xδ(x− y) = −∂yδ(x− y)
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The ∂′a and ∂′b now only act on δW∆(σ′, σ). Two minus signs give a plus and so

J2b =
igc
α′

∫
d2σd2σ′

√
g(gabsµν + iεabaµν)

×

{
∂′aδW∆(σ′, σ)kµδ2(σ′ − σ)

[
∂bX

νeik·X(σ)
]

r

+ ∂′bδW∆(σ′, σ)kνδ2(σ′ − σ)
[
∂aX

µeik·X(σ)
]

r

}

=
igc
α′

∫
d2σ
√
g(gabsµν + iεabaµν)

×

{
∂′aδW∆(σ′, σ)

∣∣∣
σ′=σ

kµ
[
∂bX

νeik·X(σ)
]

r

+ ∂′bδW∆(σ′, σ)
∣∣∣
σ′=σ

kν
[
∂aX

µeik·X(σ)
]

r

}
[3.190]

Use (3.6.15a), which is, by symmetry, equally valid if we replace ∂a by ∂′a

J2b =
igc
α′

∫
d2σ
√
g(gabsµν + iεabaµν)

×

{
1

2
α′∂aδωk

µ
[
∂bX

νeik·X(σ)
]

r
+

1

2
α′∂aδωk

ν
[
∂aX

µeik·X(σ)
]

r

}

=
igc
2

∫
d2σ
√
g(gabsµν + iεabaµν)

×

{
∂aδωk

µ
[
∂bX

νeik·X(σ)
]

r
+ ∂aδωk

ν
[
∂aX

µeik·X(σ)
]

r

}
[3.191]

Yet another partial integration gives

J2b = − igc
2

∫
d2σδω

{
∂a

[
√
g(gabsµν + iεabaµν)kµ

[
∂bX

νeik·X(σ)
]

r

]

+ ∂b

[
√
g(gabsµν + iεabaµν)kν

[
∂aX

µeik·X(σ)
]

r

]}
[3.192]

We use ∂a(
√
g va) =

√
g∇ava and the fact that the covariant derivative of gab,

√
g and εab
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is zero:

J2b = − igc
2

∫
d2σδω

√
g

{
∇a

[
(gabsµν + iεabaµν)kµ

[
∂bX

νeik·X(σ)
]

r

]

+∇b

[
(gabsµν + iεabaµν)kν

[
∂aX

µeik·X(σ)
]

r

]}

= − igc
2

∫
d2σδω

√
g

{
(gabsµν + iεabaµν)kµ∇a

[
∂bX

νeik·X(σ)
]

r

+ (gabsµν + iεabaµν)kν∇b
[
∂aX

µeik·X(σ)
]

r

}
[3.193]

Let us now focus on

Ia = (gabsµν + iεabaµν)kµ∇a
[
∂bX

νeik·X(σ)
]

r

= (gabsµν + iεabaµν)kµ
{[
∇a∂bXνeik·X(σ)

]
r

+
[
∂bX

νikλ∇aXλeik·X(σ)
]

r

}
[3.194]

We replace ∂b by ∇b in the first term and ∇a by ∂a in the second term. This is allowed as
they both act on worldsheet scalars.

Ia = (gabsµν + iεabaµν)kµ
{[
∇a∇bXνeik·X(σ)

]
r

+
[
∂bX

νikλ∂aX
λeik·X(σ)

]
r

}
[3.195]

Because ∇a∇b = ∇b∇a when acting on scalars3 the εab part vanishes with the first term.
Thus, also changing dummy variables for the second term,

Ia = sµνk
µ
[
∇2Xνeik·X(σ)

]
r

+ (gabsµλ + iεabaµλ)ikµkλ
[
∂bX

ν∂aX
µeik·X(σ)

]
r

= − iα
′

6
Rsµνk

µkν
[
eik·X(σ)

]
r

+ (gabsµλ + iεabaµλ)ikνk
λ
[
∂bX

ν∂aX
µeik·X(σ)

]
r

[3.196]

Similarly

Ia = − iα
′

6
Rsµνk

µkν
[
eik·X(σ)

]
r

+ (gabsλν + iεabaλν)ikµk
λ
[
∂bX

ν∂aX
µeik·X(σ)

]
r

[3.197]

3

∇a∇bS −∇b∇aS = ∂a∂bS − Γcab∂cS − ∂b∂aS + Γcba∂cS = 0

as Γcab = Γcba.
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and therefore

J2b =
gc
2

∫
d2σδω

√
g

{
α′R

(
−1

3
sµνk

µkν
)[

eik·X(σ)
]

r

+ (gab + iεab)
(
sµλkνk

λ + sλνkµk
λ
) [
∂bX

ν∂aX
µeik·X(σ)

]
r

}
[3.198]

Let us now consider the case where both functional derivatives act on the ∂aXµ∂bX
µ.

This gives

J2c =
gc
2α′

∫
d2σd2σ′d2σ′′

√
g(gabsµν + iεabaµν)δW∆(σ′, σ′′)

×
[
δµλ∂aδ

2(σ′ − σ)ηλν∂bδ
2(σ′′ − σ) + δνλ∂bδ

2(σ′ − σ)ηλµ∂aδ
2(σ′′ − σ)

] [
eik·X(σ)

]
r

[3.199]

We interchange integration variables σ′ and σ′′ in the second term between brackets and
use ∆(σ′, σ′′) = ∆(σ′′, σ′)

J2c =
gc
α′

∫
d2σd2σ′d2σ′′

√
g(gabsµν + iεabaµν)δW∆(σ′, σ′′)

× ηµν∂aδ2(σ′ − σ)∂bδ
2(σ′′ − σ)

[
eik·X(σ)

]
r

[3.200]

We use aµνηµν = 0 and the chain rule for derivatives of the delta function, then perform
our first partial integration

J2c =
gc
α′

∫
d2σd2σ′d2σ′′

√
ggabsµµδW∆(σ′, σ′′)∂′aδ

2(σ′ − σ)∂′′b δ
2(σ′′ − σ)

[
eik·X(σ)

]
r

= − gc
α′

∫
d2σd2σ′d2σ′′

√
ggabsµµ∂

′′
b δW∆(σ′, σ′′)∂′aδ

2(σ′ − σ)δ2(σ′′ − σ)
[
eik·X(σ)

]
r

= − gc
α′

∫
d2σd2σ′

√
ggabsµµ∂bδW∆(σ′, σ)∂′aδ

2(σ′ − σ)
[
eik·X(σ)

]
r

[3.201]

We follow with the second partial integration

J2c =
gc
α′

∫
d2σd2σ′

√
ggabsµµ∂

′
a∂bδW∆(σ′, σ)δ2(σ′ − σ)

[
eik·X(σ)

]
r

=
gc
α′

∫
d2σ
√
ggabsµµ∂

′
a∂bδW∆(σ′, σ)

∣∣∣
σ′=σ

[
eik·X(σ)

]
r

[3.202]
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We now use (3.6.15b) and then partially integrate two more times

J2c =
gc
α′

∫
d2σ
√
ggabsµµ

1

6
α′∇a∂bδω

[
eik·X(σ)

]
r

= −gc
6

∫
d2σ∂bδω∇a

{√
ggabsµµ

[
eik·X(σ)

]
r

}
= − gc

6

∫
d2σ∂bδω

√
ggabsµµ∇a

[
eik·X(σ)

]
r

= +
gc
6

∫
d2σδω∂b

{√
ggabsµµ∇a

[
eik·X(σ)

]
r

}
= +

gc
6

∫
d2σδω

√
g∇b

{
gabsµµ∇a

[
eik·X(σ)

]
r

}
= +

gc
6

∫
d2σδω

√
ggabsµµ∇b∇a

[
eik·X(σ)

]
r

[3.203]

use [3.179] and the fact that gab∇b∇a
[
eik·X(σ)

]
r

= ∇a∂a
[
eik·X

]
r
, remember scalars!

J2c =
gc
6

∫
d2σδω

√
gsλλ

{α′
6
k2R

[
eik·X(σ)

]
r
− kµkνgab

[
∂aX

µ∂bX
νeik·X

]
r

}
=
gc
2

∫
d2σδω

√
g
{
α′R

(
1

18
k2sλλ

)[
eik·X(σ)

]
r

+ gab
(
−1

3
kµkνs

λ
λ

)[
∂aX

µ∂bX
νeik·X

]
r

}
[3.204]

We can now bring all the contributions together. They are of the form

δWV1 =
gc
2

∫
d2σ
√
g δω

{
(gabsµµ + iεabaµν)

[
∂aX

µ∂aX
µeik·X(σ)

]
r

+ α′R f
[
eik·X(σ)

]
r

}
[3.205]

The contributions form the different parts to s, a and f are summarised in the table below.

sµν aµν f
J1 4kµkνφ – − 2

3k
2φ

J2a −k2sµν −k2aµν –
J2b kλkµsλν + kλkµsνλ kλkµaλν + kλkµaνλ − 1

3k
µkνsµν

J2c − 1
3s
λ
λkµkν – 1

18k
2sλλ

J3 – – −k2φ

Table 3.2: Weyl transformation of the massless vertex operator; contributions to [3.205]

Thus

sµν = − k2sµν + kλkµsλν + kλkµsµλ −
1

3
sλλkµkν + 4kµkνφ

aµν = − k2aµν + kλkµaλν + kλkµaνλ

= − k2aµν + kλkµaµλ − kλkµaνλ

f = − 5

3
k2φ− 1

3
kµkνsµν +

1

18
k2sλλ [3.206]
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We need to compare this with Polchinski’s (3.6.17), with γ = −2/3, i.e.

Sµν = − k2sµν + kλkµsλν + kλkµsµλ −
1

3
sλλkµkν + 4kµkνφ

Aµν = − k2aµν + kλkµaµλ − kλkµaνλ

F = − 5

3
k2φ− 1

3
kµkνsµν +

1

18
k2sλλ [3.207]

Lo and behold! These are identical!

3.41 p 105: Eq (3.6.18) Linking ∇2Xµ with kµR

This is actually a highly non-trivial equation. I haven’t found a simple derivation of it, but
I will show in a very roundabout way that it is correct. For this I use a derivation provided
by “Wakabaloola” on the Physics Stack Exchange, for which I am extremely grateful. As a
return gesture, the least I can do is to refer to one of his papers

D. Luest and D. Skliros, Handle Operators in String Theory, arXiv:1912.0155 [hep-th]

which we will denote by [LS] here. The building blocks of most of what follows comes
from their section 2. Any errors in my explanation are, of course, solely due to me. It is
also worth mentioning that the basis of this work is Polchinski’s earlier work published in
NBP307 (1988) 61-92.

Because of the length of the calculation, it is useful to summarise what we are going to
do. Our first goal is to find transition functions of conformal and Weyl transformations. We
will first introduce the concept of holomorphic normal coordinates. These are coordinates
in a patch around a point σ1 of the manifold that are chosen to be “as flat as possible",
implying that the connections at that point vanish. This suggests that we introduce the
concept of Weyl normal ordering, which is similar to Polchinki’s conformal normal ordering
but where both points z1 and z2 are taken at the same base point. We will then derive the
transition function for a change of base points from σ1 to σ′1. This will be achieved in
[3.236]. We will then proceed to use this result to work out how a change of coordinates,
this time keeping the base point fixed, impacts a local, Weyl normal ordered, operator. I.e
we will derive and expression for the derivative of such an operator. This result is achieved
in[3.247] and shows that we cannot just bring in the derivative into the normal ordering
as there is an additional contribution that depends on the Ricci scalar and its covariant
derivatives. As an illustration of this we will show that the formula [3.260] is valid

∇a��∇aXµeik·X(σ1)��z = �
�∇aXµ∇aeik·X(σ1)��z −

iα′kµ

4
R(σ1)��e

ik·X(σ1)��z [3.208]

where the �
� · · · ��z denote Weyl normal ordering. This shows how the Ricci scalar can

appear in expressions with normal ordering and derivatives.
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Next we turn to the case of interest, which is the case of Weyl transformations and
derive the transition function for such a transformation. This is given in [3.271]. It is then
an easy step to determine how a local operator transforms under a Weyl transformation.
This is given in [3.274]. We then derive expression for the propagator and its derivatives
in this new scheme. This allows us to focus on requiring Weyl invariance of the vertex
operators, giving us a set of equations that lead to the same mass-shell conditions (3.6.22).
This then establishes the validity for (3.6.18).

The appendix to this chapter contains a brief introduction to complex structures where
we will also derive some results needed in this section. There is a lot of work to be done,
so let’s get cracking!

HOLOMORPHIC NORMAL COORDINATES AND WEYL NORMAL ORDERING

We have the usual complex coordinates z and z̄ on the Riemann surface M under consid-
eration. But let us be very precise. We have a chart on our manifold in which we define
holomorphic and anti-holomorphic coordinates, z and z̄. We define the complex coordi-
nates in such a way that at a given point σ1 these complex coordinates vanish. Restricting
ourselves to the holomorphic side, as the anti-holomorphic is similar, we denote this set
of coordinates by zσ1(σ), meaning the holomorphic coordinates based on a a chart around
the point σ1 where these coordinates vanish, i.e. where

zσ1(σ1) = 0 [3.209]

We now define holomorphic normal coordinates as follows. In that local patch around σ1

go to the conformal gauge gab = e2ωδab = ρ(σ)δab.4 We know that in the conformal gauge
the metric and the Ricci scalar are given by

ds2 = ρ(zσ1 , z̄σ1)dzσ1dz̄σ1

R = − 4ρ(zσ1 , z̄σ1)−1∂zσ1
∂z̄σ1

ln ρ(zσ1 , z̄σ1) [3.210]

Here we have used the fact that e2ω = ρ and that ∂a∂a = 4∂zσ1∂z̄σ1
. Note that we are

explicitly mentioning that these are holomorphic coordinates around the point σ1, because
soon we will turn our attention to the question what happens in a point nearby σ1. We
now chose the zσ1(σ) in such a way that at σ = σ1 , i.e. where the patch is based and only
at that point, the metric is as flat as possible. i.e.

ρ(zσ1 , z̄σ1)
∣∣∣
σ=σ1

= 1

∂nzσ1
ρ(zσ1 , z̄σ1)

∣∣∣
σ=σ1

= 0 for n ≥ 1 [3.211]

4That it is always possible to chose such a conformal gauge is explained in the appendix to this
chapter, see in particular, the discussion around [3.444].
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so that all holomorphic derivatives of ρ vanish at σ1. Mixed derivatives (holomorphic plus
anti-holomorphic) need nor vanish as we cannot generally make the Ricci scalar zero by
a choice of coordinates. Holomorphic coordinates satisfying these conditions are called
holomorphic normal coordinates,5 a term that has been coined by the authors of [LS],
which I find very appropriate and hope will stick.

We now define Weyl Normal Ordering by (2.2.7), using d2z = 2d2σ

�
�F�� = exp

(
1

8

∫
d2z1 d

2z2 ∆(z1, z2)
δ

δXµ(z1, z̄1)

δ

δXµ(z2, z̄2)
F
) ∣∣∣∣∣ z1=zσ1 (σ1)

z2=zσ1 (σ2)

[3.212]

I.e. for an operator based at σ1 we take the subtractions at the points zσ1(σ1) and zσ1(σ2).
Note that the whole toolkit of CFT can be applied, e.g. the mode expansion of the field

Xµ is given by

i∂zσ1
X(σ) =

∞∑
n=−∞

α
(zσ1 )
n (σ1)

zσ1(σ)n+1
[3.213]

This is heavy on notation, but it emphasises that this is taken in the patch around σ1 and
that the modes depend on that patch and the base point. The same, of course applies for
the expansion of the energy-momentum tensor in the Virasoro generators.

THE TRANSITION FUNCTION OF A HOLOMORPHIC COORDINATE

Let us now consider a point nearby σ1, say σ′1 = σ1+δσ1 and construct a set of holomorphic
coordinates zσ′1 around that point. Recall again that by construction zσ′1(σ′1) = 0. If σ1 and
σ′1 are close enough that the two holomorphic charts based on them overlap, then the
transition function between the two is, by definition of a complex manifold, holomorphic:

zσ′1(σ) = fσ′1σ1

(
zσ1(σ)

)
= zσ1(σ) + δzσ1(σ) [3.214]

This defines δzσ1(σ), which is a holomorphic function as well, since fσ′1σ1
is holomorphic.

Our first task will be to determine an equation for this transition function. This is not a
straightforward thing to do and we will only achieve this in [3.236].

5The fact that we can chose such a set if coordinates that are as flat as possible is not trivial. For
a discussion on how to go from a general coordinate system to a holomorphic normal coordinates
see the appendix to this chapter and in particular [3.468] which gives an explicit formula for the
required transition function from a set of coordinates in the conformal gauge to a set of holomorphic
normal coordinates.
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The above holomorphic transformation induces a change in metric at a generic point σ
that lives in the overlap of the two patches of the form

δ ln ρ(σ) = ∇zσ1
δzσ1(σ) +∇z̄σ1

δz̄σ1(σ) [3.215]

This transformation is derived in the appendix, see [3.452]. Let us now take the (n− 1)th

derivative of this, with n ≥ 2 and evaluate this at the point σ = σ1. We use the fact that in
the conformal gauge the only non-vanishing connections are

Γzzz(σ) =
∂zσ1

ρ(σ)

ρ(σ)
= ∂zσ1

ln ρ(σ)

Γz̄z̄z̄(σ) =
∂z̄σ1

ρ(σ)

ρ(σ)
= ∂z̄σ1

ln ρ(σ) [3.216]

We find

∂n−1
zσ1

δ ln ρ(σ)
∣∣∣
σ=σ1

= ∂n−1
zσ1

(
∇zσ1

δzσ1(σ) +∇z̄σ1
δz̄σ1(σ)

) ∣∣∣
σ=σ1

= ∂n−1
zσ1

[
∂zσ1

δzσ1(σ) + ∂zσ1
ln ρ(σ)δzσ1(σ) + ∂z̄σ1

δz̄σ1(σ)

+ ∂z̄σ1
ln ρ(σ)δz̄σ1(σ)

]∣∣∣
σ=σ1

=
[
∂nzσ1

δzσ1(σ) + ∂nzσ1
ln ρ(σ)δzσ1(σ) + ∂zσ1

ln ρ(σ)∂n−1
zσ1

δzσ1(σ)

+ ∂n−1
zσ1

∂z̄σ1
δz̄σ1(σ) + ∂n−1

zσ1
∂z̄σ1

ln ρ(σ)δz̄σ1(σ) + ∂z̄σ1
ln ρ(σ)∂n−1

zσ1
δz̄σ1(σ)

]∣∣∣
σ=σ1

=
[
∂nzσ1

δzσ1(σ) +
(
∂n−1
zσ1

∂z̄σ1
ln ρ(σ)

)
δz̄σ1(σ)

]∣∣∣
σ=σ1

[3.217]

In the last line we have used the fact that we are working in holomorphic normal coordi-
nates such that ∂nzσ1

ln ρ(zσ1 , z̄σ1)
∣∣∣
σ=σ1

= 0 for n ≥ 1 and that δz̄σ1 is holomorphic so that

∂nzσ1
δz̄σ1 = 0 as well. Note that, as we have mentioned earlier, the mixed derivative term

∂n−1
zσ1

∂z̄σ1
ln ρ(σ) is not necessarily zero, on the contrary [3.210] links it to the Ricci scalar

R. Indeed, note that

∂n−2
zσ1

[
ρ−1∂zσ1

∂z̄σ1
ln ρ(σ1)

]∣∣∣
σ=σ1

= ∂n−1
zσ1

∂z̄σ1
ln ρ(σ)

∣∣∣
σ=σ1

[3.218]

This is easily seen that noting that the derivatives ∂n−2
zσ1

on the ρ−1 are zero when taken in
σ1 by the normal holomorphicity condition. We are then just left with a ρ−1 which at the
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point σ1 is equal to one by the same condition. We can thus write

∂n−1
zσ1

δ ln ρ(σ)
∣∣∣
σ=σ1

= ∂nzσ1
δzσ1(σ1)− 1

4
δz̄σ1(σ1)∂n−2

zσ1

[
− 4ρ−1∂zσ1

∂z̄σ1
ln ρ(σ1)

]
= ∂nzσ1

δzσ1(σ1)− 1

4
δz̄σ1(σ1)∂n−2

zσ1
R(σ1)

= ∂nzσ1
δzσ1(σ1)− 1

4
δz̄σ1(σ1)∇n−2

zσ1
R(σ1) [3.219]

We have here, immediately written the fact that all these quantities are taken at the point
σ1 and in the last line we can replace the ordinary derivatives by the covariant derivatives
because as the only non-zero connection Γzzz(σ) = ∂zσ1

ln ρ(σ) vanishes at σ1.
Requiring that both at σ1 and at σ′1 we have holomorphic normal coordinates implies

that ∂n−1
zσ1

ln ρ(σ1) vanishes and so [3.219] implies that

∂nzσ1
δzσ1(σ1) =

1

4
δz̄σ1(σ1)∇n−2

zσ1
R(σ1) [3.220]

Multiply both sides by
(
zσ1(σ)

)n
/n! and sum from n = 2 to infinity

∞∑
n=2

1

n!

(
zσ1(σ)

)n
∂nzσ1

δzσ1(σ1) =
1

4
δz̄σ1(σ1)

∞∑
n=2

1

n!

(
zσ1(σ)

)n∇n−2
zσ1

R(σ1) [3.221]

We can rewrite the LHS as

LHS =
∞∑
n=0

1

n!

(
∂nzσ1

δzσ1(σ1)
)(
zσ1(σ)

)n − δzσ1(σ1)−
(
∂zσ1

δzσ1(σ1)
)
zσ1(σ) [3.222]

The sum is just a Taylor expansion. To recognise it, recall that

f(x) =

∞∑
n=0

1

n!
∂nf(a)(x− a)n [3.223]

and Taylor expand δzσ1(σ) around zσ1(σ1). We thus have x = zσ1(σ) and a = zσ1(σ1), with
f ≡ δ. It follows that x − a = zσ1(σ) − zσ1(σ1). Now recall from [3.209] that the base
point is chosen so that zσ1(σ1) = 0, albeit it that δzσ1(σ1) = 0 and its derivatives need not
be zero. We thus have x− a = x = zσ1(σ) and so

δzσ1(σ) =
∞∑
n=0

1

n!

(
∂nzσ1

δzσ1(σ1)
)(
zσ1(σ)

)n
[3.224]

We therefore have

δzσ1(σ)− δzσ1(σ1)−
(
∂zσ1

δzσ1(σ1)
)
zσ1(σ) =

1

4
δz̄σ1(σ1)

∞∑
n=2

1

n!

(
zσ1(σ)

)n∇n−2
zσ1

R(σ1)

[3.225]
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or, equivalently

δzσ1(σ) = δzσ1(σ1) +
(
∂zσ1

δzσ1(σ1)
)
zσ1(σ) +

1

4
δz̄σ1(σ1)

∞∑
n=1

∇n−1
zσ1

R(σ1)

(n+ 1)!

(
zσ1(σ)

)n+1

[3.226]

where we have changed the summation index n→ n+1. Let us see what we have achieved
so far. We have found an expression for δzσ1(σ) as a power series in zσ1(σ) with coefficients
that depend only on the base point σ1. In detail

δzσ1(σ) =
∞∑
n=0

an(σ1)
(
zσ1(σ)

)n
[3.227]

with

a0 = δzσ1(σ1)

a1 = ∂zσ1
δzσ1(σ1)

an =
δz̄σ1(σ1)∇n−2

zσ1
R(σ1)

4(n+ 1)!
for n ≥ 2 [3.228]

We know add zσ1(σ) to both sides. On the left hand side we get zσ1(σ) + δzσ1(σ), which
by [3.214] is exactly zσ′1(σ). On the RHS this means that the coefficient a1 changes to

1+∂zσ1
δzσ1(σ1). Now, to first order in the change δ we can rewrite this as epartialzσ1

δzσ1 (σ1).
We can also multiply a0 and an for n ≥ 2 with this exponential as these coefficients are
already of the order δzσ1(σ1) and so the difference would just be a second order correction.
The upshot of this is that we can write

zσ′1(σ) = e∂zσ1
δzσ1 (σ1)

∞∑
n=0

ãn(σ1)
(
zσ1(σ)

)n
[3.229]

with

ã0 = δzσ1(σ1)

ã1 = 1

ãn =
δz̄σ1(σ1)∇n−2

zσ1
R(σ1)

4(n+ 1)!
for n ≥ 2 [3.230]

or explicitly

zσ′1(σ) = e∂zσ1
δzσ1 (σ1)

[
δzσ1(σ1) + zσ1(σ) +

1

4
δz̄σ1(σ1)

∞∑
n=1

∇n−1
zσ1

R(σ1)

(n+ 1)!

(
zσ1(σ)

)n+1

]
[3.231]

— 151—



Joe’s Book (version of November 20, 2020) Notes from Stany M. Schrans

Let us now go back to [3.264] and evaluate it at σ1. Since ρ(σ1) = 1 by the definition
of holomorphic normal coordinates we have ln ρ(σ1) = 0. We furthermore have that all
connections vanish at σ1, see [3.216]. Therefore

∂zσ1
δzσ1(σ1) + ∂z̄σ1

δz̄σ1(σ1) = 0 [3.232]

For a general complex number w = x + iy we have w + w̄ = 2x = 2Rew, thus the above
equation says that

Re
[
∂zσ1

δzσ1(σ1)
]

= 0 [3.233]

This means that we can write

∂zσ1
δzσ1(σ1) = Re

[
∂zσ1

δzσ1(σ1)
]

+ i Im
[
∂zσ1

δzσ1(σ1)
]

= i Im
[
∂zσ1

δzσ1(σ1)
]

[3.234]

and [3.235] becomes

zσ′1(σ) = ei Im [∂zσ1
δzσ1 (σ1)]

[
δzσ1(σ1) + zσ1(σ) +

1

4
δz̄σ1(σ1)

∞∑
n=1

∇n−1
zσ1

R(σ1)

(n+ 1)!

(
zσ1(σ)

)n+1

]
[3.235]

The exponential pre-factor is now just a phase factor. We will shove this phase factor under
the rug, together with the one that determines the transition functions from coordinates in
the conformal gauge to holomorphic normal coordinates, see [3.467] in the appendix to
this chapter or for more details [LS].

Our final result is then

zσ′1(σ) = δzσ1(σ1) + zσ1(σ) +
1

4
δz̄σ1(σ1)

∞∑
n=1

∇n−1
zσ1

R(σ1)

(n+ 1)!

(
zσ1(σ)

)n+1
[3.236]

This is the holomorphic transition function between two charts with nearby base points σ1

and σ1
′. It is holomorphic in σ, any any point in the overlap of the two charts, but due to

the appearance of δz̄σ1(σ1) it is not holomorphic in the base points σ1 and σ′1.

THE DERIVATIVE OF A NORMAL ORDERED OPERATOR

Using the result [3.236] and the chain rule we can now work out the derivative w.r.t. the
base point σ1 for a given point σ

∂

∂zσ1(σ1)

∣∣∣
σ

=
∂zσ1(σ)

∂zσ1(σ1)

∣∣∣
σ

∂

∂zσ1(σ)
+

∂z̄σ1(σ)

∂zσ1(σ1)

∣∣∣
σ

∂

∂z̄σ1(σ)
[3.237]
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What does this mean? ∂zσ1(σ)/∂zσ1(σ1) is just the how zσ1(σ) varies when we vary the the
base point. We can read this off from [3.236]. It is just

∂zσ1(σ)

∂zσ1(σ1)
= lim

δzσ1 (σ1)→0

zσ′1(σ)− zσ1(σ)

δzσ1(σ1)

= lim
δzσ1 (σ1)→0

δzσ1(σ1) + 1
4δz̄σ1(σ1)

∑∞
n=1

∇n−1
zσ1

R(σ1)

(n+1)!

(
zσ1(σ)

)n+1

δzσ1(σ1)

= 1 [3.238]

But we have also a non-vanishing term for the complex conjugate of [3.236]

∂z̄σ1(σ)

∂zσ1(σ1)
= lim

δzσ1 (σ1)→0

z̄σ′1(σ)− z̄σ1(σ)

δzσ1(σ1)

= lim
δzσ1 (σ1)→0

δz̄σ1(σ1) + 1
4δzσ1(σ1)

∑∞
n=1

∇n−1
z̄σ1

R(σ1)

(n+1)!

(
z̄σ1(σ)

)n+1

δzσ1(σ1)

= +
1

4

∞∑
n=1

∇n−1
z̄σ1

R(σ1)

(n+ 1)!

(
z̄σ1(σ)

)n+1
[3.239]

and thus

∂

∂zσ1(σ1)

∣∣∣
σ

=
∂

∂zσ1(σ)
+

1

4

∞∑
n=1

∇n−1
z̄σ1

R(σ1)

(n+ 1)!

(
z̄σ1(σ)

)n+1 ∂

∂z̄σ1(σ)
[3.240]

In this expression we recognise the Virasoro generatos

L
(zσ1 )
n = −

(
zσ1(σ)

)n+1 ∂

∂zσ1(σ)
and L̃

(zσ1 )
n = −

(
z̄σ1(σ)

)n+1 ∂

∂z̄σ1(σ)
[3.241]

We have explicitly added the superscript (zσ1 ) to remind ourselves that these are the Vira-
soro generators for the patch around the base point σ1. We can thus write

∂

∂zσ1(σ1)

∣∣∣
σ

= −L(zσ1 )
−1 − 1

4

∞∑
n=1

∇n−1
z̄σ1

R(σ1)

(n+ 1)!
L̃

(z̄σ1 )
n [3.242]

This is an expression to the derivative w.r.t. to the variation base point keeping the point
σ fixed, i.e. w.r.t. δzσ1(σ1) =

(
zσ′1(σ) − zσ1(σ)

)∣∣
σ=σ1

. This is a so-called passive variation
where we move the frame of reference σ1 to σ′1 and keep the coordinate σ fixed. We can
obtain the active variation of changing the coordinate but keeping the base point fixed
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simply by introducing a minus sign. We thus have that the derivative w.r.t. coordinate for
a fixed base point is

∂zσ1
= L

(zσ1 )
−1 +

1

4

∞∑
n=1

∇n−1
z̄σ1

R(σ1)

(n+ 1)!
L̃

(z̄σ1 )
n [3.243]

From here on we are working with a fixed base-point σ1 and so it is superfluous to keep
on reminding ourselves that the coordinates z are taking with base point σ1. The above
equation thus becomes

∂z = L−1 +
1

4

∞∑
n=1

∇n−1
z̄ R(σ1)

(n+ 1)!
L̃n [3.244]

Let us now see what the corresponding derivative ∂z does when acting on a local op-
erator that is Weyl normal ordered and is inserted at the base point σ1 with holomorphic
normal coordinates z, viz an operator ��A(σ1)��z. We have

∂z
�
�A(σ1)��z =

[
L−1 +

1

4

∞∑
n=1

∇n−1
z̄ R(σ1)

(n+ 1)!
L̃n

]
�
�A(σ1)��z [3.245]

We can evaluate L−1
�
�A(σ1)��z via the OPE of the energy-momentum tensor with the oper-

ator ��A(σ1)��z

L−1
�
�A(σ1)��z =

∮
dz

2π
T (z)A(w) = �

�∂zA(σ1)��z [3.246]

and so we just pick up the residue of the simple pole of the simple pole of the OPE which
is, as we have seen before by translation invariance ��∂zA(σ1)��z.

We have now achieved our end result for this part. We know how to take the derivative
of a normal ordered local operator:

∂z
�
�A(σ1)��z = �

�∂zA(σ1)��z +
1

4

∞∑
n=1

∇n−1
z̄ R(σ1)

(n+ 1)!
L̃n
�
�A(σ1)��z [3.247]

The key point here, and it is worth emphasising it, is that one cannot just take a derivative
in a normal ordered product. There is an additional contribution that depends on the anti-
holomorphic part of the theory. Note also that these results are very general. They are
valid for an arbitrary background and CFT with total central charge zero. These results are
also valid off-shell.

AN EXPLICIT EXAMPLE
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After all this hard work, let us consider a specific example. We wish to compute

Tµ(σ1) = ∇a��∇aXµeik·X(σ1)��z [3.248]

As at the end of the last section, we have not written all the necessary indices, but we are
working with holomorphic normal coordinates at base point σ1. This means that covariant
derivatives ∇z = ∇zσ1

are equal to ordinary derivatives and and ρ(σ1) = 1 with all its
derivatives at σ1 being zero. Replacing the covariant derivative by ordinary derivatives,
going to complex coordinates, and using our formula [3.247] for the derivative of a normal
ordered operator, we find

Tµ(σ1) = 4∂z
�
�∂z̄X

µeik·X(σ1)��z

= 4��∂z

(
∂z̄X

µeik·X(σ1)
)
�
�z +

1

4

∞∑
n=1

∇n−1
z̄ R(σ1)

(n+ 1)!
L̃n4��∂z̄X

µeik·X(σ1)��z [3.249]

We now use the OPE to compute

L̃n
�
�∂z̄X

µeik·X(σ1)��z =

∮
Cz

dw

2πi
(w − z)n+1T̃ (w̄)��∂z̄X

µeik·X(σ1)��z [3.250]

Let us consider first what we need before we start blindly calculating. Because n ≥ 1
we need a pole in the OPE T̃ (w̄)∂z̄X

µeik·X(z) of order three or higher to have a non-
zero contribution. Here we have not written the normal ordering symbols as these are
understood in OPEs. We will also focus further on the holomorphic twin of this expressions,
and put conjugates at the end. We thus need the third and higher order poles of

T (w)∂Xµeik·X(z) = − 1

α′
∂Xν∂Xν(w)∂Xµeik·X(z) [3.251]

The highest order pole we get is when we contract one of the ∂Xν(w) with the ∂Xµ(z)
and the other ∂Xν(w) with an Xσ(z) from the exponential. Using

Xµ(w)Xν(z) = − 1

2
α′ ln |w − z|2

∂Xµ(w)Xν(z) = − 1

2
α′

1

w − z

∂Xµ(w)∂Xν(z) = − 1

2
α′

1

(w − z)2
[3.252]

we see that the highest order pole is a third order pole and is given by

T (w)∂Xµeik·X(z) = − 1

α′

[
2

(
−1

2
α′

ηµν

(w − z)2

)(
−1

2
α′
ikσηνσ
w − z

)
eik·X(z)

]
+ · · ·

= − ikµα′

2

1

(w − z)3
eik·X(z) + · · · [3.253]
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Thus

Ln
�
�∂zX

µeik·X(σ1)��z =

∮
Cz

dw

2πi
(w − z)n+1

[
− ikµα′

2

1

(w − z)3
eik·X(z) + · · ·

]

= − iα′kµ

2
δn,1

∮
Cz

dw

2πi(w − z)
eik·X(z)

= − iα′kµ

2
δn,1e

ik·X(z) [3.254]

We see that the result is the same for the conjugate twin and therefore

Tµ(σ1) = 4��∂z

(
∂z̄X

µeik·X(σ1)
)
�
�z +

∞∑
n=1

∇n−1
z̄ R(σ1)

(n+ 1)!

(
− iα

′kµ

2
δn,1e

ik·X(z)

)
= 4��∂z

(
∂z̄X

µeik·X(σ1)
)
�
�z −

iα′kµ

4
R(σ1)��e

ik·X(σ1)��z [3.255]

In the last line we have once more added the bells and whistles of the normal ordering.
Consider now the first term. From [3.246] we have

4��∂z

(
∂z̄X

µeik·X(σ1)
)
�
�z = 4L−1

�
�∂z̄X

µeik·X(σ1)��z [3.256]

We now need

L−1∂z̄X
µeik·X(z) =

∮
Cz

dw

2πi
(w − z)−1+1T (w)∂z̄X

µeik·X(z) [3.257]

The only non-vanishing contribution comes from the single pole in the OPE T (w)∂z̄X
µeik·X(z),

which is easily computed as we know that eik·X is a primary field, and hence so is ∂z̄Xµeik·X(z)
as T (w)∂z̄X

µ(z̄) has no singular parts in the contour. We can thus write down immediately

L−1∂z̄X
µeik·X(z) =

∮
Cz

∂z̄X
µ∂ze

ik·X(w)

w − z
= �
�∂z̄X

µ∂ze
ik·X(z)��z [3.258]

where we have added the bells and whistles of normal ordering again at the end. This is
actually nothing but a complicated and rigorous way to explain that bring the ∂z through
the ∂z̄Xµ in a normal ordering, i.e. that ∂z̄Xµ is anti-holomorphic.

Recall that we are using holomorphic normal coordinates so that we can replace the
ordinary derivatives by covariant ones. Thus

4��∂z

(
∂z̄X

µeik·X(σ1)
)
�
�z = 4��∂z̄X

µ∂ze
ik·X(z)��z = �

�∇aXµ∇aeik·X(σ1)��z [3.259]

We thus find our final result for Tµ(σ1):

∇a��∇aXµeik·X(σ1)��z = �
�∇aXµ∇aeik·X(σ1)��z +

iα′γkµ

4
R(σ1)��e

ik·X(σ1)��z [3.260]
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Where we have introduce a parameter γ that is equal to −1 in our case.

WEYL TRANSFORMATIONS IN WEYL NORMAL ORDERING

Let us consider a patch with base point σ1 holomorphic normal coordinates zσ1(σ). We
now wish to perform an infinitesimal but general holomorphic change of coordinates

zσ1(σ)→ wσ1(σ) = zσ1(σ) + δzσ1(σ) = zσ1(σ) +
∞∑
n=0

εn
(
zσ1(σ)

)n
[3.261]

Note that δzσ1(σ) has a different meaning than in [3.214]. Here it is a change of co-
ordinates with a fixed base point σ1, whereas previously it denoted the impact on the
coordinate of a change of base point σ1 to σ′1.

As we are working in holomorphic normal coordinates, the following relations are
valid, see [3.210] and [3.211]

ds2 = ρ(zσ1 , z̄σ1)dzσ1dz̄σ1 with ∂nzσ1
ρ(zσ1 , z̄σ1)

∣∣∣
σ=σ1

= δn,0 [3.262]

Our aim is to find out how vertex operators transform under Weyl transformations – re-
member that we have a regularisation scheme, either Pauli-Villars or dimensional regular-
isation, that is manifestly diffeomorphism invariant and so the survival of the Weyl invari-
ance in the quantum theory is what should concern us – so let us find the coefficient εn for
a Weyl transformation.

Consider, therefore, the Weyl transformation

ds2 → dŝ2 = eδφ(σ1)ρ(zσ1 , z̄σ1)dzσ1dz̄σ1 [3.263]

In order to satisfy the nitpickers amongst us, let us point out that by δφ(σ1) we actually
mean δφ

(
zσ1(σ), z̄σ1(σ)

)
. From [3.264] we have that, using ln ρ = δφ

δφ(σ) = ∇zσ1
δzσ1(σ) +∇z̄σ1

δz̄σ1(σ) [3.264]

Because both zσ1 and wσ1 are chosen to be holomorphic normal coordinates we have
zσ1(σ1) = wσ1(σ1) = 0 and hence also δzσ1(σ1) = 0. But recall that the derivatives of
δzσ1(σ) taken at sic are not necessarily zero.

In order to compute δzσ1(σ) we perform the same trick as before: we take the (n−1)th
derivative of δzσ1(σ) evaluated at σσ1, multiply it by

(
zσ1(σ)

)n
/n! and sum from n = 2 to

infinity

∞∑
n=2

1

n!
∂n−1
zσ1

δφ(σ)

∣∣∣∣∣
σ=σ1

(
zσ1(σ)

)n
=

∞∑
n=2

1

n!
∂n−1
zσ1

(
∇zσ1

δzσ1 +∇z̄σ1
δz̄σ1

)
(σ)

∣∣∣∣∣
σ=σ1

(
zσ1(σ)

)n
[3.265]
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We now use [3.216] for the non-vanishing connections and the RHS becomes

RHS =
∞∑
n=2

1

n!
∂n−1
zσ1

(
∂zσ1

δzσ1 + (∂zσ1
ln ρ)δzσ1 + ∂z̄σ1

δz̄σ1 + (∂z̄σ1
ln ρ)δz̄σ1

)
(σ)

∣∣∣∣∣
σ=σ1

(
zσ1(σ)

)n
=
∞∑
n=2

1

n!

(
∂nzσ1

δzσ1 + (∂nzσ1
ln ρ)δzσ1 + (∂zσ1

ln ρ)∂n−1
zσ1

δzσ1

+ (∂n−1
zσ1

∂z̄σ1
ln ρ)δz̄σ1 + (∂z̄σ1

ln ρ)∂n−1
zσ1

δz̄σ1

)
(σ)

∣∣∣∣∣
σ=σ1

(
zσ1(σ)

)n
=
∞∑
n=2

1

n!
∂nzσ1

δzσ1(σ)

∣∣∣∣∣
σ=σ1

(
zσ1(σ)

)n
[3.266]

Indeed, all but one term survives due to the choice of holomorphic normal coordinates
and the fact that δz̄σ1 is anti-holomorphic. We complete the sum and extract the Taylor
expansion to find

∞∑
n=2

1

n!
∂n−1
zσ1

δφ(σ)

∣∣∣∣∣
σ=σ1

(
zσ1(σ)

)n
=

∞∑
n=0

1

n!
∂nzσ1

δzσ1(σ)

∣∣∣∣∣
σ=σ1

(
zσ1(σ)

)n − δzσ1(σ1)−
(
∂zσ1

δzσ1(σ1)
)
zσ1(σ)

= δzσ1(σ)−
(
∂zσ1

δzσ1(σ1)
)
zσ1(σ) [3.267]

where we have also used δzσ1(σ1) = 0. We thus have

δzσ1(σ) =
(
∂zσ1

δzσ1(σ1)
)
zσ1(σ) +

∞∑
n=2

1

n!
∂n−1
zσ1

δφ(σ)

∣∣∣∣∣
σ=σ1

(
zσ1(σ)

)n
[3.268]

We add zσ1(σ) to both sides and use the fact that δzσ1(σ) + zσ1(σ) = wσ1(σ) to find

wσ1(σ) =
[
1 + ∂zσ1

δzσ1(σ1)
]
zσ1(σ) +

∞∑
n=1

1

(n+ 1)!
∂nzσ1

δφ(σ)

∣∣∣∣∣
σ=σ1

(
zσ1(σ)

)n+1

= e∂zσ1
δzσ1 (σ1)

[
zσ1(σ) +

∞∑
n=1

1

(n+ 1)!
∂nzσ1

δφ(σ)

∣∣∣∣∣
σ=σ1

(
zσ1(σ)

)n+1

]
[3.269]

The last equation is correct to first order in δφ and thus also δz. The argument of the
exponential can be written as

∂zσ1
δzσ1(σ1) = Re ∂zσ1

δzσ1(σ1) + i Im ∂zσ1
δzσ1(σ1)

=
1

2

[
∂zσ1

δzσ1(σ1) + ∂z̄σ1
δz̄σ1(σ1)

]
+ i Im ∂zσ1

δzσ1(σ1)

=
1

2
δφ(σ1) + i Im ∂zσ1

δzσ1(σ1) [3.270]

— 158—



Joe’s Book (version of November 20, 2020) Notes from Stany M. Schrans

In the last line we have used [3.264] and the fact that at σ = σ1 the connections vanish.
The imaginary part just gives a phase, which we can, just as before, ignore. We thus find
our final result, the transition function for a holomorphic change of coordinates zσ1 →
wσ1(zσ1), with fixed base point, corresponding to a Weyl transformation

wσ1(σ) = e
1
2
δφ(σ1)

[
zσ1(σ) +

∞∑
n=1

1

(n+ 1)!
∂nzσ1

δφ(σ)

∣∣∣∣∣
σ=σ1

(
zσ1(σ)

)n+1

]
[3.271]

We can thus write for a Weyl transformation

zσ1(σ)→ wσ1(σ) = zσ1(σ) +

∞∑
n=0

εn
(
zσ1(σ)

)n
[3.272]

with

ε0 = 0

ε1 =
1

2
δφ

εn = e
1
2
δφ(σ1) 1

(n)!
∂n−1
zσ1

δφ(σ)

∣∣∣∣∣
σ=σ1

for n ≥ 2 [3.273]

From standard CFT we know that local operator transforms under a general conformal
transformation as

�
�A(wσ1 )(σ1)��wσ1

= �
�A(zσ1 )(σ1)��zσ1

−
∞∑
n=0

(
εnL

(zσ1 )
n + ε̃nL̃

(zσ1 )
n

)
�
�A(zσ1 )(σ1)��zσ1

[3.274]

As we have the εn from [3.273] and we can evaluate L
(zσ1 )
n

�
�A(zσ1 )(σ1)��zσ1

by contour
operation of the OPE, we thus have an explicit expression of how a local operator changes
under a Weyl transformation.

WEYL TRANSFORMATIONS OF THE PROPAGATOR

We are now in a position to really start working on showing that Weyl invariance of the
operator V1 requires the conditions (3.6.16). First we need to work out the Weyl transfor-
mations of the propagator ∆(σ′, σ) and derivatives thereof in our scheme. We have

∆(σ′, σ) =
α′

2
ln
∣∣zσ1(σ′)− zσ1(σ)

∣∣2 [3.275]
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As per our scheme, the geodesic distance is taken with fixed base point. We wish to find
the change of this under a Weyl transformation, i.e.

δW∆(σ′, σ) =
α′

2
ln
∣∣wσ1(σ′)− wσ1(σ)

∣∣2 − α′

2
ln
∣∣zσ1(σ′)− zσ1(σ)

∣∣2
=
α′

2
ln

∣∣∣∣wσ1(σ′)− wσ1(σ)

zσ1(σ′)− zσ1(σ)

∣∣∣∣2 [3.276]

We have worked out an expression for wσ1 under a Weyl transformation in [3.271] which
we write to first order as

wσ1(σ) =

(
1 +

1

2
δφ(σ1)

)
zσ1(σ) +

∞∑
n=1

1

(n+ 1)!
∂nzσ1

δφ(σ1)
(
zσ1(σ)

)n+1
[3.277]

We have written δφ(σ1) but it is, of course, understood that we first take the appropriate
number of derivatives of δφ(σ) and only afterwards take σ = σ1. Therefore

wσ1(σ′)− wσ1(σ)

zσ1(σ′)− zσ1(σ)
=
[
zσ1(σ′)− zσ1(σ)

]−1
{(

1 +
1

2
δφ(σ1)

)[
zσ1(σ′)− zσ1(σ)

]
+

∞∑
n=1

1

(n+ 1)!
∂nzσ1

δφ(σ1)
[(
zσ1(σ′)

)n+1 −
(
zσ1(σ)

)n+1
]}

= 1 +
1

2
δφ(σ1) +

∞∑
n=1

1

(n+ 1)!
∂nzσ1

δφ(σ1)

(
zσ1(σ′)

)n+1 −
(
zσ1(σ)

)n+1

zσ1(σ′)− zσ1(σ)

[3.278]

Let us now look at the fraction in the sum. In the end we will be interested in the limit
σ′ = σ = σ1. First we have

lim
x→y

xn+1 − yn+1

x− y
= lim

x−→y

2∑
k=0

xkyn−k = (n+ 1)yn [3.279]

We will thus end up with n
(
zσ1(σ)

)n, which we will take at σ = σ1 and hence this vanishes.
Therefore at σ′ = σ = σ1

ln
wσ1(σ′)− wσ1(σ)

zσ1(σ′)− zσ1(σ)
= ln

(
1 +

1

2
δφ(σ1)

)
=

1

2
δφ(σ1) [3.280]

We have a similar contribution of the conjugate part and thus

δW∆(σ′, σ)
∣∣∣
σ′=σ=σ1

=
α′

2
× 2× 1

2
δφ(σ1) [3.281]
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This deserves its standalone formula

δW∆(σ, σ′)
∣∣∣
σ′=σ=σ1

=
α′

2
δφ(σ1) [3.282]

Recalling that our δφ is equal to the 2δω of Joe, we recover (3.6.11).
Let us now work out ∂z′δW∆(σ′, σ) in our scheme. As we will see, this has become

pretty easy in this scheme. Using [3.276] and [3.278] we have

δW∆(σ′, σ) =
α′

2
ln

∣∣∣∣∣1 +
1

2
δφ(σ1) +

∞∑
n=1

∂nzσ1
δφ(σ1)

(n+ 1)!

n∑
k=0

(
zσ1(σ′)

)k(
zσ1(σ)

)n−k∣∣∣∣∣
2

=
α′

2

[
1

2
δφ(σ1) +

∞∑
n=1

∂nzσ1
δφ(σ1)

(n+ 1)!

n∑
k=0

(
zσ1(σ′)

)k(
zσ1(σ)

)n−k
+ c.c.

]
[3.283]

where c.c. stands for complex conjugate. We now need to take the z′ = zσ1(σ′) derivative
of this and then put σ′ = σ = σ1. There is only one term in the expression that then
remains, it is the term with k = 1 and n = 1 and this gives

∂z′δW∆(σ′, σ))
∣∣∣
σ′=σ=σ1

=
α′

2

[
∂zσ1

δφ(σ1)

2

]
[3.284]

Again, this deserves a standalone formula

∂z′δW∆(σ′, σ))
∣∣∣
σ′=σ=σ1

=
α′

4
∂zδφ(σ1) [3.285]

This is (3.6.15a) with again δφ = 2δω
Let us do one more derivative: ∂z′∂z̄δW∆(σ′, σ). This is pretty simple from [3.283].

There are no mixed z′ and z̄ terms so that expression vanishes

∂z′∂z̄δW∆(σ′, σ))
∣∣∣
σ′=σ=σ1

= 0 [3.286]

which is (3.6.15b) for γ = −1.

WEYL TRANSFORMATIONS OF THE VERTEX OPERATOR V1

We can now calculate the Weyl Variation of the operator V1 in the new renormalisation
scheme. Recall that we already did this for using the renormalisation in Joe’s book. But
in order to do that we had to assume (3.6.18) was valid. In our new renormalisation
scheme we can calculate this Weyl variation, without having to assume (3.6.18). As we
have already done most of the calculation, we will not repeat everything. The reader is
referred to the derivation of (3.6.16) on p105 for all details.
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We can immediately go to [3.175]

δWV1 =
gc
α′

∫
d2σ

{
− 2α′φ̃

√
g(∇2δω)

[
eik·X(σ)

]
w

+
1

2

√
g(gabsµν + iεabaµν)

∫
d2σ′d2σ′′δW∆(σ′, σ′′)

δ

δXλ(σ′)

δ

δXλ(σ′′)

[
∂aX

µ∂bX
νeik·X(σ)

]
w

+
1

2

√
gα′φ̃R

∫
d2σ′d2σ′′δW∆(σ′, σ′′)

δ

δXλ(σ′)

δ

δXλ(σ′′)

[
eik·X(σ)

]
w

}
[3.287]

We are denoting the renormalisation based on Weyl normal ordering by [· · · ]w. We are tak-
ing into account that due to the fact that we are using a different renormalisation scheme,
we have assumed a different φ̃. Once more we take the three lines separately. The first line
gives [3.177]

J1 = −2gcφ̃

∫
d2σδω

√
g∇a∂a

[
eik·X(σ)

]
w

[3.288]

We know that we need to be very careful now with derivatives and Weyl normal ordering.
Let us first check ∂z

[
eik·X(σ)

]
w

. Eq [3.247] tells us how to bring a derivative in a Weyl
normal ordered product

∂z

[
eik·X(σ)

]
w

=
[
∂ze

ik·X(σ)
]

w
+

1

4

∞∑
n=1

∇n−1
z̄ R(σ1)

(n+ 1)!
L̃n

[
eik·X(σ)

]
w

[3.289]

Let us first check the second term. We have

L̃n

[
eik·X(σ)

]
w

=

∮
Cz

dw

2πi
(w − z)n+1T (w)eik·X(z)

=

∮
Cz

dw

2πi
(w − z)n+1

[
(α′k2/4)eik·X(z)

(z − w)2
+
∂ze

ik·X(z)

z − w

]
[3.290]

The first term of the OPE gives a (z − w)n−1 and the second a (z − w)n. For n ≥ 1 neither
of these contributions give a pole and so

L̃n

[
eik·X(σ)

]
w

= 0 for n ≥ 1 [3.291]

and therefore

∂z

[
eik·X(σ)

]
w

=
[
∂ze

ik·X(σ)
]

w
[3.292]
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The same holds, of course, for its complex conjugate and hence

∇a∂a
[
eik·X(σ)

]
w

=∇a
[
∂ae

ik·X(σ)
]

w
= ∇a

[
ikµ∂aX

µeik·X(σ)
]

w

= ikµ∇a
[
∇aXµeik·X(σ)

]
w

[3.293]

But now comes the fruit of all our hard work, because we already calculated this in [3.260]

∇a
[
∇aeik·X(σ)

]
w

= ikν

[
∂aX

µ∂aXνeik·X(σ)
]

w
+
iα′γkµ

4
R(σ1)

[
eik·X

]
w

[3.294]

We thus find

J1 = − 2gcφ̃

∫
d2σδω

√
g ikµ

[
ikν

[
∂aX

µ∂aXνeik·X(σ)
]

w
+
iα′γkµ

4
R(σ1)

[
eik·X

]
w

]
=
gc
2

∫
d2σ
√
g δω

{(
γα′k2φ̃R

) [
eik·X

]
w

+
(

4kµkν φ̃
) [
∂aX

µ∂aXνeik·X)
]

w

}
[3.295]

Note that this is exactly the same result as in our previous calculation, [3.180] if we set
γ = −2/3 and φ̃ = φ as per Joe’s book.

The third line is identical to the previous result, as there are no derivatives to mess it
up:

J3 =
gc
2

∫
d2σ
√
gδω

(
− α′k2φ̃R

) [
eik·X

]
w

[3.296]

Let us finally focus our attention to the second line. If both functional derivatives act
on the exponential we have no derivatives to worry about and we can, once more, just take
over the result from our previous calculation, [3.185]

J2a =
gc
2

∫
d2σ
√
gδω

(
gab(−k2sµν) + iεab(−k2aµν)

) [
∂aX

µ∂bX
νeik·X

]
w

[3.297]

If one functional derivative acts on the exponential and the other on ∂X, then the previous
calculation is valid up to the point where we will apply derivatives on the Weyl normal
ordered local operators. This means that we can just take over up to [3.193]

J2b = − igc
2

∫
d2σδω

√
g

{
(gabsµν + iεabaµν)kµ∇a

[
∂bX

νeik·X
]

w

+ (gabsµν + iεabaµν)kν∇b
[
∂aX

µeik·X
]

w

}
[3.298]
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We will consider the symmetric and antisymmetric part separately

J s2b = − igc
2

∫
d2σδω

√
g
{
sµνk

µ∇a
[
∇aXνeik·X

]
w

+ sµνk
ν∇a

[
∇aXµeik·X

]
w

}
[3.299]

We can again use [3.260] and the symmetry of sµν

J s2b = − igc
∫
d2σδω

√
gsµνk

µ

{[
∇aXν∇aeik·X

]
w

+
iα′γkν

4
R
[
eik·X

]
w

}
= − igc

∫
d2σ
√
gδωsµνk

µ

{
ikλ

[
∂aX

ν∂aXλeik·X
]

w
+
iα′γkν

4
R
[
eik·X

]
w

}
[3.300]

Note that we can simplify the first contribution as, ignoring pre-factors,

sµνk
µkλ

[
∂aX

ν∂aXλeik·X
]

w
= gabsµνk

µkλ

[
∂aX

ν∂bXλeik·X
]

w

=
1

2
gab
(
sλνk

λkµ + sµλk
λkν
) [
∂aX

µ∂bXνeik·X
]

w
[3.301]

We thus find for the symmetric part

J s2b =
gc
2

∫
d2σ
√
gδω

{
α′R

(γ
2
sµνk

µkν
) [
eik·X

]
w

+ gab
(
sλνk

λkµ + sµλk
λkν
) [
∂aX

µ∂bXνeik·X
]

w

}
[3.302]

Let us now focus on the antisymmetric part

J a2b = − igc
2

∫
d2σδω

√
giεabaµν

{
kµ∇a

[
∂bX

νeik·X
]

w
+ kν∇b

[
∂aX

µeik·X
]

w

}
[3.303]

The only non-vanishing component of εab is εzz̄ and so we have

J a2b = − igc
2

∫
d2σδω

√
giεzz̄aµν

{
kµ∇z

[
∂z̄X

νeik·X
]

w
+ kν∇z̄

[
∂zX

µeik·X
]

w

}
[3.304]

We can again just take over [3.260], without a factor of four. Note that the second term in
[3.260] will bring down an extra factor of kµ resulting in a combination aµνkµkν which is
zero by antisymmetry of aµν . So we get

J a2b =
gc
2

∫
d2σδω

√
giεzz̄aµν

{
kµ
[
∂z̄X

ν∂ze
ik·X

]
w

+ kν
[
∂zX

µ∂z̄e
ik·X

]
w

}
=
gc
2

∫
d2σδω

√
giεzz̄aµν

{
kµ
[
∂z̄X

νikλ∂zX
λeik·X

]
w

+ kν
[
∂zX

µikλ∂z̄X
λeik·X

]
w

}
=
gc
2

∫
d2σδω

√
giεabaµν

{
kµ
[
∂bX

νikλ∂aX
λeik·X

]
w

+ kν
[
∂aX

µikλ∂bX
λeik·X

]
w

}
=
gc
2

∫
d2σδω

√
giεab

(
sλνk

λkµ + sµλk
λkν
) [
∂aX

µ∂bXνeik·X
]

w
[3.305]
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Adding the symmetric and antisymmetric part we find

J2b =
gc
2

∫
d2σδω

√
g

{
α′R

(γ
2
sµνk

µkν
) [
eik·X(σ)

]
r

+ (gab + iεab)
(
sµλkνk

λ + sλνkµk
λ
) [
∂bX

ν∂aX
µeik·X(σ)

]
r

}
[3.306]

This is the same result [3.198] as in our previous calculation, if we set again γ = −2/3
there.

Let us finally focus on the term where both functional derivatives act on the ∂aXµ∂bX
ν .

Once again, we can follow the calculation from the past as long as we don’t mess around
with derivatives of operators. This means we can go straight to [3.202]

J2c =
gc
α′

∫
d2σ
√
ggabsµµ∂

′
a∂bδW∆(σ′, σ)

∣∣∣
σ′=σ

[
eik·X(σ)

]
r

[3.307]

But the only non-vanishing metric components are gzz̄ and we have shown in [??] that
∂z′∂z̄δW∆(σ′, σ))

∣∣∣
σ′=σ=σ1

= 0 and so in Weyl normal ordering we simply have

J2c = 0 [3.308]

Bringing the results together, we find We can now bring all the contributions together.
They are of the form

δWV1 =
gc
2

∫
d2σ
√
g δω

{
(gabsµµ + iεabaµν)

[
∂aX

µ∂aX
µeik·X(σ)

]
r

+ α′R f
[
eik·X(σ)

]
r

}
[3.309]

The contributions form the different parts to s, a and f are summarised in the table below.

sµν aµν f
J1 4kµkν φ̃ – γk2φ̃
J2a −k2sµν −k2aµν –
J2b kλkµsλν + kλkµsνλ kλkµaλν + kλkµaνλ

γ
2k

µkνsµν
J2c – – –
J3 – – −k2φ̃

Table 3.3: Weyl transformation of the massless vertex operator; contributions to [3.205]
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Thus

sµν = − k2sµν + kλkµsλν + kλkµsµλ + 4kµkν φ̃

aµν = − k2aµν + kλkµaλν + kλkµaνλ

= − k2aµν + kλkµaµλ − kλkµaνλ
f = (γ − 1)k2φ̃+

γ

2
kµkνsµν [3.310]

Requiring Weyl invariance of the vertex operator V1 requires that sµν = aµν = f = 0. We
can now go through the same reasoning as for (3.6.22), which we briefly repeat here. First
we take an n satisfying n2 = 0 and k · n = 1. Also nµsµν = nµaµν = 0. Start by requiring
sµνnµnnu = 0. This means

0 = − k2sµνn
µnν + kνk

ωsµωn
µnν + kµk

ωsνωn
µnν + 4kµkνn

µnν φ̃ = 4φ̃ [3.311]

so that

φ̃ = 0 [3.312]

Now require sµνnµ = 0. This gives

0 = − k2sµνn
µ + kνk

ωsµωn
µ + kµk

ωsνωn
µ = (k · n)kωsνω [3.313]

so that

kµsµν = 0 [3.314]

Similarly, requiring Aµνnµ = 0 leads to

0 = − k2aµνn
µ + kνk

ωaµωn
µ − kµkωaνωnµ

= (k · n)kµaνµ [3.315]

so that

kµaµν = 0 [3.316]

Finally, requiring sµν = 0 gives

0 = − k2sµν + kνk
ωsµω + kµk

ωsνω = −k2sµν [3.317]

and so also

k2 = 0 [3.318]
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Note that sµν = 0 just means that there would be no symmetric part. We now see that
aµν = 0 is also satisfied and so is f = 0. We have exactly the same on-shell conditions as
from the renormalisation scheme in Joe’s book.

We are now, finally, in a position to argue (3.6.18). And it is now pretty simple. Using
a the Weyl normal ordering renormalisation scheme we have found the above mass-shell
conditions as in Joe’s book. Going back through the calculation of the on-shell conditions
in Joe’s book we see that these can only be satisfied if (3.6.18) is valid. As physical results
should be independent of the renormalisation scheme and mass-shell conditions certainly
are physical results, this shows that (3.6.18) is indeed valid.

3.42 p 106: Eq (3.6.20) The Independent Parameters of the Massless
Vertex Operator, I

Let us first consider the change in aµν . This change will only impact Aµν:

Aµν →Aµν − k2(ζµkν − kµζν) + kνk
λ(ζµkλ − kµζλ)− kµkλ(ζνkλ − kνζλ)

= Aµν − k2ζµkν + k2kµζν + k2ζµkν − (k · ζ)kµknu− k2kµζν + (k · ζ)kµkν

= Aµν [3.319]

and so

δWV1(sµν , aµν + ζµkν − kµζν , φ) = δWV1(sµν , aµν , φ) [3.320]

Similarly, we find

Sµν →Sµν − k2(ξµkν + kµξnu) + kνk
λ(ξµkλ + kµξλ) + kµk

λ(ξνkλ + kνξλ)

− 1

3
kµkν2(k · ξ)− 4

3
kµkν2(k · ξ)

=Sµν − k2ξµkν − k2kµξnu+ k2kνξµ + kµkν(k · ξ) + k2kµxν + kµkν(k · ξ)
− 2kµkν(k · ξ) = Sµν [3.321]

We also have

F →F − 5

3
k2

(
−1

3
(k · ξ)

)
− 1

3
kµkν(ξµkν + kµξν) +

1

18
k22(k · ξ)

=F +

[
5

9
− 2

3
+

1

9

]
k2(k · ξ) = F [3.322]

and so

δWV1(sµν + ξµkν + kµξν , aµν , φ−
1

3
k · ξ) = δWV1(sµν , aµν , φ) [3.323]
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3.43 p 106: Eq (3.6.21) The Independent Parameters of the Massless
Vertex Operator, II

Let us chose our axes so that k = (1, 1, 0, · · · , 0). It satisfies k2 = 0 as it should. n is then
necessarily of the form n = (−1

2 ,
1
2 , ~n) in order to satisfy k · n = 1. Now n2 = 0 implies

~n2 = 0 and so ~n = 0. We can thus always chose

k = (1, 1, 0, · · · , 0)

n = (−1

2
,
1

2
, 0, · · · , 0) [3.324]

Let us now start from a general sµν we allow a transformation (3.6.20a) but require that
the transformed field satisfies (3.6.61), i.e.

0 =nµ(sµν + ξµkν + kµξν)

=nµsµν + (n · ξ)kν + ξν [3.325]

Let us write this out explicitly. For ν = 0, 1 we have

0 =
1

2
(−s00 + s10) +

1

2
(ξ0 + ξ1) + ξ0

0 =
1

2
(−s01 + s11) +

1

2
(ξ0 + ξ1) + ξ1 [3.326]

This is easily solved for ξ0 and ξ1:

ξ0 =
1

8
(3s00 − 3s10 − s01 + s11)

ξ1 =
1

8
(−s00 + s10 + 3s01 − 3s11) [3.327]

The other equations are, for ν = 2, · · · , D − 1

0 =
1

2
(−s0ν + s1ν) + ξν [3.328]

which is solved by

ξν =
1

2
(s0ν − s1ν) [3.329]

In other words, given an sµν we can always transform it to a new form that satisfies nµsµν =
0 and still has the same Weyl transformation. A similar argument holds obviously for aµν .
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3.44 p 106: Eq (3.6.22) The Independent Parameters of the Massless
Vertex Operator, III

Start by requiring Sµνnµnnu = 0. This means

0 = − k2sµνn
µnν + kνk

ωsµωn
µnν + kµk

ωsνωn
µnν − (1 + γ)kµkνs

ω
ωn

µnν + 4kµkνn
µnνφ

= [−(1 + γ)sωω + 4φ] kµkνn
µnν = [−(1 + γ)sωω + 4φ] (k · n)2 = −(1 + γ)sωω + 4φ [3.330]

so that

φ =
1 + γ

4
sωω =

1

12
sωω [3.331]

Now require Sµνnµ = 0. This gives

0 = − k2sµνn
µ + kνk

ωsµωn
µ + kµk

ωsνωn
µ − (1 + γ)kµkνs

ω
ωn

µ + 4kµkνn
µφ

= (k · n)kωsνω [3.332]

so that

kµsµν = 0 [3.333]

Similarly, requiring Aµνnµ = 0 leads to

0 = − k2aµνn
µ + kνk

ωaµωn
µ − kµkωaνωnµ

= (k · n)kµaνµ [3.334]

so that

kµaµν = 0 [3.335]

Finally, requiring Sµν = 0 gives

0 = − k2sµν + kνk
ωsµω + kµk

ωsνω − (1 + γ)kµkνs
ω
ω + 4kµkνφ

= − k2sµν [3.336]

and so also

k2 = 0 [3.337]

Note that sµν = 0 just means that there would be no symmetric part. We now see that
Aµν = 0 is also satisfied and so is F = 0.
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3.45 p 108: Eq (3.7.5) The Graviton from the Background Field

Expand the exponential of (3.7.2) using (3.7.3) to linear order

exp[−Sσ] = exp

[
− 1

4πα′

∫
d2σ
√
g gab

(
ηµν + χµν(X)

)
∂aX

µ∂bX
ν

]
= exp

[
− 1

4πα′

∫
d2σ
√
g gabηµν∂aX

µ∂bX
ν

]
×
[
1− 1

4πα′

∫
d2σ
√
g gabχµν(X)∂aX

µ∂bX
ν + · · ·

]
[3.338]

If we now set

χµν(X) = −4πgce
ik·Xsµν [3.339]

then we find

exp[−Sσ] = exp[−Sp]
[
1 +

gc
α′

∫
d2σ
√
g gabsµν(X)∂aX

µ∂bX
νeik·X + · · ·

]
[3.340]

with Sp the Polyakov action. Using the formula for the massless closed string vertex oper-
ator

exp[−Sσ] = exp[−Sp]
[
1 + V1(sµν , aµν = 0, φ = 0;X) + · · ·

]
[3.341]

and so the linear term in Gµν(X) gives an interaction that comes from the insertion of a
vertex for a symmetric 2-tensor, i.e. a graviton, with spacetime momentum kµ.

3.46 p 109: Eq (3.7.7) The Spacetime Gauge Invariance of the Anti-
symmetric Tensor

We have, renaming dummy indices and using the antisymmetry of εab

εab(∂µξν − ∂νξµ)∂aX
µ∂bX

ν = 2εab∂µξν∂aX
µ∂bX

ν [3.342]

Using partial integration∫
d2σ
√
σ εab∂µξν∂aX

µ∂bX
ν =

∫
d2
{
σ ∂a

[√
σ εab∂µξνX

µ∂bX
ν
]
− ∂a

[√
σ εab∂µξν∂bX

ν
]
Xµ
}

=

∫
d2σ

{
∂a

[√
σ εab∂µξνX

µ∂bX
ν
]
−
√
σ εab∂µξν∂a∂bX

νXµ
}

=

∫
d2σ ∂a

[√
σ εab∂µξνX

µ∂bX
ν
]

[3.343]

We have used the fact that by definition
√
gε12 = 1 so that ∂a(

√
gεab) = 0 and that

εab∂a∂bX
ν = 0 by symmetry. We thus see that under such a transformation Sσ is indeed a

total derivative.
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3.47 p 109: Eq (3.7.7) The Spacetime Gauge Invariance of the Three-
Tensor Hωµν

δHωµν = ∂ω(∂µξν − ∂νξµ) + ∂µ(∂νξω − ∂ωξν) + ∂ν(∂ωξµ − ∂µξω)

= ∂ω∂µξν − ∂ω∂νξµ + ∂µ∂νξω − ∂µ∂ωξν + ∂ν∂ωξµ − ∂ν∂µξω
= 0 [3.344]

3.48 p 110: The Most General Classical Action Invariant under a Rigid
Weyl Transformation

The point is that adding additional derivatives can only come in pairs ∂aXµ∂bX
ν com-

bined with a worldsheet metric gab, otherwise we can’t have a worldsheet diffeomor-
phism invariant action. If we have n = 2k such derivatives then the action is of the
form

∫
d2σ
√
gga1b1 · · · gakbk · · · , where we have only written the terms that change un-

der a Weyl transformation. But under gab → e2ω, with ω constant, then this changes
into e(2−2k)ω

∫
d2σ
√
gga1b1 · · · gakbk · · · . We can thus only have invariance under rigid Weyl

transformations if we have n = 2k = 2 derivatives.

3.49 p 110: Eq (3.7.11) The Linear Approximation of the Non-linear
Sigma Model

Using the definition of the Polyakov action and the Vertex operator V1, one find to linear
order

Sσ = Sp − V1 =
1

4πα′

∫
d2σ
√
g gabηµν∂aX

µ∂bX
ν

− gc
α′

∫
d2σ
√
g
[
(gabsµν + iεabaµν)∂aX

µ∂bX
νeik·X + α′φReik·X

]
=

1

4πα′

∫
d2σ
√
g

{[
gab
(
ηµν − 4πgcsµνe

ik·X
)

+ iεab
(
−4πgcaµνe

ik·X
) ]

× ∂aXµ∂bX
ν + α′R

(
−4πgcφe

ik·X
)]

[3.345]

Comparing this with the no nonlinear sigma model, we indeed find to linear order,

Gµν(X) = ηµν − 4πgcsµνe
ik·X

Bµν(X) = − 4πgcaµνe
ik·X

Φ(X) = − 4πgcφe
ik·X [3.346]
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3.50 p 111: Eq (3.7.13) The β Functions to First Order

Recall first that all these equations are valid as operator equations, so we can use (3.4.6)

δW〈· · · 〉 = − 1

2π

∫
d2σ
√
g δω(σ)〈T aa (σ) · · · 〉 [3.347]

We split the Sσ again in the Polyakov and vertex part. The Weyl transformation of the
Polyakov part is simply the Weyl anomaly (3.4.15)

(Tp)
a
a = − c

12
R = −D − 26

12
R [3.348]

The Weyl variation of the vertex part is given by (3.6.16)

δWV1 =
gc
2

∫
d2σ
√
g δω(σ)

{
(gabSµν + iεabAµν)

[
∂aX

µ∂bX
νeik·X(σ)

]
r

+ α′FR
[
eik·X(σ)

]
r

}
= − 1

2π

∫
d2σ
√
g δω(σ)(Tσ)aa(σ) [3.349]

with Sµν , Aµν and F given by (3.6.17). We have written it is the form of (3.4.6) in the
understanding that this is valid as an operator equation. We can thus write

(Tσ)aa = (−2π)
gc
2

{
(gabSµν + iεabAµν)

[
∂aX

µ∂bX
νeik·X(σ)

]
r

+ α′FR
[
eik·X(σ)

]
r

}
[3.350]

We thus have, combining both parts

T aa = − gcπ(gabSµν + iεabAµν)∂aX
µ∂bX

νeik·X − gcπα′FReik·X −
D − 26

12
R [3.351]

We have dropped the renormalisation symbols for convenience. Let us write this in the
form (3.7.12)

T aa = − 1

2α′
βGµνg

ab∂aX
µ∂bX

ν − i

2α′
βBµνε

ab∂aX
µ∂bX

ν − 1

2
βΦR [3.352]

Let us break this down in parts top avoid long formula. We start with the last term

−1

2
βΦR = −gcπα′FReik·X −

D − 26

12
R [3.353]

Using (3.6.17c) for F and taking from here on γ = 0 we find

βΦ = 2gcπα
′(−k2φ)eik·X +

D − 26

6
= 2gcπα

′φ∂2eik·X +
D − 26

6
[3.354]
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Note that here ∂2 and later ∂µ denote derivatives w.r.t. the spacetime field Xµ and not the
worldsheet coordinate σa. We now use the definition of the dilaton field Φ(X) in (3.7.11c)

βΦ = 2gcπα
′
(
− 1

4πgc
∂2Φ

)
+
D − 26

6

=
D − 26

6
− α′

2
∂2Φ [3.355]

Consider now the second term

− i

2α′
βBµνε

ab∂aX
µ∂bX

ν = − gcπiεabAµν∂aXµ∂bX
νeik·X [3.356]

Using Aµν from (3.6.16b) we find

βBµνε
ab∂aX

µ∂bX
ν = 2α′gcπε

ab(−k2aµν + kνk
ωaµω − kµkωaνω)∂aX

µ∂bX
νeik·X

= 2α′gcπε
ab∂aX

µ∂bX
ν(aµν∂

2 − aµω∂ν∂ω + aνω∂µ∂
ω)eik·X [3.357]

We use the expression for Bµν(X) in (3.7.11b)

βBµνε
ab∂aX

µ∂bX
ν = 2α′gcπε

ab∂aX
µ∂bX

ν

(
− 1

4πgc

)(
∂2Bµν − ∂ν∂ωBµω + ∂µ∂

ωBνω
)

= − α′

2
εab∂aX

µ∂bX
ν
(
∂2Bµν − ∂ν∂ωBµω + ∂µ∂

ωBνω
)

[3.358]

from which we get

βBµν = − α′

2

(
∂2Bµν − ∂ν∂ωBµω + ∂µ∂

ωBνω
)

= − α′

2
∂ωHωµν [3.359]

where we have used the definition of the field strength (3.7.8). Finally we take the first
term

− 1

2α′
βGµνg

ab∂aX
µ∂bX

ν = − gcπgabSµν∂aXµ∂bX
νeik·X [3.360]

Using the definition of Sµν in (3.6.17b), setting γ = 0 and ignoring the gab∂aXµ∂bX
ν we

have

βGµν = 2α′gcπ(−k2sµν + kνk
ωsµω + kµk

ωsνω − kµkνsωω + 4kµkνφ)eik·X

= 2α′gcπ(sµν∂
2 − sµω∂ν∂ω − sνω∂µ∂ω + sωω∂µ∂ν − 4φ∂µ∂ν)eik·X

= − 2α′gcπ

4πgc
(∂2χµν − ∂ν∂ωχµω − ∂µ∂ωχνω + ∂µ∂νχ

ω
ω − 4∂µ∂νΦ)

= − α′

2
(∂2χµν − ∂ν∂ωχµω − ∂µ∂ωχνω + ∂µ∂νχ

ω
ω) + 2α′∂µ∂νΦ) [3.361]

where we have used (3.7.11) and the fact that Gµν = ηµν + χµν to that order.
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3.51 p 111: Eq (3.7.14) The β Functions with two Spacetime Deriva-
tives

We will not derive all these equations in detail. But let us remember that it was already
argued before that the string action leads to spacetime general coordinate symmetry. We
should thus not be surprised that if we add higher order terms, (part of) these will organise
themselves in spacetime covariant derivatives. What we will do is two things and both are
related to βGµν .

The first thing is just point out that if we would work out the spacetime Ricci tensor
Rµν to first order in Gµν = ηµν + χµν one indeed recovers the relevant part of (3.7.13a).
This is a straightforward calculation which we now sketch. We expand the spacetime field
Gµν = ηµν + χµν , use it to raise and lower indices and work to linear order. We then have
Gµν = ηµν − χµν . The spacetime connection is then given by

Γσµν =
1

2
gσλ(∂µgλν + ∂νgλµ − ∂λgµν) =

1

2
(∂µχ

σ
ν + ∂νχ

σ
µ − ∂σχµν) [3.362]

The spacetime curvature tensor is

Rµ
νσλ = ∂σΓµλν − ∂λΓµσν + ΓµσρΓ

ρ
λν
− ΓµλρΓ

ρ
νσ

=
1

2
(∂σ∂νχ

µ
λ − ∂λ∂νχ

µ
σ − ∂σ∂µχλν + ∂λ∂

µχσν) [3.363]

and the spacetime Ricci tensor is

Rνλ = Rµνµλ =
1

2
(∂µ∂νχ

µ
λ − ∂λ∂νχ

µ
µ − ∂µ∂µχλν + ∂λ∂

µχµν) [3.364]

We see form this that α′Rµν gives exactly the χ dependent part in (3.7.13a)
The second part is more involved. We will show how the H2 term appears in βGµν .

This is actually the subject of exercise 3.11 and is quite instructive to show here. This
solution is taken from Matthew Headrick who has published the solutions to about half of
the exercises of Polchinki’s book in arXiv:0812.4408 [hep-th].

We start by a simplification. Since our interest is in the H2 term we might as well take
Gµν to be constant, Φ to vanish and Bµν to be linear in X. This means that we can write
Bµν = bωµνX

ω for some constant bωµν . The antisymmetric part of the non-linear sigma
model action then becomes

SA
σ =

∫
d2σ
√
g iεabbωµνX

ω∂aX
µ∂bX

ν [3.365]

At the end of this section, we will argue that it is only this linear contribution that we need
to be concerned about in checking the Weyl invariance. Let us now consider this, partially
integrate and use the fact that ∂a(

√
gεbc) = 0,

√
g εabXµ∂aX

ν∂bX
ω = ∂a(εab

√
g Xµ∂aX

ν∂bX
ω)−Xν∂a(ε

ab√g Xµ∂bX
ω) [3.366]
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The first term vanishes as it is a boundary term and in the second term we use ∂a(εab
√
g) =

0 and the fact that the ∂a∂bXω vanishes when contracted with εab. We do the same trick
again

εab
√
g Xµ∂aX

ν∂bX
ω = − εab√g Xν∂aX

µ∂bX
ω = +εab

√
g ∂bX

ν∂aX
µXω [3.367]

We can therefore write

SA
σ =

∫
d2σ
√
g iεabbωµν

1

3
(Xω∂aX

µ∂bX
ν +Xµ∂aX

ν∂bX
ω +Xν∂aX

ω∂bX
µ)

=

∫
d2σ
√
g iεab

1

3
(bωµν + bµνω + bνωµ)Xω∂aX

µ∂bX
ν [3.368]

In the linear approximation, the field strength is then given by

Hωµν = ∂ω(bσµνX
σ) + ∂µ(bσνωX

σ) + ∂ν(bσωµX
σ)

= bσµνδ
σ
ω + bσνωδ

σ
µ + bσωµδ

σ
ν = bωµν + bµνω + bνωµ [3.369]

Therefore

SA
σ =

∫
d2σ
√
g iεab

1

3
HωµνX

ω∂aX
µ∂bX

ν [3.370]

In this approximation the non-linear sigma model becomes

Sσ =

∫
d2σ
√
g

(
Gµνg

ab∂aX
µ∂bX

ν +
i

3
εabHωµνX

ω∂aX
µ∂bX

ν

)
[3.371]

Now go to the conformal gauge and use complex coordinates. Remember that
√
g gab∂aX

µ∂bX
ν = 4(∂Xµ∂̄Xν + ∂̄Xµ∂Xν)

√
g εab∂aX

µ∂bX
ν = − 4i(∂Xµ∂̄Xν − ∂̄Xµ∂Xν) [3.372]

plus d2z = 2d2σ and we can write the action as Sσ = S0+i with

S0 =
1

2πα′
Gµν

∫
d2z ∂Xµ∂̄Xν

Si =
1

6πα′
Hωµν

∫
d2z Xω∂Xµ∂̄Xν [3.373]

S0 is the the action for the free theory and Si is the action for the interaction, which we
will treat as a perturbation. We can expand the expectation value of some operator O(X)
in the path integral formalism as

〈O(X)〉 =

∫
[dX]O(X)e−S0−Si =

∫
[dX]O(X)e−S0

(
1− Si +

1

2
S2
i + · · ·

)
= 〈O(X)〉0 − 〈SiO(X)〉0 +

1

2
〈S2
iO(X)〉0 [3.374]
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where 〈· · · 〉0 denotes the expectation value taken in the free theory. We have already
calculated the Weyl variation of the first two terms. The Weyl variation of the first term
leads to the Weyl anomaly term proportional to D − 26, whilst the Weyl variation of the
second term gives a term linear inHωµν , precisely the term that we find in βBµν in (3.7.13b).
It is the Weyl variation of the third term, that is quadratic in H, that interests us and
in particular the part proportional to

∫
d2z 〈∂Xµ∂̄Xν · · · 〉0 as that is the part that will

contribute to βGµν . Focussing on this term

1

2
〈S2
i · · · )〉0 =

1

2

(
1

6πα′

)2

HωµνHω′µ′ν′

∫
d2z d2z′

×
〈

: Xω(z, z̄)∂Xµ(z)∂̄Xν(z̄) : : Xω′(z′, z̄′)∂′Xµ′(z′)∂̄′Xν′(z̄′) · · ·
〉

0
[3.375]

We have written out the normal product signs explicitly and also notice that X is neither
holomorphic nor antiholomorphic, but depends on z and z̄. To calculate the Weyl variation
of this, we will only need the singular parts of the OPE. Indeed the nonsingular parts
becomes zero after the integration. In working out the OPE we need to identify the singular
term with in the numerator a ∂X∂̄X as that is the structure we are looking for. Hence we
need to perform two cross-contractions. To calculate how many such terms there are,
let us first identify how many possibilities there are to keep one uncontracted factor in
each normal order product. This is clearly 3 × 3 = 9. We then have two contractions to
make between twice two factors and this can be done in two ways. In total there are thus
9× 2 = 18 possible terms.

Let us work out one such term. The contraction we need to use is from the free theory,
i.e.

Xµ(z, z̄)Xν(z′, z̄′) = −α
′

2
Gµν ln |z − z′|2 [3.376]

consider the case where we contract Xω(z, z̄) with ∂′Xµ′(z′) and ∂̄Xν(z̄) with Xω′(z′, z̄′):
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This term gives

1

2
〈S2
i · · · 〉

(1)
0 =

1

2

(
1

6πα′

)2

HωµνHω′µ′ν′

∫
d2z d2z′

×Xω(z, z̄)∂′Xµ′(z′) ∂̄Xν(z̄)Xω′(z′, z̄′)
〈

: ∂Xµ(z)∂̄′Xν′(z̄′) : · · ·
〉

0

=
1

2

(
1

6πα′

)2

HωµνHω′µ′ν′

∫
d2z d2z′

(
−α
′

2
Gωµ

′
∂′ ln |z − z′|2

)
×
(
−α
′

2
Gνω

′
∂̄ ln |z − z′|2

)〈
: ∂Xµ(z)∂̄′Xν′(z̄′) :

〉
0

= − 1

298π2
HωµνHω′µ′ν′G

ωµ′Gνω
′
∫
d2z d2z′

1

|z − z′|2
〈

: ∂Xµ(z)∂̄′Xν′(z̄′) : · · ·
〉

0

= − 1

298π2
Hµ′

µνH
ν
µ′ν′

∫
d2z d2z′

1

|z − z′|2
〈

: ∂Xµ(z)∂̄′Xν′(z̄′) : · · ·
〉

0

= − 1

298π2
HµλωH

λω
ν

∫
d2z d2z′

1

|z − z′|2
〈
: ∂Xµ(z)∂̄′Xν(z̄′) : · · ·

〉
0

[3.377]

In the last line we have renamed indices and used the symmetry of Hωµν . It so happens
that the 17 other terms give the same contribution. Therefore

1

2
〈S2
i · · · 〉0 = − 1

16π2
HµλωH

λω
ν

∫
d2z d2z′

1

|z − z′|2
〈
: ∂Xµ(z)∂̄′Xν(z̄′) : · · ·

〉
0

[3.378]

This integral is logarithmically divergent at z = z′. The expectation value has no other
singularities as it is normal ordered. We can thus also expand z′ around z in the expectation
value and find

1

2
〈S2
i · · · 〉0 = − 1

16π2
HµλωH

λω
ν

∫
d2z

〈
: ∂Xµ(z)∂̄Xν(z̄) : · · ·

〉
0

∫
d2z′

1

|z − z′|2
[3.379]

We need to regularise the last integral in such a way that it remains diffeomorphism invari-
ant (as we don’t want to introduce an anomaly in that symmetry!). The diffeomorphism
invariant distance at short distance is given by (3.6.9), i.e d(z, z′) = |z − z′|eω(z). We can
thus introduce a diffeomorphism invariant cut-off in the integral at |z−z′| = εe−ω. In polar
coordinates the last integral then becomes∫

d2z′
1

|z − z′|2
=

∫ ∞
εe−ω

rdr

∫ 2π

0
dθ

1

r2
= 2π

∫ ∞
εe−ω

dr

r

= − 2π ln εe−ω + terms independent of ω

= − 2π ln ε+ 2πω + terms independent of ω [3.380]
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We need the Weyl variation of the expectation value, i.e. the transformation under a change
ω → ω + δω. Thus

δW
1

2
〈S2
i · · · 〉0 = − 1

16π2
HµλωH

λω
ν

∫
d2z

〈
: ∂Xµ(z)∂̄Xν(z̄) : · · ·

〉
0
× 2πδω(z)

= − 1

8π
HµλωH

λω
ν

∫
d2z δω(z)

〈
: ∂Xµ(z)∂̄Xν(z̄) : · · ·

〉
0

[3.381]

Rewriting this in a worldsheet covariant way and taking into account that an expectation
value in the free theory will only differ by higher order terms to an expectation in the full
theory, we can write

δW
1

2
〈S2
i · · · 〉0 = − 1

16π
HµλωH

λω
ν

∫
d2σ
√
g δω(σ)gab 〈: ∂aXµ∂bX

ν : · · · 〉

= − 1

2π

∫
d2σ
√
g δω(σ)〈T [H2] a

a · · · 〉 [3.382]

with

T [H2] a
a =

1

8
HµλωH

λω
ν [3.383]

According to the definition (3.7.12) this gives a contribution to βGµν of the form

βGµν = · · · − α′

4
HµλωH

λω
ν [3.384]

Adding to this result the fact that the we already showed how the spacetime Ricci scalar
appears and that we can replace the partial derivatives by covariant derivatives, we recover
(3.7.14a).

In the above derivation we assumed that Bµν was linear in X. Let us discuss what
happens if we drop this requirement. Clearly a constant term will not impact the discussion
as this reverts us back to the original antisymmetric part of the vertex operator. Recall what
happened with our linear term. We basically had to work out an OPE of the symbolic form
(X∂X∂̄X)(X∂X∂̄X). In order to be left with a product ∂X∂̄X we need the contractions

X∂̄X ∂XX. This gives us a z−1z̄−1 = |z|−2 = r−2 which led to the integral
∫
dr/r giving

us the logarithmic divergence we regularised.
Let us now assume that Bµν depends on ∂X. Note that this is now a worldsheet

derivative. We start with just one ∂X. We then have to take two contractions between
(∂X∂X∂̄X)(∂X∂X∂̄X). But if we are to be left with a product ∂X∂̄X, this means that
we need to take two contractions between ∂X∂̄X and ∂X∂X. Clearly one of them needs

to be ∂X∂̄X which vanishes. If Bµν contains a mixture of ∂mX ∂̄nX we have the same
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issue. Leaving out a ∂X∂̄X from the product (∂mX ∂̄nX∂X∂̄X)(∂mX ∂̄nX∂X∂̄X) leaves
a different number of ∂X and ∂̄X on both sides to be contracted, and so we are necessarily
left with a contraction that vanishes. Thus, terms of the form ∂mX ∂̄nX do not contribute
and cannot cause an anomaly.

Let us now assume that Bµν is of the (n + 1)-th order in X. We then need to have
contractions between (Xn+1∂X∂̄X)(Xn+1∂X∂̄X). Leaving out a product ∂X∂̄X we are

left with one contraction X∂̄X, one contraction ∂XX and n contractions XX, thus an
integral of the form∫

d2z
1

|z|2
(
ln |z|2

)n
= 2π

∫
εe−ω

dr
lnn r2

r
= 2π × lnn+1 r2

2(n+ 1)

∣∣∣
εe−ω

= − π

n+ 1

[
ln
(
εe−ω

)2]n+1
+ terms independent of ω

= − 2n+1π

n+ 1
(ln ε− ω)n+1 + terms independent of ω [3.385]

This will result in a contribution to the Weyl variation of the form

2n+1π(ln ε− ω)2δω ∼ 2n+1πδω lnn ε [3.386]

In the last equation we have pushed the curvature to infinity, by setting ω = 0. We see
that we recover the previous, linear, result if we set n = 0, as we should. The upshot of all
this is that that if n ≥ 1, i.e. if we have more than one factor of X, then the possible Weyl
anomaly terms comes coupled with the divergence and can be removed a the counterterm.
We will leave it as an exercise to the reader to show that a general term of the form
Xk(∂mX)km(∂̄nX)kn can similarly be removed by a counterterm, unless it is only linear in
X.

3.52 p 113: Eq (3.7.19) The β Function for the Linear Dilaton Model

Setting Gµν = ηµν , Bµν = 0 and Φ = VµX
µ, (3.7.14c) becomes

βΦ =
D − 26

6
− 0 + α′∇µΦ∇µΦ + 0 [3.387]

As Φ is a scalar field w.r.t. spacetime we have∇µΦ = ∂µΦ = Vµ and thus we have

βΦ =
D − 26

6
− 0 + α′VµV

µ [3.388]

Requiring the β function to vanish give (3.7.19).
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3.53 p 114: Eq (3.7.20) The Effective Spacetime Action

We do this in separate steps, starting with the variation of the dilaton field

δΦS =
1

2κ2
0

∫
dDx δΦ

{
√
−Ge−2Φ

[
− 2(D − 26)

3α′
+R− 1

12
HµνλH

µνλ + 4∂µΦ∂µΦ
]}

=
1

2κ2
0

∫
dDx

{
e−2Φ(−2δΦ)

√
−G

[
− 2(D − 26)

3α′
+R− 1

12
HµνλH

µνλ + 4∂µΦ∂µΦ
]

+
√
−Ge−2Φ8∂µΦ∂µδΦ

}

=
1

2κ2
0

∫
dDx

{
− 2e−2Φ

√
−G

[
− 2(D − 26)

3α′
+R− 1

12
HµνλH

µνλ + 4∂µΦ∂µΦ
]

− 8∂µ
[√
−Ge−2Φ∂µΦ

]}
δΦ

= − 1

κ2
0

∫
dDx e−2Φ

√
−G

[
− 2(D − 26)

3α′
+R− 1

12
HµνλH

µνλ + 4∂µΦ∂µΦ

+ 4(−G)−1/2
(
∂µ
√
−G
)
∂µΦ + 4

(
− 2∂µΦ

)
∂µΦ + 4∂µ∂µΦ

]
δΦ

= − 1

κ2
0

∫
dDx e−2Φ

√
−G

[
− 2(D − 26)

3α′
+R− 1

12
HµνλH

µνλ − 4∂µΦ∂µΦ

+ 2Gνσ∂µGνσ∂µΦ + 4∂µ∂
µΦ

]
δΦ

= − 1

2κ2
0α
′

∫
dDx e−2Φ

√
−G 2δΦ

{
− 4

[
D − 26

6
+ α′∂µΦ∂µΦ− α′

2
∂µ∂

µΦ− α′

24
HµνλH

µνλ

]

+ α′R+ 2α′∂µ∂µΦ− α′

4
HµνλH

µνλ

}

= − 1

2κ2
0α
′

∫
dDx e−2Φ

√
−G 2δΦ

(
− 4βΦ + βGµµ

)
[3.389]

In the last line we have replaced the ordinary derivative by the covariant derivative, used
the fact that the spacetime metric is covariantly constant, ∇µGµν = 0 and used the defini-
tion in (3.7.14).
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Let us now consider

δBS =
1

2κ2
0

∫
dDx δB

{
√
−Ge−2Φ

[
− 2(D − 26)

3α′
+R− 1

12
HµνλH

µνλ + 4∂µΦ∂µΦ
]}

=
1

2κ2
0

∫
dDx
√
−Ge−2Φ

(
−1

6
HµνλδBHµνλ

)
= − 1

4κ2
0

∫
dDx
√
−Ge−2ΦHµνλδB∂µBνλ

=
1

4κ2
0

∫
dDx ∂µ

(√
−Ge−2ΦHµνλ

)
δBνλ

=
1

4κ2
0

∫
dDx
√
−Ge−2Φ

(
+

1

2
Gνσ∂µGνσH

µνλ − 2∂µΦHµνλ + ∂µH
µνλ
)
δBνλ

= − 1

2κ2
0α
′

∫
dDx
√
−Ge−2Φ

(
− α′

4
Gνσ∂µGνσH

µνλ + α′∂µΦHµνλ − α′

2
∂µH

µνλ
)
δBνλ

= − 1

2κ2
0α
′

∫
dDx
√
−Ge−2ΦβBµνδBνλ [3.390]

Here also, we have replaced the ordinary derivative by the covariant derivative, used the
fact that the spacetime metric is covariantly constant, ∇µGµν = 0 and used the definition
in (3.7.14).

Finally we consider

δGS =
1

2κ2
0

∫
dDx δG

{
√
−Ge−2Φ

[
− 2(D − 26)

3α′
+R− 1

12
HµνλH

µνλ + 4∂µΦ∂µΦ
]}

[3.391]

Recall that we already worked out the variation of the Einstein-Hilbert action, see [1.35]

δG

∫
dDx
√
−GR =

∫
dDx
√
−G

(
Rµν −

1

2
GµνR

)
δGµν [3.392]

But we need to be careful as we have an extra factor e−2Φ. Just as for [1.35] we split the
calculation

δG

∫
dDx
√
−Ge−2ΦGµνRµν =

4∑
a=1

δGIa [3.393]

with

δGI1 =

∫
dDx (δG

√
−G) e−2ΦGµνRµν =

∫
dDx

1

2

√
−GGµνδGµνe−2ΦGρσRρσ

=

∫
dDx
√
−Ge−2Φ

[1

2
GµνR

]
δGµν [3.394]
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Next,

δGI2 =

∫
dDx
√
−G (δGe

−2Φ)GµνRµν = 0 [3.395]

Third,

δGI3 =

∫
dDx
√
−Ge−2Φ(δGG

µν)Rµν =

∫
dDx
√
−Ge−2Φ(−GµρGνσδGρσ)Rµν

=

∫
dDx
√
−Ge−2Φ

[
−Rµν

]
δGµν [3.396]

Finally, and this is where the change occurs compared to the Einstein-Hilbert action

δGI4 =

∫
dDx
√
−Ge−2ΦGµνδGRµν = [3.397]

We already calculated the variation of the Ricci tensor in [1.31] δRµν = δRρ
µρν = ∇ρδΓρµν−

∇νδΓρµρ. Thus

δGI4 =

∫
dDx
√
−Ge−2ΦGµν(∇ρδGΓρµν −∇νδGΓρµρ)

=

∫
dDx e−2Φ

[√
−G∇ρ(GµνδGΓρµν)−

√
−G∇ν(GµνδGΓρµρ)

]
=

∫
dDx e−2Φ

[
∂ρ(
√
−GGµνδGΓρµν)− ∂ν(

√
−GGµνδGΓρµρ)

]
[3.398]

In the case of the Einstein-Hilbert action, i.e. Φ = 0, this is a total derivative and vanishes.
This times this is not the case as we get a contribution from the dilaton field upon partial
integration

δGI4 = 2

∫
dDx e−2Φ

√
−GGµν

[
∂ρΦδGΓρµν − ∂νΦδGΓρµρ

]
[3.399]

Unfortunately, this time we need to work out the variations of the connections

δGΓρµν = δG
1

2
Gρσ(∂µGσν + ∂νGσµ − ∂σGµν)

=
1

2

[
−GρκGστδGκτ (∂µGσν + ∂νGσµ − ∂σGµν)

+Gρσ(∂µδGσν + ∂νδGσµ − ∂σδGµν)
]

[3.400]

Recall that by covariance we can, to that order, replace all partial derivatives by covariant
derivatives. This means that we can ignore the first line. We then split the calculation in
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two

δGI4a = 2

∫
dDx e−2Φ

√
−GGµν∂ρΦ

1

2
Gρσ(∂µδGσν + ∂νδGσµ − ∂σδGµν)

= −
∫
dDx
√
−GGµνGρσ

[
∂µ
(
e−2Φ∂ρΦ

)
δGσν + ∂ν

(
e−2Φ∂ρΦ

)
δGσµ

− ∂σ
(
e−2Φ∂ρΦ

)
δGµν

]
= −

∫
dDx
√
−GGµνGρσ

[
2∂µ

(
e−2Φ∂ρΦ

)
δGσν − ∂σ

(
e−2Φ∂ρΦ

)
δGµν

]
= −

∫
dDx
√
−G∂σ

(
e−2Φ∂ρΦ

)
(2GσνGρµ −GµνGρσ)δGµν [3.401]

The second part is

δGI4b = − 2

∫
dDx e−2Φ

√
−GGµν∂νΦ

1

2
Gρσ(∂µδGσρ + ∂ρδGσµ − ∂σδGρµ)

=

∫
dDx
√
−GGµνGρσ

[
∂µ
(
e−2Φ∂νΦ

)
δGρσ + ∂ρ

(
e−2Φ∂νΦ

)
δGσµ

− ∂σ
(
e−2Φ∂νΦ

)
δGρµ

]
=

∫
dDx
√
−GGµνGρσ∂µ

(
e−2Φ∂νΦ

)
δGρσ

=

∫
dDx
√
−G∂σ

(
e−2Φ∂ρΦ

)
GµνGρσδGµν [3.402]

Therefore

δGI4 =

∫
dDx
√
−G∂σ

(
e−2Φ∂ρΦ

)
(−2GσνGρµ +GµνGρσ +GµνGρσ)δGµν

=

∫
dDx
√
−G∂σ

(
e−2Φ∂ρΦ

)
2(GµνGρσ −GσνGρµ)δGµν

=

∫
dDx
√
−Ge−2Φ(−2∂σΦ∂ρΦ + ∂ρ∂σΦ) 2(GµνGρσ −GσνGρµ)δGµν

=

∫
dDx
√
−Ge−2Φ(−4∂σΦ∂σΦGµν + 4∂µΦ∂νΦ + 2∂σ∂

σΦGµν − 2∂µ∂νΦ)δGµν

[3.403]

Adding the four pieces together we find

δG

∫
dDx
√
−Ge−2ΦGµνRµν =

∫
dDx
√
−Ge−2Φ

(1

2
GµνR−Rµν

− 4∂σΦ∂σΦGµν + 4∂µΦ∂νΦ + 2∂σ∂
σΦGµν − 2∂µ∂νΦ

)
δGµν [3.404]
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As expected this gives back the Einstein equations when we have a constant Φ, but we see
that the dilaton field gives a correction that includes its derivative only.

There is another thing that we need to be careful about as well. Any indices upstairs
have been raised via the spacetime “metric” Gµν so they also carry a metric dependence.
For example

δGHµνλH
µνλ =HµνλδG(GµσGνρGλκHσρκ) = 3HµνλG

µσGνρHσρκδG
λκ

= − 3HµνλG
µσGνρHσρκG

λτGκηδGτη

= − 3HσρτHη
ρσδGτη = −3HµρσHν

ρσδGµν [3.405]

Similarly

δG∂µΦ∂µΦ = δGG
µν∂µΦ∂νΦ = −GµρGνσ∂µΦ∂νΦδGρσ = −∂µΦ∂νΦδGµν [3.406]

So we have

δGS =
1

2κ2
0

∫
dDx e−2Φ

{
δG
(√
−G
)[
− 2(D − 26)

3α′
− 1

12
HρσλH

ρσλ + 4∂σΦ∂σΦ
]

+
√
−G
(
−Rµν +

1

2
GµνR− 4∂σΦ∂σΦGµν + 4∂µΦ∂νΦ + 2∂σ∂

σΦGµν − 2∂µ∂νΦ

+
1

4
HµρσHν

ρσ − 4∂µΦ∂νΦ
)
δGµν

}

=
1

2κ2
0

∫
dDx
√
−Ge−2Φ

{
1

2
GµνδGµν

[
− 2(D − 26)

3α′
− 1

12
HρσλH

ρσλ + 4∂σΦ∂σΦ
]

+
(
−Rµν +

1

2
GµνR− 4∂σΦ∂σΦGµν + 2∂σ∂

σΦGµν − 2∂µ∂νΦ +
1

4
HµρσHν

ρσ

)
δGµν

}

= − 1

2κ2
0α
′

∫
dDx
√
−Ge−2Φ

[
α′Rµν + 2α′∂µ∂νΦ− α′

4
HµρσHν

ρσ

− 1

2
Gµν

(
α′GµνR+ 4α′∂σ∂

σΦ− α′

12
HρσλH

ρσλ − 2(D − 26)

3
− 4α′∂σΦ∂σΦ

)]
[3.407]

We can rewrite the term between brackets as

Bµν = βG µν − 1

2
Gµν(βG σ

σ − 4βΦ) [3.408]
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Indeed

Bµν =α′Rµν + 2α′∇µ∇νΦ− α′

4
HµρσHν

ρσ −
1

2
Gµν

(
α′R+ 2α′∇2Φ− α′

4
HλρσHλρσ

− 2(D − 26)

3
+ 2α′∇2Φ− 4α′∇σΦ∇σΦ +

α′

6
HλρσHλρσ

)
=α′Rµν + 2α′∇µ∇νΦ− α′

4
HµρσHν

ρσ −
1

2
Gµν

(
α′R+ 4α′∇2Φ− α′

12
HλρσHλρσ

− 2(D − 26)

3
i− 4α′∇σΦ∇σΦ

)
[3.409]

and we see that if we replace the covariant derivatives by partial derivatives we do indeed
find the expression between brackets in [3.407].

3.54 p 114: Eq (3.7.23) The Ricci Scalar after a Weyl Transformation

I expect most of you are expecting yet another long and tedious calculation. But if that is
the case then you have a short memory. Indeed we have used this formula many times for
the specific case of two dimensions, but when we originally derived it in chapter one we
did so for general dimensions D, see [1.21]. Happy and light-footed we move on to the
next challenge.

3.55 p 114: Eq (3.7.25) The Space Time Action with Einstein Metric

Let us first work out the pre-factor in (3.7.20). We have

Gµν = e−2ωG̃µν = e−4(Φ0−Φ)/(D−2)G̃µν = e4Φ̃/(D−2)G̃µν [3.410]

implying that

√
−G = e2DΦ̃/(D−2)

√
−G̃ [3.411]

so that
√
−Ge−2Φ = e2DΦ̃/(D−2)

√
−G̃ e−2(Φ0+Φ̃) = e−2Φ0e4Φ̃/(D−2)

√
−G̃ [3.412]

We will absorb the e−2Φ0 into the κ0. Let us now do term by term in (3.7.20)

T1 =
1

2κ2
0

∫
dDx
√
−Ge−2Φ

[
−2(D − 26)

3α′

]
=

1

2κ2

∫
dDx

√
−G̃

[
−2(D − 26)

3α′
e4Φ̃/(D−2)

]
[3.413]
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Next, consider the term with the curvature. Using (3.7.23)

T2 =
1

2κ2
0

∫
dDx
√
−Ge−2ΦR

=
1

2κ2
0

∫
dDx e−2Φ0e4Φ̃/(D−2)

√
−G̃

[
e2ωR̃+ 2(D − 1)∇2ω + (D − 2)(D − 1)∂ω · ∂ω

]
=

1

2κ2
0

∫
dDx e−2Φ0e4Φ̃/(D−2)

√
−G̃

[
e−4Φ̃/(D−2)R̃− 4(D − 1)

D − 2
∇2Φ̃ +

4(D − 1)

D − 2
∂Φ̃ · ∂Φ̃

]
=

1

2κ2

∫
dDx

√
−G̃

{
R̃+ 4e4Φ̃/(D−2)

[
−D − 1

D − 2
∇2Φ̃ +

D − 1

D − 2
∂Φ̃ · ∂Φ̃

]}
[3.414]

We need one more step. We write

∂Φ̃ · ∂Φ̃ =Gµν∂µΦ̃∂νΦ̃ = e−4Φ̃/(D−2)G̃µν∂µΦ̃∂νΦ̃ = e−4Φ̃/(D−2)∂Φ̃ · ∂̃Φ̃ [3.415]

Thus

T2 =
1

2κ2

∫
dDx

√
−G̃

[
R̃+ 4

(D − 1)

D − 2

(
−e4Φ̃/(D−2)∇2Φ̃ + ∂Φ̃ · ∂̃Φ̃

)]
[3.416]

Next, the term with the antisymmetric field strength

T3 =
1

2κ2
0

∫
dDx
√
−Ge−2Φ

(
− 1

12
HµνλG

µρGνσGλκHρσκ

)
=

1

2κ2
0

∫
dDx e−2Φ0e4Φ̃/(D−2)

√
−G̃

(
− 1

12
Hµνλe

−12Φ̃/(D−2)G̃µρG̃νσG̃λκH̃ρσκ

)
=

1

2κ2

∫
dDx

√
−G̃

[
− 1

12
e−8Φ̃/(D−2)HµνλH̃ρσκ

]
[3.417]

Finally, the term with the dilaton field

T4 =
1

2κ2
0

∫
dDx
√
−Ge−2Φ4Gµν∂µΦ∂νΦ

=
1

2κ2
0

∫
dDx e−2Φ0e4Φ̃/(D−2)

√
−G̃ 4e−4Φ̃/(D−2)G̃µν∂µΦ̃∂νΦ̃

=
1

2κ2

∫
dDx

√
−G̃

[
4∂Φ̃ · ∂̃Φ̃

]
[3.418]

Adding the four contributions we find

4∑
a=1

Ta =
1

2κ2

∫
dDx

√
−G̃

[
− 2(D − 26)

3α′
e4Φ̃/(D−2) + R̃− 1

12
e−8Φ̃/(D−2)HµνλH̃ρσκ

+ 4
(D − 1)

D − 2

(
−e4Φ̃/(D−2)∇2Φ̃ + ∂Φ̃ · ∂̃Φ̃

)
+ 4∂Φ̃ · ∂̃Φ̃

]
[3.419]
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We seem to be close but not exactly equal to (3.725). What saves us, as usual, is a partial
integration. Indeed

X =

∫
dDx

√
−G̃ e4Φ̃/(D−2)∇2Φ̃ =

∫
dDx e−2DΦ̃/(D−2)

√
−Ge4Φ̃/(D−2)∇µ∂µΦ̃

=

∫
dDx e−2Φ̃∂µ

(√
−G∂µΦ̃

)
= −

∫
dDx ∂µ

(
e−2Φ̃

)√
−G∂µΦ̃

=

∫
dDx e−2Φ̃

(
−2∂µΦ̃

)√
−G∂µΦ̃ = −2

∫
dDx e−2Φ̃e2DΦ̃/(D−2)

√
−G̃ ∂µΦ̃∂µΦ̃

= 2

∫
dDx

√
−G̃ e4Φ̃/(D−2)∂µΦ̃Gµν∂νΦ̃ = 2

∫
dDx

√
−G̃ e4Φ̃/(D−2)∂µΦ̃e−4Φ̃/(D−2)G̃µν∂νΦ̃

= 2

∫
dDx

√
−G̃ ∂µΦ̃∂̃µΦ̃ [3.420]

Note that we had to go back and forth between G and G̃ more than once in this last
derivation. This means that we can write the last few terms of [3.419] as

1

2κ2

∫
dDx

√
−G̃ 4

[
D − 1

D − 2
(−2 + 1) + 1

]
∂Φ̃ · ∂̃Φ̃

=
1

2κ2

∫
dDx

√
−G̃

[
− 4

D − 2

]
∂Φ̃ · ∂̃Φ̃ [3.421]

Therefore [3.419] becomes, finally,

4∑
a=1

Ta =
1

2κ2

∫
dDx

√
−G̃

[
− 2(D − 26)

3α′
e4Φ̃/(D−2) + R̃

− 1

12
e−8Φ̃/(D−2)HµνλH̃ρσκ −

4

D − 2
∂Φ̃ · ∂̃Φ̃

]
[3.422]

which is exactly (3.7.25).

3.56 Appendix: Almost Complex Structures, Holomorphic Normal Co-
ordinates, Beltrami Equations and all that Stuff

In this appendix we develop the basics of complex structures and the associated transfor-
mation rules. This is almost completely taken over from [LS]. We refer the reader for more
details to that text, in particular section 2. In fact, we will only select those parts we need.
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As a change, most of the calculations in this appendix are elementary algebra or analysis
and will not be shown in detail. Once again, all errors are solely due to me.

ALMOST COMPLEX STRUCTURES

We are all familiar with defining complex coordinates z = x+ iy and z̄ = x− iy on a patch
of a two dimensional manifold Σ. These complex coordinates satisfy ∂̄z = ∂z̄ = 0 and are
thus holomorphic and anti-holomorphic coordinates respectively. It turns out to be useful
to write this in a different way. Introduce

I =

(
0 1
−1 0

)
[3.423]

This matrix satisfies I b
a I

c
b = −δca, in matrix language I2 = −1, reminding us of i2 = −1.

We can now write the holomorphicity condition ∂̄z = 0 as(
∂a + iI b

a ∂b

)
z(σ) = 0 [3.424]

Let us make three remarks at this point

1. Given a solution z(σ) that satisfies the holomorphicity condition [3.424] we can
easily construct another solution f(σ). Write f(σ) = u(σ) + iv(σ) with u and v
real are require f to satisfy the holomorphicity condition. This leads to the Cauchy-
Riemann equations

∂1u(σ) = ∂2v(σ) and ∂2u(σ) = −∂1v(σ) [3.425]

Conversely, any solution of the Cauchy-Riemann equations leads to a holomorphic
function.

2. Our original definition of the complex variable z = σ1 + iσ2 is chosen so that if σ = 0
then also z = 0. We could as put the base point point of the holomorphic coordinate
system at any other point σ1 on the patch of the manifold and define the complex
coordinates via

zσ1(σ) = z(σ)− z(σ1) [3.426]

The index σ1 refers to the fact that the base point is now at σ1. Obviously, it follows
from this definition that

zσ1(σ1) = 0 [3.427]

When we write ∂, ∂z or ∂zσ1
we will always mean differentiation w.r.t. zσ1 , unless it

is clear from the context or it is explicitly mentioned that it is not the case. Note that
this does not necessarily imply that derivatives of zσ1(σ) taken at σ = σ1 are zero.
I.e. in general ∂nzσ1(σ)

∣∣
σ=σ1

6= 0 for n ≥ 1.
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3. We can view I b
a as mapping tangent vectors into tangent vectors. Indeed let va be a

tangent vector, i.e. v ∈ T (Σ), then I b
a vb = wa ∈ T (Σ). Recall that a derivative ∂a is

an element of the tangent space T (Σ) and the exterior derivative dσa is an element
of the dual tangent space T ∗(Σ). The relevance of this remark will become clear
later.

It is natural to generalise the above concept and define a generic almost complex struc-
ture J as a local function on the manifold J(σ) that satisfies6

J b
a J

c
b = −δca [3.428]

Indeed, by performing a coordinate reparametrisation σ → σ′(σ) the transformed com-
ponents would become local anyway, I b

a → Ĩ b
a (σ). We can then define holomorphic

coordinates w w.r.t. the almost complex structure J as satisfying(
∂a + iJ b

a ∂b

)
w(σ) = 0 [3.429]

Because J b
a needs to transform covariantly for the above equation to be well-defined, we

are automatically led to define a vector-valued differential one form

J = dσaJ b
a (σ)∂b [3.430]

We will denote the exterior derivative on Σ by d = dσa∂a. The differential equation [3.429]
then takes the index-free form7

(d + iJ) (w) = 0 [3.431]

6When does an almost complex structure loose its predicate “almost"? This is the case when we
can find an atlas such that the almost complex structure is constant on all coordinate patches. We
can then define complex coordinates with holomorphic transition functions. The almost complex
structure is then integrable and promoted to a complex structure and the manifold is called a
complex manifold. A necessary and sufficient condition for the integrability of an almost complex
structure is the vanishing of the so-called Nijenhuis tensor.

7Because d2 = 0 this implies dJ = 0, which with the decoration of full indices, and contracting
with another J becomes

Jdab ≡ J c
a ∂cJ

d
b − J c

b ∂cJ
d

a − J d
c ∂aJ

c
b + J d

c ∂bJ
c

a = 0

Jdab is the Nijenhuis tensor mentioned in footnote 6 and its can be shown that its vanishing is a
necessary and sufficient condition for the almost complex structure to be integrable and hence to
be promoted to a complex structure.
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METRICS AND RIEMANNIAN MANIFOLDS

Let us now endow the manifold Σ with complex structure8 J with a metric

gJ = gab(σ)dσadσb [3.432]

The index J is there to remind us of the almost complex structure. A complex manifold
with a metric is called a Riemannian manifold. Here we have assumed that we have first
given Σ a complex structure J and then constructed a metric gJ on Σ. But we might as
well work the other way around. First we define a metric g on Σ and then we define a
complex structure J. It is actually easy to construct a complex structure from a metric

J b
a = g−1/2gacε

cb [3.433]

Elementary algebra shows that J2 = −1 as it should. Note, en passant, that the complex
structure is invariant under Weyl rescalings gab → e2ωgab.

BELTRAMI EQUATION

In terms of the complex coordinates z = σ1 + iσ2 one can rewrite the metric gJ as

gJ =
1

4
(g11 − g22 − 2ig12) dz2 +

1

4
(g11 − g22 + 2ig12) dz̄2 +

1

2
(g11 + g22) dzdz̄ [3.434]

It is convenient to write the metric as

gJ = ρ |dz + µ z
z̄ dz̄|

2 [3.435]

As we are working in Euclidean space ds2 ≥ 0 so that ρ is real and positive. With µ z
z̄

complex we have three components defining the metric, the same number as gab. Straight-
forward algebra leads to

g11 = ρ (1 + |µ z
z̄ |

2 + µ z
z̄ + µ z̄

z )

g22 = ρ (1 + |µ z
z̄ |

2 − µ z
z̄ − µ z̄

z )

g12 = − iρ (µ z
z̄ − µ z̄

z ) [3.436]

where µ z̄
z = (µ z

z̄ )∗. We can invert these relations to find9

ρ =
1

4
(tr gab + 2

√
g)

µ z
z̄ =

g11 − g22 + 2ig12

tr gab + 2
√
g

[3.437]

8From here on we will often use complex structure when we mean almost complex structure.
This will not cause any confusion.

9There is actually another solution where ρ = 1
4

(
tr gab − 2

√
g
)

but that root gives a non-
orientation preserving coordinate transformation. We are only interested in orientation preserving
transformations, i.e. those transformations with positive Jacobians.
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From now on, we will often simply write

µ = µ z
z̄ and µ̄ = µ z̄

z [3.438]

One can easily show that

0 ≤ |µ| < 1 [3.439]

(the non-orientation preserving ones have |µ| ≥ 1). Note that the µ = 0 bound means
gJ = ρ |dz|2 and thus a conformally flat metric. It is also straightforward to work out the
almost complex structure in terms of ρ and µ. From [3.433] one finds

J =
1

1− |µ|2

(
i(µ− µ̄) 1 + |µ|2 + µ+ µ̄

−1− |µ|2 + µ+ µ̄ −i(µ− µ̄)

)
[3.440]

If we substitute this expression for J in the differential equation [3.429] one finds

(∂̄ − µ∂)w(σ) = 0 [3.441]

If we remember that µ and J have a nonlinear relationship, then one could be surprised
by the simplicity of this equation. It then also deserves its own name, the Beltrami equa-
tion. In analogy with the introduction of J as a differential form, we can also introduce a
differential form

µ = dz̄ µ z̄
z ∂z [3.442]

which is called the Beltrami differential. The µ = µ z̄
z and µ̄ = µ z

z̄ are its components in
the z-coordinate system.

The coordinates z and z̄ are holomorphic vs the complex structure I and the coordi-
nates w and w̄ are holomorphic vs the complex structure J . Note that z is not holomorphic
vs the complex structure J , unless µ = 0 and we have a conformally flat metric. Like-
wise, w is not holomorphic vs I if µ 6= 0. The Beltrami equation can be viewed as relating
holomorphic coordinate systems z and w corresponding to different complex structures.

Using the chain rule and the Beltrami equation we find

dw = ∂wdz + ∂̄wdz̄ = ∂w(dz + µdz̄) [3.443]

Using this in [3.435] we find

gJ = gabdσ
adσb = ρ(z, z̄) |∂w|−2dwdw̄ = ρ0(w, w̄) dwdw̄ [3.444]

Note that since coordinate transformations are by definitions invertible, we can write z and
z̄ as a function of w and w̄ which leads to ρ0(w, w̄) = ρ(z, z̄) |∂w|−2. This means that it is
always possible to go locally to a coordinate system that is conformally flat.
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THE TRANSFORMATION OF ρ UNDER A CONFORMAL TRANSFORMATION

Let us now check how ρ transforms under a conformal transformation. We will be a bit
cavalier and not mention some of the subtleties, but we refer to [LS] for more details. We
will derive it from requiring invariance of the line element g = ds2 = ρ(z, z̄)dzdz̄ under
an infinitesimal conformal transformation z → w(z) = z + δz. This calculation will be
performed in detail.

ds2 = ρ(w, w̄)dwdw̄

= ρ(z + δz, z̄ + δz̄)(dz + dδz)(dz̄ + dδz̄)

= [ρ(z, z̄) + ∂zρ(z, z̄)δz + ∂z̄ρ(z, z̄)δz̄]× [dzdz̄ + dδzdz̄ + dzdδz̄]

= ρdzdz̄ + ρdδzdz̄ + ρdzdδz̄ + ∂zρδzdzdz̄ + ∂z̄ρδz̄dzdz̄

= ρdzdz̄ + ρ(∂zδzdz + ∂z̄δzdz̄)dz̄ + ρdz(∂zδz̄dz + ∂z̄δz̄dz̄) + (∂zρδz + ∂z̄ρδz̄)dzdz̄

= ρdzdz̄ + ρ(∂zδz + ∂z̄δz̄ + ρ−1∂zρδz + ρ−1∂z̄ρδz̄)dzdz̄ + ρ∂zδz̄(dz)
2 + ρ∂z̄δz(dz̄)

2

[3.445]

We now recall that the only non-vanishing connections in the conformal gauge are given
by, see [3.216]

Γzzz(σ) = ∂z ln ρ(σ) and Γz̄z̄z̄(σ) = ∂z̄ ln ρ(σ) [3.446]

This means that

∇zδz = ∂zδz + Γzzzδz = ∂zδz + ∂z ln ρ δz = ∂zδz + ρ−1∂zρ δz

∇z̄δz̄ = ∂z̄δz̄ + Γz̄z̄z̄δz̄ = ∂z̄δz̄ + ∂z̄ ln ρ δz̄ = ∂z̄δz̄ + ρ−1∂z̄ρ δz̄

∇zδz̄ = ∂zδz̄

∇z̄δz = ∂z̄δz [3.447]

Therefore

ds2 = ρdzdz̄ + ρ (∇zδz +∇z̄δz̄)dzdz̄ + ρ∇zδz̄(dz)2 + ρ∇z̄δz(dz̄)2 [3.448]

Let us now compare this with δg:

δg = δ
[
ρdzdz̄ + gzz(dz)

2 + gz̄z̄(dz̄)
2
]

[3.449]

Whilst in the conformal gauge gzz = gz̄z̄ = 0 the change of coordinates may result in
off-diagonal components of the metric. We can thus write

δg = δρdzdz̄ + δgzz(dz)
2 + δgz̄z̄(dz̄)

2 [3.450]
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Comparing with [3.448] we find

δρ = ρ(∇zδz +∇z̄δz̄)
δgzz = ρ∇zδz̄
δgz̄z̄ = ρ∇z̄δz [3.451]

which we can rewrite as

δ ln ρ =∇zδz +∇z̄δz̄
ρ−1δgzz =∇zδz̄
ρ−1 δgz̄z̄ =∇z̄δz [3.452]

THE EXISTENCE OF HOLOMORPHIC NORMAL COORDINATES

We wish to show that if we have a coordinate system w that is in the conformal gauge, i.e.

ds2 = ρ0(w, w̄)dwdw̄ [3.453]

then we can always perform a conformal transformation

w, w̄ → ζ(w), ζ̄(w̄) [3.454]

such that the ζ coordinates are holomorphic normal coordinates, i.e. that at a given point
p we have the relations

∂nζ ρ(ζ, ζ̄)
∣∣∣
p

= ∂nζ̄ ρ(ζ, ζ̄)
∣∣∣
p

= δn,0 [3.455]

We first consider n ≥ 1 and will show that this is possible by explicit construction of ζ(w)
and ζ̄(w̄). Our starting point is [3.444] which we write as

ln ρ0(w, w̄) = ln ρ(ζ, ζ̄) + ln |∂wζ(w)|2 [3.456]

We take the ∂nw derivative of both sides

∂nw ln ρ0(w, w̄) = ∂nw ln ρ(ζ, ζ̄) + ∂nw ln |∂wζ(w)|2 [3.457]

The first term on the RHS vanishes when evaluated at p. Indeed, let us start with n = 1
and use the chain rule

∂w ln ρ(ζ, ζ̄) = ∂wζ∂ζ ln ρ(ζ, ζ̄) + ∂wζ̄∂ζ̄ ln ρ(ζ, ζ̄) [3.458]
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When evaluated at p the first term vanishes because of the holomorphic normal coordinates
and the last term vanishes because ζ is a conformal transformations and thus ∂w̄ζ(w) = 0.
Thus ∂w ln ρ(ζ, ζ̄)

∣∣
p

= 0. Next

∂2
w ln ρ(ζ, ζ̄) = ∂w

[
∂wζ∂ζ ln ρ(ζ, ζ̄)

]
= ∂2

wζ∂ζ ln ρ(ζ, ζ̄) + ∂wζ∂
2
ζ ln ρ(ζ, ζ̄) [3.459]

We have not written out ∂wζ̄ terms as these are zero as explained above. Evaluated at p we
see that this vanishes as well. We also see that this holds for higher derivatives as we will,
in every term be left with a factor ∂kζ ln ρ(ζ, ζ̄) for 1 ≥ k ≥ n. Thus we have indeed shown
that ∂nw ln ρ(ζ, ζ̄)

∣∣
p

= 0. We thus have

∂nw ln ρ0(w, w̄) = ∂nw
[
ln ∂wζ(w) + ln ∂w̄ζ̄(w̄)

]
= ∂nw ln ∂wζ(w) [3.460]

evaluated at p. We will drop the cumbersome
∣∣
p

but it will be understood that in the sequel
this is to be assumed. If we can now use this relation to express the ∂nwζ as functions of ρ0

then we can use these to build a Taylor series that determines ζ(w) in a neighbourhood of
p such that the holomorphic normal condition is satisfied.

The way to do this is by using the Faà di Bruno’s formula. This is just a fancy way to
write an expression for ∂nxf

(
g(x)

)
. It is given by

∂nxf
(
g(x)

)
=

n∑
k=1

f (k)(g(x))Bn,k
(
g′(x), g′′(x), · · · , g(n−k+1)(x)

)
[3.461]

Here Bn,k(x1, x2, · · · , xn−k+1) are the so-called Bell polynomials10. Let us work out the

10The Bell polynomials are defined as

Bn,k(x1, x2, · · · , xn−k+1) =
∑ n!

j1!j2! · · · jn−k+1!

(x1

1!

)j1 (x2

2!

)j2
· · ·
(

xn−k+1

(n− k + 1)!

)jn−k+1

where the sum is taken over all j`’s subject to the conditions
∑n−k+1
` j` = k and that also∑n−k+1

` `j` = n There is no need for us to go into a detailed analysis of Bell polynomials. For
those interested, check the Wikipedia pages. For our purposes we only need to know that the
equation

xn =

n∑
k=1

(−)k+1(k − 1)!Bn,k(y1, · · · , yn−k+1)

can be inverted as
yn = Bn(x1, · · · , xn)

with

Bn(x1, · · · , xn) =

n∑
k=1

Bn,k(x1, · · · , xn−k+1)
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first few cases of ∂nw ln ∂wζ(w)

∂w ln ∂wζ(w) =
∂2
wζ

∂wζ
= B11

(
∂2
wζ

∂wζ

)
∂2
w ln ∂wζ(w) = −

(
∂2
wζ

∂wζ

)2

+
∂3
wζ

∂wζ
= −B22

(
∂2
wζ

∂wζ
,
∂3
wζ

∂wζ

)
+B21

(
∂2
wζ

∂wζ
,
∂3
wζ

∂wζ

)
[3.462]

and so on. In general we have

∂nw ln ∂wζ(w) =

n∑
k=1

(−)k+1(k − 1)!Bn,k

(
∂2
wζ

∂wζ
,
∂3
wζ

∂wζ
, · · · , ∂

n−k+2
w ζ

∂wζ

)
=Bn

(
∂2
wζ

∂wζ
,
∂3
wζ

∂wζ
, · · · , ∂

n
wζ

∂wζ

)
[3.463]

With Bn the complete Bell polynomial, see footnote. As per the footnote we can thus invert
this relationship to write

∂n+1
w ζ(p) =)Bn(∂w ln ρ0, · · · , ∂nw ln ρ0) ∂wζ(p) [3.464]

At a point p′ close to p we can thus use a Taylor expansion

ζp(p
′) =

∞∑
n=0

1

n!

(
wp(p

′)− wp(p)
)
∂nwζp(p)

=
∞∑
n=0

1

n!

(
wp(p

′)− wp(p)
)
Bn−1(∂w ln ρ0, · · · , ∂n−1

w ln ρ0) ∂wζ(p) [3.465]

where we have simplified the notation, writing ∂nwζp(p) for (∂np (p′)/∂wp(p
′)2)
∣∣
p′=p

.
We have now imposed all the conditions with n ≥ 1 for the holomorphic normal co-

ordinates, but we still need to impose the n = 0 condition, ρ
∣∣
p

= 1. From [3.444] i.e.

the so-called complete Bell polynomials. Let us give the explicit form of some of the first Bell
polynomials, Bn,k(x1, · · · , xn−k+1)

B11 =x1

B21 =x2; B22 = x2
1

B31 =x3; B32 = 3x1x2; B33 = x3
1

B41 =x4; B42 = 3x2
2 + 4x1x3; B43 = 6x2

1x2; B44 = x4
1

B51 =x5; B52 = 10x2x3 + 5x1x4; B53 = 15x1x
2
2 + 10x2

1x3; B54 = 10x3
1x2; B55 = x4

1

· · ·
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ρ(w, w̄) |∂wζ|−2 = ρ0(ζ, ζ̄), taken at p we see that this determines |∂wζ| and hence ∂wζ only
up to a phase:

∂wζ = eiα|∂wζ| [3.466]

and thus

∂wζ(p) = eiα|∂wζ|p = eiα(p)
√
ρ0(p) [3.467]

where we can take the square root of ρ0 because it is real and positive. It turns out that
this phase is in general not globally defined. There are ways to circumvent this, but this is
beyond the scope of what we need. See [LS] for more details.

To summarise, given a set of coordinates around a point p in the conformal gauge
ρ0(w, w̄)dwdw̄ we can always find a conformal transformation ζ(w), ζ̄(w̄) such that at the
point p the new coordinate is “as flat as possible,” i.e. is a holomorphic normal coordinate
satisfying ∂nζ ρ(ζ, ζ̄)

∣∣
p

= δn,0. At a point p′ close to p this conformal transformation is given
by

ζp(p
′) = eiα(p)

√
ρ0(p)

∞∑
n=0

1

(n+ 1)!
Bn(∂w ln ρ0, · · · , ∂nw ln ρ0)wp(p

′)n+1 [3.468]

where the phase factor is undetermined, Bn are the complete Bell polynomials and we
have used the fact that at the base point wp(p) = 0. Note that, by construction ζp(p) as well
as wp(p) vanishes.
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Chapter 4

The String Spectrum

4.1 p 122: Eq (4.1.8) Spurious States, I

We have for any physical state |ψ〉

〈ψ|χ〉 = 〈ψ|
∞∑
k=1

Lm
−k |χk〉 =

∞∑
k=1

[(
Lm
−k
)† |ψ〉]† |χk〉 =

∞∑
k=1

[ Lm
k |ψ〉]

† |χk〉 = 0 [4.1]

4.2 p 122: Eq (4.1.9) Spurious States, II

Let |ψ〉 be physical and |χ〉 be null. Then for n > 1

Lm
n (|ψ〉+ |χ〉) = Lm

n |ψ〉+ Lm
n |χ〉 = 0 [4.2]

We also have that for any other physical state |φ〉

〈φ|ψ + χ〉 = 〈φ|ψ〉+ 〈φ|χ〉 = 〈φ|ψ〉 [4.3]

4.3 p 123: Eq (4.1.11) The Physical Hilbert Space, I: the Tachyon State

Recall (2.7.25) and (2.7.27) for the open string.

L0 =α′p2 +

∞∑
n=1

α−nαn

Lm =
1

2

+∞∑
n=−∞

: αm−nαn : for m 6= 0

α0 =
√

2α′p [4.4]
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Here and in the remainder of this chapter we will not write the reference m to the matter
sector and the spacetime indices when they just blur the notation. Consider the tachyon
state |0; k〉. We have for m ≥ 1

Lm |0; k〉 =
1

2

+∞∑
n=−∞

: αm−nαn : |0; k〉

=

(
1

2

−1∑
n=−∞

: αm−nαn : + : αmα0 : +
1

2

∞∑
n=1

: αm−nαn :

)
|0; k〉

=

(
1

2

−1∑
n=−∞

αnαm−n + α0αm +
1

2

∞∑
n=1

αm−nαn

)
|0; k〉 = 0 [4.5]

This is the case because we will always have a αk |0; k〉 with k ≥ 1 and this is zero. For
m = 0 we have

L0 |0; k〉 =

(
α′p2 +

∞∑
n=1

α−nαn

)
|0; k〉 = α′k2 |0; k〉 [4.6]

Requiring (L0 +A) |0; k〉 = 0 thus implies that A = −α′k2, or as −k2 = m2 we have

m2 =
A

α′
[4.7]

4.4 p 123: Eq (4.1.16) The L0 Condition for the Level One State

(L0 +A)e · α−1 |0; k〉 =

(
α′p2 +

∞∑
n=1

αµ−nαµn +A

)
e · α−1 |0; k〉

=
(
α′p2 + αµ−1αµ1 +A

)
eνα

ν
−1 |0; k〉

= (α′k2 +A)e · α−1 |0; k〉+ αµ−1eνη
µν |0; k〉

= (α′k2 +A+ 1)e · α−1 |0; k〉 [4.8]

Requiring this to be zero gives α′k2 +A+ 1 = 0 or, with −k2 = m2,

m2 =
1 +A

α′
[4.9]
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4.5 p 123: Eq (4.1.17) The Lm≥1 Condition for the Level One State

For m ≥ 1 we have

Lm e · α−1 |0; k〉 =
1

2

+∞∑
n=−∞

: αm−nαn : e · α−1 |0; k〉

=
1

2

( −1∑
n=−∞

: αm−nαn : + : αmα0 : +
∞∑
n=1

: αm−nαn :

)
e · α−1 |0; k〉

=
1

2

( −1∑
n=−∞

αnαm−n + α0αm +
∞∑
n=1

αm−nαn

)
e · α−1 |0; k〉 [4.10]

Because with m ≥ 1 and n ≤ −1, m − n ≥ 2, all the αm−n of the first infinite sum just
commute through the α−1 and annihilate |0; k〉. In the second infinite sum, all terms except
αm−1α1 annihilate |0; k〉. We are thus left with

Lm e · α−1 |0; k〉 =
1

2
(α0αm + αm−1α1) e · α−1 |0; k〉 [4.11]

The term with αm−1α1 only gives a non-zero result if m = 1. Indeed for m = 2 we have

αµ1αµ1 eνα
ν
−1 |0; k〉 = αµ1eνδ

ν
µ |0; k〉 = 0 [4.12]

and for m ≥ 3 the αm−1 just commutes to the right to annihilate |0; k〉 directly. So the only
non-trivial condition is

L1 e · α−1 |0; k〉 =
1

2
(α0α1 + α0α1) e · α−1 |0; k〉 = αµ0αµ1eνα

ν
−1 |0; k〉

=αµ0eνδ
ν
µeν |0; k〉 = eµα

µ
0 |0; k〉 = eµ

√
2α′pµ |0; k〉 =

√
2α′eµk

µ |0; k〉

=
√

2α′(e · k) |0; k〉 [4.13]

Requiring this to be zero implies that e.k = 0.

4.6 p 124: Eq (4.1.18) The Spurious Level One State

We have

L−1 |0; k〉 =
1

2

∞∑
n=−∞

: α−1−nαn : |0; k〉 =
1

2
(α0α−1 : +α−1α0) |0; k〉

=αµ−1

√
2α′pµ |0; k〉 =

√
2α′kµα

µ
−1 |0; k〉 =

√
2α′k · α−1 |0; k〉 [4.14]

Joe’s book has taken α′ = 2. If |ψ〉 is any physical state then we have 〈ψ|L−1 |0; k〉 = 0 as
L1 |ψ〉 = 0. Therefore L−1 |0; k〉 is spurious.
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Note that L−1 |0; k〉 is not necessarily physical. This is easy to see using the Virasoro
algebra:

LmL−1 |0; k〉 =
(
L−1Lm + (m+ 1)Lm−1 +

c

12
(m3 −m)δm−1,0

)
|0; k〉 [4.15]

For m ≥ 2 this is automatically zero, because Lk |0; k〉 = 0 for k ≥ 0. For m = 1 we have

L1L−1 |0; k〉 =
(

2L0 +
c

12
(13 − 1)

)
|0; k〉 = 2L0 |0; k〉 = 2α′k2 |0; k〉 [4.16]

where we have used [4.6].

4.7 p 124: Eq (4.1.18) The Level One States for Different Values of A

The value of A clearly refers to that of the level one states (4.1.16), i.e.

−k2 = m2 =
1 +A

α′
[4.17]

The three cases are

• A > −1 The level one state have positive mass and the spurious state has L1L−1 |0; k〉 6=
0 and is not a physical state. The Hilbert space has no extra null states and hence
D − 1 degrees of freedom.

• A = −1 The level one states are massless and the spurious state is physical and hence
massless. Because a null state is equivalent to another physical state, we loose the
extra null state in the Hilbert space and are left withD−2 degrees of freedom, in line
with a massless particle. Moreover, if we change the polarisation vector eµ → eµ+kµ

then the condition e · k is also satisfied as k2 = 0. This is indicative of the spacetime
gauge symmetry.

• A < −1 The level one states are tachyons. We still have D − 1 degrees of freedom,
but one has negative norm and so violates unitarity.

4.8 p 124: Eq (4.1.18) The Level Two States

A generic level two state is of the form

|E, e; k〉 = (Eµνα
µ
−1α

ν
−1 + eµα

µ
−2) |0; k〉 [4.18]

Let us check the conditions for this to be a physical state. For m ≥ 3 we have

Lm |E, e; k〉 =
1

2

(
0∑

n=−∞
ασnασ m−n + ασ1ασ m−1 + ασ2ασ m−2 +

∞∑
n=3

ασ m−nα
σ
n

)
× (Eµνα

µ
−1α

ν
−1 + eµα

µ
−2) |0; k〉 [4.19]
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The infinite sums are zero and so we are left with

Lm |E, e; k〉 = (ασ1ασ m−1 + ασ2ασ m−2)(Eµνα
µ
−1α

ν
−1 + eµα

µ
−2) |0; k〉 [4.20]

But as m ≥ 3, if we commute the annihilation operators to the right we will always have a
α1 |0; k〉 left and hence this is also zero.

We thus have to check L2, L1 and L0. We start with

L2 |E, e; k〉 =
1

2

( −1∑
n=−∞

ασnασ 2−n + ασ0ασ 2 + ασ1ασ 1 + ασ2ασ 0 +
∞∑
n=3

ασ 2−nα
σ
n

)
× (Eµνα

µ
−1α

ν
−1 + eµα

µ
−2) |0; k〉

=
1

2
(2ασ0ασ 2 + ασ1ασ 1) (Eµνα

µ
−1α

ν
−1 + eµα

µ
−2) |0; k〉 [4.21]

Now

ασ0ασ 2α
µ
−1α

ν
−1 |0; k〉 =ασ0α

µ
−1α

ν
−1ασ 2 |0; k〉 = 0

ασ0ασ 2α
µ
−2 |0; k〉 =ασ0 2δµσ |0; k〉 = 2

√
2α′kµ |0; k〉

ασ1ασ 1α
µ
−1α

ν
−1 |0; k〉 =ασ1 (αµ−1ασ 1 + δµσ)αν−1 |0; k〉

=ασ1α
µ
−1ασ 1α

ν
−1 |0; k〉+ αµ1α

ν
−1 |0; k〉

= ησµδνσ |0; k〉+ ηµν |0; k〉 = 2ηµν |0; k〉
ασ1ασ 1α

µ
−2 |0; k〉 = 0 [4.22]

Therefore

L2 |E, e; k〉 =
1

2

(
4
√

2α′kµeµ + 2ηµνEµν

)
|0; k〉 [4.23]

Setting this to zero gives the condition

2
√

2α′k · e+ Eµµ = 0 [4.24]

Next, we consider L1

L1 |E, e; k〉 =
1

2

( −2∑
n=−∞

ασnασ 1−n + ασ−1ασ 2 + ασ0ασ 1 + ασ1ασ 0 + ασ−1ασ 2 +
∞∑
n=3

ασ 1−nα
σ
n

)
× (Eµνα

µ
−1α

ν
−1 + eµα

µ
−2) |0; k〉

=
(
ασ−1ασ 2 + ασ0ασ 1

)
(Eµνα

µ
−1α

ν
−1 + eµα

µ
−2) |0; k〉 [4.25]
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Now

ασ−1ασ 2α
µ
−1α

ν
−1 |0; k〉 = 0

ασ−1ασ 2α
µ
−2 |0; k〉 = 2δµσα

σ
−1 |0; k〉 = 2αµ−1 |0; k〉

ασ0ασ 1α
µ
−1α

ν
−1 |0; k〉 =ασ0 (αµ−1ασ 1 + δµσ)αν−1 |0; k〉

= (ασ0α
µ
−1δ

ν
σ + αµ0α

ν
−1) |0; k〉

=
√

2α′(kναµ−1 + kµαν−1) |0; k〉
ασ0ασ 1α

µ
−2 |0; k〉 = 0 [4.26]

Therefore

L1 |E, e; k〉 =
[√

2α′Eµν(kναµ−1 + kµαν−1) + 2eµα
µ
−1

]
|0; k〉

= 2(
√

2α′kµEµν + eν)αν−1 |0; k〉 [4.27]

Setting this to zero implies that
√

2α′kµEµν + eν = 0 [4.28]

Finally, we consider L0,

L0 |E, e; k〉 =

(
α′p2 +

∞∑
n=1

ασ−nασ n

)
(Eµνα

µ
−1α

ν
−1 + eµα

µ
−2) |0; k〉

= (α′p2 + ασ−1ασ 1 + ασ−2ασ 2)(Eµνα
µ
−1α

ν
−1 + eµα

µ
−2) |0; k〉 [4.29]

Now

ασ−1ασ 1α
µ
−1α

ν
−1 |0; k〉 =ασ−1(αµ−1ασ 1 + δµσ)αν−1 |0; k〉

= (ασ−1α
µ
−1δ

ν
σ + ασ−1α

ν
−1δ

µ
σ) |0; k〉

ασ−1ασ 1α
µ
−2 |0; k〉 = 0 = 2αµ−1α

ν
−1 |0; k〉

ασ−2ασ 2α
µ
−1α

ν
−1 |0; k〉 = 0

ασ−2ασ 2α
µ
−2 |0; k〉 = 2δµσα

σ
−2 |0; k〉 = 2αµ−2 |0; k〉 [4.30]

Therefore

L0 |E, e; k〉 =α′k2(Eµνα
µ
−1α

ν
−1 + eµα

µ
−2) |0; k〉+ 2Eµνα

µ
−1α

ν
−1 |0; k〉+ 2eµα

µ
−2 |0; k〉

= (α′k2 + 2)(Eµνα
µ
−1α

ν
−1 + eµα

µ
−2) |0; k〉 [4.31]

Setting (L0 +A) |E, e; k〉 = 0 gives

α′k2 + 2 +A = 0 [4.32]

— 202—



Joe’s Book (version of November 20, 2020) Notes from Stany M. Schrans

or

m2 =
2 +A

α′
=

1

α′
[4.33]

where we set A = −1.
Summarising, Eµν and eµ need to satisfy the equations

0 = 2
√

2α′k · e+ Eµµ [4.34]

0 =
√

2α′kµEµν + eν [4.35]

The second equation determines e in terms of E. The first equation then sets an additional
condition on E. To see this specifically let us go to the rest frame of this state, which is
possible as this state has non-zero mass. In the rest frame we have

k = (
1√
α
, 0, · · · , 0) [4.36]

and this satisfies m2 = −k2 = 1/α′ as it should. From [4.35] we then find

−
√

2α′
1√
α′
E0ν + eν = 0 ⇒ eµ =

√
2E0µ [4.37]

Plugging this in [4.34] gives

0 = − 2
√

2α′
1√
α′
e0 + Eµµ = −2

√
2
√

2E00 − E00 + Eii [4.38]

where i runs over the spacelike indices only. Thus the condition on E becomes

Eii = 5E00 [4.39]

Let us count the degrees of freedom. E is a symmetric D×D matrix so has D(D+1)/2
entries. The vector e has D entries, but is fully determined by E. There is one more
condition [4.34], so we have a total of 1

2D(D+1)−1 degrees of freedom. Recall that in the
lightcone quantisation the physical states were the symmetric tensor eijαi−1α

j
−1 |0; k〉 and

the vector Eiαi−2 |0; k〉 with i = 2, · · · , D−1, i.e. these are in the SO(D−2) representation.
This gives a total number of degrees of freedom

1

2
(D − 2)(D − 1) + (D − 2) =

1

2
(D − 2)(D + 1) =

1

2
D(D − 1)− 1 [4.40]

which corresponds to the traceless symmetric representation of SO(D − 1). This is fewer
degrees of freedom than we have found so far by

1

2
D(D + 1)− 1−

(
1

2
D(D − 1)− 1

)
= D [4.41]
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So if everything fits together, we expect that there are D null states at level two in the OCQ
approach.

To find the null states, let us first identify the spurious states at level two. Which
states at level two are automatically orthogonal to all physical states? A moment’s thought
reveals that the level two spurious states are formed from linear combinations of L2

−1 |0; k〉,
L−2 |0; k〉 and L−1α

µ
−1 |0; k〉, as these three combinations are orthogonal to all physical

states. But, writing only the non vanishing terms explicitly

L2
−1 |0; k〉 = L−1

1

2
(· · ·+ : ασ0ασ−1 : + : ασ−1ασ0 :) |0; k〉 =

√
2α′kσL−1α

σ
−1 |0; k〉 [4.42]

and so L2
−1 |0; k〉 is not an independent state. The most general spurious level two state is

thus a combination

|Gµ, H; k〉 = (GµL−1α
µ
−1 +HL−2) |0; k〉 [4.43]

We have D+ 1 such spurious states. Let us first write this state in terms of the modes only.
Here and in the sequel we will only write those terms of the Lk that contribute. We have

L−1α
µ
−1 |0; k〉 = (ασ−2ασ 1 + ασ−1ασ 0α

µ
−1 |0; k〉 = (αµ−2 +

√
2α′kσα

σ
−1αµ−1) |0; k〉

L−2 |0; k〉 =

(
ασ−2ασ 0 +

1

2
ασ−1ασ −1

)
|0; k〉

=

(√
2α′kσα

σ
−2 +

1

2
ασ−1ασ −1

)
|0; k〉 [4.44]

So

|Gµ, H; k〉 =

[(√
2α′G{µkν} +

1

2
Hηµν

)
αµ−1α

ν
−1 +

(
Gµ +

√
2α′Hkµ

)
αµ−2

]
|0; k〉 [4.45]

Let us check the conditions under which such spurious states are physical. Any Lk with
k ≥ 3 automatically annihilates |Gµ, H; k〉. For L2 we have

L2α
µ
−2 |0; k〉 =

(
ασ0ασ 2 +

1

2
ασ1ασ 1

)
αµ−2 |0; k〉 = 2

√
2α′kµ |0; k〉

L2α
µ
−1α

ν
−1 |0; k〉 =

1

2
ασ1ασ 1α

µ
−1α

ν
−1 |0; k〉 =

1

2
ασ1 (δµσ + αµ−1ασ 1)αν−1 |0; k〉

=
1

2
(αµ1α

ν
−1 + ασ1α

µ
−1δ

ν
σ) |0; k〉 = ηµν |0; k〉 [4.46]

and thus

L2 |Gµ, H; k〉 =

[
ηµν

(√
2α′G{µkν} +

1

2
Hηµν

)
+ 2
√

2α′kµ
(
Gµ +

√
2α′Hkµ

)]
|0; k〉

=

(
3
√

2α′G · k +
1

2
DH + 4α′Hk2

)
|0; k〉 [4.47]
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Using the mass shell condition k2 = −1/α′ for level two states this gives the condition

3
√

2α′G · k +

(
D

2
− 4

)
H = 0 [4.48]

Next we consider the action of L1 on |Gµ, H; k〉. First we compute

L1α
µ
−2 |0; k〉 =

(
ασ−1ασ 2 + ασ0ασ 1

)
αµ−2 |0; k〉 = 2αµ−1 |0; k〉

L1α
µ
−1α

ν
−1 |0; k〉 =

(
ασ−1ασ 2 + ασ0ασ 1

)
αµ−1α

ν
−1 |0; k〉

=ασ0 (αµ−1ασ 1 + δµσ)αν−1 |0; k〉 =
√

2α′(kναµ−1 + kµαν−1) |0; k〉 [4.49]

and thus

L1 |Gµ, H; k〉 =

[
√

2α′(kναµ−1 + kµαν−1)

(√
2α′G{µkν} +

1

2
Hηµν

)

+ 2
(
Gµ +

√
2α′Hkµ

)
αµ−1

]
|0; k〉

=
(

2α′Gµk
2 + 2α′G · kkµ +

√
2α′Hkµ + 2Gµ + 2

√
2α′Hkµ

)
αµ−1 |0; k〉

=
(

2(α′k2 + 1)Gµ + 2α′G · kkµ + 3
√

2α′Hkµ

)
αµ−1 |0; k〉 [4.50]

Using the mass shell condition k2 = −1/α′ for level two states this gives the condition

(
√

2α′G · k + 3H)kµ = 0 [4.51]

We leave it as an exercise to the reader to show in a similar way that (L0 +1) |Gµ, H; k〉 = 0
is automatically satisfied.

Let us summarise this result. The spurious state

|Gµ, H; k〉 =

[(√
2α′G{µkν} +

1

2
Hηµν

)
αµ−1α

ν
−1 +

(
Gµ +

√
2α′Hkµ

)
αµ−2

]
|0; k〉 [4.52]

is a null state if Gµ and H satisfy the conditions

0 = 3
√

2α′G · k +

(
D

2
− 4

)
H [4.53]

0 = (
√

2α′G · k + 3H)kµ [4.54]

In order to count the number of null states, let us go back to the rest frame. In that frame
k0 = 1/α′, ki = 0 and thus G ·k = G0/

√
α′. Eq [4.54] is satisfied for all i, giving D− 1 null

states. Eqs [4.53] and [4.54] then become

0 = 3
√

2G0 +

(
D

2
− 4

)
H

0 =
√

2G0 · k + 3H [4.55]
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which would seem to give a value for G0 and H given two more null states, bringing the
total to D + 1, whereas we only need D null states! But these equations are degenerate
when

0 = det

(
3
√

2 D
2 − 4√

2 3

)
= 9
√

2−
√

2

(
D

2
− 4

)
=
√

2

(
13− D

2

)
[4.56]

Thus when D = 26 these equations are not independent and only give one extra null state.
We conclude that in D = 26 we indeed have D null states and thus indeed 1

2D(D + 1) −
1−D = 1

2D(D−1) physical states at level two, which is the same result as in the lightcone
gauge.

4.9 p 126: Eq (4.2.6) The BRST Invariance of the Quantum Action

As mentioned in the text, S1 is automatically invariant. For S2 we have

δBS2 = δB

[
− iBAFA(φ)

]
= −i

[
(δBBA)FA(φ) +BA(δBF

A(φ))
]

= − i
[
0 +BA(−iεcαδαFA(φ))

]
= −εBAcαδαFA(φ) [4.57]

For S3 we have

δBS2 = δB

[
bAc

αδαF
A(φ)] = (δBbA)cαδαF

A(φ) + bA(δBc
α)δαF

A(φ) + bAc
α(δBδαF

A(φ))

= εBAc
αδαF

A(φ) + bA

(
i

2
εfαβγc

βcγ
)
δαF

A(φ) + bAc
α
(
−iεcβδβδαFA(φ)

)
[4.58]

We can rewrite the second term, using [δβ, δγ ] = fαβγδα, as

− i
2
εbAc

βcγfαβγδαF
A(φ) = − i

2
εbAc

βcγ [δβ, δγ ]FA(φ) = −iεbAcβcγδβδγFA(φ)

= iεbAc
γcβδβδγF

A(φ) [4.59]

which exactly cancels the third term. We thus have

δB (S1 + S2 + S3) = 0− εBAcαδαFA(φ) + εBAc
αδαF

A(φ) = 0 [4.60]

4.10 p 127: Ghost Number Conservation

This should be obvious, but let’s nevertheless make sure it is correct. Clearly g#(S1) =
g#(S2) = 0 as g#(φ) = g#(B) = 0. Finally g#(S3) = g#(b) + g#(c) = −1 + 1 = 0.
Moreover we easily see that the BRST transformation preserves the ghost number:

g# (δBφ) = g#(ε) + g#(c) + g#(φ) = −1 + 1 = 0 = g#(φ)

g# (δBBA) = 0 = g#(B)

g# (δBba) = g#(ε) + g#(B) = −1 + 0 = −1 = g#(b)

g# (δBc
α) = g#(ε) + 2g#(c) = −1 + 2 = 1 = g#(c) [4.61]
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4.11 p 127: Eq (4.2.7) δB(bAF
A) = iε(S2 + S3)

We have

δB(bAF
A) = (δBbA)FA + bA(δBF

A) = εBAF
A + bA = εBAF

A + bA(−iεcαδαFA)

= iε(−iBAFA + bAc
αδαF

A) = iε(S2 + S3) [4.62]

which is what we needed to show.

4.12 p 127: Eq (4.2.8) A Change in the Gauge-Fixing Condition

We have

ε δ〈f |i〉 = ε
(
〈f |i〉F+δF − 〈f |i〉F

)
= ε

(∫
[dφ dB db dc] e−S1[φ]+iBA(FA+δFA)−bAcαδα(FA+δFA)

−
∫

[dφ dB db dc] e−S1[φ]+iBAF
A−bAcαδαFA

)

= ε

(∫
[dφ dB db dc] e−S1[φ]+iBAF

A−bAcαδαFA
(
1 + iBAδF

A − bAcαδαδFA
)

−
∫

[dφ dB db dc] e−S1[φ]+iBAF
A−bAcαδαFA

)

= ε

∫
[dφ dB db dc] e−S1−S2−S3

(
iBAδF

A − bAcαδαδFA
)

[4.63]

Now δBbA = εBA so that we can write the first term between brackets as iBAδFA =
i(δBba)δF

A. We also have δBφ = −iεcα∂αφ which implies, using Leibniz, δBδF (φ) =
−iεcα∂αδF (φ) and so we can write the second term between brackets as ibA

(
δBδF (φ)

)
.

Therefore

εδ 〈f |i〉 =

∫
[dφ dB db dc] e−S1−S2−S3

[
i(δBbA)δFA + ibA

(
δBδF (φ)

)]
= i

∫
[dφ dB db dc] e−S1−S2−S3δB(bAδF

A)

= i 〈f | δB(bAδF
A) |i〉 = −ε 〈f | {QB, bAδFA} |i〉 [4.64]

In the last line we have used δBA = iε{QB,A} where QB is the conserved charge corre-
sponding to the BRST symmetry.
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4.13 p 128: Eq (4.2.13) The BRST Charge is Nilpotent

Let us check this for the different fields

δ
(2)
B δ

(1)
B φ = δ

(2)
B (−iε1cαδαφ) = −iε1(δ

(2)
B cα)δαφ− iε1cα(δ

(2)
B δαφ)

= − iε1
i

2
ε2f

α
βγc

βcγδαφ− iε1cα(−iε2cβδβδαφ)

=
1

2
ε1ε2c

βcγfαβγδαφ+ ε1ε2c
αcβδβδαφ

=
1

2
ε1ε2c

βcγ [δβ, δγ ]φ+ ε1ε2c
αcβδβδαφ

= ε1ε2c
βcγδβδγφ+ ε1ε2c

αcβδβδαφ

= − ε1ε2cαcβδβδαφ+ ε1ε2c
αcβδβδαφ = 0 [4.65]

It is obvious that δ(2)
B δ

(1)
B BA = 0 and that δ(2)

B δ
(1)
B bA = 0. Finally

δ
(2)
B δ

(1)
B cα = δ

(2)
B

i

2
ε1f

α
βγc

βcγ =
i

2
ε1f

α
βγ

[
(δBc

β)cγ + cβ(δBc
γ)
]

=
i

2
ε1f

α
βγ

(
i

2
ε2f

β
δεc

δcεcγ + cβ
i

2
ε2f

γ
δεc

δcε
)

= − 1

4
ε1ε2

(
fαβγf

β
δεc

δcεcγ − fαβγf
γ
δεc

βcδcε
)

= − 1

4
ε1ε2

(
fαβγf

β
δεc

δcεcγ − fαγβf
β
δεc

γcδcε
)

= − 1

2
ε1ε2f

α
βγf

β
δεc

δcεcγ [4.66]

We can now rewrite the part with the structure constants and ghosts as

fαβγf
β
δεc

δcεcγ =
1

3
(fαβγf

β
δεc

δcεcγ + fαβδf
β
εγc

εcγcδ + fαβεf
β
γδc

γcδcε)

=
1

3
(fαβγf

β
δε + fαβδf

β
εγ + fαβεf

β
γδ)c

δcεcγ = 0 [4.67]

by the Jacobi identity satisfied by the structure constants.
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4.14 p 129: Eq (4.2.20) The Structure Constants for the BRST Trans-
formation of the Point Particle

[δτ1 , δτ2 ]Xµ(τ) = δτ1δτ2X
µ(τ)− δτ2δτ1Xµ(τ)

= δτ1 [−δ(τ − τ2)∂τX
µ(τ)]− δτ2 [−δ(τ − τ1)∂τX

µ(τ)]

= − δ(τ − τ2)∂τδτ1X
µ(τ) + δ(τ − τ1)∂τδτ2X

µ(τ)

= − δ(τ − τ2)∂τ [−δ(τ − τ1)∂τX
µ(τ)] + δ(τ − τ1)∂τ [−δ(τ − τ2)∂τX

µ(τ)]

= δ(τ − τ2)∂τδ(τ − τ1)∂τX
µ(τ) + δ(τ − τ2)δ(τ − τ1)∂2

τX
µ(τ)

− δ(τ − τ1)∂τδ(τ − τ2)∂τX
µ(τ) + δ(τ − τ1)δ(τ − τ2)∂2

τX
µ(τ)

= − [δ(τ − τ1)∂τδ(τ − τ2)− δ(τ − τ2)∂τδ(τ − τ1)] ∂τX
µ(τ) [4.68]

Now using (4.2.21) and (4.2.19), i.e. δτ3X
µ(τ) = −δ(τ − τ3)∂τX

µ(τ), we have∫
dτ3 f

τ3
τ1τ2δτ3X

µ(τ) =

∫
dτ3 [δ(τ3 − τ1)∂τ3δ(τ3 − τ2)− δ(τ3 − τ2)∂τ3δ(τ3 − τ1)] δτ3X

µ(τ)

=

∫
dτ3

[
− δ(τ3 − τ1)∂τ3δ(τ3 − τ2)δ(τ − τ3)∂τX

µ(τ)

+ δ(τ3 − τ2)∂τ3δ(τ3 − τ1)δ(τ − τ3)∂τX
µ(τ)

]
= − [δ(τ − τ1)∂τδ(τ − τ2)− δ(τ − τ2)∂τδ(τ − τ1)] ∂τX

µ(τ) [4.69]

which proves (4.2.20).

4.15 p 129: Eq (4.2.22) The BRST Transformation for the Point Particle

Using (4.2.6) and (4.2.19) we find

δBX
µ(τ) = − iε

∫
dτ1c(τ1)δτ1X

µ(τ) = iε

∫
dτ1c(τ1)δ(τ − τ1)∂τX

µ(τ)

= iεc(τ)∂τX
µ(τ) = iεcẊµ [4.70]

Similarly,

δBe(τ) = − iε
∫
dτ1c(τ1)δτ1e(τ) = iε

∫
dτ1c(τ1)∂τ [δ(τ − τ1)e(τ)]

= iε

∫
dτ1c(τ1) [∂τδ(τ − τ1)e(τ) + δ(τ − τ1)∂τe(τ)]

= iε

∫
dτ1c(τ1) [−∂τ1δ(τ − τ1)e(τ) + δ(τ − τ1)∂τe(τ)]

= iε

∫
dτ1 [∂τ1c(τ1)δ(τ − τ1)e(τ) + c(τ1)δ(τ − τ1)∂τe(τ)]

= iε [∂τ c(τ)e(τ) + c(τ)∂τe(τ)] = iε∂τ (ce) [4.71]
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Obviously δBB = 0 and δBb = εB. So we are left with δBc:

δBc(τ) =
i

2
ε

∫
dτ2 dτ3 f

τ
τ2τ3c(τ2)c(τ3)

= +
i

2
ε

∫
dτ2 dτ3 [δ(τ − τ2)∂τδ(τ − τ3)− δ(τ − τ3)∂τδ(τ − τ2)] c(τ2)c(τ3)

= +
i

2
ε

[∫
dτ3 ∂τδ(τ − τ3)c(τ)c(τ3)−

∫
dτ2 ∂τδ(τ − τ2)c(τ2)c(τ)

]
= − i

2
ε

[∫
dτ3 ∂τ3δ(τ − τ3)c(τ)c(τ3)−

∫
dτ2 ∂τ2δ(τ − τ2)c(τ2)c(τ)

]
= +

i

2
ε

[∫
dτ3 δ(τ − τ3)c(τ)∂τ3c(τ3)−

∫
dτ2 δ(τ − τ2)∂τ2c(τ2)c(τ)

]
= +

i

2
ε [c(τ)∂τ c(τ)− ∂τ c(τ)c(τ)] = iεcċ [4.72]

4.16 p 129: Eq (4.2.23) The BRST Action for the Point Particle

The classical action for the point particle is given by (1.2.5). In Euclidean space this be-
comes

S1 =

∫
dτ

(
1

2
e−1ẊµẊµ +

1

2
em2

)
[4.73]

For the gauge choice e(τ) = 1, i.e. F (τ) = 1− e(τ), the gauge fixing term is simply (4.2.4)

S2 = −i
∫
dτ B [1− e(τ)] = i

∫
dτ B(e− 1) [4.74]

The Faddeev-Popov determinant gives

S3 =

∫
dτ b(τ)

∫
dτ1 c(τ1)δτ1(1− e(τ)) = −

∫
dτ dτ1 b(τ)c(τ1)δτ1e(τ)

=

∫
dτ dτ1 b(τ)c(τ1)∂τ [δ(τ − τ1)e(τ)] = −

∫
dτ dτ1 ∂τ b(τ)c(τ1)δ(τ − τ1)e(τ)

= −
∫
dτ e(τ)∂τ b(τ)c(τ) = −

∫
dτ eḃc [4.75]

which is (4.2.23), when taking into account the correction on Joe’s errata page.
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4.17 p 130: Eq (4.2.25) The BRST Transformation of the Gauge Fixed
Action for the Point Particle

The equation of motion for the e field in the non-gauge fixed action is

−1

2
e−2ẊµẊµ +

1

2
m2 + iB − eḃc [4.76]

Solving for B and fixing the gauge e = 1 gives

B = i

(
−1

2
ẊµẊµ +

1

2
m2 − ḃc

)
[4.77]

and thus (4.2.22d) becomes

δBb = iε

(
−1

2
ẊµẊµ +

1

2
m2 − ḃc

)
[4.78]

Let us now check that (4.2.25) is indeed a symmetry of the gauge fixed action. The classical
part of the action will be invariant as the BRST symmetry is just a gauge symmetry with a
gauge parameter iεc. We thus need to calculate

δB

∫
dτ (−ḃc) =

∫
dτ (δBc∂τ b+ c∂τδBb)

=

∫
dτ

[
iεc∂τ c∂τ b+ c∂τ iε

(
−1

2
ẊµẊµ +

1

2
m2 − ḃc

)]
=

∫
dτ iε

(
cċḃ+ cẌµẊµ + cb̈c+ cḃċ

)
= 0 [4.79]

as the Xµ equations of motion is Ẍµ = 0 and as also c2 = 0.
Let us also check the nilpotency of the BRST transformation. We only need to check

the nilpotency on the b ghost as all other transformations are unchanged

δ
(2)
B δ

(1)
B b = δ

(2)
B iε1

(
−1

2
ẊµẊµ +

1

2
m2 − ḃc

)
= iε1

[
−Ẋµ∂τ (δ

(2)
B Xµ)− (∂τδ

(2)
B b)c− ḃδ(2)

B c
]

= iε1

[
−Ẋµ∂τ (iε2Ẋµ)− iε2∂τ

(
−1

2
ẊµẊµ +

1

2
m2 − ḃc

)
c− ḃiε2cċ

]
= ε1ε2

(
ẊµẌµ − ẊµẌµ − b̈cc− ḃċc− ḃcċ

)
= 0 [4.80]
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4.18 p 130: Eq (4.2.26) The Canonical Commutation Relations for the
Point Particle

Let us be extra careful regarding Euclidean vs Minkowski. The gauge-fixed action in Eu-
clidean time τ is (4.2.24)

SE =

∫ τf

τi

dτ

[
1

2
ẊµẊµ +

1

2
m2 − ḃc

]
[4.81]

We first rotate to Minkowski time, τ = it, and hence ∂τ = −i∂t. The Euclidean action then
becomes

SE =

∫ itf

iti

idt

[
−1

2
∂tX

µ∂tXµ +
1

2
m2 + i∂tbc

]
[4.82]

The exponential of the path integral becomes

e−SE = e
−
∫ itf
iti

idt [− 1
2
∂tXµ∂tXµ+ 1

2
m2+i∂tbc] = e

i
∫ itf
iti

dt [ 1
2
∂tXµ∂tXµ− 1

2
m2−i∂tbc] [4.83]

With Minkowski signature this needs to be eiSM so the Minkowski action is

SM =

∫ itf

iti

dt

[
1

2
∂tX

µ∂tXµ −
1

2
m2 − i∂tbc

]
[4.84]

We have used partial integration in the last term. The conjugate momenta are now

p = Πµ
X =

∂L
∂(∂tXµ)

= ∂tX
µ = iẊµ ; Πb =

∂L
∂(∂tb)

= −ic [4.85]

c is not a dynamic variable so its conjugate momentum is zero. We can impose the general
CCRs [x̂, p̂]± = i

[Xµ, pν ] = iηµν ⇒ [pµ, Xν ] = −iηµν

{b,−ic} = −i ⇒ {b, c} = 1 [4.86]

In order to find the BRST charge QB we follow the Noether procedure, see [2.36].
Recall how it works. We first work out that the Lagrangian transforms into a total derivative
∆L = ∂µJ µ. The Noether current is then given by jµ = (∂L/∂(∂µφ))∆φ − J µ. We work
with the Minkowski Lagrangian

LM =
1

2
∂tX

µ∂tXµ −
1

2
m2 − i∂tbc [4.87]
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In Minkowski time the BRST transformations are

δBX
µ = εc∂tX

µ

δBb = iε

(
1

2
∂tX

µ∂tXµ +
1

2
m2 + i∂tbc

)
δBc = εc∂tc [4.88]

We thus find

δBLM = ∂tX
µ∂t (εc∂tXµ)− i∂t

[
iε

(
1

2
∂tX

µ∂tXµ +
1

2
m2 + i∂tbc

)]
c− i∂tbεc∂tc

= ε
(
∂tc∂tX

µ∂tXµ + c∂tX
µ∂2Xµ + ∂tX

µ∂2Xµc+ i∂2
t bcc+ i∂tb∂tcc+ i∂tbc∂tc

)
= ε∂t(c∂tX

µ∂tXµ) [4.89]

We thus have J = c∂tX
µ∂tXµ and the BRST Noether current is

εj =
∂LM

∂(∂tXµ)
δBX

µ +
∂LM
∂(∂tb)

δBb− J

= ∂tX
µεc∂tX

µ − iciε
(

1

2
∂tX

µ∂tXµ +
1

2
m2 + i∂tbc

)
− εc∂tXµ∂tXµ

= ε

(
−c∂tXµ∂tXµ −

1

2
c∂tX

µ∂tXµ −
1

2
cm2 − ic∂tbc+ c∂tX

µ∂tXµ

)
= − εc

(
1

2
∂tX

µ∂tXµ +
1

2
cm2

)
= −εc1

2
(p2 +m2) [4.90]

We can define the BRST Noether current as, keeping in mind that the overall sign is irrele-
vant,

jB =
c

2
(p2 +m2) [4.91]

We can rewrite this in therms of the Hamiltonian H =
∑

i q̇ipi − L, which is

H = ∂tX
µ∂tXµ + ∂tb(−ic)−

1

2
∂tX

µ∂tXµ +
1

2
m2 + i∂tbc

=
1

2
∂tX

µ∂tXµ +
1

2
m2 =

1

2
(p2 +m2) [4.92]

We thus conclude that the BRST operator is given by

QB = cH [4.93]
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4.19 p 131: Eq (4.3.1) The BRST Transformation for the Bosonic String

The BRST transformations for the bosonic string can be easily obtained from those of the
point particle as the actions are so similar. The transformation for Xµ follows directly from
the worldsheet diffeomorphism setting the gauge parameter equal to iεc. The transforma-
tion for c follows a similar pattern. The transformation for b comes from δBb = εB and
replacing B by its value from the equation of motion of the metric. To be specific we have
δBb(z) = δBbzz = εδBBzz. We obtain the value of Bzz from the equation of motion for gzz.
The action is now S = Sm + Sg + Sg.f. with Sm and Sg the matter and ghost action and

Sg.f. =

∫
d2σ
√
g (−iBabFab) = − i

4π

∫
d2σ
√
g Bab(δab − gab) [4.94]

the gauge fixing action. The normalisation of Fab is just a convention. Note that there is
a sign difference in the gauge fixing term compared to Joe’s book. Now the equation of
motion from varying the worldsheet metric is

0 =
δ

δgab
(Sm + Sg + Sg.f.) =

√
g

4π
(T abX + T abg ) +

δ

δgab
Sg.f. [4.95]

We have

δgabSg.f. = δgab

[
− i

4π

∫
d2σ
√
g Bab(δab − gab)

]
= − i

4π

∫
d2σ
√
g

(
1

2
gcdδgcdB

ab(δab − gab)−Babδgab

)
= − i

4π

∫
d2σ
√
g

(
1

2
gabBcd(δcd − gcd)−Bab

)
δgab [4.96]

We now fix the gauge so that the first term between brackets is zero and have

δ

δgab(σ)
= +

i

4π

∫
d2σ′Bcd(σ′)

δgcd(σ
′)

δgab(σ)
= +

i

4π

∫
d2σ′Bcd(σ′)δac δ

b
dδ

2(σ′ − σ)

= +
i

4π
Bab(σ) [4.97]

We thus get for the gab equation of motion

0 =
1

4π
(T abX + T abg ) +

i

4π
Bab [4.98]

or

Bab = i(T abX + T abg ) [4.99]
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and

δBb = iε(TX + Tg) [4.100]

Note that the variation of c is

δBc = iεc∂c [4.101]

and similar for the anti-holomorphic part. See Joe’s errata page for an explanation on this.

4.20 p 131: Nilpotency of the BRST Transformation for the Bosonic
String

First we consider the action of δ2
B on Xµ:

δ
(2)
B δ

(1)
B Xµ = iε1δ

(2)
B (c∂Xµ + c̃∂̄Xµ)

= iε1
[
iε2c∂c∂X

µ + ciε2∂(c∂Xµ + c̃∂̄Xµ) + iε2c̃∂̄c̃∂̄X
µ + c̃iε2∂̄(c∂Xµ + c̃∂̄Xµ)

]
= ε1ε2

[
−c∂c∂Xµ + c∂(c∂Xµ + c̃∂̄Xµ)− c̃∂̄c̃∂̄Xµ + c̃∂̄(c∂Xµ + c̃∂̄Xµ)

]
= ε1ε2

(
− c∂c∂Xµ + c∂c∂Xµ + cc∂2Xµ + c∂c̃∂̄Xµ + cc̃∂∂̄Xµ

− c̃∂̄c̃∂̄Xµ + c̃∂̄c∂Xµ + c̃c∂̄∂Xµ + c̃∂̄c̃∂̄Xµ + c̃c̃∂̄2Xµ
)

= ε1ε2
(
− c∂c∂Xµ + c∂c∂Xµ + 0 + 0 + 0− c̃∂̄c̃∂̄Xµ + 0 + 0 + c̃∂̄c̃∂̄Xµ + 0

)
= 0 [4.102]

Next, consider

δ
(2)
B δ

(1)
B c = iε1δ

(2)
B c∂c = iε1 (iε2c∂c∂c+ ciε2c∂c)

= ε1ε2(c∂c∂c+ cc∂c) = 0 [4.103]

Finally we consider

δ
(2)
B δ

(1)
B b = iε1δ

(2)
B (TX + Tg) [4.104]

We work out the BRST transformations of the two energy-momentum tensors separately

δBTX = δB

(
− 1

α′
∂Xµ∂Xµ

)
= −2iε

α′
∂Xµ∂(c∂Xµ + c̃∂̄Xµ)

= − 2iε

α′
(∂c∂Xµ∂Xµ + c∂X∂2X) [4.105]
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where we have used the equations of motion ∂c̃ = ∂∂̄Xµ = 0. For the ghost energy
momentum tensor we find, using (2.5.11) with λ = 2

δBTg = δB(−∂bc− 2b∂c)

= − iε∂(TX + Tg)c− ∂biεc∂c− 2iε(TX + Tg)∂c− 2biε∂(c∂c)

=
2iε

α′
∂Xµ∂2Xµc− iε(−∂2bc− ∂b∂c− 2∂b∂c− 2b∂2c)c− ∂biεc∂c

+
2iε

α′
∂X∂X∂c− 2iε(−∂bc− 2b∂c)∂c− 2biε∂c∂c− 2biεc∂2c

= iε

(
2

α′
∂Xµ∂2Xµc+ 3∂b∂cc+ 2b∂2cc− ∂b∂cc+

2

α′
∂X∂X∂c− 2∂b∂cc− 2b∂2cc

)
=

2iε

α′
(
∂Xµ∂2Xµc+ ∂X∂X∂c

)
[4.106]

We thus see that

δ
(2)
B δ

(1)
B b = iε1δ

(2)
B (TX + Tg)

= iε1

[
− 2iε2

α′
(∂c∂Xµ∂Xµ + c∂X∂2X) +

2iε2
α′
(
∂Xµ∂2Xµc+ ∂X∂X∂c

) ]
= 0 [4.107]

We have thus indeed shown that δ2
B = 0 up to the equations of motion.

4.21 p 131: Eq (4.3.3) The BRST Current for the Bosonic String

We will not derive the expression of the BRST current for the bosonic string from Noether’s
theorem. Those with an inclination for tedious calculations are invited to do so. Rather,
we will show that the current (4.3.3) generates the correct BRST transformations of the
field. We will also show that (1) the BRST current is a spin three primary field if the central
charge of the matter sector is 26 and (2) how nilpotency follows from the OPE of the BRST
current with itself. To do this, we first need the relevant OPES of the BRST current with
the fields.

4.22 p 132: Eq (4.3.4) OPEs with the BRST Current

We start with the OPE of the BRST current with the Xµ field

jB(z)Xµ(w) =

[
cTm(z) + bc∂c(z) +

3

2
∂2c(z)

]
Xµ(w)

= cTm(z)Xµ(w) =
c∂Xµ(w)

z − w
[4.108]
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In order to find the BRST transformation of Xµ we can use the usual contour integration

δBX
µ(w) =iε

∮
Cw

dz

2π
jB(z)Xµ(w) = iε

∮
Cw

dz

2π

c∂Xµ(w)

z − w
= iεc∂Xµ(w) [4.109]

which is (4.3.1a).
We then consider

jB(z)b(w) =

[
cTm(z) + bc∂c(z) +

3

2
∂2c(z)

]
b(w)

=Tm(z)c(z)b(w)− b∂c(z)c(z)b(w) + bc(z)∂c(z)b(w) +
3

2
∂2c(z)b(w)

=
Tm(z)

z − w
− b∂c(z)

z − w
− bc(z)

(z − w)2
+

3

(z − w)3

=
Tm(w)

z − w
− b∂c(w)

z − w
− bc(w) + (z − w)∂(bc)(w)

(z − w)2
+

3

(z − w)3

=
3

(z − w)3
+
−bc(w)

(z − w)2
+

(Tm − ∂bc− 2b∂c)(w)

z − w

=
3

(z − w)3
+

jg(w)

(z − w)2
+

(Tm + T g)(w)

z − w
[4.110]

where we have used the definition of the ghost current (2.5.14), jg = −bc and of the ghost
energy momentum tensor T g = −∂bc − 2b∂c. The BRST transformation of b follows from
the contour integration

δBb(w) =iε

∮
Cw

dz

2π
jB(z)b(w) = iε

∮
Cw

dz

2π

[
3

(z − w)3
+

jg(w)

(z − w)2
+

(Tm + T g)(w)

z − w

]
= iε

(
Tm(w) + T g(w)

)
[4.111]

which is (4.3.1b).
Next we consider

jB(z)c(w) =

[
cTm(z) + bc∂c(z) +

3

2
∂2c(z)

]
c(w)

= b(z)c(w)c∂c(z) =
c∂c(w)

z − w
[4.112]

the BRST transformation of c is then given by

δBc(w) =iε

∮
Cw

dz

2π
jB(z)c(w) = iε

∮
Cw

dz

2π

c∂c(w)

z − w
= iεc∂c(w) [4.113]

which is (4.3.1c).
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There are, of course, similar relations for j̃B and we thus conclude that these currents
indeed generate the BRST transformations.

Finally, consider a general primary matter field Om

jB(z)Om(w) =

[
cTm(z) + bc∂c(z) +

3

2
∂2c(z)

]
Om(w)

= cTm(z)Om(w) = c(z)

[
hOm(w)

(z − w)2
+
∂Om(w)

z − w

]
=
hcOm(w)

(z − w)2
+
h∂cOm(w) + c∂Om(w)

z − w
[4.114]

For completeness, we work out the BRST transformation of such a field

δBOm(w) =iε

∮
Cw

dz

2π
jB(z)Om(w) = iε

∮
Cw

dz

2π

h∂cOm(w) + c∂Om(w)

z − w
= iεh∂cOm(w) + c∂Om(w) [4.115]

4.23 p 132: Eq (4.3.6) The Anticommutator {QB, bm}

We use (2.6.15) for Grassmann fields

{Q, b(z)} = Resz1→zj(z1)b(z) [4.116]

Extracting the mode bm =
∮

dz
2πiz

m+1b(z) we find

{Q, bm} =

∮
dz

2πi
zm+1Resz1→zj(z1)b(z)

=

∮
dz

2πi
zm+1Resz1→z

[
3

(z1 − z)3
+

jg(z)

(z1 − z)2
+

(Tm + T g)(z)

z1 − z

]
=

∮
dz

2πi
zm+1(Tm + T g)(z) = Lmm + Lgm [4.117]

Let me make two simple remarks. First the reader shall not be confused by the superscript
m denoting the matter field and the subscript m being a Laurent index. Second, and last,
note that QB is the conserved charge of the BRST current. Because the BRST current is a
dimension one field its Laurent expansion is jB m =

∮
dz
2πiz

mjB(z) and so QB ≡ jB 0. The
anticommutator of b with any other mode of the the BRST current will include contribu-
tions form the higher order poles of the OPE as well. See the derivation of the Virasoro
operator [2.110] if that is not clear.
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4.24 p 132: Eq (4.3.7) The Mode Expansion of the BRST Operator

We focus on the holomorphic part as the anti-holomorphic part is similar. We need to work
out QB =

∮
dz jB(z) with jB = ◦

◦cT ◦◦ + ◦
◦bc∂c◦◦ + 3

2∂
2c in terms of the underlying modes. We

have here included explicitly the (creation-annihilation) normal ordering symbols as they
will be needed in the mode expansions. Let us do the three terms separately. We don’t
write the m for the matter sector as it will be understood and use the standard Laurent
expansion for w dimension h field: O(h) =

∑
nO

(h)
n /zn+h

Q
(1)
B =

∮
dz

∞∑
m,n=−∞

◦
◦
cm
zm−1

Ln
zn+2

◦
◦ [4.118]

Because the cm and Ln commute there is no normal ordering ambiguity and we can drop
the normal ordering signs and find

Q
(1)
B =

∞∑
m,n=−∞

∮
dz

cmLn
zm+n+1

=

∞∑
m,n=−∞

cmLnδm+n,0 =

∞∑
n=−∞

cnL−n [4.119]

For the second term we find

Q
(2)
B =

∮
dz

∞∑
`,m,n=−∞

◦
◦
b`
z`+2

cm
zm−1

−(n− 1)cn
zn

◦
◦

= −
∞∑

`,m,n=−∞
(n− 1)

∮
dz

◦
◦b`cmcn◦◦

z`+m+n+1
[4.120]

There is a potential normal ordering ambiguity when b and c don’t anti-commute, i.e. when
`+m = 0 or `+ n = 0. Ignoring this for the moment we find

Q
(2)
B = −

∞∑
`,m,n=−∞

(n− 1)b`cmcnδ`+m+n = −
∞∑

m,n=−∞
(n− 1)cmcnb−m−n [4.121]

We have moved the b−m−n to the right. This is fine, because moving it to the right will only
add contributions of the form c0 which we will include in the normal ordering constant that
we will determine in a different way. We also note that

∑
m,n cmcnb−m−n = 0 by symmetry

considerations. We can also antisymmetrize the expression and get

Q
(2)
B =

∞∑
m,n=−∞

mcmcnb−m−n =

∞∑
m,n=−∞

m− n
2

◦
◦cmcnb−m−n◦◦ [4.122]
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where we have reintroduced the creation-annihilation normal ordering symbols as the dif-
ference will be in the normal ordering constant c0. Finally, the last term 3

2∂
2c gives

Q
(3)
B =

3

2

∮
dz

∞∑
n=−∞

n(n− 1)
cn
zn+1

=
3

2

∞∑
n=−∞

n(n− 1)cnδn,0 = 0 [4.123]

As expected, it doesn’t contribute to the BRST charge as it is a total derivative. We conclude
that the BRST charge is given by

QB =
∞∑

n=−∞
cnL

m
−n +

∞∑
m,n=−∞

m− n
2

◦
◦cmcnb−m−n◦◦ + aBc0 + c.c. [4.124]

where aB is the normal ordering constant and c.c. stands for the anti-holomorphic part.
We have reintroduced the superscript m to denote the matter fields and could add creation
annihilation normal ordering symbols in the first sum, but it wouldn’t make a difference as
cn and Lmm commute.

4.25 p 132: Eq (4.3.7) The BRST Normal Ordering Constant

We have

{QB, b0} =
∞∑

n=−∞
{cnLm−n, b0}+

∞∑
m,n=−∞

m− n
2
{◦◦cmcnb−m−n◦◦, b0}+ aB{c0, b0} [4.125]

Split the calculation in three. First,

P1 =
∞∑

n=−∞
Lm−nδn,0 = Lm0 [4.126]

Next

P2 =
1

2

∞∑
m=−∞

[ −1∑
n=−∞

(m− n){−◦◦cncmb−m−n◦◦, b0}+m{◦◦cmc0b−m◦◦, b0}

+

∞∑
n=1

(m− n){−◦◦cmb−m−ncn◦◦, b0}

]
[4.127]
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We work this out in three parts as well, P2 = 1
2(P2a + P2b + P2c) with

P2a = −
−1∑

m=−∞

−1∑
n=−∞

(m− n){◦◦cncmb−m−n◦◦, b0}+

−1∑
n=−∞

n{◦◦cnc0b−n◦◦, b0}

−
∞∑
m=1

−1∑
n=−∞

(m− n){◦◦cncmb−m−n◦◦, b0}

= −
−1∑

m=−∞

−1∑
n=−∞

(m− n){cncmb−m−n, b0}+
−1∑

n=−∞
n{cnc0b−n, b0}

+

∞∑
m=1

−1∑
n=−∞

(m− n){cnb−m−ncm, b0} [4.128]

We now use the fact that for four Grassmann numbers f1, · · · , f4 we have

{f1f2f3, f4} = f1f2{f3, f4} − f1{f2, f4}f3 + {f1, f4}f2f3 [4.129]

which can be easily seen by working out both sides. This gives

P2a = −
−1∑

m=−∞

−1∑
n=−∞

(m− n)(−cnδm,0b−m−n + δn,0cmb−m−n) +
−1∑

n=−∞
n(−cnb−n + δn,0c0b−n)

+

∞∑
m=1

−1∑
n=−∞

(m− n)(cnb−m−nδm,0 + δn,0b−m−ncm) = −
−1∑

n=−∞
ncnb−n [4.130]

as neither m nor n can be zero in any of the sums. Next, we have

P2b =
−1∑

m=−∞
m{◦◦cmc0b−m◦◦, b0}+

∞∑
m=1

m{◦◦cmc0b−m◦◦, b0}

=

−1∑
m=−∞

m{cmc0b−m, b0} −
∞∑
m=1

m{b−mc0cm, b0}

=
−1∑

m=−∞
m(−cmb−m + δm,0c0b−m)−

∞∑
m=1

(b−mc0δm,0 − b−mcm)

= −
−1∑

m=−∞
mcmb−m +

∞∑
m=1

mb−mcm [4.131]
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The last part of P2 is

P2c = −
−1∑

m=−∞

∞∑
n=1

(m− n){◦◦cmb−m−ncn◦◦, b0}+
∞∑
n=1

n{◦◦c0b−ncn◦◦, b0} −
∞∑
m=1

∞∑
n=1

(m− n){◦◦cmb−m−ncn◦◦, b0}

= −
−1∑

m=−∞

∞∑
n=1

(m− n){cmb−m−ncn, b0} −
∞∑
n=1

n{b−nc0cn, b0}+
∞∑
m=1

∞∑
n=1

(m− n){b−m−ncmcn, b0}

= −
−1∑

m=−∞

∞∑
n=1

(m− n)(cmb−mδn,0 + δm,0b−ncn)−
∞∑
n=1

n(b−nc0δn,0 − b−ncn)

+
∞∑
m=1

∞∑
n=1

(m− n)(b−mcmδn,0 − b−nδm,0cn)

= +

∞∑
n=1

nb−ncn [4.132]

Collecting the different contributions we have

P2 =
1

2

(
−

−1∑
n=−∞

ncnb−n −
−1∑

m=−∞
ncmb−m +

∞∑
m=1

nb−mcm +
∞∑
n=1

nb−ncn

)

= −
−1∑

n=−∞
ncnb−n +

∞∑
m=1

nb−mcm =

∞∑
n=−∞

n◦◦b−ncn◦◦ = −
∞∑

n=−∞
n◦◦bnc−n◦◦ [4.133]

We now use the mode expansion of the ghost energy momentum tensor (2.7.21) with λ = 2

Lg0 = −
∞∑

n=−∞
n◦◦bnc−n◦◦ − 1 [4.134]

Therefore

P2 = Lg0 + 1 [4.135]

Finally, we have immediately P3 = aB. Thus

{QB, b0} =P1 + P2 + P3 = Lm0 + Lg0 + 1 + aB [4.136]

As this needs to be Lm0 + Lg0 we find indeed that

aB = −1 [4.137]
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4.26 p 132: Eq (4.3.10) The jB(z)jB(w) OPE and the Nilpotency of the
BRST Charge

We have

jB(z)jB(w) =

(
cTm + bc∂c+

3

2
∂2c

)
(z)

(
cTm + bc∂c+

3

2
∂2c

)
(w)

= cTm(z)cTm(w) + cTm(z)bc∂c(w) + bc∂c(z)cTm(w) + bc∂c(z)bc∂c(w)

+ bc∂c(z)
3

2
∂2c(w) +

3

2
∂2c(z)bc∂c(w) [4.138]

We split this calculation in six

jj1 = cTm(z)cTm(w) = c(z)c(w)Tm(z)Tm(w)

= c(z)c(w)

[
cm/2

(z − w)4
+

2Tm(w)

(z − 3)2
+
∂Tm(w)

z − w

]
=

[
c(w) + (z − w)∂c(w) +

1

2
(z − w)2∂2c(w) +

1

6
(z − w)3∂3c(w)

]
c(w)

×
[

cm/2

(z − w)4
+

2Tm(w)

(z − w)2
+
∂Tm(w)

z − w

]
=

(cm/2)∂cc(w)

(z − w)3
+

(cm/4)∂2cc(w)

(z − w)2
+

(cm/12)∂3cc(w) + 2∂ccTm(w)

z − w
[4.139]

jj2 = cTm(z)bc∂c(w) = c(z)b(w)Tm(z)c∂c(w) =
Tm(z)c∂c(w)

z − w

= − ∂ccTm(w)

z − w
[4.140]

jj3 = bc∂c(z)cTm(w) = b(z)c(w)c∂c(z)Tm(w) =
c∂c(z)Tm(w)

z − w

= − ∂ccTm(w)

z − w
[4.141]

jj4 = bc∂c(z)bc∂c(w)

= b(z)c(w)
[
c(z)b(w)∂c(z)∂c(w)− ∂c(z)b(w)c(z)∂c(w)

]
+ b(z)∂c(w)

[
− c(z)b(w)∂c(z)c(w) + ∂c(z)b(w)c(z)c(w)

]
=

1

z − w

[
∂c(z)∂c(w)

z − w
+
c(z)∂c(w)

(z − w)2

]
+

1

(z − w)2

[
−∂c(z)c(w)

z − w
− c(z)c(w)

(z − w)2

]
= − c(z)c(w)

(z − w)4
+
c(z)∂c(w)− ∂c(z)c(w)

(z − w)3
+
∂c(z)∂c(w)

(z − w)2
[4.142]
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Combining the denominators

jj4 =
−∂cc(w) + c∂c(w)− ∂cc(w)

(z − w)3
+
−1

2∂
2cc(w)− ∂2cc(w)

(z − w)2

+
−1

6∂
3cc(w) + 1

2∂
2c∂c(w)− 1

2∂
3cc(w) + ∂2cc(w)

z − w

=
−3∂cc(w)

(z − w)3
+
−3

2∂
2cc(w)

(z − w)2
+
−2

3∂
3cc(w) + 3

2∂
2c∂c(w)

z − w
[4.143]

Next

2

3
jj5 = bc∂c(z)

3

2
∂2c(w) = b(z)∂2c(w)c∂c(z) =

2c∂c(z)

(z − w)3

=
−2∂cc(w)

(z − w)3
+

2c∂2c(w)

(z − w)2
+
∂c∂2c(w) + c∂3c(w)

z − w

=
−2∂cc(w)

(z − w)3
+
−2∂2cc(w)

(z − w)2
+
−∂2c∂c(w)− ∂3cc(w)

z − w
[4.144]

Finally

2

3
jj6 = ∂2c(z)bc∂c(w) = ∂2c(z)b(w)c∂c(w) = − 2∂c(w)c

(z − w)3
[4.145]

Let us now bring everything together. We start with the numerator of (z − w)−3

o
(
(z − w)−3

)
= (cm/2)∂cc(w)− 3∂cc(w)− 3

2
2∂cc(w)− 3

2
2∂cc(w)

 
(cm − 18)∂cc(w)

2(z − w)3
[4.146]

Next

o
(
(z − w)−2

)
= (cm/4)∂2cc(w)− 3

2
∂2cc(w)− 3

2
2∂2cc(w)

 
(cm − 18)∂2cc(w)

4(z − w)2
[4.147]

Finally

o
(
(z − w)−1

)
= (cm/12)∂3cc(w) + 2∂ccTm(w)− ∂ccTm(w)− ∂ccTm(w)

− 2

3
∂3cc(w) +

3

2
∂2c∂c(w) +

3

2
(−∂2c∂c(w)− ∂3cc(w))

 
(cm − 26)∂3cc(w)

12(z − w)
[4.148]
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We conclude that

jB(z)jB(w) =
(cm − 18)∂cc(w)

2(z − w)3
+

(cm − 18)∂2cc(w)

4(z − w)2
+

(cm − 26)∂3cc(w)

12(z − w)
[4.149]

Let us conclude by showing explicitly that this leads a nilpotent charge. We have Q2
B =

1
2{QB, QB} and we can compute the anti-commutator from a contour integral

{QB, QB} =

∮
dz2

2πi
Resz1→z2jB(z1)jB(z2)

=

∮
dz2

2πi
Resz1→z2

[
(cm − 18)∂cc(z2)

2(z1 − z2)3
+

(cm − 18)∂2cc(z2)

4(z1 − z2)2
+

(cm − 26)∂3cc(z2)

12(z1 − z2)

]

=
(cm − 26)

12

∮
dz2

2πi
∂3cc(z2) [4.150]

To work this out, first note that ∂3c(z) = −
∑

m(m− 1)m(m+ 1)cmz
−m−2 and thus

c∂3c(z) = −
∞∑

m,n=−∞

(m3 −m)◦◦cncm◦◦

zn+m+1
[4.151]

Therefore

{QB, QB} = − (cm − 26)

12

∮
dz2

2πi

∞∑
m,n=−∞

(m3 −m)◦◦cncm◦◦

zn+m+1

= −(cm − 26)

12

∞∑
m=−∞

(m3 −m)◦◦c−mcm◦◦ [4.152]

The normal ordering causes this to be zero on physical states, as it should because physical
states are annihilated by the BRST charge. But the operator is only nilpotent if cm = 26.

4.27 p 133: Eq (4.3.11) The BRST Current as a Primary Field

Recalling that T = Tm + T g and jB = cTm(w) + 1
2T

g(w) + γ∂2c we have

T (z)jB(w) = (Tm(z) + T g(z))

(
cTm(w) +

1

2
cT g(w) + γ∂2c

)
= c(w)Tm(z)Tm(w) + Tm(w)T g(z)c(w) +

1

2
c(w)T g(z)T g(w)

+
1

2
T g(w)T g(z)c(w) + γT g(z)∂2c(w) [4.153]
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We have replaced momentarily the factor 3/2 by a parameter γ. As per our Standard
Operating Procedure we split this calculation in five

Tj1 = c(w)Tm(z)Tm(w) =
cmc(w)

2(z − w)4
+

2cTm(w)

(z − w)2
+
c∂Tm(w)

z − w

Tj2 =Tm(w)T g(z)c(w) =
−cTm(w)

(z − w)2
+
Tm∂c(w)

z − w
[4.154]

We take the third and fourth term together. Indeed we need to be careful here because
cT g(w) is a composite operator and so the normal inside this operator is important. So
it is easiest to compute these OPEs from the basic underlying fields, i.e. using T g(z) =
(c∂b+ 2∂cb)(z) and 1

2cT
g(w) = bc∂c(w)

Tj3 + Tj4 =T g(z)
1

2
cT g(w) = (c∂b+ 2∂cb)(z)bc∂c(w) [4.155]

Let us first work out the terms with double contractions

Tj34;2 = − c(z)b(w)∂b(z)c(w)∂c(w) + c(z)b(w)∂b(z)∂c(w)c(w)

− 2∂c(z)b(w)b(z)c(w)∂c(w) + 2∂c(z)b(w)b(z)∂c(w)c(w)

=
∂c(w)

(z − w)3
+
−2c(w)

(z − w)4
+

2∂c(w)

(z − w)3
+
−2c(w)

(z − w)4
=
−4c(w)

(z − w)4
+

3∂c(w)

(z − w)3
[4.156]

The terms with only one contraction are

Tj34;1 = − c(z)b(w)∂b(z)c∂c(w)− ∂b(z)c(w)c(z)b∂c(w) + ∂b(z)∂c(w)c(z)bc(w)

− 2∂c(z)b(w)b(z)c∂c(w)− 2b(z)c(w)∂c(z)b∂c(w) + 2b(z)∂c(w)∂c(z)bc(w)

=
−∂b(z)c∂c(w)

z − w
+
c(z)b∂c(w)

(z − w)2
+
−2c(z)bc(w)

(z − w)3

+
2b(z)c∂c(w)

(z − w)2
+
−2∂c(z)b∂c(w)

z − w
+

2∂c(z)bc(w)

(z − w)2

=
−2cbc(w)

(z − w)3
+

(cb∂c− 2∂cbc+ 2bc∂c+ 2∂cbc)(w)

(z − w)2

+
(−∂bc∂c+ ∂cb∂c− ∂2bc+ 2∂bc∂c− ∂cb∂c+ 2∂2cbc)(w)

z − w

=
−b∂cc(w)

(z − w)2
+
−(∂b∂cc+ b∂2cc)(w)

z − w
[4.157]

Therefore

Tj34 =
−4c(w)

(z − w)4
+

3∂c(w)

(z − w)3
+
−b∂cc(w)

(z − w)2
+
−(∂b∂cc+ b∂2cc)(w)

z − w
[4.158]
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Finally

Tj5 = γT g(z)∂2c(w) = γ∂2
w

[
−c(w)

(z − w)2
+
∂c(w)

z − w

]
= γ∂w

[
−2c(w)

(z − w)3
+
−∂c(w)

(z − w)2
+

∂c(w)

(z − w)2
+
∂2c(w)

z − w

]
= γ∂w

[
−2c(w)

(z − w)3
+
∂2c(w)

z − w

]
=
−6γc(w)

(z − w)4
+
−2γ∂c(w)

(z − w)3
+

+γ∂2c(w)

(z − w)2
+
γ∂3c(w)

z − w
[4.159]

Let us look at the orders of (z − w) one by one

o
(
(z − w)−4

)
=

[
1

2
cm − 4− 6γ

]
c =

cm − 8− 12γ

2
c

o
(
(z − w)−3

)
= (3− 2γ)∂c [4.160]

Also

o
(
(z − w)−2

)
= 2cTm − cTm − b∂cc+ γ∂2c = Tm +

1

2
cT g + γ∂2c = jB

o
(
(z − w)−1

)
= c∂Tm + Tm∂c+ ∂b+ c∂c+ bc∂2c+ γ∂3c

= ∂

(
cTm +

1

2
cT g + γ∂3c

)
= ∂jB [4.161]

We come to our final result

T (z)jB(w) =
(cm − 8− 12γ)c(w)

2(z − w)4
+

(3− 2γ)∂c(w)

(z − w)3
+

jB
(z − w)2

+ +
∂jB
z − w

[4.162]

We know that nilpotency requires cm = 26. It the follows that choosing γ = 3/2 ensures
not only that the (z − w)−4 cancels but also the (z − w)−3 term, so that jB is a dimension
one primary field, i.e. a conformal tensor:

T (z)jB(w) =
jB

(z − w)2
+ +

∂jB
z − w

[4.163]

4.28 p 133: Eq (4.3.15) The Algebra Satisfied by the Constraints

The fact that the GmI satisfy the constraint algebra is by their definition as it is the algebra
of the residual symmetry. Let us therefore check that the GgI satisfy this algebra

[GgI , G
g
J ] = − gKILgMJN [cLbK , c

NbM ] [4.164]
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We now use the identity for four Grassmann numbers

[f1f2, f3f4] = f1{f2, f3}f4 − f1f3{f2, f4}+ {f1, f3}f4f2 − f3{f1, f4}f2 [4.165]

which is easily checked. Keeping only the non-vanishing terms

[GgI , G
g
J ] = − gKILgMJN (δNKc

LbM − δLMcNbK) = −gKILgMJKcLbM + gKILg
L
JNc

NbK

= (−gKILgMJK + gMIKg
K
JL)cLbM = (gMJKg

K
LI + gMIKg

K
JL)cLbM

= − gMLKgKIJcLbM = igKIJ(−igMKLcLbM ) = igKIJG
g
K [4.166]

We have used the fact that gIJK is antisymmetric in its lower indices and also that it satisfies
the Jacobi identity.

4.29 p 133: Eq (4.3.16) The Nilpotency of the General BRST Charge

We have

{QB, QB} = {cIGmI +
1

2
cIGgI , c

JGmJ +
1

2
cJGgJ}

= {cIGmI , cJGmJ }+
1

2
{cIGmI , cJG

g
J}+

1

2
{cIGgI , c

JGmJ }+
1

4
{cIGgI , c

JGgJ}
[4.167]

As per our standard operating procedure we split this calculation in four parts. To do this
we need the identity

{f1b1, f2b2} = f1[b1, f2]b2 + f1f2[b1, b2] + {f1, f2}b2b1 + f2[b2, f1]b1 [4.168]

We will also need

[GgI , c
M ] = − igKIJ [cJbK , c

M ] = −igKIJcJ{bK , cM} = −igKIJcJδMK
= − igMIJcJ [4.169]

Thus we find, keeping only the non-zero (anti)-commutators

qq1 = {cIGmI , cJGmJ } = cIcJ [GmI , G
m
J ] = igKIJc

IcJGmK [4.170]

2qq2 = {cIGmI , cJG
g
J} = cJ [GgJ , c

I ]GmI = cJ(−igIJKcK)GmI

= − igIJKcJcKGmI = −igKIJcIcJGmK [4.171]

2qq3 = {cIGgI , c
JGmJ } = cI [GgI , c

J ]GmJ = cI(−igJIKcK)GmJ

= − igJIKcIcKGmJ = −igKIJcIcJGmK [4.172]
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We see that qq1 + qq2 + qq3 = 0. So it remains to show that the fourth contribution is zero

4qq1 = {cIGgI , c
JGgJ} = cI [GgI , c

J ]GgJ + cIcJ [GgI , G
g
J ] + cJ [GgJ , c

I ]GgI

= cI(−igJIKcK)GgJ + cIcJ igKIJG
g
K + cJ(−igIJKcK)GgI

=i(gJIKc
KcIGgJ + gKIJc

IcJGgK + gIJKc
KcJGgI

= gJIKc
KcIgMJNc

JbM + gKIJc
IcJgMKNc

NbM + gIJKc
KcJgMINc

NbM

= gKIJc
JcIgMKLc

LbM + gKIJc
IcJgMKLc

LbM + gKIJc
JcIgMKLc

LbM

= gKIJg
M
KL(cJcI + cIcJ + cJcI)cLbM = −gKIJgMKLcIcJcLbM = 0 [4.173]

Where this vanishes by the Jacobi identity.

4.30 p 134: Eq (4.3.17) The Hermitian Conjugate of the Ghost Modes

One could argue that it is trivial. But sometimes it is good to check the trivial things in
order to be sure that we don’t miss any details. It is certainly easy to work out that the
definitions (4.3.17) are sufficient conditions for the BRST operator to be Hermitian. But
let us also show that it is a necessary condition. Let us focus on the holomorphic modes,
the reasoning for the anti-holomorphic modes is the same.

We already know that L†m = L−m, so

Q†B =
∑
n

c†nL
†
−n +

1

2

∑
m,n

(m− n)◦◦cmcnb−m−n◦◦
† − c†0

=
∑
n

c†−nLn +
1

2

∑
m,n

(m− n)◦◦cmcnb−m−n◦◦
† − c†0 [4.174]

From the first term we deduce that c†−n = cn and Hermiticity of the BRST charge is implies
Hermiticity of

Q̃ =
∑
m,n

(m− n)◦◦cmcnb−m−n◦◦ [4.175]
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Let us work this out in detail

Q̃ =

[ −1∑
m=−∞

−1∑
n=−∞

(m− n) +
−1∑

m=−∞
m+

−1∑
m=−∞

∞∑
n=1

(m− n)−
−1∑

n=−∞
n+ 0−

∞∑
n=1

n

+

∞∑
m=1

−1∑
n=−∞

(m− n) +

∞∑
m=1

m+

∞∑
m=1

∞∑
n=1

(m− n)

]
◦
◦cmcnb−m−n◦◦

=
−1∑

m=−∞

−1∑
n=−∞

(m− n)cmcnb−m−n +
−1∑

m=−∞
mcmc0b−m −

−1∑
m=−∞

∞∑
n=1

(m− n)cmb−m−ncn

+
−1∑

n=−∞
ncnc0b−m−n −

∞∑
n=1

nb−m−nc0cn +
∞∑
m=1

−1∑
n=−∞

(m− n)cnb−m−ncm

−
∞∑
m=1

mb−mc0cm +

∞∑
m=1

∞∑
n=1

(m− n)b−m−ncmcn [4.176]

From this we find, using cm† = c−m.

Q̃† =

−1∑
m=−∞

−1∑
n=−∞

(m− n)b†−m−nc−nc−m +

−1∑
m=−∞

mb†−mc0c−m −
−1∑

m=−∞

∞∑
n=1

(m− n)c−nb
†
−m−nc−m

+
−1∑

n=−∞
nb†−m−nc0c−n −

∞∑
n=1

nc−nc0b
†
−m−n +

∞∑
m=1

−1∑
n=−∞

(m− n)c−mb
†
−m−nc−n

−
∞∑
m=1

mc−mc0b
†
−m +

∞∑
m=1

∞∑
n=1

(m− n)c−nc−mb
†
−m−n [4.177]

Changing the indices m→ −m and n→ −n gives

Q̃† =
∞∑
m=1

∞∑
n=1

(−m+ n)b†m+ncncm −
∞∑
m=1

mb†mc0cm −
∞∑
m=1

−1∑
n=−∞

(−m+ n)cnb
†
m+ncm

−
∞∑
n=1

nb†m+nc0cn +

−1∑
n=−∞

ncnc0b
†
m+n +

−1∑
m=−∞

∞∑
n=1

(−m+ n)cmb
†
m+ncn

+
−1∑

m=−∞
mcmc0b

†
m +

−1∑
m=−∞

−1∑
n=−∞

(−m+ n)cncmb
†
m+n [4.178]

Keeping in mind that the ghost modes create different states in the Hilbert space, we can
equate the different powers of cmcm between QB and QB†. One then sees that this indeed
implies that necessarily b†m = b−m for n ∈ Z.
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4.31 p 134: Eq (4.3.18) The Ghost Insertions for the Inner Product of
the Ground States

Recall that because of the anti-commutator {b0, c0} = 1 the ghost ground state is degen-
erate, i.e. we have two ground states |↓〉 and |↑〉. Their relations are shown in the figure
below

|↑〉

|↓〉

c0 b0

c0

b0

0

Figure 4.1: The degenerate ghost vacuum

Note that |0; k〉 actually means |0; k〉 ⊕ |↓]〉 where the first part is the ground state of the
matter part and the latter the ground state of the ghost part. For the closed string

(i 〈0; k| c̃0c0 |0; k〉)∗ = −i 〈0; k| c†0c̃
†
0 |0; k〉 = −i 〈0; k| c0c̃0 |0; k〉 = i 〈0; k| c̃0c0 |0; k〉 [4.179]

justifying the need for the i in that inner product.

4.32 p 134: QB takes Ĥ into itself

To see that [QB, L0] vanishes, recall that the BRST current is a primary dimension one field
in the critical dimension, see (4.3.11) and that the BRST charge is the zero mode of the
BRST current, see the text below [4.117]. From (2.6.24) it then follows immediately that
[QB, L0] = 0.

Now assume |ψ〉 ∈ Ĥ, then

b0QB |ψ〉 = ({b0, QB} −QBb0) |ψ〉 = L0 |ψ〉 = 0

L0QB |ψ〉 = ([L0, QB]−QBL0) |ψ〉 = 0 [4.180]

and therefore if |ψ〉 ∈ Ĥ then we also have QB |ψ〉 ∈ Ĥ

4.33 p 134: The Need for a New Inner Product on Ĥ

A level N state with a ghost zero mode |N ; k; c〉 = c0 |N ; k〉 has inner product

〈N ; k, c|N ′; k′; c〉 = 〈N ; k| c†0c0 |N ; k〉 = 〈N ; k| c0c0 |N ; k〉 = 0 [4.181]
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and similarly for |N ; k; b〉 = b0 |N ; k〉. Also the states in Ĥ satisfy the mass-shell condition
(4.3.20), i.e. L0 |ψ〉 = α′(p2 + m2) |ψ〉 = 0, hence not all kµ are independent as they have
to satisfy the mass shell condition. This means that in δ26(k − k′) there will be one delta
function that is automatically satisfies and give a δ(0). By defining a new inner product
without the ghost zero modes and X0 one takes away the problems so have a good inner
product. It seems obvious to me that the BRST charge remains Hermitian with this new
inner product.

4.34 p 135: Eq (4.3.23) The Level Zero Mass Shell Condition

The level zero state |0;k〉 has no ghosts or matter excitations. Therefore Nnb = Ncn =
Nµn = 0 and thus the mass shell condition (4.3.22) implies that α′(−k2) = α′m2 = −1 or
hence −k2 = −1/α′.

4.35 p 135: Eq (4.3.24) The Level Zero Physical State Condition

Using the expansion of the BRST charge in modes (4.3.7) we have

QB |0;k〉 =

[ ∞∑
n=−∞

cnL
m
−n +

1

2

∞∑
m,n=−∞

(m− n)◦◦cmcnb−m−n◦◦ − c0

]
|0;k〉 [4.182]

The first term, for n 6= 0, always has either ck or Lk with k ≥ 1 which annihilates |0; k〉. The
n = 0 term gives c0L

m
0 |0;k〉 with Lm0 given by (2.7.7), or at least the equivalent relation

for the open string,

Lm0 =α′p2 +
∞∑
n=1

αµ−nαµ n [4.183]

Thus c0L
m
0 |0;k〉 = α′k2c0 |0;k〉 = c0 |0;k〉. This cancels with the third term. In the second

term all the terms that have m 6= 0 and m 6= 0 clearly annihilate |0; k〉 due to the normal
ordering. The m = n = 0 term has a c2

0 that is zero by itself. So what remains is terms with
either m or n equal to zero, but not both. These are of the form

∑∞
n=−∞,n6=0 n

◦
◦c0cnb−n◦◦

but by normal ordering there is always an annihilation operator to the right so these terms
also annihilate |0; k〉. We thus find that indeed QB |0;k〉 = 0.

4.36 p 135: Eq (4.3.25) The Level One Mass Shell Condition

The state |ψ1〉 has one mode αµ−1, b−1 or c−1 and thus (4.3.22) gives

α′(−k2) = α′m2 = 1− 1 = 0 ⇒ k2 = 0 [4.184]
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4.37 p 135: Eq (4.3.26) The Level One Negative Norm States

The norm of the state is

〈ψ1||ψ1〉 = (e∗ · e+ β∗γ + γ∗β) 〈0;k||0;k〉 [4.185]

We can take a orthogonal basis for the eµ where the ν ’th element of eµ is given by δνµ. We
then have e0 = (1, 0, · · · , o) and thus (e0)2 = −1. All tho the ei have (ei)

2 + 1. That is one
negative norm state and 25 positive norm states. For the ghost excitations, let us take a
basis for which the corresponding state has β∗γ real. We then have β∗γ = (β∗γ)∗ = −γ ∗β,
the extra sign because of the Grassmann character. Thus β∗γ and γ ∗β have opposite signs;
one of them is necessarily positive norm, and the other one negative norm. We thus have
indeed 26 positive norm states and two negative norm states.

4.38 p 135: Eq (4.3.27) The Level One Physical State Condition

The physical state condition is

QB |ψ1〉 =

[ ∞∑
n=−∞

cnL−n +
1

2

∞∑
m,n=−∞

(m− n)◦◦cmcnb−m−n◦◦ − c0

]
×
(
eµα

µ
−1 + βb−1 + γc−1

)
|0;k〉 [4.186]

We split this in three

q1 =
∞∑

n=−∞
cnL−n

(
eµα

µ
−1 + βb−1 + γc−1

)
|0;k〉 [4.187]

We use

[Lk, α
µ
n] = −nαµk+n [4.188]

a relation that is easily checked by working out some examples, and find

q1 =
∞∑

n=−∞

(
cneµα

µ
−n−1 − βL−nδn−1,0

)
|0;k〉

=
∞∑

n=−∞
eµcnα

µ
−n−1 |0;k〉 − βL−1 |0;k〉 [4.189]

We have used the fact that [cn, βb−1] = −β{cn, b−1} as β is a Grassmann number. The
ghost mode cn requires n ≤ 0 and the matter mode requires −n − 1 ≤ 0, or equivalently
n ≥ −1. Combined, only the n = 0 and n = −1 terms are not zero and we have

q1 = (eµc0α
µ
−1 + eµc−1α

µ
0 − βL−1) |0;k〉 [4.190]
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Now, αµ0 |0;k〉 =
√

2α′kµ |0;k〉 and L−1 |0;k〉 = αµ−1αµ0 |0;k〉 =
√

2α′kµα
µ
−1 |0;k〉. Thus

q1 =
[
eµc0α

µ
−1 +

√
2α′(k · ec−1 − βk · α−1)

]
|0;k〉 [4.191]

Next

q2 =
1

2

∞∑
m,n=−∞

(m− n)◦◦cmcnb−m−n◦◦
(
eµα

µ
−1 + βb−1 + γc−1

)
|0;k〉 [4.192]

Acting on the first part eµα
µ
−1 |0;k〉 the ghost mode commute with the αµ−1 and annihilate

|0;k〉, just as they did for the level zero state.
For the second term, it is easiest to work out examples of ◦◦cmcnb−m−n◦◦b−1 for different

values of m and n. This is how it goes. We first only consider the the combinations where
n ≥ m:

1. For m = n we have ◦◦cmcmb−2m
◦
◦b−1. Irrespective whether m is positive, negative or zero, we

will the normal ordering will always keep the two cm’s together and hence this is zero.

2. For m = −3 we get the series

◦
◦ · · ·+ c−3c−2b5 + c−3c−1b4 + c−3c0b3 + c−3c1b2 + c−3c2b1 + · · · ◦◦b−1

Clearly normal ordering ensures each term vanishes.

3. For m = −2 we get the series

◦
◦ · · ·+ c−2c−1b3 + c−2c0b2 + c−2c1b1 + c−2c2b0 + · · · ◦◦b−1

Clearly normal ordering ensures each term vanishes here as well.

4. For m = −1 we get the series

◦
◦ · · ·+ c−1c0b1 + c−1c1b0 + c−1c2b−1 + · · · ◦◦b−1

After normal ordering, each term vanishes. Note that this time we need to use b0 |0;k〉 = 0.

5. For m = 0 we get the series

◦
◦ · · ·+ c0c1b−1 + c0c2b−2 + · · · ◦◦b−1

Here we should be concerned about the first term only. It gives b−1c0c1b−1 |0;k〉 = b−1c0 |0;k〉.

6. For m ≥ 1 we have a c2 or higher and so all terms are zero again.

In conclusion, the only non-vanishing contribution is (m,n) = (0, 1) and of course also its
opposite (m,n) = (1, 0). Thus the second term becomes

1

2
(−◦◦c0c1b−1

◦
◦b−1 + ◦

◦c1c0b−1
◦
◦b−1) |0;k〉 = −b−1c0c1b−1 |0;k〉 = −b−1c0 |0;k〉 [4.193]

For the third term we need both m and n to be smaller than one or they end up in
the right of the normal ordering, anti-commute through the c−1 and annihilate |0;k〉. If
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(m,n) = (0, 0) we have a c2
0 = 0. For (m,n) = (0,−1) we have ◦

◦c0c−1b1◦◦c−1 |0;k〉 =
−c−1c0b1c−1 |0;k〉 = −c−1c0 |0;k〉. All the other combinations of m and n annihilate |0;k〉
because we will have a bk with k ≥ 2. Thus the only contribution from the third term is

1

2
(−◦◦c−1c0b1◦◦c−1 + ◦

◦c0c−1b1◦◦c−1) |0;k〉 = −c−1c0b1c−1 |0;k〉 = −c−1c0 |0;k〉 [4.194]

Bringing the three terms together we find

q2 = (βb−1c0 + γc−1c0) |0;k〉 [4.195]

Finally

q3 = − c0

(
eµα

µ
−1 + βb−1 + γc−1

)
|0;k〉

= (−eµc0α
µ
−1 − βb−1c0 − γc−1c0) |0;k〉 [4.196]

We can now bring q1, q2 and q3 together and find

QB |ψ1〉 =
[
eµc0α

µ
−1 +

√
2α′(k · ec−1 − βk · α−1) + βb−1c0 + γc−1c0

− eµc0α
µ
−1 − βb−1c0 − γc−1c0

]
|0;k〉

=
√

2α′(k · ec−1 − βk · α−1) |0;k〉 [4.197]

We thus conclude that the state |ψ1〉 =
(
eµα

µ
−1 + βb−1 + γc−1

)
|0;k〉 is annihilated by the

BRST charge provided that
√

2α′(k · ec−1 − βk · α−1) |0;k〉 = 0 [4.198]

and this implies indeed the physical state conditions k · e = β = 0. In other words, level
one physical states are of the form(

eµα
µ
−1 + γc−1

)
|0;k〉 with k · e = 0 [4.199]

Let us now consider the norm of these states. The state c−1 |0;k〉 as follows from
(4.3.26) by setting eµ = β = 0. The find the norm of the other states, let us gos to a
basis where the momentum is k2 = (1, 1, 0, · · · , 0). This satisfies 2 = 0 as it should for
level one state which are massless. We now need 25 linearly independent vectors e that
satisfy k · e = 0, the 25 coming from the original 26 minus one condition. These are clearly
(1, 1, 0, · · · , 0) = k and (0, 0, 1, 0, · · · , 0) up to (0, · · · , 0, 1). The former has norm zero and
the 24 latter have positive norm. The level one physical state thus indeed has 24 positive
norm states and two zero norm states. The zero norm states are created by c−1 and by
e · α−1 = k · α−1.
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4.39 p 139: Eq (4.4.7) The Commutation Relations of the Light-Cone
Oscillators

[α+
m, α

−
n ] =

1

2
[α0
m + α1

m, α
0
n − α1

n] =
1

2

(
[α0
m, α

0
n]− [α1

m, α
1
n]
)

=
1

2

(
mη00δm+n,0 −mη11δm+n,0

)
= −mδm+n,0

[α±m, α
±
n ] =

1

2
[α0
m ± α1

m, α
0
n ± α1

n] =
1

2

(
[α0
m, α

0
n] + [α1

m, α
1
n]
)

=
1

2

(
mη00δm+n,0 +mη11δm+n,0

)
= 0 [4.200]

4.40 p 139: Eq (4.4.10) The Splitting of the BRST Operator

The (open string) BRST operator is

QB =
∞∑

n=−∞

(
cnL

X
−n + cnL

K
−n
)

+
1

2

∞∑
m,n=−∞

(m− n)◦◦cmcnb−m−n◦◦ − c0 [4.201]

Now

LXm =
1

2

∞∑
n=−∞

◦
◦α

µ
m−nαµ n

◦
◦

=
1

2

∞∑
n=−∞

(
−◦◦α0

m−nα
0
n
◦
◦ + ◦

◦α1
m−nα

1
n
◦
◦ +

d−1∑
J=2

◦
◦αJm−nα

J
n
◦
◦

)
[4.202]

and

−α0
m−nα

0
n + α1

m−nα
1
n = − 1

2
(α+

m−n + α−m−n)(α+
n + α−n ) +

1

2
(α+

m−n − α−m−n)(α+
n − α−n )

=
1

2

[
− α+

m−nα
+
n − α+

m−nα
−
n − α−m−nα+

n − α−m−nα−n

+ α+
m−nα

+
n − α+

m−nα
−
n − α−m−nα+

n + α−m−nα
−
n

]
= − α+

m−nα
−
n − α−m−nα+

n [4.203]

Hence

LXm =
1

2

∞∑
n=−∞

(
−◦◦α+

m−nα
−
n
◦
◦ − ◦◦α−m−nα+

n
◦
◦ +

d−1∑
J=2

◦
◦αJm−nα

J
n
◦
◦

)
[4.204]
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and

QB =
∞∑

n=−∞

[
1

2

∞∑
k=−∞

(
−cn◦◦α+

−n−kα
−
k
◦
◦ − cn◦◦α−−n−kα

+
k
◦
◦ +

d−1∑
J=2

cn◦◦α
J
−n−kα

J
k
◦
◦

)
+ cnL

K
−n

]

+
1

2

∞∑
m,n=−∞

(m− n)◦◦cmcnb−m−n◦◦ − c0 [4.205]

Let us now look at this. Any terms that have no light-cone oscillators will commute with
N lc and be part of Q0. All terms of the form α±` α

∓
m for `,m 6= 0 also commute with N lc,

as follows from counting the excitations and fall into Q0. Terms of the form α±` α
∓
0 for `¬0

can be written as
√

2α′k∓α±` and have and belong to Q1 for α−` and to Q−1 for α+
` . Finally,

terms that contain α±0 α
∓
0 = 2α′k±k∓ belong again to Q0

4.41 p 139: Eq (4.4.11) The Ghost Number of the BRST Operator

As cm has ghost number one and bm has ghost number minus one – see (2.723), it is clear
that QB has ghost number one, and also each individual Qj .

4.42 p 139: Eq (4.4.13) The Simplified BRST Operator Q1

To identify Q1 we need to find all terms in [4.205] that contain one and only one α+
0 .

These can only come from the first two terms and if k = 0 or k = −n and n 6= 0 . Thus

Q1 = − 1

2

∞∑
n=−∞
n6=0

(
cn◦◦α

+
0 α
−
−n
◦
◦ + cn◦◦α

−
−nα

+
0
◦
◦

)
[4.206]

As we can replace α+
0 by

√
2α′k+ we can also drop the normal ordering sign and find

Q1 = −
√

2α′k+
∞∑

n=−∞
n6=0

cnα
−
−n [4.207]

4.43 p 140: Eq (4.4.13) The Operator S

S = {Q1, R} = −
∑

m=−∞
m6=0

∑
=−∞
m6=0

{α−−mcm, α+
−nbn} [4.208]
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We use the identity [4.168]

{f1b1, f2b2} = f1[b1, f2]b2 + f1f2[b1, b2] + {f1, f2}b2b1 + f2[b2, f1]b1 [4.209]

S = {Q1, R} = −
∞∑

m=−∞
m6=0

∞∑
=−∞
m6=0

(
cmbn[α−−m, α

+
−n] + {cm, bn}α+

−nα
−
−m

)

= −
∞∑

m=−∞
m 6=0

∞∑
=−∞
m 6=0

(
− ncmbnδm+n + δm+nα

+
−nα

−
−m

)

=

∞∑
m=−∞
m 6=0

(
−mcmb−m − α+

mα
−
−m

)

=

−1∑
m=−∞

(
−mcmb−m − α+

mα
−
−m

)
+

∞∑
m=1

(
−mcmb−m − α+

mα
−
−m

)
=

∞∑
m=1

(
mc−mbm − α+

−mα
−
m −mcmb−m − α+

mα
−
−m

)
=

∞∑
m=1

(
mc−mbm − α+

−mα
−
m −m{cm, b−m}+mb−mcm − [α+

m, α
−
−m]− α−−mα+

m

)
=

∞∑
m=1

(
mc−mbm − α+

−mα
−
m −m+mb−mcm +m− α−−mα+

m

)
=

∞∑
m=1

(
mc−mbm +mb−mcm − α+

−mα
−
m − α−−mα+

m

)
[4.210]

4.44 p 140: The Cohomology of Q1

We repeat the arguments here more slowly. That always helps me. First we show the Q1

and S commute.

[Q1, S] ∝
∞∑

m=−∞
m6=0

∞∑
n=1

[
α−−mcm, nc−nbn + nb−ncn − α+

−nα
−
n − α−−nα+

n

]
[4.211]

We use

[f1, f2f3] = {f1, f2}f3 − f2{f1, f3} [4.212]
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and

[b1, b2b3] = [b1, b2]b3 + b2[b1, b3] [4.213]

to obtain

[Q1, S] ∝
∞∑

m=−∞
m 6=0

∞∑
n=1

(
− nα−−mc−n{cm, bn}+ nα−−m{cm, b−n}cn

− cm[α−−m, α
+
−n]α−n − cmα−n [α−−m, α

+
n ]
)

=

∞∑
m=−∞
m 6=0

∞∑
n=1

(
− nα−−mc−nδm+n,0 + nα−−mδm−ncn + ncmδm+n,0α

−
n − ncmα−n δm−n,0

)

=

∞∑
m=−∞
m 6=0

∞∑
n=1

(
mα−−mcm +mα−−mcm −mcmα−−m −mcmα−m

)
= 0 [4.214]

We are looking for states satisfying Q1 |ψ〉 = 0, i.e. for states with zero Eigenvalue
under Q1. As Q1 and S commute we can diagonalise them simultaneously, so S |ψ〉 = s |ψ〉
for some Eigenvalue s. Consider first the case that s 6= 0. Then

|ψ〉 = s−1S |ψ〉 = s−1{Q1, R} |ψ〉 = s−1(Q1R+RQ1) |ψ〉 = s−1Q1R |ψ〉 [4.215]

Thus |ψ〉 = Q1 |χ〉 for some |χ〉 and is thus a Q1 exact state. This means that states with
s 6= 0 cannot be physical states as physical states are closed but not exact. So we can
restrict ourselves to states with zero Eigenvalue under S, i.e. s = 0. Now look at the
explicit form of S

S =
∞∑
n=1

(
nc−nbn + nb−ncn − α+

−nα
−
n − α−−nα+

n

)
[4.216]

We see that S is a number operator for counting the ghosts and the light-cone oscillators.
Indeed it annihilates every b−n excitation and replaces them by a c−n excitation, it anni-
hilates every c−n excitations and replaces them by a b−n excitation Similarly it annihilates
every light-cone oscillator excitation α±−m and replaces it by its opposite light-cone excita-
tion α∓−m. Requiring that S has Eigenvalue zero thus means that the state ψ cannot have
any ghost or light-cone excitations, i.e. no b, c,X0 or X1 excitations. The corresponding
space is exactly the Hilbert space H⊥ of the transverse excitations. Are there any Q1 exact
states in H⊥? Any such state |φ〉 can by definition be written as |φ〉 = Q1 |χ〉 for some |χ〉
in H⊥, i.e.

|φ〉 = −
√

2α′k+
∞∑

m=−∞
m 6=0

α−−mcm |χ〉 [4.217]
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But for |φ〉 to be non-zero and have only transverse oscillations, |φ〉 needs to have a b and
a α+ excitations and hence |χ〉 /∈ H⊥. In other words there are no exact states in H⊥ and
thus the cohomology of Q1 is H⊥

Let us also repeat the second argument given in Joe’s book that s = 0 states, i.e.
transverse states are Q1 invariant. As s = 0 states have no ghost excitations they are built
from transverse oscillator excitations acting in the ground states |0;k〉. This ground states
includes the ghost ground state |↓〉 that has ghost number −1/2, see (2.7.24). Now as
s = 0 we have Q1S |ψ〉 = 0 and because Q1 and S commute this implies that SQ1 |ψ〉 = 0.
But Q1 has ghost number one as it contains just one c and so Q1 |ψ〉 has ghost number
−1/2 + 1 = +1/2. Furthermore S acting on a ghost number +1/2 state has non-zero
Eigenvalues. Indeed we just argued that if s = 0 then the ghost number is necessarily
−1/2. If the Eigenvalue under S of Q1 |ψ〉 is not zero, then there exists an S−1. Therefore
S−1SQ1 |ψ〉 = Q1 |ψ〉 = 0. So an s = 0 state is indeed Q1 closed.

4.45 p 140: The Cohomology of QB

Here as well we just repeat the arguments of Joe’s book, albeit at a more pedestrian speed.
We consider the operator

U = {QB, R} − S = {Q−1 +Q0 +Q1, R} − S = {Q−1 +Q0, R} [4.218]

Now R ∼
∑
α+
−mbm so acting on a state it lowers the light-cone number by one, due to the

α+
−m. By definition Q0 leaves the light-cone number unchanged and Q−1 lowers it by one

as well. Therefore U lowers the light-cone number by one or two.
If we then write out S as a matrix in a basis, where each basis vector has a given light-

cone number, then S maps a state with light-cone number ` into a state with light-cone
number ` and so S is represented by a diagonal matrix. U maps a state with light-cone
number ` into a state with light-cone number ` − 1 and a state with light-cone number
` − 2. In other words U is represented by a lower triangular matrix, in fact by a strictly
triangular matrix. Thus the matrix M = S + U consists of a triangular matrix S and a
strictly lower triangular matrix U . In this case, Ker(S+U) ⊆ Ker(S). now consider a state
|ψ0〉 ∈ Ker(S), i.e. S |ψ0〉 = 0. Construct now a state

|ψ〉 =
(

1− S−1U + S−1US−1U − S−1US−1US−1U + · · ·
)
|ψ0〉 [4.219]

Act with S + U on this:

(S + U) |ψ〉 =
(
S − U + US−1U − US−1US−1U + US−1US−1US−1U − · · ·

+ U − US−1U + US−1US−1U − US−1US−1US−1U + · · ·
)
|ψ0〉

=S |ψ0〉 = 0 [4.220]
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So for every element in Ker(S) we can write down an element in Ker(S + U) and thus we
in fact that Ker(S) and Ker(S + U) are isomorphic.

We can now repeat the same argument we used for deducing the cohomology of Q1.
We first note that S + U and QB commute. Indeed

[S + U,QB] = [{QB, R}, QB] = [QBR+RQB, QB]

=QBRQB +RQ2
B −Q2

BR−QBRQB = 0 [4.221]

by nilpotendcy of QB. We can thus diagonalise QB and S + U together, QB |ψ〉 = 0 and
(S + U) |ψ〉 = t |ψ〉. Consider first the case where t 6= 0. Then

|ψ〉 = t−1(S + U) |ψ〉 = t−1{QB, R} |ψ〉 = t−1(QBR+RQB) |ψ〉 = t−1QBR |ψ〉 [4.222]

and so |ψ〉 is exact and the cohomology of QB is non-zero only when the Eigenvalue of
S + U is zero. The cohomology of QB is thus the same as the kernel of S + U . We saw
that the Kernel of S+U is isomorphic to the kernel of S and that in turn is the same as the
cohomology of Q1, i,e,

coh(QB) ≡ Ker(S + U) ≡ Ker(S + U) ≡ coh(Q1) [4.223]

The cohomology of QB is thus isomorphic to the cohomology of Q1.
If we can also show the the inner product on the cohomology of QB is positive definite,

then we know that it is identical to the cohomology of Q1 and thus consists of only the
transverse oscillator excitations. All states in the cohomology of QB are necessarily of the
form (4.4.19) as we have just argued. To show that this is the case we start by working out
the light-cone number of

−S−1U + S−1US−1U − S−1US−1US−1U + · · · [4.224]

S had light-cone number zero. R has light-cone number minus one and U = {Q0+Q−1, R}
thus has terms with light-cone number minus one and minus two. I.e. U has only terms
with strictly negative light-cone numbers. Thus all the terms of the above sum have strictly
negative light-cone numbers. Now, in order to calculate the norm of the state |ψ〉 = (1 −
S−1U+S−1US−1U−+ · · · ) |ψ0〉we would have to use commutation relations between S−1

and U to obtain c-numbers. But in order to have a non-vanishing commutation relations of
[A,B] we need A and B to have opposite light-cone numbers.1 But the only terms in the
expansion of 〈ψ||ψ′〉 that have opposite light-cone numbers are the ones with light-cone
number zero, i.e. the first term in the expansion of |ψ〉. In other words 〈ψ||ψ′〉 = 〈ψ0||ψ′0〉,
which is positive as the kernel of S has positive definite inner product.

1Note that (α+
m)† = α+

−m, so Hermitian conjugation does not change the light-cone number.
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4.46 p 141: Eq (4.4.23) The BRST Operator Acting a a Hilbert Space
State

QB |ψ, ↓〉 =

[ ∞∑
n=−∞

cnL
m
−n +

1

2

∞∑
m,n=−∞

(m− n)◦◦cmcnb−m−n◦◦ − c0

]
|ψ, ↓〉 [4.225]

The contribution from the cubic term vanishes as follows form the breakdown of m and n:

m n ◦
◦cmcnb−m−n◦◦

]−∞,−1] ]−∞,−1] +cmcnb−m−n  0
′′ 0 −cnc0b−m  0
′′ [1,∞[ −cmb−m−ncn  0
0 ]−∞,−1] −cnc0b−n  0
′′ 0 +c0c0b0  0
′′ [1,∞[ +b−nc0cn  0

[1,∞[ ]−∞,−1] +cnb−m−ncm  0
′′ 0 c0b−mcm  0
′′ [1,∞[ +b−m−ncmcn  0

We also have cn |ψ, ↓〉 = 0 for n ≥ 1 and are thus left with

QB |ψ, ↓〉 =

( ∞∑
n=1

c−nL
m
n − c0

)
|ψ, ↓〉 =

∞∑
n=0

c−n(Lm−n − δn,0) |ψ, ↓〉 [4.226]
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Chapter 5

The String S-Matrix

Open Questions

I have a number of unanswered points for this chapter. They are briefly mentioned here and
more detail is given under the respective headings. Any help in resolving them can be sent to
hepnotes@hotmail.com and is more than welcome.

♣ (5.4.4) At the end of deriving the Weyl invariance of the b ghost insertion in scattering amplitudes, Joe writes
that "The b equation of motion comes from δS/δc = 0, so there will be source terms at the c insertions; this is
precisely what is needed to account for the effect of the coordinate transformations on the fixed vertex operators".
I don’t understand this, let alone how you can show this.

5.1 p 147: Eq (5.1.9-11) The Torus as a Parallelogram

The argument from section 3.3. is as follows. Recall that under a Weyl transformation
gab → e2ω(σ)gab, the Ricci scalar transforms as follows√

g′R′ =
√
g(R− 2∇2ω) [5.1]

By solving the equation ∇2ω = 1
2R we can thus, at least locally, go to a frame that has

zero Ricci scalar. As discussed in (3.3.6) and in these notes [3.14], in two dimensions the
Riemann curvature is related to the Ricci scalar by Rabcd = 1

2(gacgbd − gadgbc)R. A zero
Ricci scalar thus implies that locally we have a flat manifold, hence a metric δab. In general
the coordinate system corresponding to this new metric will not have the same periodicity
conditions (σ1, σ2) ∼= (σ1, σ2) + 2π(m,n). This is similar as for the point particle, where
the new tetrad e′(τ) may not have the same periodicity as the original one. Just as the
circle for the point particle may be “stretched” to `, for the torus the periodicity may now
be “stretched” in the two directions of the torus

σa ∼= σa + 2π(mua + nva) [5.2]
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for two vectors ~u = (u1, u2) and ~v(v1, v2). We can always perform a rotation and scaling of
the coordinate system such that ~u lies along the x-axis and has length one. The metric will
then remain the δab and we have the periodicity

σ1 ∼= σ1 + 2πm+ 2πnv1 ; σ2 ∼= σ2 + 2πnv2 [5.3]

We now define the complex coordinate w = σ1 + iσ2. The periodicity means

w =σ1 + iσ2 ∼= σ1 + 2πm+ 2πnv1 + i(σ2 + 2πnv2)

=w + 2πm+ 2πn(v1 + iv2) = w + 2πm+ 2πnτ [5.4]

with τ = v1 + iv2. This is the approach where we keep the metric unchanged ds2 =
dwdw̄ but where the periodicity condition changes, w ∼= w + 2πm + 2πnτ . This approach
corresponds to setting e = 1 and τ ∈ [0, `] for the point particle.

The alternative approach, corresponding to keeping τ ∈ [0, 1] and setting e = ` for the
point particle, is to change the metric. This is achieved by going to another coordinate
system,

w = σ1 + τσ2 [5.5]

The metric is then

ds2 = dwdw̄ = (dσ1 + τdσ2)(dσ1 + τ̄ dσ2) = |dσ1 + τdσ2|2 [5.6]

The metric is clearly invariant under τ → τ̄ . Moreover it is of the form

gab =

(
1 1

2(τ + τ̄)
1
2(τ + τ̄) |τ |2

)
[5.7]

which for τ real gives det g = 0, so this is not an acceptable value of τ . We can thus already
restrict our attention to Im τ > 0.

5.2 p 148: Eq (5.1.12) The Transformations S and T

A torus is characterised by a complex parameter τ . This can be represented by a parallel-
ogram in the complex plane with edges 0, 1, τ and 1 + τ , see fig. 5.1 and opposite sides
identified.
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Re w

Im w

0 1

τ 1 + τ

Re w

Im w

0 1

τ 1 + τ

Re w

Im w

0 1

τ 1 + τ

T : τ → τ + 1 X : τ → τ/(τ + 1)

Figure 5.1: Modular transformations of the torus

It should be clear that the two additional figures give an equivalent choice of torus. The
first transformed torus corresponds clearly to a modulus τ + 1, hence a transformation
T : τ → τ + 1. We see that it leaves the periodicity condition unchanged:

T :w + 2πm+ 2πnτ → w + 2πm+ 2πn(τ + 1) = w + 2π(m+ n) + 2πnτ [5.8]

This gives a reciprocity relation w ∼= +2πm′ + 2πn′τ with (m′, n′) = (m + n, n) and thus
(m,n) replaced by (m− n, n).

The second transformed torus corresponds to a transformation X : τ → τ/(1 + τ).
Under the periodicity we have

X : w + 2πm+ 2πnτ →w + 2πm+ 2πn
τ

1 + τ
=

1

1 + τ
[(1 + τ)w + 2πm(1 + τ) + 2πnτ ]

=
1

1 + τ
[(1 + τ)w + 2πm+ 2π(m+ n)τ ] [5.9]

We thus have the periodicity

w′ ∼= w + 2πm+ 2π(m+ n)τ [5.10]

where we have rescaled the complex coordinate w′ = (1+ τ)w. This thus corresponds with
replacing (m,n) by (m,n−m).

It is convenient to use another combination than X. We have

T−1XT−1τ =T−1X(τ − 1) = T−1

(
τ − 1

1 + τ − 1

)
= T−1

(
τ − 1

τ

)
=
τ − 1

τ
− 1 = −1

τ
[5.11]

So, rather than X, we consider the transformation S : τ → −1/τ . Note that we have the
convenient relations

S2 = 1 ; (ST )3 = 1 [5.12]
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5.3 p 148: Eq (5.1.13) PSL(2,Z) Group

We can represent a general transformation (5.1.13) as a 2× 2 matrix

τ ′ =
aτ + b

cτ + d
⇒

(
a b
c d

)
[5.13]

We then have

T : τ → τ + 1 ⇒ T ≡
(

1 1
0 1

)
S : τ → −1

τ
⇒ S ≡

(
0 −1
1 0

)
[5.14]

Composition of transformations is then given by matrix multiplication, e.g.

ST (τ) = S(τ + 1) = − 1

τ + 1
≡
(

0 −1
1 1

)
⇔ ST =

(
0 −1
1 0

)(
1 1
0 1

)
=

(
0 −1
1 1

)
[5.15]

The condition that a transformation Y has ad − bc means that det(Y ) = 1. Composition
of two transformations then automatically preserves this as det(Y Y ′) = det(Y ) det(Y ′).
These transformations form a group, the projective special linear 2×2 matrices with integer
indices. Projective because, if all signs of a, b, c and d are changed, the transformation is the
same. Special because is has unit determinant. Mathematically this group is SL(2,Z)/Z2,
also denoted by PSL(2,Z).

5.4 p 148: Eq (5.1.14) PSL(2,Z) Transforming the Metric

Let’s apply the transformation (5.1.14) to the metric

ds2 = (dσ1)2 + (τ + τ̄)dσ1dσ2 + |τ |2(dσ2)2

=
(
ddσ′1 + bdσ′2

)2
+ (τ + τ̄)

(
ddσ′1 + bdσ′2

) (
cdσ′1 + adσ′2

)
+ |τ |2

(
bdσ′1 + adσ′2

)2
=
(
d2 + cd(τ + τ̄) + b2|τ |2

)
(dσ′1)2 +

(
2bd+ (ad+ bc)(τ + τ̄) + 2|τ |2ab

)
dσ′1dσ′2

+
(
b2 + ab(τ + τ̄) + a2|τ |2

)
(dσ′2)2

= (cτ + d)(cτ̄ + d)(dσ′1)2 + [(cτ + d)(aτ̄ + b) + (aτ + b)(cτ̄ + d)] dσ′1dσ′2

+ (aτ + b)(aτ̄ + b)(dσ′2)2

= (cτ + d)(cτ̄ + d)

[
(dσ′1)2 +

(
aτ̄ + b

cτ̄ + d
+
aτ + b

cτ + d

)
dσ′1dσ′2 +

∣∣∣∣aτ + b

cτ̄ + d

∣∣∣∣2 (dσ′2)2

]
= (cτ + d)(cτ̄ + d)

[
(dσ′1)2 + (τ ′ + τ̄ ′)dσ′1dσ′2 + |τ ′|2(dσ′2)2

]
[5.16]

with τ ′ = (aτ + b)/(cτ + d).
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5.5 p 148: Eq (5.1.15) The Fundamental Region of PSL(2,Z)

We have seen already that the metric is invariant under conjugation of τ so that we can
restrict ourselves in the upper half complex plane H.

Let us now consider a point with real part larger than 1/2. By repeated application of
T−1 : τ → τ − 1 we can bring this modulus into the range Re τ ∈ [−1/2, 1/2]. Similarly, if
Re τ < 1/2 we can bring it in Re τ ∈ [−1/2, 1/2] by repeated application of T : τ → τ + 1.
Every modulus τ ∈ H is thus equivalent to a modulus with real part between −1/2 and
1/2. The boundaries Re τ = ±1/2 are identified with one another by the application of T .

Next, consider a modulus with Re τ ∈ [−1/2, 1/2]. Application of S on this moduli
brings it to S : τ → −1/τ = −τ̄ /|τ | and so it reflects it around the complex axis and moves
it out of the unit circle in H. Repeated application of T or T−1 then brings it back in the
region [−1/2, 1/2] but still outside of the unit circle.

These steps are illustrated in fig. 5.2. So by judicious application of T and S every
modulus is thus equivalent using a modular transformation to a modulus τ in the region

−1

2
≤ Re τ ≤ 1

2
and |τ | ≥ 1 [5.17]

with the borders Re τ = ±1/2 identified.

1
2

1
2

i

(
T−1

)n
Tn

SS

F0

Figure 5.2: The fundamental region of the modular group

The statement that F0 is the fundamental domain of the modular group consists of two
parts. First, it means that every point in H can be mapped by a modular transformation
into F0, and second that no two points in F0 can be mapped into one another by a modular
transformation. In other words, F0 contains every torus once and only once. Whilst we
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have argued that F0 is the fundamental domain of the modular group, we have been quite
cavalier about the boundaries of F0. Those who are interested in a more detailed approach
are referred to Zwiebach’s book, section 26.6 of the second edition.

5.6 p 151: Eq (5.2.4) The Diff×Weyl Transformation of the Metric, I

This is just (3.3.16). As a reminder

(P1δσ)ab =
1

2
(∇aδσb +∇bδσa − gab∇cδσc) [5.18]

and satisfies (P1δσ)ab = (P1δσ)ba and gab(P1δσ)ab = 0.

5.7 p 151: Eq (5.2.5) The Diff×Weyl Transformation of the Metric, II

We want to find all variations of the metric that are not a diff×Weyl variation, i.e. that are
not a linear combination of variations of the form (5.2.4). In other words we are looking
for all variations δ′gab that are orthogonal to (5.2.4), i.e.

0 =

∫
d2σ
√
g δgabδ

′gab =

∫
d2σ
√
g
[
−2(P1δσ)ab + (2δω −∇cδσc)gab

]
δ′gab [5.19]

In order to work this out we need some properties of the operators P1. Note that P1 takes
a vector (a one-index tensor) into a two index tensor. We now define transpose P T1 that
takes a two index tensor uab into a one index tensor as follows

(P T1 u)a = −∇buab [5.20]

We now define an inner product between two symmetric traceless n-index tensors s and t
as (s, t) =

∫
d2σ
√
g sa1···anta1···an . We now show that for a symmetric traceless two index

tensor u and a one index tensor v we have (u, P1v) = (P T1 u, v). Indeed

(u, P1v) =

∫
d2σ
√
g uab(P1v)ab =

∫
d2σ
√
g uab

1

2
(∇avb +∇bva − gab∇cvc)

=

∫
d2σ
√
g uab

(
∇avb −

1

2
gab∇cvc

)
= −

∫
d2σ
√
g vb∇auab =

∫
d2σ
√
g (P T1 u)bvb = (P T1 u, v) [5.21]

We have used partial integration, the fact that the metric is covariantly constant and the
fact that uab is traceless. Using this, we can write∫

d2σ
√
g δ′gab(P1δσ)ab = (δ′g, P1δσ) = (P T1 δ

′g, δσ) =

∫
d2σ
√
g (P T1 δ

′g)aδσ
a [5.22]
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This relation is only correct if δ′gab is traceless. We will imminently see that this is indeed
the case. Using this relation we thus find that the variations orthogonal to all diff×Weyl
must satisfy

=

∫
d2σ
√
g
[
−2(P T1 δ

′g)aδσ
a + δ′gabg

ab(2δω −∇cδσc)
]

[5.23]

This must be valid for all diff×Weyl, hence for all δσ and δω. The δω condition implies
δ′gabg

ab = 0 which justifies our assumption that δ′gab is traceless.

5.8 p 151: Eq (5.2.5) The Conformal Killing Equation

The conformal Killing vectors are those infinitesimal diff×Weyl transformations that leave
the metric unchanged, i.e. satisfy δgab = 0. From (5.2.4) this means that conformal Killing
vectors are solutions of the equation

−2(P1δσ)ab + (2δω −∇ · δσ)gab = 0 [5.24]

Taking the trace of this, and using the fact that (P1δσ)ab is traceless by construction we
find that

δω =
1

2
∇ · δσ [5.25]

which determines the Weyl transformation in terms of the diffeomorphism. The remaining
conformal Killing equations are therefore

(P1δσ)ab = 0 [5.26]

Note that a conformal Killing vector is thus a specific combination of a diffeomorphism and
a Weyl transformation.

5.9 p 151: Eq (5.2.5) The Moduli and Conformal Killing Vectors in the
Conformal Gauge

We start with determining the equations for the moduli in the conformal gauge. In that
gauge the non-zero metric components are gzz̄ = 1

2e
2ω and gzz̄ = 2e−2ω. It follows that

∇z = gzz̄∇z̄ = −2e−2ω∇z̄ and ∇z̄ = gz̄z∇z = −2e−2ω∇z. We also have the connections
Γabc = 1

2g
ad(∂bgcd + ∂cgbd − ∂dgbc). It follows that

Γzzz =
1

2
gzz̄(∂zgzz̄ + ∂zgzz̄ − ∂z̄gzz) = 2∂ω

Γz̄zz =
1

2
gz̄z(∂zgzz + ∂zgzz − ∂zgzz) = 0

Γzzz̄ =
1

2
gzz̄(∂zgz̄z̄ + ∂z̄gzz̄ − ∂z̄gzz̄) = 0 [5.27]
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with all the other connections following from symmetry considerations. I.e. the only non-
zero connections are

Γzzz = 2∂ω ; Γz̄z̄z̄ = 2∂̄ω [5.28]

The equation for the moduli (5.2.6b) then becomes ∇bδ′gba = 0 or in complex coordinates

0 = ∇zδ′gzz +∇z̄δ′gz̄z = ∇z̄δ′gzz = ∂z̄δ
′gzz − Γcz̄zvc = ∂z̄δ

′gzz [5.29]

Where we have used the fact that gzz̄ = 0 by the tracelessness condition (5.2.6.a) and the
fact that Γcz̄z = 0. There is, of course a similar equation for the ant-holomorphic part. Thus
the equations for the moduli are

∂z̄δ
′gzz = ∂zδ

′gz̄z̄ = 0 and δ′gzz̄ = 0 [5.30]

The two holomorphic doubly periodical solutions of these equations on the torus are two
real constant. They combine together to form the Teichmüller parameter τ .

Let us now turn to the equations for the conformal Killing vectors. They are

0 = (P1δσ)ab =
1

2
(∇aδσb +∇bδσa − gab∇ · δσ) [5.31]

Let us start with the zz component

0 =
1

2
(∇zδσz +∇zδσz − gzz∇ · δσ) = ∇zδσz

= ∂zδσz − Γzzzδσz = ∂z(gzz̄δσ
z̄)− 2∂zωgzz̄δσ

z̄

=
1

2
2∂zωe

2ωδσz̄ + gzz̄∂zδσ
z̄ − 2∂zω

1

2
e2ωδσz̄ = gzz̄∂zδσ

z̄ = ∂z̄ [5.32]

we have used the fact that the complex coordinates have the indices upstairs; thus δσz̄ = z̄.
There is, of course, also the anti-holomorphic equation ∂̄z = 0. Finally the mixed indices
(P1δσ)zz̄ give the trace, which is zero by construction. The equations for the conformal
Killing vectors are thus

∂z̄ = ∂̄z = 0 [5.33]

The two holomorphic doubly periodical solutions of these equations on the torus are two
real constants, corresponding to the translations of (5.1.16)

5.10 p 152: Eq (5.2.10) No CKVs for Negative Euler Number and no
Moduli for Positive Euler Number

We start by showing that P1TP1 = −1
2∇

2 − 1
4R. Recall that P1 takes a vector into a two-

index tensor and P T1 takes a two index tensor into a vector, so t P1TP1 acts on a vector and
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changes it into a vector. We have

P T1 P1vb =P T1
1

2
(∇avb +∇bva − gab∇ · v)

= − 1

2
∇a(∇avb +∇bva − gab∇ · v)

= − 1

2
∇2vb −

1

2
(∇a∇bva − gab∇a∇cvc)

= − 1

2
∇2vb −

1

2
(∇a∇bva − gcb∇c∇ava)

= − 1

2
∇2vb −

1

2
(∇a∇bva −∇b∇ava)

= − 1

2
∇2vb −

1

2
[∇a,∇b]va [5.34]

Now, the commutator of two covariant derivatives acting on a vector gives the Riemann
curvature, see e.g. Carroll (3.112), [∇a,∇b]vc = Rcdabv

d. Thus

P T1 P1vb = − 1

2
∇2vb −

1

2
Racabv

c [5.35]

But we have already learned in (3.3.76) that in two dimensionsRabcd = 1
2(gacgbd−gadgbc)R.

Therefore

Rabcd = gaeRebcd =
1

2
gae(gecgbd − gedgbc)R =

1

2
(δac gbd − δadgbc) [5.36]

and

P T1 P1vb = − 1

2
∇2vb −

1

4
(δaagcb − δab gca)Rvc = −1

2
∇2vb −

1

4
Rvb [5.37]

which is what we set out to show.
Recall that under a Weyl transformation the curvature transforms as (1.2.32)√

g′R′ =
√
g(R− 2∇2ω) [5.38]

This equation can be solved for ω to set R′ constant. Now the Euler number is defined as
(1.2.31)

χ =
1

4π

∫
d2σ
√
gR [5.39]

So if we have a negative Euler number, χ < 0, this necessarily means that the curvature is
negative, R < 0. And if we have a positive Euler number, χ > 0, this necessarily means
that the curvature is positive, R > 0.
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Let us now work out (5.2.10)∫
d2σ
√
g (P1δσ)ab(P1δσ)ab =

∫
d2σ
√
g δσa(P

T
1 P1δσ)a

=

∫
d2σ
√
g δσa

(
−1

2
∇2 − 1

4
R

)
δσa

=

∫
d2σ
√
g

(
1

2
∇aδσb∇aδσb −

1

4
Rδσaδσ

a

)
[5.40]

For negative Euler number, R is negative and the integrand is strictly positive, implying
that (P1δσ)ab is strictly positive, Thus (P1δσ)ab = 0 has no solutions. But this is the equation
for conformal Killing vectors. So we conclude that χ < 0⇒ κ = 0.

I have not been able to show in a satisfying way that for positive Euler numbers, the
number of moduli is zero. I have tried two ways. First by trying to find an expression for
(P1P

T
1 u)ab that include the Ricci scalar, so that we can link it to the Euler number. Next by

trying to work out
∫
d2σ
√
g∇cδ′gac∇dδ′gbd directly and trying to link that to the curvature.

But neither way has lead to anything useful. There is, however an indirect way. We know
that for closed oriented surfaces, the Euler number is χ = 2 − 2g, with g the number of
handles. The only close oriented surface with χ > 0 therefore has g = 0, i.e. is the the
sphere, the disk or the projective plane, for which there are no moduli.

5.11 p 155: Eq (5.3.2) The Gauge-Fixed Measure

The measure of the classical action is [dg dφ] d2nσ where d2nσ =
∏n
i=1 d

2σi denotes the
product over all vertex operators. Gauge-fixing the action we are left with an integration
over the gauge parameters ξ, but still need to integrate over all the µ moduli tk as these
have not been fixed by the Faddeev-Popov procedure. We can, however use the κ confor-
mal Killing vectors, to fix the coordinates of κ of the vertex operators on the worldsheet.
Nothing changes w.r.t. the matter fields. We are thus left with a measure [dξ dφ] dµt d2n−κσ.

5.12 p 155: Eq (5.3.5) The Variation of the Metric Including the Moduli

This is just (5.2.4) with in addition a variation in the moduli
∑µ

k=1 ∂tk ĝab δt
k. Note that, as

per Joe’s errata page, there is an error in the last term. The correct equation should read

δgab =

µ∑
k=1

∂tk ĝab δt
k − 2(P̂1δσ)ab + (2δω − ∇̂ · δσ)ĝab [5.41]
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5.13 p 156: Eq (5.3.6) Inverse Faddeev-Popov Determinant

We basically repeat the analysis of the Faddeev-Popov procedure surrounding (3.3.18) for
completeness.

The first line is just the rewriting of (5.3.3) with the [dξ] = [dδσ dδω] the integration
over the diff×Weyl gauge parameters. We also write

δ
(
δσa(σ̂i)

)
=

1

2π

∫
eiyaiδσ

a(σ̂i)dyai =

∫
e2πixaiδσ

a(σ̂i)dxai [5.42]

with xai = yai/2π. Thus

∏
(a,i)∈f

δ
(
δσa(σ̂i)

)
=

∏
(a,i)∈f

∫
e2πixaiδσ

a(σ̂i)dxai =

∫
dκx exp

2πi
∑

(a,i)∈f

xaiδσ
a(σ̂i)

 [5.43]

where dκx =
∏

(a,i)∈f dxai, with κ being the number of conformal Killing vectors that can
be fixed. We similarly write theδ(δgab) as an exponential and can thus write for the inverse
Faddeev-Popov determinant

∆−1
FB =nR

∫
dµδt dκx [dδω dδσ dβ] exp

2πi

∫ d2σ
√
ĝβabδgab +

∑
(a,i)∈f

xaiδσ
a(σ̂i


=nR

∫
dµδt dκx [dδω dδσ dβ] exp

{
2πi

[∫
d2σ

√
ĝβab

( µ∑
k=1

∂tk ĝab δt
k − 2(P̂1δσ)ab

+ (2δω − ∇̂ · δσ)ĝab

)
+
∑

(a,i)∈f

xaiδσ
a(σ̂i

]}
[5.44]

We perform the integration over δω. This gives a factor δ(βabĝab), ensuring that the ghost
field βab is traceless and thus that also the term βab∇̂ · δσĝab does not contribute. What
remains is

∆−1
FB =nR

∫
dµδt dκx [dδσ dβ′] exp

{
2πi

[∫
d2σ

√
ĝβ′ab

( µ∑
k=1

∂tk ĝab δt
k − 2(P̂1δσ)ab

)
+
∑

(a,i)∈f

xaiδσ
a(σ̂i

]}

=nR

∫
dµδt dκx [dδσ dβ′] exp

[
2πi(β′, 2P̂1δσ − δtk∂tk ĝab) + 2πi

∑
(a,i)∈f

xaiδσ
a(σ̂i)

]
[5.45]

Here β′ is traceless, (t, t′) =
∫
d2σ
√
g tt′ and we have changed the sign of what remains

from δ(δgab) for convenience.
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5.14 p 156: Eq (5.3.8) The Faddeev-Popov Ghosts

We use (A.2.28) from the appendix. For x and y c-numbers and ψ and χ Grassmann
numbers we have ∫ ∞

−∞
dx

∫ ∞
−∞

dy e2πiλxy =
1

λ
=

[∫
dψ

∫
dχ eλψχ

]−1

[5.46]

We make the correspondence, including convenient normalisation

δσa  − 1

4π
ca

β′ab  bab

xai  ηai

δtk  − 1

4π
ξk [5.47]

This gives

∆FB =
1

nR

∫
[db dc]dµξ dκη exp

[
− 1

4π

(
b, 2P̂1c− ξk∂tk ĝ

)
+
∑

(a,i)∈f

ηaic
a(σ̂i)

]
[5.48]

We can perform the integrations over the Grassmann variables ξ and eta using
∫
dξeαξ =∫

dξ(1 + αξ) = α:

∆FB =
1

nR

∫
[db dc] exp

[
− 1

4π

(
b, 2P̂1c)

] µ∏
k=1

1

4π
(b, ∂tk ĝ)

∏
(a,i)∈f

ca(σ̂i)
]

=
1

nR

∫
[db dc] exp(−Sg)

µ∏
k=1

1

4π
(b, ∂tk ĝ)

∏
(a,i)∈f

ca(σ̂i) [5.49]

where we have used the definition of the ghost action (3.3.21)

Sg =
1

2π

∫
d2σ

√
ĝ bab(P̂1c)

ab =
1

2π
(b, P̂1c) [5.50]

5.15 p 156: Eq (5.3.9) The S-Matrix for the Bosonic String

This formula is obtained by filling in the various parts so is entirely straightforward. But
we repeat it here and discuss its different parts because of its sheer importance for string
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theory

Sj1···jn(k1, · · · , kn) =
∑

compact
topologies

1

nR

∫
F
dµt

∫
[dφ db dc] exp (−Sm − Sg − λχ)

×
∏

(a,i)/∈f

∫
dσai

µ∏
k=1

1

4π
(b, ∂tk ĝ)

∏
(a,i)∈f

ca(σ̂i)

n∏
i=1

√
ĝ(σi)Vji(ki, σi) [5.51]

This is the S-matrix element for the scattering of n bosonic strings whose asymptotic states
are created by the vertex operators Vji(ki, σi). Let us explain what this expression means.

• We sum over all compact Riemann surfaces, oriented or unoriented depending on the string
type.

• When the gauge symmetry is fully fixed, there may be a residual set of discrete symmetries,
e.g. parity on the worldsheet. To avoid over-counting, we divide by the number of such
discrete symmetries, nR.

• We integrate over the µ moduli tk of the Riemann surface over the fundamental domain F .

• We perform the path integral over the matter fields φ and the ghost fields b and c.

• The path integral is weighted by the matter action Sm, the ghost action Sg and the Euler
term λχ. Here χ is the Euler number and λ is a parameter, that, as we will see later, is not
independent.

• If the Riemann surface has κ conformal Killing vectors we can use this symmetry to fix κ of
the coordinates of the vertex operators. We call the set of fixed coordinates f and so we need
to integrate over all the coordinates of the vertex operators that are not fixed, i.e. that are
not in f .

• We need to take into account the contribution from the variation of the metric under a
change of moduli. For each such moduli there is a factor (4π)−1(b, ∂tĝ).

• For each coordinate of a vertex operator that was fixed using the symmetry of the conformal
Killing vectors, we need to insert a ghost ca(σ̂a) evaluated at the point of insertion.

• Finally, we add the product of all the vertex operators, weighted with
√
g at the appropriate

point.

5.16 p 157: Eq (5.3.14) P1CJ is an Eigenfunction of P1P
T
1

Let us check explicitly that (P1P
T
1 )P1 = P1(P T1 P1). This should, of course, be the case

because P1 and P T1 are projection operators, but let us check it explicitly to make sure it is
indeed the case.

On the one hand, we have

(P1v)ab =
1

2
(∇avb +∇bva − gab∇cvc) [5.52]
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and thus (
P T1 P1v

)
a

= − 1

2
∇c(∇avc +∇cva − gac∇dvd)

= − 1

2
(∇c∇avc +∇c∇cva − gac∇c∇dvd) [5.53]

and finally(
P1

(
P T1 P1v

))
ab

= −1

4

[
∇a(∇c∇bvc +∇c∇cvb − gbc∇c∇dvd)

+∇b(∇c∇avc +∇c∇cva − gac∇c∇dvd)

−gab∇e(∇c∇evc +∇c∇cve − gec∇c∇dvd)
]

= −1

4

[
∇a∇c∇bvc +∇a∇c∇cvb − gbc∇a∇c∇dvd

+∇b∇c∇avc +∇b∇c∇cva − gac∇b∇c∇dvd

−gab∇e∇c∇evc − gab∇e∇c∇cve + gab∇egec∇c∇dvd
]

= −1

4

[
∇a∇c∇bvc +∇a∇2vb −∇a∇b∇ · v

+∇b∇c∇avc +∇b∇2va −∇b∇a∇ · v

−gab∇e∇c∇evc − gab∇e∇2ve + gab∇2∇ · v
]

[5.54]

On the other hand we have

(P T1 u)a = −∇cuac [5.55]

and thus (
P1(P T1 u)

)
ab

= −1

2

(
∇a∇cubc +∇b∇cuac − gab∇d∇cudc

)
[5.56]

Using uab = (P1v)ab = 1
2(∇avb +∇bva − gab∇ · v this gives((

P1P
T
1

)
P1v

)
ab

= −1

4

[
∇a∇c(∇bvc +∇cvb − gbc∇ · v)

+∇b∇c(∇avc +∇cva − gac∇ · v)

−gab∇d∇c(∇dvc +∇cvd − gdc∇ · v)
]

= −1

4

[
∇a∇c∇bvc +∇a∇c∇cvb − gbc∇a∇c∇ · v

+∇b∇c∇avc +∇b∇c∇cva − gac∇b∇c∇ · v

−gab∇d∇c∇dvc − gab∇d∇c∇cvd + gab∇d∇cgdc∇ · v
]

[5.57]
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which gives ((
P1P

T
1

)
P1v

)
ab

= −1

4

[
∇a∇c∇bvc +∇a∇2vb −∇a∇b∇ · v

+∇b∇c∇avc +∇b∇2va −∇b∇a∇ · v

−gab∇d∇c∇dvc − gab∇d∇2vd + gab∇2∇ · v
]

[5.58]

We see that indeed (P1P
T
1 )P1 = P1(P T1 P1).

This thus implies that P1CJ is an Eigenfunction of P1P
T
1 with Eigenvalue ν ′2J . Similarly

we have

(P T1 P1)P T1 BK =P T1 (P1P
T
1 BK) = P T1 ν

2
KBK = ν2

KP
T
1 BK [5.59]

and so P T1 BK is an Eigenfunction of P T1 P1 with Eigenvalue ν2
K .

5.17 p 158: Eq (5.3.15) The Relation Between The B and C Eigenfunc-
tions

For those Eigenfunctions BJ and CJ that have equal but non zero Eigenvalue νJ = ν ′J , we
have the normalisation

(BJ , BJ ′) =
1

νJνJ ′
(P1CJ , P1CJ ′) =

1

νJνJ ′
(CJ , P

T
1 P1CJ ′)

=
1

νJνJ ′
(CJ , ν

2
J ′CJ ′) =

νJ ′

νJ
(CJ ,CJ ′) =

νJ ′

νJ
δJ,J ′ = 1 [5.60]

5.18 p 158: Eq (5.3.16) The Faddeev-Popov Determinant as a Function
of the Ghost Eigenfunctions, I

We need to write the ghost action in terms of the ghost Eigenfunctions. From (5.3.11) and
(5.3.15) we have

Sg =
1

2π
(b, P1c) =

1

2π

 µ∑
k=1

b0 kB0 k +
∑
K

bKBK ,
κ∑
j=1

c0 jP1C0 j +
∑
J

cJP1CJ

 [5.61]

But we know that P1C0 j = 0 and that similarly P T1 B0 k = 0. There is thus only one
combination that survives

Sg =
1

2π

∑
J,K

bKcJ(BK , P1CJ) =
1

2π

∑
J,K

bKcJ(
1

νK
P1CK , P1CJ)

=
1

2π

∑
J,K

bKcJ
νK

(CK , P
T
1 P1CJ) =

1

2π

∑
J,K

bKcJ
νK

(CK , ν
2
JCJ) =

1

2π

∑
J

νJbJcJ [5.62]
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(5.3.16) then follows immediately by splitting the integration over the zero Eigenvalue
Eigenfunction b0 k and c0 j and the non-zero Eigenvalue Eigenfunctions bJ and cJ .

5.19 p 158: Eq (5.3.17) The Faddeev-Popov Determinant as a Function
of the Ghost Eigenfunctions, II

Let us first consider the integration over the zero-modes
∫ ∏κ

j=1 dc0 j . The only place in
the integrand where we can find a c0 j that would make this integral non-vanishing is in
the ghost field insertion

∏
(a,i∈f) c

a(σi). Here f is the set of vertex coordinates we can
fix, which is equal to the number of conformal Killing vectors, i.e. κ. If we write out his
product we find

∏
(a,i∈f)

ca(σi) =
∏

(a,i∈f)

 κ∑
j=1

c0 jC
a
0 j(σi) +

∑
J

cJC
a
J(σi)

 [5.63]

To have a non-zero integral, we need to extract a product of κ zero-modes. In the expansion
of the product – that, recall has exactly κ terms – this can only be the case if we take the
terms that have only zero modes and no factors cJCJ . Indeed a term in the expansion with
say ` factors of cJCJ only has k − ` factors of c0 jC0 j and the integral of that would hence
vanish. Thus, that contribution reduced to

∏
(a,i∈f)

ca(σi) 
∏

(a,i∈f)

κ∑
j=1

c0 jC
a
0 j(σi) [5.64]

For entirely similar reasons we find that the contribution of the b-ghost insertions reduces
to

µ∏
k=1

1

4π
(b, ∂tk ĝ) 

µ∏
k=1

µ∑
k′=1

b0 k′

4π
(B0 k′ , ∂tk ĝ) [5.65]

What remains is the integration over the non-zero modes and the combination of all this
gives directly (5.3.17).

5.20 p 158: Eq (5.3.18) The Faddeev-Popov Determinant as a Function
of the Ghost Eigenfunctions, III

We need to show that∫ κ∏
j=1

dc0 j

∏
(a,i∈f)

κ∑
j′=1

c0 j′C
a
0 j′(σi) = detCa0 j′(σi) [5.66]
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Note that the total number of different (a, i) indices is exactly the number of conformal
Killing vectors κ. Getting rid of all unnecessary indices we thus need to show that

D[κ] =

∫ κ∏
j=1

dcj

κ∏
i

κ∑
`=1

c`C
i
` = detCi` [5.67]

The only non-vanishing terms in the integrand are those that contain c1 . . . cκ. This the is a
general property of determinants, but rather than prove it in general, let us work this out
for a few cases so we see the pattern. For κ = 1 we have

D[1] =

∫
dc1 c1C

1
1 = C1

1 = detC [5.68]

For κ = 2 we have

D[1] =

∫
dc1 dc2 (c1C

1
1 + c2C

1
2)(c1C

2
1 + c2C

2
2)

=

∫
dc1 dc2 c1c2(C1

1C
2
2 − C1

2C
2
1) = detC [5.69]

For κ = 3 we have

D[1] =

∫
dc1 dc2 dc3 (c1C

1
1 + c2C

1
2 + c3C

1
3)(c1C

2
1 + c2C

2
2 + c3C

2
3)(c1C

3
1 + c2C

3
2 + c3C

3
3)

=

∫
dc1 dc2 dc3 c1c2c3(C1

1C
2
2C

3
3 − C1

1C
3
2C

2
3 − C1

2C
2
1C

3
3 + C1

2C
2
3C

3
1 + C1

3C
2
1C

3
2 − C1

3C
2
2C

3
1)

=
1

3!
ε`mnijk Ci`C

j
mC

k
n = detC [5.70]

The pattern should now be clear for general κ. The same of course is valid for the b-ghost
part.

It remains to show that

D̃[N ] =

∫ ∏
J

dbJ dcJ exp

(
−νJbJcJ

2π

)
= det ′


√
P T1 P1

2π

 [5.71]

If we expand the exponential, only the linear term remains as bJ and cJ are Grassmann
variables. Ignoring the irrelevant signs we thus have

D̃[N ] =

∫ ∏
J

dbJ dcJ
νJbJcJ

2π
=
∏
J

νJ
2π

[5.72]

But recall from (5.3.12) that ν2
J are the (non-zero) Eigenvalues or P T1 P1. We can thus

write symbolically that νJ are the Eigenvalues of
√
P T1 P1. Now D̃[N ] is the product of the

Eigenvalues of
√
P T1 P1/2π, which is the same as the (functional) determinant. This is what

we had to show.
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5.21 p 158: Eq (5.3.19) The Weyl Anomaly of the Ghost Current

The OPE of the energy-momentum tensor with the ghost current is given by (2.5.15)

T (z)j(0) ∼ 1− 2λ

z3
+
j(0)

z2
+
∂j(0)

z
[5.73]

According to exercise 3.6 the Weyl anomaly of the ghost current is of the form

∇aja = aR [5.74]

with a read off from the third order pole of the OPE T (z)j(0) = 4a/z3 + · · · . Thus 4a =
1 − 2λ, implying a = (1 − 2λ)/4. Note there there is a sign error on exercise 3.6, as per
Joe’s errata page. Therefore

∇aja =
1− 2λ

4
R [5.75]

Let us now, for completeness, derive the Weyl anomaly for the covariant derivative of
the ghost current. We will work it out for the holomorphic side. The anti-holomorphic is
entirely similar and just gives a doubling of the anomaly.

Recall that the ghost current is j(z) = bc(z) and so its covariant derivative∇aja has the
same dimension as its energy-momentum tensor. We can therefore use the same reasoning
as for the form of the anomaly of T aa in (3.4.9) to conclude that the general form of the
anomaly is indeed ∇j = αR, with higher order terms in the curvature suppressed by
high-momentum cut-off. Here α is some constant that we have to determine. In complex
coordinates and expanding around a flat worldsheet and focussing on the holomorphic
ghost current = jz we have

∇aja = gab∂ajb = 2∂z̄j(z) + 2∂z j̃ = 2∂̄j + 2∂j̃ [5.76]

The anomaly equation for the ghost number becomes

∂̄j + ∂j̃ =
1

2
αR [5.77]

We will now limit ourselves to the holomorphic side, the anti-holomorphic side being
entirely similar. Just as for the calculation of the Weyl anomaly of the energy-momentum
tensor, we now take the Weyl transformation of both sides. For the RHS we use [3.93]

δWR = − 2δωR− 2∇2δω [5.78]

Near the flat worldsheet, R = 0, and using∇2 = 4∂∂̄ this gives for the Weyl transformation
of the RHS

δWRHS = − 4α∂∂̄δω [5.79]
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For the Weyl transformation of the LHS we use (2.4.12) for a general conformal transfor-
mation

δA(z) = −
∞∑
n=0

1

n!
∂nv(z)An(z) [5.80]

where the An are the coefficients of the different poles in the OPE T (z)A(0) as defined in
(2.4.11)

T (z)A(0) ∼
∞∑
n=0

A(0)

zn+1
[5.81]

We now have for the ghost current

T (z)j(0) ∼ 4a

z3
+
j(0)

z2
+
∂j(0)

z
[5.82]

and thus A0 = ∂j, A1 = j and A3 = 4a. This gives

δLHS = δ∂z̄j(z) = ∂z̄δWj(z) = ∂z̄

(
−v∂j − ∂jv − 1

2
4a∂2v

)
[5.83]

The first two terms corresponds to a change in coordinates δz = v and can be ignored. A
Weyl transformation has ∂v = 2δω, giving

δWLHS = − 4a∂̄∂δω [5.84]

Requiring this to be the same as the Weyl transformation of the RHS in [5.79] gives

−4α∂∂̄δω = −4a∂̄∂δω ⇒ a = α [5.85]

We thus see that the ghost current anomaly is indeed to the form δaj
a = αR = aR, where

4a is the numerator of the third order pole in the OPE T (z)j(0).

5.22 p 159: Eq (5.3.20) The Riemann-Roch Theorem, I

Just as for any anomaly equation, the ghost number anomaly equation is an operator
equation, i.e. it is valid as a path integral equation. It describes the non-conservation of
the ghost number symmetry in the path integral. The result is non-conservation of the
ghost current

δg#

∫
[dφ]e−S ∝ ε

∫
d2σ
√
g∇aja [5.86]

We can use the expression for the ghost number anomaly (5.3.19) in this

δg#

∫
[dφ]e−S ∝ ε

∫
d2σ
√
g

1− 2λ

4
R = −3απε× 1

4π

∫
= d2σ

√
g R = −3απεχ [5.87]

We have used λ = 2, the actual value of the ghosts and have introduced the Euler number.
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5.23 p 159: Eq (5.3.21) The Riemann-Roch Theorem, II

The ghost number symmetry transforms the ghosts as δb = −iεb and δc = iεc, see (2.5.14).
The ghost number current just counts the number of c ghosts minus the number of b ghosts.
Let us now look at the expression for a general matrix element (5.3.9)

Sj1···jn(k1, · · · , kn) =
∑

compact
topologies

1

nR

∫
F
dµt

∫
[dφ db dc] exp (−Sm − Sg − λχ)

×
∏

(a,i)/∈f

∫
dσai

µ∏
k=1

1

4π
(b, ∂tk ĝ)

∏
(a,i)∈f

ca(σ̂i)
n∏
i=1

√
ĝ(σi)Vji(ki, σi) [5.88]

We number of ghost fields b is the number of moduli µ and the number of ghost fields c is
the number of conformal Killing vectors κ. We thus have

iε(κ− µ) ∝ εχ [5.89]

The proportionality constant should be the same for any Riemann surface, so we can find
it by considering any example. For a close oriented surface we have χ = 2− 2g. The torus
has one handle and so has χ = 0. This certainly agrees because for the torus µ = κ = 2, see
(5.2.8), but it doesn’t allow us to determine the proportionality constant. For the sphere,
we will see in the next chapter in (6.1.5) that there are no moduli, but six conformal Killing
vectors. The sphere has zero handles and thus χ = 2. Therefore, the sphere tells us that
κ− µ = α̃χ⇒ 6− 0 = 2α⇒ α = 3 which leads to the Riemann-Roch theorem (5.2.9)

κ− µ = 3χ [5.90]

5.24 p 160: Eq (5.4.3) Weyl Invariance of the b Insertions

Note the bab is invariant under Weyl transformations, just as ca is. Thus

(b, ∂kĝ
′) =

∫
d2σ

√
ĝ′ bab

(
∂kĝ
′)ab =

∫
d2σ

√
ĝ′ babĝ

′acĝ′bd
(
∂kĝ
′)
cd

=

∫
d2σ

√
ĝ′ babĝ

′acĝ′bd∂kĝ
′
cd [5.91]

Now it is just a matter of counting: δĝab = +2ωĝab and δĝab = −2ωĝab. In addition
δ
√
ĝ = +2ω

√
ĝ.
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5.25 p 160: Eq (5.4.4) The Diffeomorphism Invariance of the S-matrix

Let us look at the generic S-matrix element (5.3.9)

Sj1···jn(k1, · · · , kn) =
∑

compact
topologies

1

nR

∫
F
dµt

∫
[dφ db dc] exp (−Sm − Sg − λχ)

×
∏

(a,i)/∈f

∫
dσai

µ∏
k=1

1

4π
(b, ∂tk ĝ)

∏
(a,i)∈f

ca(σ̂i)

n∏
i=1

√
ĝ(σi)Vji(ki, σi) [5.92]

and identify which terms are not manifestly invariant under a worldsheet diffeomorphism.
These are the b and c-ghost insertions and the vertex operator insertions for the fixed
coordinates, i.e., ignoring an overall constant, the integrand factors

µ∏
k=1

(b, ∂tk ĝ)
∏

(a,i)∈f

ca(σ̂i)
∏

(a,i)∈f

√
ĝ(σai )Vji(ki, σai ) [5.93]

From (5.3.5) we have for a general transformation with parameter δσa = ξa for diffeo-
morphisms, δtk = 0 for moduli and δω = 0 for Weyl transformations

δξ (b, ∂tk ĝ) = (b, ∂tkδξ ĝ) =
(
b, ∂tk(−2P̂1ξ − 2∇̂ · ξ)ĝ

)
[5.94]

Consider now

∂tk
(
P̂1ξ + ∇̂ · ξ ĝ

)
ab

= ∂tk
(
∇̂aξb + ∇̂bξa − gab∇̂ · ξ + ĝab∇̂ · ξ

)
= ∂tk

(
∇̂aξb + ∇̂bξa

)
= ∇̂a∂tkξb + ∇̂b∂tkξa [5.95]

Thus

δξ (b, ∂tk ĝ) = − 2(b, ∇̂a∂tkξb + ∇̂b∂tkξa) [5.96]

By the tracelessness of bab we can add a term that contains a factor (b, f ĝ) for some scalar
function f . Let us choose f = −∇ · (∂tkξ):

δξ (b, ∂tk ĝ) = − 2(b, ∇̂a∂tkξb + ∇̂b∂tkξa − gab∇ · (∂tkξ))
= − 2(b, P̂1∂tkξ) = −2(P̂ T1 b, ∂tkξ) [5.97]

In the last line we have used (u, P1v) = (P T1 u, v). With the ghost action (3.3.21)

Sg =
1

2π

∫
d2σ
√
ĝ bab(P̂1c)

ab =
1

2π
(b, P̂1c) =

1

2π
(P̂ T1 b, c) =

1

2π

∫
d2σ
√
ĝ (̂P T1 b)ac

a [5.98]
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We see that the equation of motion δSg/δc = 0 is indeed P̂ T1 b = 0. We know that in a
general QFT the equations of motions are valid in a correlation functions except at the
contact terms. These are the so-called Schwinger-Dyson equations, see e.g. section 6.9
"Symmetries in the Functional Formalism" in Peskin & Schroeder. A review of that section is
given in the appendix of this chapter. For a scalar field ϕ(x) the Schwinger-Dyson equation
is given in [5.139](

δ

δϕ(x)

∫
d4y L[ϕ(y)]

)
〈ϕ(x1) · · ·ϕ(xn)〉 =

n∑
i=1

〈ϕ(x1) · · · (−iδ(x− xi)) · · ·ϕ(xn)〉 [5.99]

As explained in the appendix, the delta functions are actually the inverse propagators. If we
translate this to our string S-matrix then we see that the equations of motions for the b field
are satisfied except for the contact terms. To identify these contact terms, we look again
at (5.3.9). The contact terms will come from those factor in the second line that have a
non-vanishing propagator with b. The only factors in the second line that can give a contact
term are thus the c-ghost insertions at the fixed points

∏
(a,i)∈f c

a(σ̂i).

I don’t understand the rest of the paragraph. What does Joe mean when he says that
these contact terms are precisely what is needed for the effect of diffs on the fixed vertex
operators to cancel?

5.26 p 161: Eq (5.4.5) The BRST Variation of a Vertex Operator

A vertex operator V creates a highest weight one state (Lm0 = 1), so it is a primary field of
dimension one. Therefore

δB V(w) = iε[QB,V(w)] = iε

∮
Cw

jB(z)V(w)

= iε

∮
Cw

(
c Tm +

1

2
T g +

3

2
∂2c

)
(z)V(w) [5.100]

Because the vertex operator, by definition, only depends on the matter fields, only the first
term in jB contributes

δB V(w) = iε

∮
Cw

c(z)

[
hV(w)

(z − w)2
+
∂V(w)

z − w

]
= iε

∮
Cw

[
cV(w)

(z − w)2
+
∂cV(z) + c ∂V(w)

z − w

]
= iε∂(cV)(w) [5.101]

(5.4.5) is just this expression in σ coordinates.
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5.27 p 161: Eq (5.4.6) The BRST variation of the b-Ghost Insertion

From (4.3.1b) we have δBb = iε(Tm + T g). Recalling that ĝ is the gauge-fixed metric so it
is not affected by the BRST charge, we have

δB(b, ∂tk ĝ) = (δBb, ∂tk ĝ) = iε(Tm + T g, ∂tk ĝ) [5.102]

5.28 p 162: Eq (5.4.8) The b-Ghost Insertion as a Function of the Bel-
trami Differential

We have

1

2π
(b, µk) =

1

2π

∫
d2σ
√
g bab µ

ab
k =

1

2π

∫
d2σ
√
g bab ĝ

acµ b
kc

=
1

2π

∫
d2σ
√
g bab ĝ

ac 1

2
ĝbd∂kĝcd =

1

4π

∫
d2σ
√
g bcd ∂kĝcd

=
1

4π

∫
d2σ
√
g bcd ∂kĝ

cd =
1

4π
(b, ∂kĝ) [5.103]

which is the b insertion. In complex coordinates in the conformal gauge this becomes

1

2π
(b, µk) =

1

2π

∫
d2σ
√
g bab ĝ

acµ b
kc

=
1

2π

∫
1

2
d2z (bzz ĝ

zz̄µ z
kz̄ + bz̄z̄ ĝ

zz̄zµ z̄
kz)

=
1

2π

∫
d2z (bzzµ

z
kz̄ + bz̄z̄µ

z̄
kz) [5.104]

5.29 p 162: Eq (5.4.10) The Metric under a Change of Moduli

We keep the coordinate system fixed, but change the moduli by an infinitesimal amount
tk → tk + δtk. We start with a metric that is, using a Weyl transformation of the form
g ∝ dzdz̄, where we have dropped the superscript m referring to the patch, as we will be
working in the same patch. We need to be careful. Whilst the metric is off-diagonal in the
original moduli t, i.e. gzz(t) = gz̄z̄(t) = 0, this is no necessarily the case when we deform
the moduli, i.e. gz′z′(t+ δt) and gz̄′z̄′(t+ δt) do not necessarily vanish. Note that we have
added a ′ to the complex indices. Indeed, we may be talking about the same point P in the
patch but they do not necessarily have the same coordinates before and after the moduli
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transformation. We now have

g ∝ 2gzz̄(t)dzdz̄ + gzz(t)dzdz + gz̄z̄(t)dz̄dz̄

→ 2gzz̄(t+ δt)dzdz̄ + gzz(t+ δt)dzdz + gz̄z̄(t+ δt)dz̄dz̄

= 2
[
gzz̄(t) + ∂kgzz̄(t)δt

k
]
dzdz̄ +

[
gzz(t) + ∂kgzz(t)δt

k
]
dzdz +

[
gz̄z̄(t) + ∂kgz̄z̄(t)δt

k
]
dz̄dz̄

= [1 + 2∂kgzz̄(t)δt
k
]
dzdz̄ + δtk

[
∂kgzz(t)dzdz + ∂kgz̄z̄(t)dz̄dz̄

]
= dzdz̄ + δtk

[
∂kgzz(t)dzdz + ∂kgz̄z̄(t)dz̄dz̄

]
[5.105]

where we have kept the lowest order in each metric component. Let us now look at the
Beltrami differentials. Using the definition (5.4.7) we have

µ z
kz̄ =

1

2
ĝzz̄∂kĝz̄z̄ = ∂kĝz̄z̄

µ z̄
kz =

1

2
ĝz̄z∂kĝzz = ∂kĝzz [5.106]

and thus

g ∝ dzdz̄ + δtk
[
µ z̄
kzdzdz + µ z

kz̄dz̄dz̄
]

[5.107]

which is (5.4.10) taking into account the correction on Joe’s errata page.

5.30 p 162: Eq (5.4.11) The Infinitesimal Version of the Beltrami Equa-
tions

We abstain from writing the indices m denoting the patch we are working in. From (5.4.9),
z′ = z + δtkvzk, we have

dz′ = dz + δtk(∂zv
z
kdz + ∂z̄vzkdz̄) [5.108]

and thus

dzdz̄′ =
[
dz + δtk(∂zv

z
kdz + ∂z̄v

z
kdz̄)

] [
dz̄ + δtk(∂z̄v

z̄
kdz̄ + ∂zv

z̄
kdz)

]
= dzdz̄ + δtk(∂z̄v

z̄
kdzdz̄ + ∂zv

z̄
kdzdz + ∂zv

z
kdzdz̄ + ∂z̄v

z
kdz̄dz̄)

= dzdz̄ + δtk(∂zv
z̄
kdzdz + ∂z̄v

z
kdz̄dz̄) [5.109]

where, just as in [5.105], we have ignored the dzdz̄ contribution. Comparing this with
(5.4.10) we find

µ z̄m
kzm

= ∂zmv
z̄m
km

and µ zm
kz̄m

= ∂z̄mv
zm
km

[5.110]
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5.31 p 162: Eq (5.4.12) The b-Insertion in Terms of the Transition
Functions, I

Using (5.4.11) in (5.4.8) we have

1

2π
(b, µk) =

1

2π

∫
d2z (bzz∂z̄v

z
k + bz̄z̄∂zv

z̄
k)

=
1

2π

∫
d2z [∂z̄(bzzv

z
k) + ∂z(bz̄z̄v

z̄
k)] [5.111]

where we have used ∂̄b = ∂b̃ = 0. We now use the divergence theorem (2.1.9)∫
M
d2z (∂zv

z + ∂z̄v
z̄) = i

∮
∂M

(vzdz̄ − vz̄dz) [5.112]

to find
Using (5.4.11) in (5.4.8) we have

1

2π
(b, µk) =

i

2π

∑
m

∮
Cm

(bz̄z̄v
z̄
kdz̄ − bzzvzkdz)

=
1

2πi

∑
m

∮
Cm

(bzzv
z
kdz − bz̄z̄vz̄kdz̄) [5.113]

Here the sum
∑

m is over all patches m needed to cover the Riemann surface. Indeed de
z-integration in [5.111] is over the entire Riemann surface. We can break this down a sum
over the integration of the different patches covering the Riemann surface and apply the
divergence theorem on each of these patches. For each such a patch m this will give a
contour Cm that circles the patch counterclockwise. In the overlap between two patches
the contours of the two patches will go in opposite direction and cancel (the integration
can be performed in the coordinate system of any of the two patches as they are related by
the transition functions). This is illustrated in the figure below.

Figure 5.3: Divergence theorem on the torus
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5.32 p 162: Eq (5.4.14) The Change in Transition Functions under a
Change of Moduli

We evaluate the total derivative in a patch m of dzm/dtk in a region where two patches m
and n overlap. By Leibniz we have

dzm
dtk

=
∂zm
∂tk

∣∣∣
zn

dtk

dtk
+
∂zm
∂zn

∣∣∣
t

dzn
dtk

=
∂zm
∂tk

∣∣∣
zn

+
∂zm
∂zn

∣∣∣
t

dzn
dtk

[5.114]

Using dzm/dtk = vzmkm and dzn/dtk = vznkn and re-arranging we find

∂zm
∂tk

∣∣∣
zn

= vzmkm −
∂zm
∂zn

∣∣∣
t
vznkn [5.115]

But for a general vector vz going to another coordinate system z → w, whilst holding the
moduli fixed, the transformation rule is precisely vw = ∂w/∂z/vz and thus we can write

∂zm
∂tk

∣∣∣
zn

= vzmkm − v
zm
kn [5.116]

5.33 p 162: Eq (5.4.15) The b-Insertion in Terms of the Transition
Functions, II

Let us consider (5.4.12) in a region where we have two overlapping patches m and n with
contours Cm and Cn, both counterclockwise, as shown in Fig. 5.4. We split the contours
Cm and Cn in a part outside of the overlapping region, C [0]

m and C
[0]
n and in a part in the

overlapping region C [over]
m and C [over]

n .

C
[0]
m C

[0]
nC

[over]
mC

[over]
n

Cmn

Figure 5.4: Contour integration encircling two patches of a Riemann surface
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Restricting ourselves to the contour around these two patches, (5.4.12) becomes

1

2π
(b, µk) =

1

2π

(∫
C

[0]
m

dzmv
zm
kmbzmzm +

∫
C

[over]
m

dzmv
zm
kmbzmzm

+

∫
C

[0]
n

dznv
zn
knbznzn +

∫
C

[over]
n

dznv
zn
knbznzn + · · ·

)
[5.117]

The dots include the anti-holomorphic part, that we will add at the end, and also the
contour integrations encircling all other patches of the Riemann surface. What happens
with the integration in the overlapping part? First we deform the contours so that to
Cmn = C

[over]
m = −C [over]

n . This induces a sign change in the integration along C [over]
n and

so we have

1

2π
(b, µk) =

1

2π

(∫
C

[0]
m

dzmv
zm
kmbzmzm +

∫
Cmn

dzmv
zm
kmbzmzm

+

∫
C

[0]
n

dznv
zn
knbznzn −

∫
Cmn

dznv
zn
knbznzn + · · ·

)
[5.118]

Note that zn is just an integration variable in the last integral, so we have

1

2π
(b, µk) =

1

2π

(∫
C

[0]
m

dzmv
zm
kmbzmzm +

∫
C

[0]
n

dznv
zn
knbznzn +

∫
Cmn

dzm(vzmkm − v
zm
kn )bzmzm + · · ·

)
1

2π

(∫
C

[0]
m

dzmv
zm
kmbzmzm +

∫
C

[0]
n

dznv
zn
knbznzn +

∫
Cmn

dzm
∂zm
∂tk

∣∣∣
zn
bzmzm + · · ·

)
[5.119]

where we have used (5.4.14). ow that we know how to treat the overlap between two
patches we can complete the analysis. The curves C [0

m] and C [0
n ] will on a compact Riemann

surface also have overlap with other patches and we can apply the same reasoning. We thus
have a sum of terms of the form

∫
Cmn

dzm(∂zm)/(∂tk)
∣∣
zn
bzmzm for all possible overlaps.

Adding then the anti-holomorphic part we get

1

2π
(b, µk) =

1

2π

∑
mn

∫
Cmn

(
dzm

∂zm
∂tk

∣∣∣
zn
bzmzm − dz̄m

∂z̄m
∂tk

∣∣∣
zn
bz̄mz̄m

)
[5.120]

where the sum is over all overlapping boundaries Cmn of all the patches m and n.

5.34 p 164: Eq (5.4.18) Simplifying the b-Ghost Insertions

Adding a vertex operator on a closed string amounts to adding a hole on the Riemann
surface, see the discussion in section 3.5 for a reminder. The location of the vertex operator
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is actually a moduli of the Riemann surface. Indeed, a vertex operator V (z) located at the
point zV on a Riemann surface is not equivalent under a diffeomorphism with a vertex
operator located at a point z′V . We thus need to treat the location of the vertex operator as
a modulus, or more exactly, since zV is a complex number, we have two moduli, i.e. µ = 2.
The transition function between two patches is as per (5.4.16). But let us take some time
to explain this in more detail.

The z′ coordinate system corresponds to an m-patch of the previous discussion. There
the vertex operator is located at z′V = 0. The z coordinate system is the n-patch of the
previous discussion. In that reference frame the vertex operator is located at zV . The two
patches are now related by a simple transition function

z = z′ + zV [5.121]

Indeed, the point z = zV for the location of the vertex operator in the z-patch now corre-
sponds to the point z′V = 0 in the z′-patch.

In order to apply (5.4.15) we need the derivative ∂zm/∂t
k
∣∣
zn

and its holomorphic
equivalent for both moduli. The moduli are now zV and z̄V and the m-patch is the z′-
patch. Thus we need

∂zm
∂t1

∣∣∣
zn
≡ ∂z′

∂zV

∣∣∣
z

= −1 ;
∂z̄m
∂t1

∣∣∣
zn
≡ ∂z̄′

∂zV

∣∣∣
z

= 0

∂zm
∂t2

∣∣∣
zn
≡ ∂z′

∂z̄V

∣∣∣
z

= 0 ;
∂z̄m
∂t2

∣∣∣
zn
≡ ∂z̄′

∂z̄V

∣∣∣
z

= −1 [5.122]

and the b-ghost insertions thus become

µ∏
k=1

1

2π
(b, µk) =

(
1

2πi

∫
C

[
dz′(−1)bz′z′ − dz̄′(0)bz̄′z̄′

])
×
(

1

2πi

∫
C

[
dz′(0)bz′z′ − dz̄′(−1)bz̄′z̄′

])
= − 1

2πi

∫
C
dz′ bz′z′

1

2πi

∫
C
dz̄′ bz̄′z̄′ = b−1b̃−1 [5.123]

The contour C encircles the vertex operator and lives in the overlap between the z′ and z
patch. In the last line we have used the mode expansion for a dimension two field we have
b` =

∮
(dz/2πi)z`+1b(z).
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5.35 Appendix: The Schwinger Dyson Equations in a QFT

Consider a single real free scalar field φ(x). The classical field satisfies the Klein-Gordon
equation

(∂2
x +m2)φ(x) = 0 classical field [5.124]

Is there an equivalent equation of motion for the quantum field φ(x) when it appears in a
correlation function:

(∂2
x +m2) 〈Ω|T {φ(x)φ(x1) · · ·φ(xn)} |Ω〉 = ? quantum field [5.125]

To find the answer to this, let us follow a similar procedure as in classical mechanics.
There, the equations of motion are found by requiring that the action is stationary under
infinitesimal variations

φ(x) −→ φ′(x) = φ(x) + ε(x) [5.126]

The extension to QFT is to consider this as an infinitesimal change of the field and to
consider this in the functional integral. This is essentially a change of integration variables
in the path integral. E.g. for a three-point function this leads to the trivial equation

∫
Dφ ei

∫
d4x L[φ]φ(x1)φ(x2)φ(x3) =

∫
Dφ′ ei

∫
d4x L[φ′]φ′(x1)φ′(x2)φ′(x3) [5.127]

Now [5.126] is a simple translation of φ and so the measure should remain invariant
Dφ′ = Dφ and we find the slightly less trivial equation

∫
Dφ ei

∫
d4x L[φ]φ(x1)φ(x2)φ(x3) =

∫
Dφ ei

∫
d4x L[φ′]φ′(x1)φ′(x2)φ′(x3) [5.128]

Let us now expand the RHS of this using [5.126] to order ε. Consider first the product of
the three fields

φ′(x1)φ′(x2)φ′(x3) = (φ(x1) + ε(x1))(φ(x2) + ε(x2))(φ(x3) + ε(x3))

=φ(x1)φ(x2)φ(x3) + ε(x1)φ(x2)φ(x3)

+ φ(x1)ε(x2)φ(x3) + φ(x1)φ(x2)ε(x3) [5.129]
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Next, expand the part with the Lagrangian:

ei
∫
d4x L[φ′] = exp i[

∫
d4x

1

2
∂µφ

′(x)∂µφ′(x)− 1

2
m2φ′(x)2]

= exp i[

∫
d4x

1

2
∂µ(φ(x) + ε(x))∂µ(φ(x) + ε(x))− 1

2
m2(φ(x)

+ ε(x))(φ(x) + ε(x))]

= exp i[

∫
d4x

1

2
∂µφ(x)∂µφ(x) + ∂µε(x)∂µφ(x)− 1

2
m2φ(x)2 −m2ε(x)φ(x)

= ei
∫
d4x L[φ] exp i

∫
d4x [∂µε(x)∂µφ(x)−m2ε(x)φ(x)

= ei
∫
d4x L[φ] exp i

∫
d4x [ε(x)(−∂2

x −m2)φ(x)]

= ei
∫
d4x L[φ]{1 + i

∫
d4x [ε(x)(−∂2

x −m2)φ(x)]} [5.130]

In the one but last line we have used partial integration. We can now bring it all together
and using shorthand φx = φ(x), φ1 = φ(x1) etc we find∫

Dφx ei
∫
d4x L[φx]φ1φ2φ3 =

∫
Dφx ei

∫
d4x L[φx]{1 + i

∫
d4x [εx(−∂2

x −m2)φx]}

× (φ1φ2φ3 + ε1φ2φ3 + φ1ε2φ3 + φ1φ2ε3) [5.131]

or keeping the first order term in ε

0 =

∫
Dφx ei

∫
d4x L[φx]

[
i

∫
d4x εx(−∂2

x −m2)φxφ1φ2φ3

+ ε1φ2φ3 + φ1ε2φ3 + φ1φ2ε3

]
[5.132]

Now we can write ε(x1) =
∫
d4x ε(x)δ(x − x1) or in shorthand ε1 =

∫
d4x εxδx1 and

similarly for ε2 and ε3 and rewrite this as

0 =

∫
Dφx ei

∫
d4x L[φx]

∫
d4x εx

[
− i(∂2

x +m2)φxφ1φ2φ3

+ δx1φ2φ3 + φ1δx2φ3 + φ1φ2δx3

]
[5.133]

This should be independent of ε and so we find

0 =

∫
Dφx ei

∫
d4x L[φx]

[
(∂2
x +m2)φxφ1φ2φ3 + iδx1φ2φ3 + iφ1δx2φ3 + iφ1φ2δx3

]
[5.134]
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or written down explicitly

(∂2
x +m2) 〈Ω|T {φ(x)φ(x1)φ(x2)φ(x3)} |Ω〉 =

+ 〈Ω|T{(−iδ(x− x1))φ(x2)φ(x3)} |Ω〉
+ 〈Ω|T{φ(x1) (−iδ(x− x2))φ(x3)} |Ω〉
+ 〈Ω|T{φ(x1)φ(x2) (−iδ(x− x3)) t} |Ω〉 [5.135]

We can obviously extend this for an n-point function

(∂2
x +m2) 〈Ω|T {φ(x)φ(x1) · · ·φ(xn)} |Ω〉 =

n∑
i=1

〈Ω|T{φ(x1) · · · (−iδ(x− xi)) · · ·φ(xn)} |Ω〉 [5.136]

So if taken in a correlation function, a field φ(x) satisfies the Klein-Gordon equation, except
at a number of discrete points that coincide with the location of the other fields in the
correlation function. These terms on the RHS where the equation of motion is not valid in
a correlation function are called contact terms.

Eq.[5.136] shouldn’t really come as a surprise. Let us first consider the special case of
one field φ(x1)

(∂2
x +m2) 〈Ω|T {φ(x)φ(x1)} |Ω〉 = 〈Ω|T (−iδ(x− x1))} |Ω〉 = −iδ(x− x1) [5.137]

So this is nothing else than a rewriting of the definition of the propagator D = (∂2 +m2)−1.
Eq.[5.136] is a straightforward generalisation where the field φ(x) is contracted with each
of the fields φ(x1), · · · , φ(x2) yielding each time a delta function, which is the result of the
commutator of the two fields.

This result can be easily generalised to a more general field theory with field ϕ(x) and
Lagrangian L[ϕ]. The variation of the action gives the Euler-Lagrange equations

δ

δϕ(x)

(∫
d4y L[ϕ(y)]

)
≡ ∂L
∂ϕ
− ∂µ

(
∂L

∂(∂µϕ)

)
= 0 [5.138]

Eq.[5.136] generalises immediately to(
δ

δϕ(x)

∫
d4y L[ϕ(y)]

)
〈ϕ(x1) · · ·ϕ(xn)〉 =

n∑
i=1

〈ϕ(x1) · · · (−iδ(x− xi)) · · ·ϕ(xn)〉 [5.139]

In this equation, the fields are assumed to be in time ordering, but with derivatives
acting on ϕ(x) are taken outside the correlation function. This is the Schwinger-Dyson
equation that states that the classical equations of motion are obeyed within correlation
functions, up to the contact terms where a delta function appears due to non-trivial com-
mutation relations.

— 273—



Joe’s Book (version of November 20, 2020) Notes from Stany M. Schrans

— 274—



Chapter 6

Tree-Level Amplitudes

Open Questions

I have a number of unanswered points for this chapter. They are briefly mentioned here and
more detail is given under the respective headings. Any help in resolving them can be sent to
hepnotes@hotmail.com and is more than welcome.

♣ (6.2.38) I believe the expression for the Green’s function on RP2 in Joe’s book contains an error. This is strange
because it is not mentioned on his errata page, which, otherwise, is very complete. I believe the correct expression
should be

G(σ2, σ2) = −
α′

2
ln |z1 − z2|2 −

α′

2
ln

∣∣∣∣ 1

z1z̄2
+ 1

∣∣∣∣2

6.1 p 166: The Two-Sphere S2

Some general comments on the two-sphere S2 and how it can be covered by two patches.
The standard description of S2 is with spherical coordinates θ and ϕ:

x = sinϕ cos θ; y = sinϕ sin θ; z = cosϕ [6.1]

We see that there is a problem because the points ϕ = 0 and ϕ = π do not have a single
value for θ. This means that we cannot have one coordinate system to describe the entire
two-sphere. At this point it is convenient to introduce the stereographic projection. Draw
a line from the north pole of S2 through a point P ≡ (x, y, z) on the sphere and consider
the point where this line crosses the xy plane, see figure 6.1. Call this new point P ′ and
call its coordinates in the xy plane u and v.
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x

z

y

P

P ′

Figure 6.1: Stereographic projection for S2. The point P on S2 with coordinates (x, y, z) is
mapped into the xy plane to the point P ′ with coordinates (u, v) in that plane.

Elementary geometry then relates the (u, v) coordinates of P ′ to the (x, y, z) coordinates
of P as follows

x =
2u

u2 + v2 + 1
; y =

2v

u2 + v2 + 1
; z =

u2 + v2 − 1

u2 + v2 + 1
[6.2]

or in terms of spherical coordinates

cosϕ =
u2 + v2 − 1

u2 + v2 + 1
; tan θ =

v

u
[6.3]

We also have

sin2 ϕ =
4(u2 + v2)

u2 + v2 + 1
[6.4]

and so we see again the problem at ϕ = 0 and ϕ = π as at these points u = v = 0 and
then tan θ is not well-defined. The issue is easily seen to be that the point at the north
pole doesn’t have a stereographic projection in the xy-plane; i.e. it crosses that plane
somewhere at infinity.

Introducing z = u+ iv we thus see that we can describe the two-sphere by the complex
plane plus a point at infinity1 In order to describe S2 completely, the complex plane is
no enough; we need to introduce a second patch. This can be done by considering the
stereographic projection from the south pole. Now all point on S2 will be mapped to the
complex plane expect for the south pole. But these two patches give together a complete
coordinate system for S2.

Note that the great circle at z = 0 is mapped to the unit circle in the complex z plane,
|z| = 1. Points on the upper half two-sphere are mapped to points outside the unit circle

1There will be no confusion between the complex coordinate z and the third coordinate z as we
will not use the latter anymore.
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and have |z| > 1. Points on the lower half two-sphere are mapped to points in the unit circle
and have |z| < 1. We can thus take a ρ > 1 and take two patches: one with coordinates
|z| < ρ and one with coordinates |u| < ρ where u is the complex coordinate obtained
from the stereographic projection from the south pole. Where the patches overlap, i.e.
for 1 < |z| < ρ and 1 < |u| < ρ both coordinate systems are linked by the coordinate
transformation

u = 1/z [6.5]

6.2 p 167: Eqs. (6.4.5a,b) The CKVs on S2

We require δz and δu to be well-defined in their respective coordinate patches, in particular
to have no singularity at z = 0 and at u = 0 respectively. The former implies that we can
expand δZ in a Taylor series

δz =
∞∑
n=0

anz
n [6.6]

As we have (6.1.4a) that δu = −z−2δz we have

δu = −u2
∞∑
n=0

anu
−n =

∞∑
n=0

anu
2−n [6.7]

For δu to be well-defined at u = 0 we thus need an = 0 for n > 3, which means that only
a0, a1 and a2 can be non-zero. Therefore we have (6.1.5.a), i.e.

δz = a0 + a1z + a2z
2 [6.8]

6.3 p 168: The Two-Disk D2

Some general comments on the two-disk D2. The two-disk can be obtained by the identi-
fying the points z and z′ = 1/z̄ of the representation of the two-sphere S2 in the complex
plane. It identifies the upper half sphere with the lower half sphere and creates a boundary,
the unit circle

Figure 6.2: The two-disk D2 is obtained from the two-sphere S2 by identifying points z and 1/z̄.
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In polar coordinates in the z plane, z = reiφ, this amounts to identifying reiφ ≡ 1
re
iφ.

Graphically this amounts to identifying points outside the unit circle with points inside the
unit circle. The unit circle is then the boundary of the disk; it consists of the fixed points of
the transformation z → 1/z̄, i.e. those points with r = 1.

reiφ

1
r
eiφ

Figure 6.3: The two-disk D2 is obtained from the two-sphere S2 by identifying points z = reiφ

and 1/z̄ = 1
r e
iφ in the complex plane. The boundary of the disk is now the unit circle.

An alternative description that is often more convenient is to identify the points z and
z′ = z̄. This is the same as the previous identification up to a conformal transformation.
Now a point z = reiφ is identified with z̄ = re−iφ hence with the point on the opposite side
of the real axis. D2 is thus represented by the upper half complex plane H = C+ with the
real axis as the boundary of the disk.

re+iφ

re−iφ

Figure 6.4: The two-disk D2 as the upper half complex plane C+ by identifying points z = re+iφ

and z̄ = re−iφ in the complex plane. The boundary of the disk is now the real axis.

6.4 p 168: The Two-Dimensional Projective Plane RP2

Some general comments on two-dimensional projective plane RP2. We start from rep-
resentation of the sphere in the complex plane and identify the points z = reiφ with
z′ = −1/z̄ = −1

re
iφ = 1

re
i(φ+π). Contrary to the two-disk this transformation has no

fixed points2. RP2 thus has no boundary.
2The fixed point equation is reiφ = − 1

r e
iφ or hence r2 = −1. But as r is a radius it has to be real

and so there is no solution to this equation.
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To see where a point on the two-sphere S2 is projected by this transformation, let us
take a point P0 on the sphere. For convenience assume it is on the upper half part of the
sphere (and not at the north pole). We first perform a stereographic projection to a point
P1 in the complex plane. P1 is then transformed via z → −1/z̄, i.e. r → 1/r and φ→ φ+π,
to the point P2 in the complex plane. The inverse stereographic projection of P2 then leads
to the point P ′0 on the sphere. As P0 was on the upper half part of the sphere, P1 lies
outside of the unit circles in the complex plane and P2 lies inside the unit circle. P ′0 is then
on the lower half of the sphere. The points P0 and P ′0 are identified. Note that there is no
fixed points, hence no boundary.

x

z

y

P0

P1

P2

P ′0

Figure 6.5: The projective plane RP2 from the two-sphere S2. The point P0 on the sphere
has stereographic projection to the point P1 on the complex plane. P1 is then transformed via
z → −1/z̄, i.e. r → 1/r and φ → φ + π, to the point P2 in the complex plane. The inverse
stereographic projection of P2 then leads to the point P ′0 on the sphere. The points P0 and P ′0 are
identified. Note that there is no fixed points, hence no boundary.

6.5 p 169: Eq. (6.2.3) The Functional Integral in Terms of a Complete
Set of Fields

Including the source term the action in the generating functional Z[J ] is

S = − 1

4πα′

∫
d2σ
√
g∂aXµ∂aXµ + i

∫
d2σ JµXµ

= +
1

4πα′

∫
d2σ
√
gXµ∇2Xµ + i

∫
d2σ JµXµ [6.9]
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In the second line we have performed a partial integration. We now fill in (6.2.2.a)

S = +
1

4πα′

∫
d2σ
√
g
∑
I,J

xµIXI∇
2xµJXJ + i

∫
d2σ Jµ

∑
I

xµIXI

= − 1

4πα′

∑
I,J

ω2
Jx

µ
I xµJ

∫
d2σ
√
g XIXJ + i

∑
I

xµI

∫
d2σ JµXI

= − 1

4πα′

∑
I

ω2
Ix

µ
I xµI + i

∑
I

xµIJ
µ
I [6.10]

which is (6.2.3) Note that the I and µ’s in the measure should really not be called that,
they are not the same indices in the action, but denote integration over all such values.

6.6 p 169: Eq. (6.2.5) The Zero Mode Normalisation

The zero mode X0 is the solution to ∇2XI = 0, i.e. X0 = c, a constant. The constant is
determined by the normalisation condition

1 =

∫
d2σ
√
g X0X0 =

∫
d2σ
√
g c2 [6.11]

i.e.

c =

(∫
d2σ
√
g

)−1/2

[6.12]

6.7 p 170: Eq. (6.2.6) The Functional Integral as a Determinant

This is standard stuff in the path integral approach to QFTs. First we complete the square.
For ωi 6= 0:

−
ω2
Ix

µ
I xIµ

4πα′
+ ixµI JIµ = −

ω2
I

4πα′

(
xµI xIµ −

4πiα′

ω2
I

xµI JIµ

)
= −

ω2
I

4πα′

[(
xµI −

2πiα′

ω2
I

JµI

)(
xIµ −

2πiα′

ω2
I

JIµ

)
+

4π2α′2

ω4
I

JµI JIµ

]

= −
ω2
I

4πα′
yµI yIµ −

πα′

ω2
I

JµI JIµ [6.13]

Thus

Z[J ] =

∫
ddx0 exp(ixσ0J0σ)×

 ∏
K 6=0,ν

∫
dyνK

 exp

(
−

ω2
I

4πα′
yµI yIµ −

πα′

ω2
I

JµI JIµ

)
[6.14]
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We have split out the zero mode from the other modes. We can now perform the integra-
tion. The zero mode gives a delta function and the other integrations are just Gauusioan
The integration is now Gaussian and simply gives

Z[J ] = i(2π)dδd(J0)×
∏
I 6=0

(
4π2α′

ω2
I

)d/2
exp

(
−πα

′

ω2
I

JµI JIµ

)
[6.15]

Using the fact that −ω2
I are the Eigenvalues of the operator ∇2, see (6.2.2.b), we can

rewrite the product of the Eigenvalues as the determinant of the operator:

Z[J ] = i(2π)dδd(J0)×
(

det ′
−∇2

4π2α′

)−d/2 ∏
I 6=0

exp

(
−πα

′

ω2
I

JµI JIµ

)
[6.16]

The ′ denoting that the determinant excludes the zero mode. Finally, we can write the last
factor as

∏
I 6=0

exp

(
−πα

′

ω2
I

JµI JIµ

)
= exp

∑
I 6=0

(
− πα′

ω2
I

∫
d2σ1 J

µ(σ1)XI(σ1)

∫
d2σ2 Jµ(σ2)XI(σ2)

)

= exp

(
− 1

2

∫
d2σ1 d

2σ2 J(σ1) · J(σ2)
∑
I 6=0

2πα′

ω2
I

XI(σ1)XI(σ2)

)

= exp

(
− 1

2

∫
d2σ1 d

2σ2 J(σ1) · J(σ2)G′(σ1, σ2)

)
[6.17]

Bringing it all together gives (6.2.6).

6.8 p 170: Eq. (6.2.8) Green’s Function PDE

The PDE for the Green’s function (6.2.8) seems to have an extra term −X0 compared to
the standard Green’s function. The reason for this is that we are working on a compact
surface without boundary. The “standard” Green’s function PDE (the Poisson equation)
∇2φ(σ) = δ2(σ) does not have a solution on a compact surface. One way to understand
this is to think about this equation defining an electric potential. Let us then look at the
flux of the electric field Ea = −∂aφ through a closed loop around the delta function.
Performing the contour integration we get the charge, but on a compact surface we can
also consider the complement of the curve; that is also a closed surface but the integration
result is zero as that region contains no charge. So having a single charge on a compact
surface is inconsistent. A more physical explanation is that the electric field lines coming
out of the charge have nowhere to end on a compact surface.
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This can be resolved by adding a constant term to the PDE: ∇2φ(σ) = δ2(σ) − κ−1.
This constant κ can be viewed as a constant density charge over the compact surface, that
cancels the charge from the delta source. Both contour integrals, the original around the
delta function and its complement, can then be made equal by a judicious choice of the
constant. Working this out implies that κ is the volume of the compact surface

∫
d2σ
√
g,

which gives exactly (6.2.5).
Linking this directly back to Joe’s book, let us consider (2.1.18):

0 = ηµν
〈
δ2(z − z′, z̄ − z̄′)

〉
+

1

πα′
∂∂̄
〈
Xµ(z, z̄)Xν(z′, z̄′)

〉
[6.18]

This looks indeed like the equation for the Green’s function. However, the way to derive
this equation is by starting with the fact that the path integral of a total derivative is zero

0 =

∫
[dX]

δ

δXµ(z, z̄)

[
e−SXν(z, z̄′)

]
[6.19]

This assumes that the integral is convergent. But if the Xµ have a non-vanishing zero
mode, i.e. a constant, then this integral does not converge as Xµ → ±∞ and so (2.1.18)
is not valid.

Let us expand X in the complete set (6.2.2.a)

Xµ(σ) =
∑
I

xµIXI [6.20]

The path integral measure then becomes [dX] =
∏
I,µ dx

µ
I . If the action is Gaussian then

the zero-mode has w2
0 = 0 and so the integral over xµ0 diverges. The formal way to resolve

this, is by putting X into a box, i.e. giving it an upper and lower bound. Note that this is
about X. The worldsheet coordinate σ already live on a compact surface.

This zero mode is actually very important: we will see that it leads to momentum
conservation in amplitudes.

Note also (6.2.5) i.e. that X0 =
( ∫

d2σ
√
g
)−1/2, i.e. X0 is inversely proportional to the

square root of the total surface of the manifold. For a non-compact manifold the surface is
infinite and so X0 vanishes and we recover the standard Possion equation.

6.9 p 170: Eq. (6.2.9) Green’s Function on S2

Solving PDEs is hard, so it is better to show that the given solution satisfies the PDE. We
are working with a general conformal gauge metric (6.1.2)

ds2 = e2ω(z,z̄)dzdz̄ [6.21]
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This means that the only non-zero metric components are

gzz̄ = gz̄z =
1

2
e2ω [6.22]

and gzz̄ = gz̄z = 2e−2ω. This3 implies that
√
g = e2ω. Recall that g is indeed the deter-

minant with downstairs indices, the contravariant tensor if you wish to sound intelligent.
The Laplacian is then

∇2 = gab∂a∂b = 2gzz̄∂∂̄ = 4e−2ω∂∂̄ = 4g−1/2∂∂̄ [6.23]

Next we calculate

∇2 ln |z12|2 = 4g−1/2∂∂̄ ln |z12|2 = 8g−1/2πδ2(z12, z̄12) = 4πg−1/2δ2(σ1 − σ2) [6.24]

where we have used (2.1.24) and the our convention that δ2(z) = 1
2δ

2(σ). Thus

− 1

2πα′
∇2

(
−α
′

2
ln |z12|2

)
=
g−1/2

4π
× 4πδ2(σ1 − σ2) = g−1/2δ2(σ1 − σ2) [6.25]

Next we calculate

∇2f(z, z̄) = ∇2

(
α′X2

0

4

∫
d2w e2ω(w,w̄) ln |z − w|2 + k

)
=
α′X2

0

4

∫
d2w e2ω(w,w̄)∇2 ln |z − w|2

=
α′X2

0

4

∫
d2w e2ω(w,w̄)8πg−1/2δ2(z12, z̄12) [6.26]

Now
√
g = e2ω in the conformal gauge, so we have

∇2f(z, z̄) = 2πα′X2
0

∫
d2w δ2(z12, z̄12) = 2πα′X2

0

∫
d2σ δ2(σ) = 2πα′X2

0 [6.27]

and thus

− 1

2πα′
∇2f(z, z̄) = − 1

2πα′
2πα′X2

0 = −X2
0 [6.28]

We have shown that −α′

2 ln |z12|2 + f(z1, z̄1) satisfies the PDE for the Green’s function G′,
but we know that G′ must be symmetric in the two points, so we need to symmetrise the
result. This means that

G′(σ1, σ2) = −α
′

2
ln |z12|2 + f(z1, z̄1) + f(z2, z̄2) [6.29]

which is (6.2.9) and satisfies (6.2.8) indeed.
3To calculate the determinant we need the metric in the σ coordinates. We have ds2 = e2ωdzdz̄ =

e2ω(dx+ idy)(dx− idy) = e2ω(dx2 +dy2) and so g11 = g22 = e2ω and g12 = 0. Therefore g = det g =
e4ω and

√
g = e2ω.
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6.10 p 171: Eq. (6.2.13) From the Zero Mode to Momentum Conser-
vation and the Renormalised Green’s Function

From (6.2.4) and using the fact that the zero mode X0 is constant, we have

Jµ0 =

∫
d2σ Jµ(σ)X0

∫
d2σ

n∑
i=1

kµi δ
2(σ − σi)X0 = X0

n∑
i=1

kµi [6.30]

The δd(J0) in (6.2.6) then becomes

δd(X0

n∑
i=1

kµi ) = X−d0 δd(

n∑
i=1

kµi ) [6.31]

which gives the momentum conservation in (6.2.13) and the X−d0 in CXS2
in (6.2.14).

The second important point in (6.2.13) is the appearance of the renormalised Green’s
function. This comes from the fact that the tachyon vertex operators in (6.2.11) are renor-
malised. Our definition of renormalisation is given by (3.6.5)

[F ]r = exp

(
1

2

∫
d2σd2σ′∆(σ, σ′)

δ

δXµ(σ)

δ

δXµ(σ′)

)
F [6.32]

with ∆(σ, σ′) = α′

2 ln d2(σ, σ′) and d2(σ, σ′) the geodesic distance between two points. Ap-
plying this on the tachyon vertex operator we find that[

eiki·X(σi)
]
r

= exp

(
1

2

∫
d2σd2σ′∆(σ, σ′)i2ki · ki δ2(σ − σi)δ2(σ′ − σi)

)
eiki·X(σi)

= exp

(
−1

2

α′k2
i

2
ln d2(σi, σi)

)
eiki·X(σi) [6.33]

We thus find for the amplitude (6.2.11)

AnS2
(k, σ) =

〈[
eik1·X(σ1)

]
r

[
eik2·X(σ2)

]
r
· · ·
[
eikn·X(σn)

]
r

〉
= e−

α′
4

∑n
i=1 k

2
i ln d2(σi,σi)

〈
ei
∑n
j=1 kj ·X(σj)

〉
[6.34]

We can bring this in the form of a generating functional by using (6.2.12)

Jµ =
n∑
i=1

kµi δ
2(σ − σi) [6.35]

Indeed 〈
ei
∫
d2σ Jµ(σ)Xµ(σ)

〉
=
〈
ei
∫
d2σ

∑n
i=1 k

µ
i δ

2(σ−σi)Xµ(σ)
〉

=
〈
ei
∑n
j=1 kj ·X(σj)

〉
[6.36]
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From (6.2.6) we thus have, ignoring all the pre-factors,

Z[J ] ∝ e−
α′
4

∑n
i=1 k

2
i ln d2(σi,σi)e−

1
2

∫
d2σd2σ′ Jµ(σ)Jµ(σ′)G′(σ,σ′) [6.37]

Let us focus on the last exponential; it is

exp−1

2

∫
d2σd2σ′

n∑
i=1

kµi δ
2(σ − σi)

n∑
j=1

kµ jδ
2(σ′ − σj)G′(σ, σ′)

= exp−1

2

n∑
i,j=1

ki · kjG′(σi, σj)

= exp

− n∑
i<j=1

ki · kjG′(σi, σj)−
1

2

n∑
i=1

k2
iG
′(σi, σi)

 [6.38]

So that

Z[J ] ∝ exp

− n∑
i<j=1

ki · kjG′(σi, σj)−
1

2

n∑
i=1

k2
iG
′(σi, σi)−

α′

4

n∑
i=1

k2
i ln d2(σi, σi)


= exp

− n∑
i<j=1

ki · kjG′(σi, σj)−
1

2

n∑
i=1

k2
i

(
G′(σi, σi) +

α′

2
ln d2(σi, σi)

)
= exp

− n∑
i<j=1

ki · kjG′(σi, σj)−
1

2

n∑
i=1

k2
iG
′
r(σi, σi)

 [6.39]

where we defined

G′r(σi, σj) = G′(σi, σj) +
α′

2
ln d2(σi, σj) [6.40]

This gives us precisely (6.2.13) and (6.2.15) with the pre-factor of (6.2.14). The additional
term in G′r comes from the renormalisation of the tachyon vertex operator.

6.11 p 171: Eq. (6.2.16) The Renormalised Green’s Function

We can now work out the renormalised Green’s function, using the equation for the geodesic
distance at short distance (3.6.9)

d2(σ1, σ2) = (σ1 − σ2)2e2ω(σ) = |z12|2e2ω(σ) [6.41]
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Thus

G′r(σ1, σ1) = lim
z2→z1

[
−α
′

2
ln |z12|2 + f(z1, z̄1) + f(z2, z̄2) +

α′

2
ln |z12|2e2ω(σ)

]
= 2f(z1, z̄1) + α′ω(z, z̄′) [6.42]

This is, not surprisingly as we have regularised the tachyon operators, a finite result.

6.12 p 171: Eq. (6.2.16) The Tachyon amplitude on S2: Final Result

The exponential part of (6.2.13) is, writing fi for f(zi, z̄i)

exp

− n∑
i<j=1

ki · kj
(
−α
′

2
ln |zij |2 + fi + fj

)
− 1

2

n∑
i=1

k2
i

(
2fi + α′ω(zi)

)
= exp

− n∑
i<j=1

ki · kj (fi + fj)−
n∑
i=1

k2
i fi −

α′

2

n∑
i=1

k2
i ω(zi)

 n∏
i<j=1

|zij |α
′ki·kj [6.43]

It remains to show that the f functions drop out. It is easily seen that

−
n∑

i<j=1

ki · kj (fi + fj)−
n∑
i=1

k2
i fi = −

n∑
i=1

ki ·
n∑
j=1

kjfj [6.44]

If this is not immediately clear, let us work out the case n = 3. Ignoring the minus sign:

k1 · k2(f1 + f2) + k1 · k3(f1 + f3) + k2 · k3(f2 + f3) + k2
1f1 + k2

2f2 + k2
3f3

=f1k1 · (k1 + k2 + k3) + f2k2 · (k1 + k2 + k3) + f3k3 · (k1 + k2 + k3)

=(k1 + k2 + k3) · (k1f1 + k2f2 + k3f3) [6.45]

and so the f contribution vanishes by momentum conservation
∑n

i=1 ki = 0, as enforced
by the delta function, which itself came from the zero mode.

6.13 p 172: Eq. (6.2.19) Amplitudes for Higher Order Vertex
Operators

This formula is rather confusing, so let us go slowly. We first consider one derivative.

A
(n,1,0)
S2

=

〈
n∏
i=1

[
eiki·X(zi,z̄i)

]
r
∂Xµ(z′1)

〉

= e−
α′
2

∑n
i=1 k

2
i ω(zi)

〈
n∏
i=1

eiki·X(zi,z̄i)∂Xµ(z′1)

〉
= e−

α′
2

∑n
i=1 k

2
i ω(zi)Ã

(n,1,0)
S2

[6.46]
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where we have taken out immediately the regularised part of the vertex operators. Let us
now look at Ã(n,1,0)

S2
=
〈∏n

i=1 e
iki·X(zi,z̄i)∂Xµ(z′)

〉
. We need to take all possible contractions

to compute this. Start with

Ã
(1,1,0)
S2

=
〈
eik1·X(z1,z̄1)∂Xµ(z′)

〉
=
∞∑
n=0

in

n!

〈(
k ·X(z1)

)n
∂Xµ(z′)

〉
=

∞∑
n=1

in

n!

〈
nkσXσ(z1)∂Xµ(z′)

(
k ·X(z1)

)n−1
〉

= ikσXσ(z1)∂Xµ(z′)
∞∑
n=1

in−1

(n− 1)!

(
k ·X(z1)

)n−1

= +
iα′

2

kµ1
z1 − z′

〈
eik1·X(z1)

〉
= − iα

′

2

kµ1
z′ − z1

〈
eik1·X(z1)

〉
[6.47]

From there we find that

Ã
(n,1,0)
S2

= − iα
′

2

n∑
j=1

kµj
z′ − zj

〈
n∏
i=1

eiki·X(zi)

〉
= − iα

′

2

n∑
i=1

kµi
z′ − zi

n∏
i<j=1

|zij |α
′ki·kj [6.48]

Let us now consider two derivatives

Ã
(1,2,0)
S2

=
〈
eik1·X(z1,z̄1)∂Xµ(z′1)∂Xµ(z′2)

〉
[6.49]

We need to contract out the two derivatives. They can either each be contracted with an
X in the exponential or they can be contracted with one another. We thus find

Ã
(1,2,0)
S2

=
[
ikσ1Xσ(z1)∂Xµ(z′1)

]
×
[
ikρ1Xρ(z1)∂Xµ(z′2)

] 〈
eik1·X(z1)

〉
+ ∂Xµ(z′1)∂Xν(z′2)

〈
eik1·X(z1)

〉
=

[(
− iα

′

2

kµ1
z′1 − z1

)
×
(
− iα

′

2

kµ1
z′2 − z1

)
− α′

2

ηµν

(z′1 − z′2)2

]〈
eik1·X(z1)

〉
[6.50]

Let us now look at what (6.2.19) says for this case? It gives, ignoring all the pre-factors,

Ã
(1,2,0)
S2

∝
〈[
vµ(z′1) +Qµ(z′1)

]
×
[
vµ(z′2) +Qµ(z′2)

]〉
= vµ(z′1)vµ(z′2) +

〈
Qµ(z′1)Qν(z′2)

〉
[6.51]

Indeed vµ(z′i) = −(iα′/2)kµ1 /(z
′
i − z1) is just a function and Qµ(z′i) needs to be viewed as

an field with two-point function〈
Qµ(z′1)Qν(z′2)

〉
= −α

′

2

ηµν

(z′1 − z′2)2
[6.52]
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We cannot have mixed terms with an odd number of Q left or such a term will vanish in an
expectation value. I.e. all Q’s need to be contracted out. And so direct inspection shows
that our Ã(1,2,0)

S2
is indeed the same as (6.2.19).

Baby steps: consider three derivatives:

Ã
(1,3,0)
S2

=
〈
eik1·X(z1,z̄1)∂Xµ(z′1)∂Xµ(z′2)∂Xσ(z′3)

〉
[6.53]

There are two types of terms. Either we contract each ∂X with an X from the exponen-
tial, or we contract only one ∂X with an X from the exponential and then contract the
remaining two ∂X ’s with one another. The result is

Ã
(1,3,0)
S2

=

[(
− iα

′

2

kµ1
z′1 − z1

)
×
(
− iα

′

2

kµ1
z′1 − z2

)
×
(
− iα

′

2

kµ1
z′1 − z3

)
−
(
− iα

′

2

kµ1
z′1 − z1

)(
−α
′

2

ηµν

(z′2 − z′3)2

)
−
(
− iα

′

2

kµ1
z′1 − z2

)(
−α
′

2

ηµν

(z′1 − z′3)2

)
−
(
− iα

′

2

kµ1
z′1 − z3

)(
−α
′

2

ηµν

(z′1 − z′2)2

)]〈
eik1·X(z1)

〉
[6.54]

We can write this as

Ã
(1,3,0)
S2

=
[
vµ(z′1)vµ(z′2)vµ(z′2) + vµ(z′1)

〈
Qµ(z′2)Qν(z′3)

〉
+vµ(z′2)

〈
Qµ(z′1)Qν(z′3)

〉
+ vµ(z′3)

〈
Qµ(z′1)Qν(z′2)

〉] 〈
eik1·X(z1)

〉
[6.55]

Which is once more (6.2.19). The pattern should now be clear. So if we have four ∂X we
will obtain something of the form

Ã
(1,4,0)
S2

∝ v v v v (1 term) + v v〈QQ〉 (6 terms) + 〈QQ〉 〈QQ〉 (3 terms) [6.56]

again we recover (6.2.19).
Let us now turn to the case of more than one exponential factor. There must certainly

be a simple proof of the formula, but we will restrict ourselves to the physicist proof and
show that it is correct for two exponentials and three ∂X ’s after which the general pattern
should emerge. So we consider

Ã
(2,3,0)
S2

=
〈
eik1·X(z1,z̄1)eik2·X(z2,z̄2)∂Xµ(z′1)∂Xµ(z′2)∂Xσ(z′3)

〉
[6.57]

We can have two types of terms: either all the ∂X ’s contract with the exponential, or only
one of them does. Let us first focus on the terms when all partial ∂X ’ are contracted with
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an X from an exponential. We thus have three contractions. Let us denote by [ij′] the
contraction between X(zi, z̄i) and ∂X(z′j). Three contractions thus give

[11′] [12′] [13′] + [11′] [12′] [23′] + [11′] [22′] [13′] + [11′] [22′] [23′]

+[21′] [12′] [13′] + [21′] [12′] [23′] + [21′] [22′] [13′] + [21′] [22′] [23′] [6.58]

But we can rewrite these 8 terms as(
[11′] + [21′]

)(
[12′] + [22′]

)(
[13′] + [23′]

)
∼ v(z′1)v(z′2)v(z′3) [6.59]

where, with some abuse of notation v(z′j) = −(iα′/2)
∑2

i=1 k
µ
i /(z

′
j−zi) which is indeed the

term with three v from (6.2.19). Let us now turn to the terms with only one contraction
between a ∂X and an X from the exponential. Denoting by (i′j′) a contraction between
∂X(z′) and ∂X(z′j) we have

[11′] (2′3′) + [21′] (2′3′) + [12′] (1′3′) + [22′] (1′3′) + [13′] (1′2′) + [23′] (1′2′)

∼ v(z′1)〈Q(z′2)Q(z′3)〉+ v(z′2)〈Q(z′1)Q(z′3)〉+ v(z′3)〈Q(z′1)Q(z′2)〉 [6.60]

and we find this same term in (6.2.19).
From here it should be clear that the relation is valid for any number of exponentials

and for any number of ∂X ’s. It remains to consider mixed ∂X ’s and ∂̄X ’s, but it should be
immediately clear that this is just a duplication of the previous result. We can thus consider
(6.2.19) proven.

6.14 p 172: Eqs. (6.2.21-6.2.23) How Holomorphicity can Determine
Expectation Values

we know that the OPE of ∂Xµ with itself is

∂Xµ(z)∂Xν(w) = −α
′

2

ηµν

(z − w)2
+ regular terms [6.61]

The regular terms are, by definition, holomorphic. Thus the expectation value on the two-
sphere s necessarily of the form

〈∂Xµ(z)∂Xν(w)〉S2 = −α
′

2

ηµν

(z − w)2
〈1〉S2 + g(z, w) [6.62]

where 〈1〉S2 is the expectation value of the unit operator on the two-sphere and g(z, w) is
some holomorphic function. The coordinate z lives in the patch that covers the two-sphere
without the north pole. Let us now look at the other patch that contains the north pole,
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but not the south pole, described by the coordinate u. The transition function between the
two patches is simply u = 1/z. Therefore

∂uX
µ =

∂z

∂u
∂zX

µ = − 1

u2
∂zX

µ = −z2∂zX
µ [6.63]

Our field must of course be holomorphic over the entire two-sphere and thus also in the
u-patch. Now, let us assume that ∂zXµ is not holomorphic and has a Laurent expansion
∂zX

µ =
∑∞

n=−∞ anz
−n. Then

∂uX
µ = −z2∂zX

µ = −z2
∞∑

n=−∞

an
zn

= −
∞∑

n=−∞

an
zn−2

= −
∞∑

n=−∞
anu

n−2 [6.64]

Now ∂uX
µ being holomorphic implies that it can have no poles at u = 0. This implies that

an = 0 for n− 2 < 0. I.e. ∂zXµ must be of the form

∂zX
µ = · · ·+ a3

z3
+
a2

z2
[6.65]

Thus indeed, as z →∞, we have that ∂zXµ → z−2.
Let us now use this on [6.62]. Requiring that ∂Xµ(z) falls off as z−2, whilst we keep

w fixed means that g(z, w) must also fall-off as z−2 at the least. But g(z, w) must be
holomorphic, so it can’t have poles at z = 0. We thus conclude that g(z, w) must be zero.

6.15 p 173: Eq. (6.2.25) The Expectation with a Level One Vertex
Operator

This should be straightforward by now. We start with one exponential

∂Xµ(z) : eik1·X(z1) = ∂Xµ(z)
∞∑
n=0

in

n!

(
k1 ·X(z1)

)n
= ik1 ν∂X

µ(z)Xν(z1)

∞∑
n=1

in−1

(n− 1)!

(
k1 ·X(z1)

)n−1

= − iα′

2

kµ1
z − z1

eik1·X(z1) [6.66]

(6.2.25) follows from that immediately.

6.16 p 173: Eq. (6.2.26) Momentum Conservation in the Expectation
Value

This is exactly the same argument as with the discussion around Eqs (6.2.21)-(6.2.23) but
it is worth repeating it. The requirement of holomorphicity on the two-sphere implies that
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∂Xµ falls as z−2 as z goes to infinity. This means that (6.2.25) cannot have regular terms,
but it also means that it cannot have a single pole∼ 1/z. Hence the numerator of the single
pole in (6.2.25) needs to vanish and this implies momentum conservation

∑
i k

µ
i = 0.

6.17 p 174: Eq. (6.2.28) Expanding around z → z1

We are just taking (6.2.25), splitting out the i = 1 term and expanding the sum of i = 2 to
n around z1:

− iα
′

2
AnS2

(k, σ)

(
kµ1

z − z1
+

n∑
i=2

kµi
z − zi

)
[6.67]

Now, as z → z1 for i = 2, · · · , n:

1

z − zi
=

1

z1 + (z − z1)− zi
=

1

z1 − zi
1

1 + (z − z1)/(z1 − zi)

=
1

z1 − zi

[
1− z − z1

z1 − zi
+ o
(
(z − z1)2

)]
=

1

z1 − zi
+ o(z − z1) [6.68]

and we find (6.2.28).

6.18 p 174: Eq. (6.2.31) The Expectation Value of Vertex Operators on
S2 from the Holomorphicity Condition

We first observe that the delta function for the momentum comes from (6.2.26). It is
then easiest to check that (6.2.31) does satisfy the differential equation (6.2.30). For the
holomorphic part, we need top show that

∂z1

n∏
i<j=1

z
α′ki·kj/2
ij =

α′

2

n∏
i<j=1

z
α′ki·kj
ij

n∑
i=2

k1 · ki
z1 − zi

[6.69]

Let us show this for n = 3 and the general pattern should be clear:

∂z1

(
z
α′k1·k2/2
12 z

α′k1·k3/2
13 z

α′k2·k3/2
23

)
=
α′

2
k1 · k2 z

α′k1·k2/2−1
12 z

α′k1·k3/2
13 z

α′k2·k3/2
23 +

α′

2
k1 · k3 z

α′k1·k2/2
12 z

α′k1·k3/2−1
13 z

α′k2·k3/2
23

=
α′

2

(
k1 · k2

z1 − z2
+

k1 · k3

z1 − z3

)
z
α′k1·k2/2
12 z

α′k1·k3/2
13 z

α′k2·k3/2
23 [6.70]

which is what we needed to show.
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6.19 p 174: Eq. (6.2.32) The Green’s Function on the Two-Disk D2

The two-disk D2 is obtained from the two-sphere S2 by identifying the points z and z̄ and
restricting z to the upper half complex plane, see (6.1.8). The Green’s function should thus
be the same if we replace one of the points by its conjugate. Let us transform z1 → z̄1:

G′(σ1, σ2) = −α
′

2
ln |z1 − z2|2 −

α

2
ln |z1 − z̄2|2

→ −α
′

2
ln |z̄1 − z2|2 −

α′

2
ln |z̄1 − z̄2|2

= −α
′

2
ln |z1 − z̄2|2 −

α′

2
ln |z1 − z2|2 = G′(σ1, σ2) [6.71]

as |z̄1 − z2| = |z1 − z̄2| and |z̄1 − z̄2| = |z1 − z2|. The same, of course, also holds for
z2 → z̄2. Let us also check that this Green’s function is consistent with the Neumann
boundary conditions ∂σX|σ=0,π = 0 for an open string. We first translate this boundary
condition into complex coordinates. We have ∂σ = ∂2 = i(∂ − ∂̄). Thus

∂σ1G
′(σ1, σ2) ∝ (∂z1 − ∂z̄1)

(
ln |z1 − z2|2 + ln |z1 − z̄2|2

)
= (∂z1 − ∂z̄1)

(
ln(z1 − z2) + ln(z̄1 − z̄2) + ln(z1 − z̄2) + ln(z̄1 − z2)

)
=

1

z1 − z2
+ 0 +

1

z1 − z̄2
+ 0− 0− 1

z̄1 − z̄2
− 0− 1

z̄1 − z2

=
1

z1 − z2
+

1

z1 − z̄2
− 1

z̄1 − z̄2
− 1

z̄1 − z2
[6.72]

This needs to vanish at the boundaries of the open string. But these boundaries correspond
to the boundaries of the disk, which is the real line where Im z = 0 and hence z = z̄ = u
with u ∈ R. Thus

∂σ1G
′(σ1, σ2) ∝ 1

u1 − u2
+

1

u1 − u2
− 1

u1 − u2
− 1

u1 − u2
= 0 [6.73]

Similarly we find of course that ∂σ2G
′(σ1, σ2) = 0.

Note that D2 is a compact surface with a boundary. It is not clear to me, and frankly
neither Joe, nor Kiritsis nor Tong make it clear whether or not there is a zero mode con-
tribution. Joe e.g. says "up to terms that drop out due to momentum conservation". So
he suggests that there is a zero mode and appropriate f functions. But the fact is that it
is only on compact surfaces without boundaries that the Poisson equation has no solutions
and one needs to include a zero mode. So in a way this statement is a bit surprising.
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6.20 p 175: Eq. (6.2.33) The Tachyon Vertex Amplitude in the Two-
Disk D2

The Green’s function has an extra term −α′/2
2 ln |z1 − z̄2|2 compared to the S2. This imme-

diately leads to an extra factor

n∏
i,j=1

|zi − z̄j |α
′ki·kj/2 =

n∏
i<j=1

|zi − z̄j |α
′ki·kj

n∏
i=1

|zi − z̄i|α
′k2
i /2 [6.74]

which is (6.2.33).

6.21 p 175: Eq. (6.2.34) Boundary Normal Ordering

Recall the normal ordering procedure (2.1.21b)

: Xµ(z1, z̄1)Xν(z2, z̄2) := Xµ(z1, z̄1)Xν(z2, z̄2) +
α′

2
ηµν ln |z1 − z2|2 [6.75]

This ensures that a two-point function of a normal ordered product is not divergent at
coinciding points as it subtracts the divergence. This certainly works for the two-sphere,
where the Green’s function is given by (6.2.9)

G′(σ1, σ2) = −α
′

2
ηµν ln |z1 − z2|2 + finite terms [6.76]

This implies that the two-point function of a normal ordered product is finite:

〈: Xµ(z1, z̄1)Xν(z2, z̄2) :〉 = 〈Xµ(z1, z̄1)Xν(z2, z̄2)〉+
α′

2
ηµν ln |z1 − z2|2

= ηµνG′(σ1, σ2) +
α′

2
ηµν ln |z1 − z2|2 = finite terms [6.77]

However we have a problem on the two-disk D2. Indeed at the boundary we have
z = z̄ and so

G′(σ1, σ2)
∣∣∣
∂D2

= − α′

2
ηµν lim

z1−>z̄1,z2−>z̄2

(
ln |z1 − z2|2 + ln |z1 − z2|2

)
+ finite terms

= − α′ηµν lim
z1−>z̄1,z2−>z̄2

ln |z1 − z2|2 = −α′ηµν ln(z1 − z2)2 [6.78]

As a result the two-point function of a normal ordered product is not finite, but has a
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divergence:

〈: Xµ(z1, z̄1)Xν(z2, z̄2) :〉
∣∣∣
∂D2

= 〈Xµ(z1, z̄1)Xν(z2, z̄2)〉
∣∣∣
∂D2

+
α′

2
ηµν ln(z1 − z2)2

= ηµνG′(σ1, σ2)
∣∣∣
∂D2

+
α′

2
ηµν ln(z1 − z2)2

= − α′

2
ηµν ln(z1 − z2)2 + finite terms [6.79]

That is why (6.2.34) introduces a boundary normal ordering when two points are on
the boundary

×
×X

µ(y1)Xν(y2)×× = Xµ(y1)Xν(y2) + 2α′ηµν ln(y1 − y2) [6.80]

The two-point function of a normal ordered product on the boundary is now finite, as it
should.

6.22 p 176: Eq. (6.2.38) The Green’s Function on the Projective Plane
RP2

I believe the expression for the Green’s function on RP2 in Joe’s book contains an error
as explained here. This is strange because it is not mentioned on his errata page, which,
otherwise, is very complete.

The Green’s function on RP2 is given by (6.2.38)

G′(σ2, σ2) = −α
′

2
ln |z1 − z2|2 −

α′

2
ln |1 + z1z̄2|2 [6.81]

RP2 is defined by identifying the points z and −1/z̄, so both points should give the same
Green’s function. Let thus transform z1:

G′(σ2, σ2) = −α
′

2
ln(z1 − z2)(z̄1 − z̄2)(1 + z1z̄2)(1 + z̄1z2)

→ −α
′

2
ln
(
− 1

z̄1
− z2

)(
− 1

z1
− z̄2

)(
1− 1

z̄1
z̄2

)(
1− 1

z1
z2

)
= −α

′

2
ln

1 + z̄1z2

z̄1

1 + z1z̄2

z1

z̄1 − z̄2

z̄1

z1 − z2

z1

= −α
′

2
ln

(z1 − z2)(z̄1 − z̄2)(1 + z1z̄2)(1 + z̄1z2)

|z1|4
[6.82]
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But this is not equal to G′. If there is a sign error in the second term we get

G′(σ2, σ2) = −α
′

2
ln

(z1 − z2)(z̄1 − z̄2)

(1 + z1z̄2)(1 + z̄1z2)

→ −α
′

2
ln
(
− 1

z̄1
− z2

)(
− 1

z1
− z̄2

)
/
(
1− 1

z̄1
z̄2

)(
1− 1

z1
z2

)
= −α

′

2
ln

1 + z̄1z2

z̄1

1 + z1z̄2

z1
/
z̄1 − z̄2

z̄1

z1 − z2

z1

= −α
′

2
ln

(1 + z1z̄2)(1 + z̄1z2)

(z1 − z2)(z̄1 − z̄2)

= −G′(σ1, σ2) [6.83]

so this is not correct either.
I am pretty sure that this is not correct. Indeed GSW have for the Green’s function on

RP2 Eq. (8.3.21):

G(z; z′; q2) = ηµν
(

ln |z − z′|+ ln

∣∣∣∣ q2

zz̄′
+ 1

∣∣∣∣) [6.84]

where the points with z and −q2/z̄ are identified. In Joe’s convention this would corre-
spond to

GGSW(σ2, σ2) = −α
′

2
ln |z1 − z2|2 −

α′

2
ln

∣∣∣∣ 1

z1z̄2
+ 1

∣∣∣∣2 [6.85]

Under z1 → −1/z̄1 this transforms as

GGSW(σ2, σ2) = −α
′

2
ln(z1 − z2)(z̄1 − z̄2)

(
1

z1z̄2
+ 1

)(
1

z̄1z2
+ 1

)
→ −α

′

2
ln

(
− 1

z̄1
− z2

)(
− 1

z1
− z̄2

)(
− z̄1

z̄2
+ 1

)(
−z1

z2
+ 1

)
= −α

′

2
ln

(1 + z̄1z2)(1 + z1z̄2)(z̄1 − z̄2)(z1 − z2)

z̄1z1z̄2z2

= −α
′

2
ln

(
1

z̄1z2
+ 1

)(
1

z1z̄2
+ 1

)
(z̄1 − z̄2)(z1 − z2)

= GGSW(σ2, σ2) [6.86]

Both Greens functions are related:

G′(σ1, σ2) = GGSW(σ2, σ2)− α′

2
ln |z1z2|2 [6.87]

— 295—



Joe’s Book (version of November 20, 2020) Notes from Stany M. Schrans

6.23 p 176: Eq. (6.3.1) The Simplest Ghost Non-Vanishing Expectation
Value

Recall the general expression for the S-matrix (5.3.9)

Sj1,··· ,jn(k1, · · · , kn) =
∑

comp topos

∫
F

dµt

nR

∫
[dφ db dc] e−Sm−Sg−λχ

×
∏

(a,i)6∈f

∫
dσµi

µ∏
k=1

1

4π
(g, ∂kĝ)

∏
(a,i)∈f

ca(σ̂i)

n∏
i=1

ĝ(σi)
1/2Vji(ki, σi) [6.88]

we refer to that equation for the explanation of all symbols, expect for what we need
here. f is the set of fixed coordinates we can chose, i.e. the number of conformal Killing
vectors (CKV). The integral is also over the conformal Killing group (CKG), denoted by
its moduli. The sphere, disk and projective space are genus zero, and as a result have
no moduli. The sphere has six CKVs, see (6.1.5 a,b) and so what remains from the FP
determinant is

∏
(a,i)∈f c

a(σ̂i), i.e. six c-ghost insertions, c(z1)c(z2)c(z3)c̃(z1)c̃(z2)c̃(z3).
The simplest non-vanishing expectation value we can make on the sphere is hence indeed
〈c(z1)c(z2)c(z3)c̃(z1)c̃(z2)c̃(z3)〉S2 .

6.24 p 177: Eq. (6.3.5) The Multi-Ghost Field Amplitude

This should be rather obvious, but here we go. We consider only the holomorphic sector,
the anti-holomorphic being a copy. We need three more c-ghosts than b-ghost, so that once
we have contracted all possible bc pairs we are left with a non-vanishing result. So we
contract p ghosts c(zi) with p ghosts b(z′j) and this gives us p factors of 1/(zi − zj) and an
expectation value of three remaining c-ghosts that gives us (zp+1−zp+2)(zp+1−zp+3)(zp+2−
zp+3). In addition we have, of course, to take all possible permutations of the p ghosts c
and b and how these can be contracted.

6.25 p 177: Eq. (6.3.6) The Holomorphic Derivation for the Need for
Three c-Ghost Insertions

Eq (2.5.17) shows how the ghost current transforms under a conformal transformation.
For λ = 2 it gives

(∂zu)ju(u) = jz(z) +
3

2

∂2
zu

∂zu
[6.89]
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With u = 1/z we have ∂zu = −1/z2 = −u2 and ∂2
zu = 2/z3 = 2u3. Moreover dz = −du/u2.

Thus

−u2ju(u) = jz(z) +
3

2

2u3

−u2
= jz(z)− 3u [6.90]

We thus find that∮
C

dz

2πi
jz(z) =

∮
C

−du/u2

2πi

(
−u2ju(u) + 3u

)
=

∮
C

du

2πi
ju(u)−

∮
C

du

2πi

3

u
[6.91]

The contour C is counter-clockwise in the z-patch so, it is clockwise in the u-patch. Making
it counter-clockwise flips the sign and we have∮

C

dz

2πi
jz(z) = −

∮
C

du

2πi
ju(u) + 3 [6.92]

which is (6.3.6) with the correction from Joe’s errata page included.

6.26 p 177: Eq. (6.3.8) The Alternative Expression for the Multi-Ghost
Field Amplitude

There must be a neat mathematical way to show that (6.3.8) is equivalent to (6.3.5). But
why the permutations "evidently" sum up, is a mystery to me. We can however check it for
a couple of cases, to convince ourselves.

Let us start with p = 1 and work out (6.3.5). There are four c-ghosts and one b-ghost,
so there is one propagator. Let us denote by

(abc|d) =
zabzaczbc
zd − w1

[6.93]

Up to the pre-factor, (6.3.5) is then

〈 〉p=1 = (123|4)− (124|3) + (134|2)− (234|1) [6.94]

Using Mathematica, see the code in fig.6.6, where to be equal to (6.3.8), i.e.

z12z13z23z14z24z34

(z1 − w1)(z2 − w1)(z3 − w1)(z4 − w1)
[6.95]

Next, we consider p = 2. There are nor five c-ghosts and two b-ghosts, hence we have
two propagators. We define

(abc|de) =
zabzaczbc

(zd − w1)(ze − w2)
[6.96]
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and (6.3.5) is then given by

〈 〉p=2 = (123|45)− (124|35) + (125|34) + (134|25)− (135|24)

+(145|23)− (234|15) + (235|14)− (245|13) + (345|12) [6.97]

This isn’t something one would like to work out by hand, so Mathematica comes to help
once more, see fig.6.6

ClearAll [z, w, cc, co];

z[a_, b_] := z[a] - z[b]; w[a_, b_] := w[a] - w[b];

cc[a_, b_, c_] := (z[a] - z[b]) * (z[a] - z[c]) * (z[b] - z[c]);

co[a_, b_] := 1 / (z[a] - w[b]);

cc[a_, b_, c_, d_, e_] :=

Simplify [Expand [cc[a, b, c] * (co[e, 1] * co[d, 2] - co[d, 1] * co[e, 2])]];

In[71]:= (* p=1 *)

p1635 = Simplify [

cc[1, 2, 3] * co[4, 1] - cc[1, 2, 4] * co[3, 1] + cc[1, 3, 4] * co[2, 1] - cc[2, 3, 4] * co[1, 1]] /.

{z[1] → z1, z[2] → z2, z[3] → z3, z[4] → z4, w[1] → w1, w[2] → w2};

p1638 = z[1, 2] * z[1, 3] * z[1, 4] * z[2, 3] * z[2, 4] * z[3, 4] * co[1, 1] * co[2, 1] * co[3, 1] *

co[4, 1] /. {z[1] → z1, z[2] → z2, z[3] → z3, z[4] → z4, w[1] → w1, w[2] → w2};

Simplify [(p1635 - p1638 )]

Out[73]= 0

In[74]:= (* p=2 *)

p2635 = ( cc[1, 2, 3, 4, 5] - cc[1, 2, 4, 3, 5] +

cc[1, 2, 5, 3, 4] + cc[1, 3, 4, 2, 5] - cc[1, 3, 5, 2, 4] + cc[1, 4, 5, 2, 3] -

cc[2, 3, 4, 1, 5] + cc[2, 3, 5, 1, 4] - cc[2, 4, 5, 1, 3] + cc[3, 4, 5, 1, 2]) /.

{z[1] → z1, z[2] → z2, z[3] → z3, z[4] → z4, z[5] → z5, w[1] → w1, w[2] → w2} ;

p2638 = z[1, 2] * z[1, 3] * z[1, 4] * z[1, 5] * z[2, 3] * z[2, 4] * z[2, 5] *

z[3, 4] * z[3, 5] * z[4, 5] * w[1, 2] * co[1, 1] * co[1, 2] * co[2, 1] *

co[2, 2] * co[3, 1] * co[3, 2] * co[4, 1] * co[4, 2] * co[5, 1] * co[5, 2] /.

{z[1] → z1, z[2] → z2, z[3] → z3, z[4] → z4, z[5] → z5, w[1] → w1, w[2] → w2};

Simplify [(p2635 - p2638 )]

Out[76]= 0

Figure 6.6: Mathematica code for multi-ghost expectation value. p1635 and p1638 are the
formula (6.3.5) and (6.3.8) for p = 1 and similarly for p2635 and p2638. We show that for both
cases p = 1, 2 these expressions are the same.
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6.27 p 179: Eq. (6.4.1) The Three Tachyon Open String Amplitude, I

Let us look at what makes out this expectation value. First, we have three open string
tachyon vertex operators, given by (3.6.25), i.e. ××goeik.X(y)××, with boundary normal or-
dering as the asymptotic states are on the boundary of the disk, i.e. on the real axis. Next
we have the three c-ghost insertions corresponding to the three conformal Killing vectors of
the two disk. Then we have the Euler term e−λχ, where for the tow-disk we find, using the
Riemann-Roch theorem, that 3χ = κ − µ, with κ the number of conformal Killing vectors
and µ the number of moduli. For the two-disk this becomes 3χ = 3−0 or hence χ = 1. The
three fixed coordinates can now be fixed on the real axis of the complex plane in two ways
that are linked by a PSL(2,R) transformation, depending on the cyclic order, as shown in
the figure below. Bringing this all together we find (6.4.1).

Figure 6.7: Mapping the three open string tachyon amplitude to the upper half complex plane.
There are two cyclic ordering that are not related by a PSL2(R) transformation.

6.28 p 179: Eq. (6.4.2) The Three Tachyon Open String Amplitude, II

The three c-ghost insertions are given by (6.3.11), but with zi = yi for i = 1, 2, 3 real:
CgD2

y12y13y23. The matrix element needs to be positive, so without loss of generality we
can replace yij by |yij |. The matter contribution was worked out in (6.2.35) and is given
by iCXD2

(2π)26δ26(
∑

i ki)|y12|2α
′k1·k2 |y12|2α

′k1·k3 |y23|2α
′k2·k3 . We thus find

SD2(k1; k2; k3) = ig3
0e
−λCgD2

CXD2
(2π)26δ26(

3∑
i=1

ki)|y12|1+2α′k1·k2 |y12|1+2α′k1·k3 |y23|1+2α′k2·k3

+ 〈k2 ↔ k3〉
[6.98]
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Defining

CD2 = e−λCgD2
CXD2

[6.99]

this becomes

SD2(k1; k2; k3) = ig3
0CD2(2π)26δ26(

3∑
i=1

ki)|y12|1+2α′k1·k2 |y12|1+2α′k1·k3 |y23|1+2α′k2·k3

+ 〈k2 ↔ k3〉 [6.100]

which is (6.4.2) taking into account the correction on Joe’s errata page.

6.29 p 179: Eq. (6.4.3-6.4.4) The Three Tachyon Open String Ampli-
tude, III

Momentum conservation is k1 + k2 = k3 which implies that (k1 + k2)2 = k2
3, which gives

using k2
i = 1/α′

2

α′
+ 2k1 · k2 =

1

α′
⇒ 2α′k1 · k2 = −1 [6.101]

And of course as well k1 · k3 = k2 · k3 = −1. This then immediately gives (6.4.4).

6.30 p 179: Eq. (6.4.5) The Four Tachyon Open String Amplitude, I

The four tachyon open string amplitude is similar as the three tachyon open string am-
plitude, with an extra open string vertex operator. The location of the that extra vertex
operator needs to be integrated over as it cannot be fixed by the conformal Killing Group.
The integration is over the real axis as it lies on the boundary of the two-disk. This imme-
diately gives the result (6.4.5).

6.31 p 180: Eq. (6.4.7) The Mandelstam Variables

It is a standard consequence of the definition of the Mandelstam variables that their sum
is equal to the sum of the mass squared of the particles. Indeed

s+ t+ u = −(k1 + k2)2 − (k1 + k3)2 − (k1 + k4)2 [6.102]

We give here a short reminder of Mandelstam arises and how the above property arises.
This is taken almost verbatim from my QFT Notes. In order to keep the reader sharp, I am
still using the mostly negative signature that is used in these notes. Consider a scattering
process of two incoming and two outgoing particles:
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p1 p2

k1 k2

We introduce so-called Mandelstam Variables:

s = (p1 + p2)2 = (k1 + k2)2 [6.103]

t = (k1 − p1)2 = (k2 − p2)2 [6.104]

u = (k2 − p1)2 = (k1 − p2)2 [6.105]

There is clearly some arbitrariness in the definition of t and u, but this should not bother
us here. There is no ambiguity in the definition of s; it is always the sum squared of the
incoming momenta.

To get a better understanding of the Mandelstam variables it is useful to work them out
in a centre of mass reference frame, i.e. in a frame where the total three-momentum of the
two incoming particles is zero. We also assume all incoming and outgoing particles have
the same mass.

θp1 = (E, 0, 0, p)

p2 = (E, 0, 0,−p)

k1 = (E,p)

k2 = (E,−p)

Figure 6.8: Kinematics for the Mandelstam Variables. We are using negative signature for a
change.

We chose the z-axis along the line of the incoming particles and we can always select the
x and y axis such that the outgoing particles are entirely in the y − z plane. We then have
for the incoming momenta: p1 = (E, 0, 0, p) and p2 = (E, 0, 0,−p) and for the outgoing
momenta k1 = (E, 0, p sin θ, p cos θ) and k2 = (E, 0,−p sin θ,−p cos θ). The Mandelstam
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variables become:

s = (p1 + p2)2 = (2E)2 = Ec.o.m. [6.106]

t = (k1 − p1)2 = [(E, 0, p sin θ, p cos θ)− (E, 0, 0, p)]2

= (0, 0, p sin θ, p(1− cos θ))2

= −p2 sin2 θ − p2(1− cos θ)2 = −p2(sin2 θ + 1 + cos2 θ − 2 cos θ)

= −2p2(1− cos θ) [6.107]

u = (k2 − p1)2 = [(E, 0,−p sin θ,−p cos θ)− (E, 0, 0, p)]2

= (0, 0,−p sin θ,−p(1 + cos θ))2

= −p2 sin2 θ − p2(1 + cos θ)2 = −p2(sin2 θ + 1 + cos2 θ + 2 cos θ)

= −2p2(1 + cos θ) [6.108]

where Ec.o.m. is the centre of mass energy.
We can note a few important properties of these Mandelstam variables :

• s is strictly positive, whilst t and u are negative:

s > 0 , t ≤ 0 and u ≤ 0 [6.109]

• t = 0 for θ = 0 and u = 0 for θ = π. If t or u appear in the denominator of an amplitude,
it will blow up. This is e.g. the case in electron-muon scattering. Note that s is strictly pos-
itive and cannot blow up an amplitude. So the particles interchanged through the different
channels will result in different angular dependencies of the scattering amplitudes.

• The sum of the Mandelstam variables is constant: s + t + u = 4E2 − 4p2 = 4m2. This is a
special case of a general rule when the particles do not necessarily have the same mass:

s+ t+ u =

4∑
i=1

m2
i [6.110]

We also note that in the center of mass frame s = 4E2 and t = −2p2(1− cos θ). But as 0 = E2 − p2

we have

s2 − t2 =(2E2)2 − (2E2)2(1− cos θ)2 = 4E4(1− (1− cos θ)2 [6.111]

But as 0 ≤ 1− cos θ ≤ 1 we have s2 − t2 ≥ 0. As s > 0 and t ≤ 0 this gives us another constraint:

• s is larger or equal than the absolute value of t:

s ≥ |t| [6.112]
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6.32 p 180: Eq. (6.4.8) The Four Tachyon Open String Amplitude, II

Setting y1 = 0, y2 = 1 and y3 = ∞ in (6.4.5) should only raise concerns regarding the
y3 leading to an infinity. Let us keep y3 = y as it is and consider limy→∞. Ignoring the
unimportant pre-factors (6.4.5) gives

SD2 ∝ lim
y→∞

|(0− 1)× (0− y)× (1− y)|
∫ +∞

−∞
dy4 |0− 1|2α′k1·k2 |0− y|2α′k1·k3

× |0− y4|2α
′k1·k4 |1− y|2α′k2·k3 |1− y4|2α

′k2·k4 |y − y4|2α
′k3·k4

∝ lim
y→∞

y2y2α′k1·k3y2α′k2·k3y2α′k3·k4

∫
dy4 |y4|2α

′k1·k4 |1− y4|2α
′k2·k4 [6.113]

We can justify replacing the y − y4 by y by introducing a regulator
∫ +Λ
−Λ and then first take

the limit of y →∞ allowing us to take it outside of the integral sign, and only then taking
Λ→∞. We now have

−t = (k1 + k3)2 = k2
1 + k2

3 + 2k1 · k3 =
2

α′
+ 2k1 · k3

⇒ 2α′k1 · k3 = −2− α′t [6.114]

where we have used the tachyon on-shell condition k2 = 1/α′. Similarly we have

−u = (k1 + k4)2 = (k2 + k3)2 = k2
2 + k2

3 + 2k2 · k3 =
2

α′
+ 2k2 · k3

⇒ 2α′k2 · k3 = −2− α′u [6.115]

and

−s = (k1 + k2)2 = (k3 + k4)2 = k2
3 + k2

4 + 2k3 · k4 =
2

α′
+ 2k3 · k4

⇒ 2α′k3 · k4 = −2− α′s [6.116]

Therefore

SD2 ∝ lim
y→∞

y2−2−α′t−2−α′u−2−α′s
∫
dy4 |y4|2α

′k1·k4 |1− y4|2α
′k2·k4

∝ lim
y→∞

y−4−α′t−α′u−α′s
∫
dy4 |y4|2α

′k1·k4 |1− y4|2α
′k2·k4

∝ lim
y→∞

∫
dy4 |y4|2α

′k1·k4 |1− y4|2α
′k2·k4 [6.117]

where in the last line we have used (6.4.7), i.e. α′(s + t + u) = −4. The y thus has
disappeared and we can take the limit and recover (6.4.8).
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6.33 p 180: Eq. (6.4.9) The Four Tachyon Open String Amplitude with
Mandelstam Variables

We need to bring the integrals
∫ +∞
−∞ into the form

∫ 1
0 . As explained in the text the integral

can be split into
∫ 0
−∞+

∫ 1
0 +

∫ +∞
1 and bring it to the desired form using Möbius transfor-

mations. Recall that a general Möbius transformation is of the form

y′ = P (y) =
αy + β

βy + δ
[6.118]

with α, β, γ and δ real and satisfying |αδ − βγ| = 1.
Start with

∫ 1
0 , corresponding to Fig. 6.2 (b). This is already in the right form. We can

thus write

I6.2(b) =

∫ 1

0
dy |y|−α′u−2|1− y|−α′t−2 =

∫ 1

0
dy y−α

′u−2(1− y)−α
′t−2 [6.119]

It is convenient to perform a Möbius transformation y′ = P (y) = −y + 1. The Jacobian is
J = ∂y/∂y′ = −1 and so

I6.2(b) =

∫ 0

1
(−dy′) (1− y′)−α′u−2(y′)−α

′t−2 =

∫ 1

0
dy′ (y′)−α

′t−2(1− y′)−α′u−2

= I(t, u) [6.120]

Take now
∫∞

1 transforming to the form
∫ 1

0 using a Möbius transformation. This corre-
sponds to the vertex ordering in Fig. 6.2 (c).

We can achieve the desired integration bounds if 1 remains unchanged and∞ becomes
0 and so 0 becomes∞. This is obviously achieved by the Möbius transformation

y′ = P (y) = 1/y [6.121]

The Jacobian of this transformation is J = ∂y/∂y′ = −1/y′2 and so we can write the
integral as

I6.2(c) =

∫ ∞
1

dy |y|−α′u−2|1− y|−α′t−2 =

∫ ∞
1

dy y−α
′u−2(y − 1)−α

′t−2

=

∫ 0

1
−dy

′

y′2

(
1

y′

)−α′u−2( 1

y′
− 1

)−α′t−2

=

∫ 1

0
dy′

(
y′
)−2+α′u+2+α′t+2 (

1− y′
)−α′t−2

=

∫ 1

0
dy′

(
y′
)2+α′u+α′t (

1− y′
)−α′t−2

[6.122]
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From (6.4.7) we see that α′u+ α′t = −α′s− 4 and thus

I6.2(c) =

∫ 1

0
dy′

(
y′
)2−α′s−4 (

1− y′
)−α′t−2

=

∫ 1

0
dy′

(
y′
)−2−α′s (

1− y′
)−α′t−2

= I(s, t) [6.123]

Finally, consider
∫ 0
−∞ into

∫ 1
0 . This corresponds to the vertex ordering in Fig. 6.2. (a).

The appropriate Möbius transformation is

y′ = P (y) =
1

1− y
[6.124]

We see that P (−∞) = 0 and P (0) = 1. The inverse transformation is y = −(1− y′)/y′ and
the Jacobian is J = ∂y/∂y′ = 1/y′2. Moreover 1− y = 1/y′. Thus

I6.2(a) =

∫ 0

−∞
dy |y|−α′u−2|1− y|−α′t−2 =

∫ 0

−∞
dy (−y)−α

′u−2(1− y)−α
′t−2

=

∫ 1

0

dy′

y′2

(
1− y′

y′

)−α′u−2( 1

y′

)−α′t−2

=

∫ 1

0
dy′(y′)−2+α′u+2+α′t+2(1− y′)−2−α′u

=

∫ 1

0
dy′(y′)2+α′u+α′t(1− y′)−2−α′u =

∫ 1

0
dy′(y′)−2−α′s(1− y′)−2−α′u

= I(s, u) = I(u, s) [6.125]

where again we have used α′u+ α′t = −α′s− 4. We have also used the fact that I(a, b) =
I(b, a), which can be easily checked by a change of integration variables y → 1− y.

The vertex orderings for Fig. 6.2 (d), (e) and (f) can be obtained from these by inter-
changing k2 with k3. This corresponds to interchanging s with t and leaving u unchanged.
We thus have immediately

I6.2(d) = I6.2(a)(s↔ t) = I(u, t) = I(t, u)

I6.2(e) = I6.2(b)(s↔ t) = I(s, u) = I(u, s)

I6.2(f) = I6.2(c)(s↔ t) = I(t, s) = I(s, t) [6.126]

Bringing the six contributions together we recover

2
[
I(s, t) + I(t, u) + Iu, s)

]
[6.127]

which gives (6.4.9).

— 305—



Joe’s Book (version of November 20, 2020) Notes from Stany M. Schrans

6.34 p 181: Eq. (6.4.11) The Divergence of the Amplitude at the Inter-
mediate Tachyon State

I(s, t) has potential divergences as we approach the two integration boundaries, y → 0 and
y → 1. The integral is symmetric under y ↔ 1−y so it is sufficient to look at the divergence
at only one of the integration points, say y = 0. In order to avoid any divergences, we first
replace the upper integration boundary 1 by r, work in the region where the integrand is
convergent and then take the limit of r → 1. This allows us to expand the integrand around
y = 0 and that gives the factor 1/(α′s+ 1) and so the divergence at s = (p1 + p2)2 = −1/α′

corresponding to an intermediate tachyon state.

6.35 p 182: Eq. (6.4.14) The Four-Tachyon Open String Amplitude and
Factorisation

Eq. (6.4.13) is an example of factorisation: the four-string amplitude is a combination of
two three-string amplitude amplitudes with an intermediate state of all possible momenta.
It is also reminiscent of the BCFW recursion formula for scattering amplitudes in QFT,
albeit that in the latter the intermediate momenta are complex. Let us work out (6.4.14).
From (6.4.13) and (6.4.4) we have

SD2 =i

∫
d26k

(2π)26

[
2ig3

0CD2(2π)26δ26(k1 + k2 + k)
] [

2ig3
0CD2(2π)26δ26(−k + k3 + k4)

]
−k2 + α′−1 + iε

+ terms analytic at k2 = 1/α′

=−
4ig6

0C
2
D2

(2π)26δ26(k1 + k2 + k3)

−(k1 + k2)2 + α′−1 + iε
+ terms analytic at k2 = 1/α′ [6.128]

But we also have the expression for the four tachyon amplitude (6.4.9) and we know how
it behaves as k2 = −s = 1/α′ from (6.4.11). We get not only such a term from I(s, t) but
also from I(u, s). Thus

SD2 =2ig4
0CD2(2π)26δ26(k1 + k2 + k3 + k4)×

(
− 2

α′s+ 1

)
+ terms analytic at k2 = 1/α′ [6.129]

Equating these two expressions we find

g2
0CD2

s+ α′−1
=

1

α′s+ 1
[6.130]

or

CD2 =
1

α′g2
0

[6.131]

which is (6.4.14)
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6.36 p 182: Eq. (6.4.17) The Pole of I(s, t) at α′s = 0

Using (1− y)−α
′t−2 = 1 + (α′t+ 2)y + o(y2) we have

I(s, t) =

∫ 1

0
dy y−α

′s−2 + (α′t+ 2)

∫ 1

0
dy y−α

′s−1 + · · · [6.132]

The first integral gives a term that diverges as α′s = −1 and is analytic as α′s = 0. So
we get, performing the integration over the second term, in oirder to identify the pole as
α′s = 0,

I(s, t) ∼ lim
α′s→0

−α
′t+ 2

α′s
y−α

′s
∣∣∣1
0

= − lim
α′s→0

α′t+ 2

α′s
[6.133]

Using s+ t+ u = −4/α′ we can write the numerator as

α′t+ 2 =
1

2
α′t+

1

2
(α′t+ 4) =

1

2
α′t+

1

2
(−α′s− α′u) =

1

2
α′(t− u− s)

=
α′s→0

1

2
α′(t− u) [6.134]

and so indeed

I(s, t) =
u− t

2s
+ terms analytic at α′s = 0 [6.135]

6.37 p 183: Eq. (6.4.17) The Pole of the Amplitude α′s = 0 is Actually
not There

From I(s, t) = (u−t)/2s+ · · · we obtain immediately from replacing t with u that I(s, u) =
(t − u)/2s + · · · and so the pole at s = 0 cancels and is not present in the amplitude.
The comment about this not being valid for the more general open string amplitudes we
will study later is related to teh fact that we will add Chan-Paton factors λa to the string
boundaries. The amplitude will then have contributions from traces of the λa’s in different
order, and so the contributions will not cancel and the amplitude will have a pole at α′s =
0.

6.38 p 183: Eq. (6.4.22) Relating the Beta and Gamma Functions

We use the definition of the Gamma function, Γ(z) =
∫∞

0 dz e−zxz−1. Multiplying (6.4.21)
by
∫∞

0 dw e−w the LHS becomes

LHS =

∫ ∞
0

dw e−wwa+b−1B(a, b) = Γ(a+ b)B(a, b) [6.136]
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The RHS becomes

RHS =

∫ ∞
0

dw e−w
∫ ∞

0
dv va−1(w − v)b−1

=

∫ ∞
0

dv e−ve+vva−1

∫ ∞
0

dw e−w(w − v)b−1

=

∫ ∞
0

dv e−vva−1

∫ ∞
0

dw e−(w−v)(w − v)b−1

=

∫ ∞
0

dv e−vva−1

∫ ∞
0

dy e−yyb−1 = Γ(a)Γ(b) [6.137]

6.39 p 183: Eq. (6.4.23) The Veneziano Amplitude

This is straightforward. Use (6.4.9) and plug in the expression for CD2 and the expression
of I in terms of the Beta functions (6.4.20).

6.40 p 184: Eq. (6.4.27) The Center of Mass Frame Kinematics

In the center of mass frame the incoming particles have momenta p1 = (p0
1,pi) and p2 =

(p0
2,−pi) for some three-vector p. The mass shell condition is −m2 = p2

1 = −(p0
1)2 + p2

i

and −m2 = p2
2 = −(p0

2)2 +p2
i . From this it follows that p0

1 = p0
2, which we will call E0. The

total center of mass energy is thus E = 2E0.
The outgoing particles have momenta p3 = (p0

3,−po) and p4 = (p0
4,po) for some three-

vector po. The mass shell condition once more implies that p0
3 = p0

4 and energy conserva-
tion implies that p0

1 + p0
2 + p0

3 + p0
4 or hence p0

3 = p0
4 = −E0. Let us also call θ the angle

between the three-momenta of particle one and particle three. All this is summarised in
fig. 6.9.

p1 = (E0,+pi)

p2 = (E0,−pi)

p3 = (−E0,−po)

p4 = (−E0,+po)

θ

Figure 6.9: Center of mass frame kinematics four a four-string amplitude.
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We then have

s = −(p1 + p2)2 = −(2E0, 0, 0, 0)2 = 4E2
0 = E2 [6.138]

Similarly

t = −(p1 + p3)2 = −(0,pi − po)2 = 0− (pi − po)2

= −p2
i − p2

o + 2pi.po [6.139]

The mass shell condition is −m2 = −E2
0 + p2

i = −E2
0 + p2

o and so p2
i = p2

o = E2
0 −m2 and

pi · po = |pi| |po| cos θ = (E2
0 −m2) cos θ. Thus

t = −2(E2
0 −m2) + 2(E2

0 −m2) cos θ

= −2(E2
0 −m2) + 2(E2

0 −m2)

(
1− 2 sin2 θ

2

)
= 4(m2 − E2

0) sin2 θ

2
= (4m2 − E2) sin2 θ

2
[6.140]

We find, similarly,

u = −(p1 + p4)2 = −(0,pi + po)
2 = −p2

i − p2
o − 2pi.po

= −2(E2
0 −m2)− 2(E2

0 −m2) cos θ

= −2(E2
0 −m2)− 2(E2

0 −m2)

(
2 cos2 θ

2
− 1

)
= 4(m2 − E2

0) cos2 θ

2
= (4m2 − E2) cos2 θ

2
[6.141]

One easily checks that s+t+u = 4m2 as it should for Mandelstam variables. The conclusion
that having s→∞ at t fixed requires θ → 0, so that in that limit t→ 0, a fixed value indeed.
Similarly, requiring t/s fixed means

lim
E→∞

4m2 − E2 sin2 θ
2

E2
= 4m2 sin2 θ

2
[6.142]

fixed, so looking at a fixed angle θ.

6.41 p 183: Eq. (6.4.28) The Regge Behaviour of the Veneziano Am-
plitude

From (6.4.23) we need to calculate

B = B(−α′s− 1,−α′t− 1) +B(−α′s− 1,−α′u− 1) +B(−α′t− 1,−α′u− 1) [6.143]
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Let us start with using Stirling’s formula4 for large s keeping t fixed:

B1 = B(−α′s− 1,−α′t− 1) =
Γ(−α′s− 1)Γ(−α′t− 1)

Γ(−α′s− α′t− 2)
=

Γ(−α′s− 2 + 1)Γ(−α′t− 1)

Γ(−α′s− α′t− 3 + 1)

=
(−α′s− 2)−α

′s−2eα
′s+2

√
−2/π(α′s+ 2)

(−α′s− α′t− 3)−α′s−α′t−3eα′s+α′t+3
√
−2/π(α′s+ α′t+ 3)

Γ(−α′t− 1) [6.144]

We now take the limit s→∞ holding t fixed. Thus

B1 →
(−α′s)−α′s−2eα

′s
√
−2/πα′s

(−α′s)−α′s−α′t−3eα′s
√
−2/πα′s

Γ(−α′t− 1)

∝ sα′t+1Γ(−α′t− 1) = sαo(t)Γ(−αo(t)) [6.145]

Let us now consider B2 = B(−α′s− 1,−α′u− 1). From s+ t+ u = −4/α′ We see that in
the limit s→∞ with t fixed, u ∼ −s and thus

B2 = B(−α′s− 1,−α′u− 1) =
Γ(−α′s− 1)Γ(−α′u− 1)

Γ(−α′s− α′u− 2)
=

Γ(−α′s− 2 + 1)Γ(−α′u− 2 + 1)

Γ(−α′s− α′u− 3 + 1)

=
(−α′s− 2)−α

′s−2eα
′s+2

√
−2/π(α′s+ 2)(−α′u− 2)−α

′u−2eα
′u+2

√
−2/π(α′u+ 2)

(−α′s− α′u− 3)−α′s−α′u−3eα′s+α′u+3
√
−2/π(α′s+ α′u+ 3)

=
(−α′s− 2)−α

′s−2eα
′s+2

√
−2/π(α′s+ 2)(+α′s− 2)+α′s−2e−α

′s+2
√
−2/π(−α′s+ 2)

(−α′s+ α′s− 3)−α′s+α′s−3eα′s−α′s+3
√
−2/π(α′s− α′s+ 3)

→ (−α′s)−α′s−2eα
′ss−1/2(+α′s)+α′s−2e−α

′ss−1/2 ∝ s−5 → 0 [6.146]

Finally consider B3 = B(−α′t−1,−α′u−1). As u ∼ −s in the limit we are considering, we
have B3 ∼ B1 ∝ sαo(t)Γ(−αo(t)). We thus conclude that B1 +B2 +B3 ∝ sαo(t)Γ(−αo(t)),
which is what we set out to show.

6.42 p 183: Eq. (6.4.29) The Hard Scattering Behaviour of the Vene-
ziano Amplitude, I

This limit implies that all the Mandelstam variables becomes infinite:

s = E2; t→ −E2 sin2 θ

2
= −s sin2 θ

2
; u→ −E2 cos2 θ

2
= −s cos2 θ

2
[6.147]

4There is a typo in Joe’s book, as per his errata page. Stirling’s formula should read Γ(x + 1) =
xxe−x(2/πx)1/2.
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We then have e.g.

B(−α′s− 1,−α′u− 1) =
Γ(−α′s− 1)Γ(−α′u− 1)

Γ(−α′s− α′u− 2)
=

Γ(−α′s− 2 + 1)Γ(−α′u− 2 + 1)

Γ(−α′s− α′u− 3 + 1)

=
(−α′s− 2)−α

′s−2eα
′s+2

√
−2/π(α′s+ 2)(−α′u− 2)−α

′u−2eα
′u+2

√
−2/π(α′u+ 2)

(−α′s− α′u− 3)−α′s−α′u−3eα′s+α′u+3
√
−2/π(α′s+ α′u+ 3)

→ (α′s)−α
′s−2eα

′ss−1/2(α′u)−α
′u−2eα

′uu−1/2

(α′s+ α′u)−α′s−α′u−3eα′s+α′u(s+ u)s−1/2

→ α′−α
′s−α′u−4+α′s+α′u+3eα

′(s+u−s−u)s−α
′s−2−1/2u−α

′u−2−1/2(s+ u)+α′s+α′u+3+1/2

∝ s−α′s−5/2u−α
′u−5/2(s+ u)α

′(s+u)+7/2 ∝ s−α′su−α′ut−α′t [6.148]

In the last line we have used s+u = −t−4/α′ and we have also considered the limit where
s, t, u→∞. The other Beta functions give the same result and so we do indeed find that

SD2 ∝ s−α
′su−α

′ut−α
′t = exp

[
−α′(s ln s+ t ln t+ u lnu)

]
[6.149]

6.43 p 183: Eq. (6.4.30) The Hard Scattering Behaviour of the Vene-
ziano Amplitude, II

We have

s ln s+ t ln t+ u lnu = s

(
ln s− cos2 θ

2
ln s cos2 θ

2
− sin2 θ

2
ln s sin2 θ

2

)
= s

(
ln s− cos2 θ

2
ln cos2 θ

2
− cos2 θ

2
ln s− sin2 θ

2
ln sin2 θ

2
− sin2 θ

2
ln s

)
= s

[(
1− cos2 θ

2
− sin2 θ

2

)
ln s− cos2 θ

2
ln cos2 θ

2
− sin2 θ

2
ln sin2 θ

2

]
= s

(
− cos2 θ

2
ln cos2 θ

2
− sin2 θ

2
ln sin2 θ

2

)
= sf(θ) [6.150]

which is (6.4.30).
We see that the amplitude of four tachyon scattering decays as an exponential decay

exp[−α′f(θ)s]. In particle based QFT a four particle scattering amplitude has a power
decay. I seem to remember that this is a necessary condition for unitarity but I can’t find
it back in my notes. As an example the total tree level amplitude for the hard scattering
process e+e− → µ+µ− is in the high-energy limit

σ =
4πα2

3s
[6.151]

and any four-lepton scattering will have the 1/s behaviour in the high-energy limit, only
the constant factor will differ, depending on the details of the particles involved.
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6.44 p 185: The Hermiticity of the Chan-Paton Factors

The Chan-Paton degrees of freedom give quantum numbers that are measurable, hence
these quantum numbers i, j in (6.5.1) should be real. Our theory being quantum mechanics
these quantum numbers should be Eigenvalues of some operators. As there are n such
quantum numbers on each end of the string the operators can be represented by n × n
matrices that have to be Hermitian in order to have real Eigenvalues. A complete set of
Hermitian n × n matrices is given by the n2 matrices λaij . Here a = 1, · · · , n2 refers to the
n2 different matrices in the basis and i, j = 1, · · · , n are the elements of the n×n matrices.

6.45 p 185: Eq. (6.5.4) The Trace of Chan-Paton Factors

Consider a four open string tachyon scattering. Each endpoint of each string has a Chan-
Paton factor associated to it. Each open string thus has a state |N ; k; a〉 =

∑n
i,j=1 |N ; k; ij〉λaij

associated with it.

i1

j1

j2

i2

j4

i4

i3

j3

λa1i1j1

λa2i2j2

λa4i4j4

λa3i3j3

Figure 6.10: Open string Chan-Paton factors

The matrices λaij don’t evolve with time so we prescribe that the strings can interact, i.e.
that two end points can coalesce, only if the Chan-Paton factors are the same. E.g. an
endpoint with a Chan-Paton factor i can only coalesce with another string with endpoint j
only if i = j. Each interaction thus introduces a δij . The four-point amplitude in fig. 6.10
thus has a contribution

n∑
i1,j1,i2,j2,i3,j3,i4,j4=1

λa1
i1j1

δj1i2λ
a2
i2j2

δj2i3λ
a3
i3j3

δj3i4λ
a4
i4j4

δj4i1

=

n∑
i,j,k,`=1

λa1
`i λ

a2
ij λ

a3
jkλ

a4
k` = tr λa1λa2λa3λa4 [6.152]
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6.46 p 186: Eq. (6.5.6) The Four Tachyon Amplitude with Chan-Paton
Factors

This requires a bit of work and thinking. We need to go back to the derivation (6.4.9)
to track how the Chan-Paton factors occur. Recall that we arrived at this expression by
splitting the integral in (6.4.8) from

∫ +∞
−∞ into three integrals

∫ 0
−∞+

∫ 1
0 +

∫ +∞
1 and bring

each of these into the form
∫ 1

0 using a Möbius transformation.

Let us start with the part
∫ 0
−∞, corresponding to fig 6.2(a). This corresponds to the

ordering 1423. We have seen in the derivation of (6.4.9) that this ordering gives I(s, u),
see [6.125]. This has a pole in the s-channel and in the u-channel as shown below:

3

2

4

1

s

3

2

4

1

u

Looking at the diagram and connecting the Chan-Paton factors of the coalescing end-points,
this means that I(s, u) will come with a factor tr λa1λa4λa3λa2 . Using tr abcd = tr dcba
and cyclicity of the trace we can rewrite this as tr λa1λa2λa3λa4 . Now we also need to take
into account the other cyclic ordering of the three vertices we have fixed. This means we
need to consider the contribution of k2 ↔ k3, or equivalently s↔ t. Hence the diagrams

2

3

4

1

t

2

3

4

1

u

this gives a t-channel and a u-channel contribution hence I(t, u). The ordering of the
Chan-Paton factors is now tr λa1λa4λa2λa3 and so this trace will accompany I(t, u).

Let us next go to the part
∫ 1

0 . This corresponds to the vertex ordering 1423 and fig
6.2(b). From [6.125] we know that this corresponds to I(u, t) with a pole in the t and in
the u channels. The corresponding diagrams are:
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2

3

4

1

u

2

3

4

1

t

Connecting the Chan-Paton factor of the coalescing end-points we see that I(t, u) will be
accompanied by tr λa1λa3λa2λa4 . The other cyclic ordering for this case will give I(u, s)
with diagrams

3

2

4

1

u

3

2

4

1

s

indeed giving a u and an s channel pole. Connecting the Chan-Paton factor of the coalesc-
ing end-points we see that I(u, s) will be accompanied by tr λa1λa4λa3λa2 .

Finally, consider
∫∞

1 .This corresponds to the vertex ordering 1243 and fig 6.2(c). From
[6.123] we know that this corresponds to I(s, t) with a pole in the s and in the t channels.
The corresponding diagrams are

3

1

4

2

s

3

1

4

2

t

Thus I(s, t) will come with a tr λa1λa2λa4λa3 . The other cyclic ordering also gives I(s, t)
and has diagrams
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2

1

4

3

t

2

1

4

3

s

and so this I(s, t) will come with a tr λa1λa3λa4λa2 .
Bringing everything together and recalling that I(x, y) = I(y, x) = B(−αo(x),−αo(y)) we
find

(tr λa1λa2λa4λa3 + tr λa1λa3λa4λa2)B(−αo(s),−αo(t))
+ (tr λa1λa4λa2λa3 + tr λa1λa3λa2λa4)B(−αo(t),−αo(u))

+ (tr λa1λa2λa3λa4 + tr λa1λa4λa3λa2)B(−αo(s),−αo(u)) [6.153]

This is exactly (6.5.6), taking into account the errata on Joe’s website.

6.47 p 186: Eq. (6.5.7-8) The Four Tachyon Amplitude and Unitarity

Extracting the terms in (6.5.6) that have an s-pole we find the combination of traces for
the LHS of (6.4.13)

tr λa1λa2λa4λa3 + tr λa1λa3λa4λa2 + tr λa1λa2λa3λa4 + tr λa1λa4λa3λa2

= tr λa1λa2λa4λa3 + tr λa2λa1λa3λa4 + tr λa1λa2λa3λa4 + tr λa2λa1λa4λa3

= tr λa1λa2{λa3 , λa4}+ tr λa2λa1{λa3 , λa4}
= tr {λa1 , λa2}{λa3 , λa4} [6.154]

which is (6.5.7). Looking at (6.4.13) we have for the RHS of (6.4.13)

3

1

4

2

a

a

So the three-three tachyon vertices will give a contribution tr λa1λa2λa and tr λa4λa3λa

with a sum over all intermediate a’s. But we need to take into account the other cyclic
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ordering as in (6.5.5) and this can be obtained by switching two of the vertices. Hence this
gives a trace contribution∑

a

(tr λa1λa2λa + tr λa2λa1λa) (tr λa4λa3λa + tr λa3λa4λa)

=
∑
a

tr {λa1 , λa2}λa tr {λa3 , λa4}λa [6.155]

which is (6.5.8).

6.48 p 187: Eq. (6.5.9) Traces and the Completeness Relation

tr (Aλa)tr (Bλa) = Aijλ
a
jiBk`λ

a
`k = AijBk`λ

a
jiλ

a
`k [6.156]

As the λa form a complete basis, they satisfy

λajiλ
a
`k = δi`δjk [6.157]

The normalisation can be easily checked by setting ` = i and k = j and summing over
them. The LHS becomes tr λaλa. Using (6.5.2) this is δaa = n2, the number of Hermitian
matrices. The RHS is δiiδjj = n2 as well. Thus

tr (Aλa)tr (Bλa) = AijBk`δi`δjk = AijBji = tr AB [6.158]

6.49 p 187: Eq. (6.5.10) One Gauge Boson and Two Tachyons, I

Recall the amplitude for three tachyons without Chan-Paton factors (6.4.1)

SD2(k1, k2, k3) = g3
0e
−λ
〈
×
×c

1eik1·X(y1)×× ××c
1eik2·X(y2)×× ××c

1eik3·X(y3)××
〉

[6.159]

If we now want to replace a tachyon, say the first one, by a gauge boson then we have to
replace a tachyon vertex operator by a gauge boson operator. For an open string this is
given by (3.6.26)

− ig0√
2α′

[
Ẋµeik·X

]
r
(y1) [6.160]

Recall that the vertex operator is on the boundary of the disk, i.e. on the real axis, so
Ẋµ(y) = ∂yX

µ(y). We have, of course, to integrate this over ∂M , which here is the
real line, i.e.

∫ +∞
−∞ dy1. But we know that we can fix the three coordinates by invariance

under Möbius transformations, so we can ignore this integration over this coordinate y1

and y2 and y3 as well. We do have to check that the final result does not depend on these
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coordinates. Adding the Chan-Paton factor and the other cyclic combination we get for the
amplitude of a gauge boson with two tachyons

SD2(k1, a1, ε1; k2, a2; k3, a3) = −ig2
0g
′
0e
−λεµ1

×
〈
×
×c

1Ẋµeik1·X(y1)×× ××c
1eik2·X(y2)×× ××c

1eik3·X(y3)××
〉

tr λa1λa2λa3

+ (k2, a2)↔ (k3, a3) [6.161]

Here ε1 = ε(k1) is the polarisation vector of the gauge boson and we have replaced g0/
√

2α′

by g′0.

6.50 p 187: Eq. (6.5.11) One Gauge Boson and Two Tachyons, II

This is just an application of (6.2.36) which is for one derivative and two exponentials〈
×
×Ẋ

µeik1·X(y1)×× ××e
ik2·X(y2)×× ××e

ik3·X(y3)××
〉

= iCXD2
(2π)26δ26(k1 + k2 + k3)|y12|2α

′k1·k2 |y13|2α
′k1·k3 |y23|2α

′k2·k3

×
[
−2iα′

(
kµ2
y12

+
kµ3
y13

)]
[6.162]

Because the Ẋµ sits with eik·X(y1) in a boundary normal ordering, no contraction has to be
taken between these.5

6.51 p 187: Eq. (6.5.12) One Gauge Boson and Two Tachyons: Final
Result

We now add the expectation value of the three ghost fields (6.3.4) and the Chan-Paton
factors and find

SD2(k1, a1, ε1; k2, a2; k3, a3) = −ig′0g2
0e
−λiCXD2

CgD2
(2π)26δ26(

∑
i

ki)(−2iα′)

× εµ1
(
kµ2
y12

+
kµ3
y13

)
|y12|2α

′k1·k2+1|y13|2α
′k1·k3+1|y23|2α

′k2·k3+1 tr λa1λa2λa3

+ (k2, a2)↔ (k3, a3) [6.163]

5As that contraction would be divergent and the boundary normal ordering’s job is precisely to
regularize this divergence.
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Let us first use (6.4.14), i.e. CXD2
CgD2

e−λ = CD2 = 1/α′g2
0. This gives

SD2(k1, a1, ε1; k2, a2; k3, a3) = −2ig′0(2π)26δ26(
∑
i

ki)ε
µ
1

(
kµ2
y12

+
kµ3
y13

)
× |y12|2α

′k1·k2+1|y13|2α
′k1·k3+1|y23|2α

′k2·k3+1 tr λa1λa2λa3

−+(k2, a2)↔ (k3, a3) [6.164]

Next we use momentum conservation and the mass shell condition. The gauge boson is
massless so k2

1 = 0. The tachyons have k2
2 = k2

3 = 1/α′. Thus

1

α′
= k2

3 = (−k1 − k2)2 = k2
1 + k2

2 + 2k1 · k2 = 0 +
1

α′
+ 2k1 · k2 ⇒ k1 · k2 = 0 [6.165]

Similarly k1 · k3 = 0. Also

0 = k2
1 = (−k2 − k3)2 = k2

2 + k2
3 + 2k2 · k3 =

2

α′
+ 2k2 · k3 ⇒ 2α′k2 · k3 = −2 [6.166]

Therefore

SD2(k1, a1ε1; k2, a2; k3, a3) =− 2ig′0(2π)26δ26(
∑
i

ki)ε
µ
1

(
kµ2
y12

+
kµ3
y13

)
y12y13y

−1
23 tr λa1λa2λa3

+ (k2, a2)↔ (k3, a3) [6.167]

We have ignored signs in the last equation. Let us focus on the y-dependence. We use
momentum conservation k3 = −k1 − k2 and the fact the ε1 is a polarisation vector of a
massless boson, hence ε1 · k1 = 0:

εµ1

(
kµ2
y12

+
kµ3
y13

)
y12y13y

−1
23 =

1

2
εµ1

(
kµ2 − k

µ
1 − k

µ
3

y12
+
kµ3 − k

µ
1 − k

µ
2

y13

)
y12y13y

−1
23

=
1

2
εµ1k

µ
23(y13 − y12)y−1

23 =
1

2
εµ1k

µ
23y23y

−1
23 =

1

2
ε1 · k23 [6.168]

with kij = ki − kj . Thus

SD2(k1, a1ε1;k2, a2; k3, a3) = −ig′0(2π)26δ26(
∑
i

ki)ε1 · k23tr λa1λa2λa3 + (k2, a2)↔ (k3, a3)

= −ig′0(2π)26δ26(
∑
i

ki) (ε1 · k23tr λa1λa2λa3 + ε1 · k32tr λa1λa3λa2)

= −ig′0ε1 · k23(2π)26δ26(
∑
i

ki) tr λa1 [λa2 , λa3 ] [6.169]

which is (6.5.12).
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6.52 p 188: Eq. (6.5.15) The Three Gauge Boson Amplitude

We first consider the matter part:

SXµνσ3

〈
×
×Ẋ

µeik1·X(y1)×× ××Ẋ
νeik2·X(y2)×× ××Ẋ

σeik3·X(y3)××
〉

[6.170]

From (6.2.36) we get

SXµνσ3 =iCXD2
(2π)26δ26(

∑
i

ki)|y12|2α
′k1·k2 |y13|2α

′k1·k3 |y23|2α
′k2·k3

[
vµ(y1)vν(y2)vσ(y3)

+ vµ(y1)〈qν(y2)qσ(y3)〉+ vν(y2)〈qµ(y1)qσ(y3)〉+ vσ(y3)〈qµ(y1)qν(y2)〉
]

× tr λa1λa2λa3 + (k2, a2, ε2)↔ (k3, a3, ε3)

=iCXD2
(2π)26δ26(

∑
i

ki)|y12|2α
′k1·k2 |y13|2α

′k1·k3 |y23|2α
′k2·k3

×

{
(−2iα′)3

(
kµ2
y12

+
kµ3
y13

)(
kν1
y21

+
kν3
y23

)(
kσ1
y31

+
kσ2
y32

)

+ (−2α′)(−2iα′)

[(
kµ2
y12

+
kµ3
y13

)
ηνσ

y2
23

+

(
kν1
y21

+
kν3
y23

)
ηµν

y2
13

+

(
kσ1
y31

+
kσ2
y32

)
ηµσ

y2
12

]}
× tr λa1λa2λa3 + (k2, a2, ε2)↔ (k3, a3, ε3) [6.171]

The first thing we note is that because of momentum conservation and mass-shell condition

0 = k2
1 = (−k2 − k3)2 = k2

2 + k2
3 + 2k1 · k2 ⇒ k1 · k2 = 0 [6.172]

We now add the ghost contribution 〈ccc〉 = CgD2
y12y13y23, the polarisation vectors, the

cosmological term e−λ and the normalisation of the boson vertex operators, −ig0/
√

2α′

see (3.6.26), and we find

SgggD2
=SD2(k1, a1, ε1; k2, a2, ε2; k3, a3, ε3)

=

(
− ig0√

2α′

)3

4iα′2CXD2
CgD2

e−λε1µε2νε3σ(2π)26δ26(
∑
i

ki)y12y13y23

×

[
2α′
(
kµ2
y12

+
kµ3
y13

)(
kν1
y21

+
kν3
y23

)(
kσ1
y31

+
kσ2
y32

)

+

(
kµ2
y12

+
kµ3
y13

)
ηνσ

y2
23

+

(
kν1
y21

+
kν3
y23

)
ηµν

y2
13

+

(
kσ1
y31

+
kσ2
y32

)
ηµσ

y2
12

]
× tr λa1λa2λa3 + (k2, a2, ε2)↔ (k3, a3, ε3) [6.173]
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Let us first simplify the pre-factor. Use (6.4.14), i.e. CXD2
CgD2

e−λ = CD2 = 1/α′g2
0 to write(

− ig0√
2α′

)3

4iα′2CXD2
CgD2

e−λ = −2α′g3
0√

2α′
CXD2

CgD2
e−λ = − 2g0√

2α′
= −2g′0 [6.174]

in the last line we have used (6.5.14), i.e. g′0 = g0/
√

2α′. The three boson amplitude thus
becomes

SgggD2
=SD2(k1, a1, ε1; k2, a2, ε2; k3, a3, ε3)

=− 2g′0ε1µε2νε3σ(2π)26δ26(
∑
i

ki)y12y13y23

[
2α′
(
kµ2
y12

+
kµ3
y13

)(
kν1
y21

+
kν3
y23

)(
kσ1
y31

+
kσ2
y32

)

+

(
kµ2
y12

+
kµ3
y13

)
ηνσ

y2
23

+

(
kν1
y21

+
kν3
y23

)
ηµν

y2
13

+

(
kσ1
y31

+
kσ2
y32

)
ηµσ

y2
12

]
× tr λa1λa2λa3 + (k2, a2, ε2)↔ (k3, a3, ε3) [6.175]

In the remainder of the calculation we will repeatedly use the fact that ki · εi = 0 for
i = 1, 2, 3. This actually means that we can simply ignore any terms that have a kµ1 , k

ν
2 or

a kσ3 as these will be contracted with the polarisation vectors ε1µ, ε2ν and ε3σ respectively.
Consider first the terms linear in momentum and take the first such terms

y12y13y23

(
kµ2
y12

+
kµ3
y13

)
ηνσ

y2
23

=
ηνσ

y23
(kµ2 y13 + kµ3 y12)

=
ηνσ

2y23

[
kµ2 y13 + (−kµ1 − k

µ
3 )y13 + kµ3 y12 + (−kµ1 − k

µ
2 )y12

]
=
ηνσ

2y23
(kµ23y13 + kµ32y12) =

kµ23η
νσ

2y23
(y13 − y12) =

kµ23η
νσ

2y23
y23 =

1

2
kµ23η

νσ [6.176]

Contracting with the polarisation vectors εµ1 ε
ν
2ε
σ
3 this gives a contribution 1

2(ε1 · k23)(ε2 · ε3).
The two other terms linear in the momenta give similar contributions so that we can write

S
ggg[1]
D2

=− g′0(2π)26δ26(
∑
i

ki)×
[
(ε1 · k23)(ε2 · ε3) + (ε2 · k31)(ε3 · ε1) + (ε3 · k12)(ε1 · ε2)

]
× tr λa1λa2λa3 + (k2, a2, ε2)↔ (k3, a3, ε3)

= −g′0(2π)26δ26(
∑
i

ki)

{[
(ε1 · k23)(ε2 · ε3) + (ε2 · k31)(ε3 · ε1)

+ (ε3 · k12)(ε1 · ε2)
]
tr λa1λa2λa3

+
[
(ε1 · k32)(ε3 · ε2) + (ε3 · k21)(ε2 · ε1) + (ε2 · k13)(ε1 · ε3)

]
tr λa1λa3λa2

}
[6.177]

— 320—



Joe’s Book (version of November 20, 2020) Notes from Stany M. Schrans

and finally for the linear term

S
ggg[1]
D2

= −g′0(2π)26δ26(
∑
i

ki)

×
[
(ε1 · k23)(ε2 · ε3) + (ε2 · k31)(ε3 · ε1) + (ε3 · k12)(ε1 · ε2)

]
tr λa1 [λa2 , λa3 ] [6.178]

Let us now focus on the term cubic in the momenta. We have(
kµ2
y12

+
kµ3
y13

)(
kν1
y21

+
kν3
y23

)(
kσ1
y31

+
kσ2
y32

)
=
kµ2 y13 + kµ3 y12

y12y13

kν1y23 + kν3y21

y21y23

kσ1 y32 + kσ2 y31

y31y32

=
[kµ2 y13 + (−kµ1 − k

µ
2 )y12][kν1y23 + (−kν1 − kν2 )y21][kσ1 y32 + (−kσ1 − kσ3 )y31]

y12y13y21y23y31y32

=− kµ2 (y13 − y12)kν1 (y23 − y21)(kσ1 (y32 − y31)

y2
12y

2
13y

2
23

=
kµ2k

ν
1k

σ
1 y23y13y12

y2
12y

2
13y

2
23

=
kµ2k

ν
1k

σ
1

y12y13y23
[6.179]

We have repeatedly used momentum conservation and the fact that ε1 · k1 = ε2 · k2 =
ε3 · k3 = 0. We now rewrite

kµ2k
ν
1k

σ
1 =

(
1

2

)3

[kµ2 + (−kµ1 − k
µ
3 )][kν1 + (−kν2 − kν3 )][kσ1 + (−kσ2 − kσ3 )]

=
1

8
kµ23k

ν
13k

σ
12 [6.180]

Bringing it all together, we find for the cubic terms

S
ggg[3]
D2

=− 2g′0(2π)26δ26(
∑
i

ki)y12y13y23ε
µ
1 ε
ν
2ε
σ
3 2α′

kµ23k
ν
13k

σ
12

8y12y13y23
tr λa1λa2λa3

+ (k2, a2, ε2)↔ (k3, a3, ε3)

=− g′0(2π)26δ26(
∑
i

ki)
α′

2
(ε1 · k23)(ε2 · k13)(ε3 · k12)tr λa1λa2λa3

+ (k2, a2, ε2)↔ (k3, a3, ε3)

=− g′0(2π)26δ26(
∑
i

ki)
α′

2

[
(ε1 · k23)(ε2 · k13)(ε3 · k12)tr λa1λa2λa3

+ (ε1 · k32)(ε3 · k12)(ε2 · k13)tr λa1λa3λa2

]
=− g′0(2π)26δ26(

∑
i

ki)
α′

2
(ε1 · k23)(ε2 · k13)(ε3 · k12)tr λa1 [λa2 , λa3 ] [6.181]

— 321—



Joe’s Book (version of November 20, 2020) Notes from Stany M. Schrans

Bringing the cubic and the linear terms together we thus find

SD2(k1, a1, ε1; k2, a2, ε2; k3, a3, ε3) = −g′0(2π)26δ26(
∑
i

ki)

×
[
(ε1 · k23)(ε2 · ε3) + (ε2 · k31)(ε3 · ε1) + (ε3 · k12)(ε1 · ε2)

+
α′

2
(ε1 · k23)(ε2 · k13)(ε3 · k12)

]
tr λa1 [λa2 , λa3 ] [6.182]

which is (6.5.15), up to a factor −i, but this might just be a normalisation issue of the
boson vertex operator as −i = i3.

6.53 p 188: Eq. (6.5.16) The Yang-Mills Effective Field Theory

I realise that I am going on a limb with the following comment, but he who dares . . . . We
will not show that the action (6.5.16) gives the amplitudes we found if restricted to first
order momenta. In a way this should not come as a surprise. Indeed it is a general fact in
field theory that a theory of a massless boson that is Lorentz invariant, has a Lagrangian
with at most two derivatives and whose energy is bounded by below, necessarily has gauge
invariance. We will argue this to be the case for a spin one particle with no Chan-Paton
factor. This will then lead to non-Abelian gauge theories.

MASSIVE SIN ONE PARTICLES

Let us write down the most general Lorentz invariant Lagrangian for a non-interacting
massive spin one field Aµ (µ = 1, · · · , D = 4) with maximum two derivatives6 . It must be
of the form

L =
1

2
aAµ�Aµ +

1

2
bAµ∂µ∂νA

ν +
1

2
m2AµAµ [6.183]

with some coefficients a, b and m. The equations of motion are

a�Aµ + b∂µ∂νA
ν +m2Aµ = 0 [6.184]

6A higher number of derivatives leads to non-local theories and these have unitarity problems.
As an example a Lagrangian with a term of the form αϕ�2ϕ − βϕ�ϕ would lead to a propagator
proportional to 1/(αk4 − βk2). We can rewrite this as 1

β

[
1/k2 − α/(αk2 − β)

]
. We can thus view

this as the sum of two propagating particles, but with opposite signs in the propagator. These lead
to particles with opposite norm and hence violate unitarity. We thus need to have α = 0. Note also
that we are restricting ourselves to four dimensions here. This will make the argument for positive
energy easy.
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Let us take the divergence ∂µ of this[
(a+ b)�+m2

](
∂µA

µ
)

= 0 [6.185]

If a + b = 0 then it follows that ∂µAµ = 0. This is a Lorentz invariant condition and so
it removes one degree of freedom. Let us chose a = 1 and b = −1. The Lagrangian then
becomes

L = −1

4
FµνFµν +

1

2
m2AµAµ [6.186]

with Fµν = ∂µAν − ∂νAµ. This Lagrangian is known as the Proca Lagrangian. The
equations of motion are

(�+m2)Aµ = 0 and ∂µA
µ = 0 [6.187]

One can easily check that this model has positive energy, bounded by zero. Indeed, the
energy-momentum tensor for this Lagrangian is

Tµν =
∂L

∂(∂µAσ)
∂νA

σ − gµνL = −Fµσ∂νAσ + gµν

(1

4
F σρFσρ −

1

2
m2AσAσ

)
[6.188]

It is then a straightforward exercise to show that the energy density E = T00 can be written
as

E =
1

2
(E2 +B2) +

1

2
m2(A2

0 +A2) +A0∂0(∂µA
µ)

−A0(�+m2)A0 + ∂i(A0F0i) [6.189]

Where E and B are the electric and magnetic field respectively and A = (A1, A2, A3) are
the gauge field space coordinates. The first two terms are manifestly positive, but the latter
three are not. The third and the fourth term, however, vanish by the equations of motion
and the last term is a total spatial derivative. If we take the conserved charge E =

∫
d3x E

then this term does not contribute. So the total energy of the Proca Lagrangian is indeed
positive definite.

Had we chosen a + b 6= 0 then one easily sees that the energy would be unbounded
from below. This would mean that after quantisation every state could move to a state with
a lower energy ad infinitum and the theory is unstable. Hence our requirement for positive
definite energy.

MASLESS SPIN ONE PARTICLES

Let us now take the massless limit of the Proca Lagrangian

L = −1

4
FµνFµν [6.190]
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We, of course, know that this Lagrangian is invariant under transformations

Aµ(x) −→ Aµ(x) + ∂µα(x) [6.191]

for an arbitrary function α(x), i.e. this Lagrangian has U(1) gauge invariance.

Adding Chan-Paton factors amounts to replacing Aµ by Aµ = Aµaτa with τa the gener-
ator of a symmetry group. The same reasoning then leads to a non-abelian gauge theory.

In a similar vein the tachyon is just a Lorentz scalar. The Chan-Paton factors just mean
that we know have n2 such tachyons living in the adjoint representation of the symmetry
group.

It should thus not come as a surprised that the amplitudes of open strings, when lim-
ited to lowest order in momentum, are the same as the amplitudes for the corresponding
particles, with the lowest possible number of derivatives and that for a spin one massless
particle, this corresponding effective theory is a gauge theory.

6.54 p 189: Eq. (6.5.18) From a Global Worldsheet Symmetry to a
Local Spacetime Symmetry

It may sound very deep that by introducing Chan-Paton factors, which leads to a global
worldsheet symmetry, we suddenly have a theory with a spacetime gauge symmetry. This
miracle is quickly demystified if we realize that the global worldsheet symmetry λa →
UλaU † can be defined at each spacetime point Xµ for a different set of λ’s. Thus this is
indeed a local symmetry from the spacetime point of view.

6.55 p 190: Eq. (6.5.21) Worldsheet Parity for the Open String

|N ; k〉 is a state of the form

(α−i1)ni1 · · · (α−i`)
ni` |0; k〉 with

∑̀
m=1

nimim = N [6.192]

Let us take the simplest such state α−N |0; k〉. Then

Ωα−N |0; k〉 =
(
Ωα−NΩ−1

)
Ω |0; k〉 = (−1)Nα−N |0; k〉 [6.193]

where we have used (6.5.19) and the fact that the ground state is invariant under the
worldsheet parity operator. Moreover from (4.3.22) we have a relation between the level
n of the matter excitations and its mass: N = α′m2 + 1. This then gives

Ωα−N |0; k〉 = (−1)1+α′m2
α−N |0; k〉 [6.194]

For a more general state (α−i1)ni1 · · · (α−i`)
ni` |0; k〉 we just insert a Ω−1Ω between each

excitations and we immediately obtain the same result.
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6.56 p 190: Eq. (6.5.23) Unoriented Open Strings with Chan-Paton
factors

This is trivial, but sometimes it is useful to show the trivial.

Ω |N ; k; a〉 = Ω |N ; k; ij〉 = ωN |N ; k; ji〉 = ωNs
a |N ; k; ij〉 = ωNs

a |N ; k; a〉 [6.195]

The spin one particles have ωN = (−1)1+α′m2
= −1 and so the states with symmetric

Chan-Paton factors, sa = +1, vanish, whilst only the states with antisymmetric Chan-Paton
factors, sa = −1, are non-zero. The U(n) symmetry of the oriented string is thus reduced
to SO(n) for the unoriented string. Since the Chan-Paton matrices λ are n × n matrices,
they transform into the adjoint representation of SO(n).

6.57 p 191: Eq. (6.5.26) The Orientation Reversing Symmetries of the
Oriented String, I

Ω2
γ |N ; k; ij〉 = ΩγωNγjj′ |N ; k; j′i′〉 γ−1

i′i = ω2
Nγjj′γi′i′′ |N ; k; i′′j′′〉 γ−1

j′′j′γ
−1
i′i

= (γT )−1
ii′ γi′i′′ |N ; k; i′′j′′〉 γ−1

j′′j′γ
T
j′j

= [(γT )−1γ]ii′′ |N ; k; i′′j′′〉 [γ−1γT ]j′′j [6.196]

which is (6.5.25) taking into account the errata on Joe’s website.

6.58 p 191: Eq. (6.5.27) The Orientation Reversing Symmetries of the
Oriented String, II

Setting Γ = (γT )−1γ we have Γ−1 = γ−1γT and so we can write (6.5.26) as

|N ; k; ij〉 = Γii′ |N ; k; i′j′〉Γ−1
j′j [6.197]

Multiplying to the right by Γ we find that, in matrix notation, |N ; k〉Γ = Γ |N ; k〉. As |N ; k〉
contains a Chan-Paton factor λaij , this must hold for any of the n2 unitary n × n matrices.
Only multiples of the identity n× n matrix commutes with all other n× n matrices and so
Γ ∝ 1n×n. Without loss of generality we can normalise this to ±1 and so we have

±1 = Γ = (γT )−1γ ⇒ γ = ±γT [6.198]
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6.59 p 191: Eq. (6.5.31), The Orientation Reversing Symmetries of the
Oriented String, III

First we note that

M2 = i2
(

0 1
−1 0

)(
0 1
−1 0

)
= −

(
−1 0
0 −1

)
= 1 [6.199]

where 1 = 1k×k is the k × k identity matrix with 2k = N . So M−1 = M . Let us now write
a state |N ; k, ij〉 as a matrix |N ; k〉 ⊗ λaij . We then have from (6.5.25) and (6.5.30)

Ωγ |N ; k; ij〉 = Ωγ |N ; k〉 ⊗ λaij = ωN |N ; k〉 ⊗ γjj′λaj′i′γ−1
i′i

= ωN |N ; k〉 ⊗Mjj′λ
a,T
i′j′M

−1
i′i = ωN |N ; k〉 ⊗Mjj′λ

a,T
i′j′Mi′i

= ωN |N ; k〉 ⊗MT
j′jλ

a,T
i′j′M

T
ii′ = ωN |N ; k〉 ⊗ (−Mj′j)λ

a,T
i′j′ (−Mii′)

= ωN |N ; k〉 ⊗Mii′λ
a,T
i′j′Mj′j = ωN |N ; k〉 ⊗ (Mλa,TM)ij

= ωN |N ; k〉 ⊗ sa′λaij = ωNs
a′ |N ; k〉 ⊗ λaij = ωNs

a′ |N ; k; ij〉 [6.200]

and so ωγ = ωNs
a′ . We therefore have

Ωγ |N ; k; ij〉 = (−1)1+α′msa
′ |N ; k; ij〉 [6.201]

and therefore to project out ωγ = 1 for the unoriented string we need sa
′

= −1 if α′m
is even. This means that for α′m even, which includes the spin one particles, we need
M(λa)TM = sa

′
λa = −λa, which means that λa are in the adjoint representation of Sp(k).

By introducing Chan-Paton factors and projecting out spin one particles in different
ways we can thus have unoriented open strings with a spacetime SO(n) or a spacetime
Sp(n/2), for n even, gauge symmetry. Recall also that the oriented open string the Chan-
Paton factors give a U(n) gauge symmetry.

6.60 p 192: Eq. (6.6.2) The Three Tachyon Tree Amplitude for Closed
Strings

This is just a duplication on the open string three tachyon amplitude, so there is no point
elaborating on it.

6.61 p 193: Eq. (6.6.4) The Four Tachyon Tree Amplitude for Closed
Strings

First we note that the amplitude is calculated for the normal ordering : eik·X : and not for[
eik·X

]
r
. As explained in the paragraph under (6.2.31) we can obtain the former from the
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latter by setting the conformal factor ω = 0, i.e. pushing the curvature to infinity. We can
then use (6.2.17) with ω = 0 for the expectation value of the matter part and (6.3.4) for
the expectation of the ghost part:

SS2(k1; k2; k3; k4) = g4
ce
−2λiCXS2

CgS2
(2π)26δ26(

∑
i

ki)

×
∫

C
d2z4 z12z13z23z̄12z̄13z̄23

4∏
i<j=1

|zij |α
′ki·kj [6.202]

We set z1 = 0, z2 = 1 and z3 =∞. Just as for the open string case (6.4.5) the z3 →∞ does
not cause a problem and we are left with

SS2(k1; k2; k3; k4) = ig4
cCS2(2π)26δ26(

∑
i

ki)

∫
C
d2z4 |z4|α

′k1·k4 |1− z4|α
′k2·k4 [6.203]

We now have, introducing Mandelstam variables,

u =− (k1 + k4)2 = −k2
1 − k2

4 − 2k1 · k4 = − 8

α′
− 2k1 · k4

⇒ α′k1 · k4 = −u
2
− 4 [6.204]

and similarly

t =− (k1 + k3)2 = −(k2 + k4)2 = −k2
2 − k2

4 − 2k2 · k4 = − 8

α′
− 2k2 · k4

⇒ α′k2 · k4 = − t
2
− 4 [6.205]

where we have used the mass-shell condition for closed string tachyons k2
i = −m2

i = 4/α′.
Thus

SS2(k1; k2; k3; k4) = ig4
cCS2(2π)26δ26(

∑
i

ki)

∫
C
d2z4 |z4|−α

′u/2−4|1− z4|−α
′t/2−4 [6.206]

6.62 p 193: Eq. (6.6.7) The Pole at α′s = −4

From α′(s + t + u) = −16 we find −α′(u + t)/2 − 8 = α′s/2 and so if we look at the
behaviour of the amplitude for very large z4, i.e. say |z4| > 1/ε we find

SS2(k1; k2; k3; k4) = ig4
cCS2(2π)26δ26(

∑
i

ki)

∫
|z4|>1/ε

d2z4 |z4|−α
′u/2−4−α′t/2−4

= ig4
cCS2(2π)26δ26(

∑
i

ki)

∫
|z4|>1/ε

d2z4 |z4|α
′s/2 [6.207]
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We go to radial coordinates z = reiθ, use d2z = 2dxdxy = 2rdrdθ, and find

SS2(k1; k2; k3; k4) = ig4
cCS2(2π)26δ26(

∑
i

ki)2

∫ 2π

0
dθ

∫
r>1/ε

rdr rα
′s/2

= 2ig4
cCS2(2π)26δ26(

∑
i

ki)2π

∫
r>1/ε

dr rα
′s/2+1

= 4πig4
cCS2(2π)26δ26(

∑
i

ki)
1

α′s/2 + 2
rα
′s/2+2

∣∣∣
r>1/ε

= 8πig4
cCS2(2π)26δ26(

∑
i

ki)
1

α′s+ 4
rα
′s/2+2

∣∣∣
r>1/ε

[6.208]

and we indeed see the poles at α′s+ 4 = 0 for very large z4.

6.63 p 193: Eq. (6.6.8) The Four-Tachyon Closed String Amplitude and
Factorisation

A consequence of unitarity is factorisation of the four-string amplitude is a combination of
two three-string amplitude amplitudes with an intermediate state of all possible momenta,
see (6.4.13). Let us work this out for the closed string. From (6.4.13) and (6.6.2) we have

SS2 =i

∫
d26k

(2π)26

(
ig3
cCS2(2π)26δ26(k1 + k2 + k)

) (
ig3
cCS2(2π)26δ26(−k + k3 + k4)

)
−k2 + 4α′−1 + iε

+ terms analytic at k2 = 1/α′

=−
ig6
cC

2
S2

(2π)26δ26(k1 + k2 + k3)

−(k1 + k2)2 + 4α′−1 + iε
+ terms analytic at k2 = 4/α′ [6.209]

Note that the intermediate string has a pole at the closed string tachyon mass-shell condi-
tion. But we also have the expression for the four tachyon amplitude (6.6.4) and we know
how it behaves as k2 = −s = 4/α′ from (6.6.7):

SS2 =8iπg4
cCS2(2π)26δ26(

∑
i

ki)
1

α′s+ 4
rα
′s/2+2

∣∣∣
r>1/ε

+ terms analytic at k2 = 4/α′ [6.210]

Equating these two expressions we find

ig6
cC

2
S2

s+ 4α′−1
=

8iπg4
cCS2

α′s+ 4
[6.211]

or

CS2 =
8π

α′g2
c

[6.212]

which is (6.6.8)
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6.64 p 193: Eq. (6.6.10) The Virasoro-Shapiro Amplitude

We first work out

I(a, b) =

∫
d2z |z|−2a|1− z|−2b [6.213]

Using the representation

|z|−2a = Γ(a)−1

∫ ∞
0

dt ta−1 exp(−tzz̄) [6.214]

that is given as part of exercise 6.107

we have, writing z = x+ iy,

I(a, b) =
1

Γ(a)Γ(b)

∫ ∞
0

dt ta−1

∫ ∞
0

duub−1

∫ +∞

−∞
2dxdy e−t(x

2+y2)e−u[(1−x)2+y2]

=
2

Γ(a)Γ(b)

∫ ∞
0

dt

∫ ∞
0

du ta−1ub−1

∫ +∞

−∞
dxdy e−(t+u)x2+2uxe−(t+u)y2

e−u [6.215]

We can now use the Gaussian integral
∫ +∞
−∞ e−ax

2
=
√
π/a to write∫ +∞

−∞
dy e−(t+u)y2

=

√
π

t+ u
[6.216]

and ∫ +∞

−∞
dx e−(t+u)x2+2ux =

∫ +∞

−∞
dx e−(t+u){[x−u/(t+u)]2−u2/(t+u)2}

=

√
π

t+ u
eu

2/(t+u) [6.217]

and thus

I(a, b) =
2

Γ(a)Γ(b)

∫ ∞
0

dt

∫ ∞
0

du ta−1ub−1 π

t+ u
eu

2/(t+u)e−u

=
2π

Γ(a)Γ(b)

∫ ∞
0

dt

∫ ∞
0

du
ta−1ub−1

t+ u
e−tu/(t+u) [6.218]

7This follows immediately from the definition of the Gamma function Γ(a) =
∫∞

0
dxxa−1e−x.

Set x = t|z|2 and find

Γ(a) =

∫ ∞
0

dt |z|2ta−1|z|2a−2e−t|z|
2

= |z|2a
∫ ∞

0

dt ta−1e−t|z|
2
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We now make a change of variables

x =
ut

t+ u
; λ =

u

t+ u
[6.219]

The inverse transformation is

t =
x

λ
; u =

x

1− λ
[6.220]

The Jacobian is

J = | ∂(t, u)

∂(x, λ)
| = det

(
1/λ −xλ2

1/(1− λ) x/(1− λ)2

)
=

x

λ2(1− λ2)
[6.221]

Thus

I(a, b) =
2

Γ(a)Γ(b)

∫ 1

0
dλ

∫ ∞
0

dx
x

λ2(1− λ)2

(
x
λ

)a−1
(

x
1−λ

)b−1

x
λ(1−λ)

e−x

=
2

Γ(a)Γ(b)

∫ 1

0
dλ

∫ ∞
0

dxx1+a−1+b−1−1λ−a+1−2+1(1− λ)−b+1−2+1e−x

=
2

Γ(a)Γ(b)

∫ 1

0
dλλ−a(1− λ)−b

∫ ∞
0

dxxa+b−2e−x [6.222]

We now use, once more, the definition of the Gamma function

Γ(z) =

∫ ∞
0

dxxz−1e−x [6.223]

to write this as

I(a, b) =
2

Γ(a)Γ(b)
Γ(a+ b− 1)

∫ 1

0
dλλ−a(1− λ)−b

=
2πΓ(a+ b+ 1)

Γ(a)Γ(b)
B(−a+ 1,−b+ 1) [6.224]

With the Euler Beta function defined as

B(x, y) =

∫ 1

0
dt tx−1(1− t)y−1 =

Γ(x)Γ(y)

Γ(x+ y)
[6.225]

So we get our final result

I(a, b) =
2πΓ(a+ b+ 1)

Γ(a)Γ(b)

Γ(−a+ 1)Γ(−b+ 1)

Γ(−a+ b+ 2)

= 2πB(1− a, 1− b, a+ b− 1) [6.226]
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where

B(x, y, z) =
Γ(x)Γ(y)Γ(z)

Γ(x+ y)Γ(x+ z)Γ(y + z)
[6.227]

This means that we can write the four-tachyon amplitude (6.6.4) as, using (6.6.8),

SS2 = ig4
cCS2(2π)26δ26(

∑
i

ki)

∫
C
d2z|z|−α′u/2−4|1− z|−α′t−4

=
8πig2

c

α′
(2π)26δ26(

∑
i

ki)I(α′u/4 + 2, α′t+ 2)

=
8πig2

c

α′
(2π)26δ26(

∑
i

ki)2πB(−1− α′u/4,−1− α′t/4, α′u/4 + α′t/4 + 3)

=
8πig2

c

α′
(2π)26δ26(

∑
i

ki)2πB(−αc(u),−αc(t), 1 + αc(u) + αc(t))

=
8πig2

c

α′
(2π)26δ26(

∑
i

ki)C(−αc(u),−αc(t)) [6.228]

with αc(x) = α′x/4 + 1 and

C(x, y) = 2πB(x, y, 1− x− y) [6.229]

This gives us (6.6.10).

6.65 p 193: Eq. (6.6.12) The Regge Limit of the Virasoro-Shapiro
Amplitude

The Regge limit is s → ∞ with t fixed. This also implies u ∝ −s, see our discussion of
p183 (6.4.28). We will use Stirlings formula again: Γ(x+ 1) ∝ xxe−x

√
2/πx. We need the

Regge behaviour of

C(−αc(t),−αc(u)) ∝ Γ(−αc(t))Γ(−αc(u))Γ(1 + αc(t) + αc(u))

Γ(−αc(t)− αc(u))Γ(1 + αc(t))Γ(1 + αc(u))
[6.230]

We first rewrite this in a more symmetric form between the Mandelstam variables. We note
that

1 + αc(t) + αc(u) = 3 +
α′t

4
+
α′u

4
= 3− 4− α′s

4
= −1− α′s

4
= −αc(s) [6.231]

and

−αc(t)− αc(u) = −2− α′t

4
− α′u

4
= −2 + 4 +

α′s

4
= 2 +

α′1

4
= 1 + αc(s) [6.232]
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Therefore

C(−αc(t),−αc(u)) ∝ Γ(−αc(t))Γ(−αc(u))Γ(−αc(s))
Γ(1 + αc(s))Γ(1 + αc(t))Γ(1 + αc(u))

[6.233]

Let us first consider our limit for

Γ(−αc(u))

Γ(1 + αc(u))
→

(−αc(u))−αc(u)eαc(u)
√

2π(−αc(u))

(1 + αc(u))1+αc(u)e−1−αc(u)
√

2/π(1 + αc(u))

∝ u−2αc(u)−1e2αc(u) [6.234]

where we have used that for u→∞ we have αc(u)→ u. There is a similar expression for
the factors depending on s and therefore, in the Regge limit

C(−αc(t),−αc(u)) ∝ u−2αc(u)−1e2αc(u)s−2αc(s)−1e2αc(s) Γ(−αc(t))
Γ(1 + αc(t))

[6.235]

Using u ∝ s in the Regge limit we get

C(−αc(t),−αc(u)) ∝ s−2αc(u)−2αc(s)−2e2αc(u)+2αc(s) Γ(−αc(t))
Γ(1 + αc(t))

∝ s2αc(t)e2−2αc(t) Γ(−αc(t))
Γ(1 + αc(t))

∝ s2αc(t) Γ(−αc(t))
Γ(1 + αc(t))

[6.236]

where we have again used αc(s) +αc(t) +αc(u) = 1 and the fact that αc(t) is kept constant
in the Regge limit.

6.66 p 194: Eq. (6.6.13) The Hard Scattering Limit of the Virasoro-
Shapiro Amplitude

Recall that the hard scattering limit is the limit of all Mandelstam variables becoming very
large, while keeping s/t fixed. We thus have, using [6.233] together with the limit [6.234]
and αc(x) = 1 + α′x/4

SS2(k1; k2; k3; k4) ∝u−2αc(u)−1e2αc(u)s−2αc(s)−1e2αc(s)t−2αc(t)−1e2αc(t)

=u−3−α′u/2s−3−α′s/2t−3−α′t/2e2+α′u/2+2+α′s/2+2+α′t/2

∝u−α′u/2s−α′s/2t−α′t/2 [6.237]
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in the last line we are taking the limit of infinite8 s, t and u and have used α′(s+ t+ u) =
−16. Thus

SS2(k1; k2; k3; k4) ∝ exp lnu−α
′u/2 exp ln s−α

′s/2 exp ln t−α
′t/2

= exp

[
−α
′

2
(s ln s+ t ln t+ u lnu)

]
[6.238]

6.67 p 194: Eq. (6.6.14) The Amplitude for a Massless Closed String
and Two Closed String Tachyons

We have a vertex operator for each of the tachyons and a vertex operator for the massless
excitations. The two-sphere has zero moduli and six conformal Killing vectors. We thus
have six c-ghost insertions and no b-ghost insertions. The Euler number of the two-sphere
satisfies 3χ = κ − µ = 6 = 0 = 6 and thus χ = 2. This thus gives a contribution to the
action of e−λχ = e−2λ. This gives us indeed

Ss2(k1, ε1; k2; k3) = g2
cg
′
ce
−2λε1µν

〈
: c̃c∂Xµ∂̄Xνeik1·X : (z1, z̄1)

× : c̃ceik2·X : (z2, z̄2) : c̃ceik3·X : (z3, z̄3)
〉

[6.239]

The expectation value of the matter part is just a special example of (6.2.19), with, of
course, ω = 0. We find

SXs2(k1, ε1; k2; k3) =
〈

: ∂Xµ∂̄Xνeik1·X : (z1, z̄1) : eik2·X : (z2, z̄2) : eik3·X : (z3, z̄3)
〉

= iCXS2
(2π)26δ26(

∑
i

ki)|z12|α
′k1·k2 |z13|α

′k1·k3 |z23|α
′k2·k3

×
[
− iα

′

2

(
kµ2

z1 − z2
+

kµ3
z1 − z3

)] [
− iα

′

2

(
kν2

z̄1 − z̄2
+

kν3
z̄1 − z̄3

)]
[6.240]

The calculation now proceeds in the same way as for the calculation of the amplitude of
one massless and to tachyons states of the open string in (6.5.2), expect, of course, that
there are no Chan-Paton factors. We just repeat it here for convenience and completeness.
Adding the ghost contributions we have

Ss2(k1, ε1; k2; k3) = − iα′2

4
g2
cg
′
ce
−2λCXS2

CgS2
(2π)26δ26(

∑
i

ki)ε
1
µν

× |z12|α
′k1·k2+2|z13|α

′k1·k3+2|z23|α
′k2·k3+2

(
kµ2
z12

+
kµ3
z13

)(
kν2
z̄12

+
kν3
z̄13

)
[6.241]

8Note that s is strictly positive and t and u are negative, see [6.109]. The condition α′(s+t+u) =
−16 and lims,t→∞ s/t fixed, then implies that limu,t→∞ u/t is also fixed and lims,t,u→∞(s/t+ u/t+
1) = 0.
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To start, we have CS2 = e−2λCXS2
CgS2

. Next we use momentum conservation and the mass
shell condition. The gauge boson is massless so k2

1 = 0. The tachyons have k2
2 = k2

3 = 4/α′.
Thus

4

α′
= k2

3 = (−k1 − k2)2 = k2
1 + k2

2 + 2k1 · k2 = 0 +
4

α′
+ 2k1 · k2 ⇒ k1 · k2 = 0 [6.242]

Similarly k1 · k3 = 0. Also

0 = k2
1 = (−k2 − k3)2 = k2

2 + k2
3 + 2k2 · k3 =

8

α′
+ 2k2 · k3 ⇒ α′k2 · k3 = −4 [6.243]

Therefore

Ss2(k1, ε1; k2; k3) = − iα′2

4
g2
cg
′
cCS2(2π)26δ26(

∑
i

ki)ε
1
µν

× |z12|2|z13|2|z23|−2

(
kµ2
z12

+
kµ3
z13

)(
kν2
z̄12

+
kν3
z̄13

)
[6.244]

We use momentum conservation k3 = −k1 − k2 and the fact the ε1 is a polarisation vector
of a massless boson, hence ε1µν · kµ1 = ε1µν · kν1 = 0:

ε1µν

(
kµ2
z12

+
kµ3
z13

)
z12z13z

−1
23 =

1

2
εµν1

(
kµ2 − k

µ
1 − k

µ
3

z12
+
kµ3 − k

µ
1 − k

µ
2

z13

)
z12z13z

−1
23

=
1

2
ε1µνk

µ
23(z13 − z12)z−1

23 =
1

2
ε1µνk

µ
23z23z

−1
23 =

1

2
ε1µνk

µ
23 [6.245]

with kij = ki − kj . We have similarly

ε1µν

(
kν2
z̄12

+
kν3
z̄13

)
z̄12z̄13z̄

−1
23 =

1

2
ε1µνk

ν
23 [6.246]

Therefore

Ss2(k1, ε1; k2; k3) = − iα′2

16
g2
cg
′
cCS2(2π)26δ26(

∑
i

ki)ε
1
µνk

µ
23k

ν
23 [6.247]

Finally we use the relation (6.6.8), i.e. CS2 = 8π/α′g2
c to obtain

Ss2(k1, ε1; k2; k3) = − iα′π

2
g′c(2π)26δ26(

∑
i

ki)ε
1
µνk

µ
23k

ν
23 [6.248]

which is (6.6.14).
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6.68 p 194: Eq. (6.6.15) The Relation between the Coupling Constant
of Tachyonic and Massless Closed Strings

From factorisation we know that we can write a scattering of four tachyonic closed string
as a combination of three-string amplitudes with all possible intermediate states. We used
this in (6.6.8) already to derive the relation between CS2 and the coupling constant gc for
the closed string tachyon vertex operator. From (6.6.6) we know that the four tachyon
amplitude for closed strings has poles at α′s, α′t, α′u = −4, 0, 4, 8, · · · , i.e. at the mass-
squared of all the intermediate states. The next pole is for the massless intermediate state.
Thus, by looking at the behaviour of the factorisation as s → 0 we should be able to link
the four tachyon closed string amplitude to two amplitudes of a massless closed string with
two tachyonic closed strings, and hence also their vertex couplings.

As s→ 0 we should thus have, in analogy with (6.4.13),

lim
s→0

SS2(k1; k2; k3; k4) = i lim
s→0

∑
ε

∫
d26k

(2π)26

SS2(k, ε; k1; k2)SS2(−k, ε; k3; k4)

−k2 + iε
[6.249]

Note that we do not only have to integrate over all momenta of the intermediate state, but
also over all possible polarisation vectors. Let us focus first on the s-pole of the four string
amplitude. We use (6.6.10)

SS2(k1; k2; k3; k4) =
8πig2

c

α′
(2π)26δ26(

∑
i

ki)C(−αc(t),−αc(u)) [6.250]

with C given by the symmetric form we worked out in [6.233], i.e.

C(−αc(t),−αc(u)) = 2π
Γ(−αc(s))Γ(−αc(t))Γ(−αc(u))

Γ(1 + αc(s))Γ(1 + αc(t))Γ(1 + αc(u))
[6.251]

We work out

lim
s→0

Γ(−αc(s)))
Γ(1 + αc(s))

= lim
s→0

Γ(−α′s/4− 1)

Γ(α′s/4 + 2)
= lim

s→0

Γ(−α′s/4)

(−α′s/4− 1)Γ(2)

= − lim
s→0

Γ(−α′s/4) =
4

α′s
[6.252]

We have used Γ(x) = (x− 1)Γ(x− 1) and limε→0 Γ(ε) = ε−1 + finite a relation that should
be well known if you have studied regularisation of QFTs. From α′(s + t + u) = −16 we
have that in this limit – and going further we will always assume we are working in this
limit – we have α′t = −α′u − 16 and thus likewise αc(t) = α′t/4 + 1 = −α′u/4 − 4 + 1 =
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−α′u/4− 1− 2 = −αc(u)− 2. Therefore

Γ(−αc(t))Γ(−αc(u))

Γ(1 + αc(t))Γ(1 + αc(u))
=

Γ(αc(u) + 2)Γ(−αc(u))

Γ(−αc(u)− 1)Γ(1 + αc(u))

=
(αc(u) + 1)Γ(αc(u) + 1)(−αc(u)− 1)Γ(−αc(u)− 1)

Γ(−αc(u)− 1)Γ(1 + αc(u))

= (αc(u) + 1)(−αc(u)− 1) = −(αc(u) + 1)2

= − (α′u/4 + 2)2 [6.253]

Now recall form our little excursion on Mandelstam variables that we established that
s ≥ |t|, see [6.112]. If s → 0, this thus implies that t → 0 as well and hence from
α′(s+ t+ u) = −16 that α′u = −16 and so

Γ(−αc(t))Γ(−αc(u))

Γ(1 + αc(t))Γ(1 + αc(u))
= −(−4 + 2)2 = −4 [6.254]

Bringing all this together we find that

lim
s→0

C(−αc(t),−αc(u)) = − 2π4
4

α′s
= −32π

α′s
[6.255]

and that the s-pole of the four tachyon amplitude is

LHS = lim
s→0

SS2(k1; k2; k3; k4) = −256π2ig2
c

α′2
(2π)26δ26(

∑
i

ki)×
1

s
[6.256]

Let us now look at the s-pole of the expression with the intermediate massless closed
string. The tachyon-tachyon-massless closed string amplitude is given by (6.6.14) so

RHS = i lim
s→0

∑
ε

∫
d26k

(2π)26

SS2(k, ε; k1; k2)SS2(−k, ε; k3; k4)

−k2 + iε

= i lim
s→0

∑
ε

∫
d26k

(2π)26

[
−πiα

′

2
g′cεµνk

µ
12k

ν
12(2π)26δ26(k1 + k2 + k)

]
×
[
−πiα

′

2
g′cερσk

ρ
34k

σ
34(2π)26δ26(k3 + k4 − k)

]
× 1

−k2 + iε

= − lim
s→0

∑
ε

π2iα′2g′2c
4

(2π)26δ26(k1 + k2 + k3 + k4)εµνερσ
kµ12k

ν
12k

ρ
34k

σ
34

−(k3 + k4)2 + iε
[6.257]

Since s = −(k1 + k2)2 = −(k3 + k4)2, we can write this as

RHS = − lim
s→0

∑
ε

π2iα′2g′2c
4

εµνερσk
µ
12k

ν
12k

ρ
34k

σ
34(2π)26δ26(

∑
i

ki)×
1

s
[6.258]
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Identifying the pole at s = 0 of the LHS with the RHS thus gives

256π2ig2
c

α′2
=
π2iα′2g′2c

4

∑
ε

εµνερσk
µ
12k

ν
12k

ρ
34k

σ
34 [6.259]

or

g2
c =

α′4g′2c
1064

∑
ε

εµνερσk
µ
12k

ν
12k

ρ
34k

σ
34 [6.260]

Let us now work out
∑

ε εµνερσk
µ
12k

ν
12k

ρ
34k

σ
34. First we note that we can write k1 − k2 =

k1 + k2 − 2k2 = k − 2k2 and similarly k3 − k4 = k3 + k4 − 2k4 = −k − 2k4 and since
εµνk

µ = εµνk
ν = 0, we have∑

ε

εµνερσk
µ
12k

ν
12k

ρ
34k

σ
34 = 16

∑
ε

εµνερσk
µ
2k

ν
2k

ρ
4k

σ
4 [6.261]

We now use the completeness relation for polarisation vectors familiar from QFT. For a
photon in QED it reads

∑
ε ε
µεν = −gµν , so in our case it is

∑
ε εµνερσ = gµρgνσ. Therefore∑

ε

εµνερσk
µ
12k

ν
12k

ρ
34k

σ
34 = 16(k2 · k4)2 [6.262]

But t = −(k1 + k3)2 = −(k2 + k4)2 = k2
2 + k2

4 + 2k2 · k4 = 8/α′+ 2k2 · k4. We have seen that
in the limit of s→ 0 we also have t→ 0 so that k2 · k4 = −4/α′ and thus∑

ε

εµνερσk
µ
12k

ν
12k

ρ
34k

σ
34 =

256

α′2
. [6.263]

Plugging this in [6.260] we find

g2
c =

α′4g′2c
1064

256

α′2
⇒ g2

c =
α′2

4
g′2c [6.264]

This means that

g′c =
2

α′
gc [6.265]

which is (6.6.15)

6.69 p 194: Eq. (6.6.19) The Amplitude for Three Massless Closed
Strings

Eq.(6.6.19) should be clear following the derivation of (6.5.15) i.e. the amplitude for three
massless open strings. In particular, we saw there that the terms linear in momentum
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gives a contribution proportional to kµ23η
αγ + kα31η

µγ + k12γ
µα and the terms cubic in the

momenta gives a contribution proportional to kµ23k
α
31k

γ
12. It is now just a matter of doubling

this with the anti-holomorphic sector, contracting with the appropriate polarisation tensors
and checking out that the coefficients match. We will not bother doing this.

We will however point out that we see that the amplitude of three massless closed
strings is more or less equal to the square of the amplitude of three massless open strings.
The massless closed string particles, or at least the symmetric part of the field, are gravitons
and the massless open string particles are gauge bosons (and non-abelian ones once we
attach Chan-Paton factors). This is a first, albeit very heuristic, sign that

gravity = (gauge theory)2 [6.266]

6.70 p 195: Eq. (6.6.21) The Relation between I(x, y, z) and I(x, y)

From the derivation of (6.6.12) we already showed, see [6.233], that we can write

J(s, t, u;α′) =C(−αc(t),−αc(u)) = 2π
Γ(−αc(t))Γ(−αc(u))Γ(−αc(s))

Γ(1 + αc(s))Γ(1 + αc(t))Γ(1 + αc(u))
[6.267]

From (6.4.20) and ((6.4.24) we also have

I(s, t;α′) =B
(
− αo(s),−αo(t)

)
=

Γ(−αo(s))Γ(−αo(t))
Γ(−αo(s)− αo(t))

[6.268]

Let us now calculate

J(s, t, u;α′)

I(s, t; 4α′)I(t, u; 4α′)
=2π

Γ(−αc(t))Γ(−αc(u))Γ(−αc(s))
Γ(1 + αc(s))Γ(1 + αc(t))Γ(1 + αc(u))

× Γ(−αc(s)− αc(t))Γ(−αc(t)− αc(u))

Γ(−αc(s))Γ(−αc(t))Γ(−αc(t))Γ(−αc(u))

= 2π
Γ(−αc(s)− αc(t))Γ(−αc(t)− αc(u))

Γ(1 + αc(s))Γ(1 + αc(t))Γ(1 + αc(u))Γ(−αc(t))

= 2π
Γ(1 + αc(u))Γ(1 + αc(s))

Γ(1 + αc(s))Γ(1 + αc(u))[Γ(−αc(t))Γ(1 + αc(t))]

= 2π
1

π/ sin(−παc(t))
= −2 sinπαc(t) [6.269]

We have used αc(s) + αc(t) + αc(u) + 1 = 0. This is (6.6.21).
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6.71 p 195: Eq. (6.6.23) The Relation between Closed and Open String
Four-Point Amplitudes

We first define for any amplitude S = (2π)26δ26(
∑

i ki)A. I don’t remember this being
mentioned in Joe’s book. We thus have from (6.6.4) and (6.6.8)

Ac(s, t, u;α′, gc) =
8πig2

c

α′
J(s, t, u)

= −16πig2
c

α′
sinπαc(t)I(s, t; g0;α′/4)I(t, u; g0;α′/4) [6.270]

where we have used (6.6.21). We can now rewrite the open string four tachyon amplitude
for just one of the six cyclic permutations of (6.4.9), using (6.4.14), as

Ao(s, t;α
′/4, go) =

1

2

2ig2
o

α′/4
I(s, t) =

4ig2
o

α′
I(s, t) [6.271]

Note the extra factor 1/2 because every I(x, y) appears twice in the six cyclic permutations
and also note that α′ is replaced by α′/4. Thus

Ac(s, t, u;α′, gc) = −16πig2
c

α′
sinπαc(t)

(
α′

4ig2
o

Ao(s, t;α
′/4, go)

)(
α′

4ig2
o

Ao(t, u;α′/4, go)

)
=
πig2

cα
′

g4
o

Ao(s, t;α
′/4, go)Ao(t, u;α′/4, go) [6.272]

I am not sure why the second Ao is conjugated in Joe’s book. As I(x, y) is manifestly
positive, this would just change a sign, which is not needed. It may be due to his sign error
just below (6.6.21).

6.72 p 195: Eq. (6.6.24-25) The OPE of Two Tachyon Vertex Operators
and its Poles

(6.5.24) is just a Taylor Expansion of (2.2.13)

: eik1·X(z1,z̄1) : : eik4·X(z4,z̄4) := |z14|α
′k1·k4 : eik1·X(z1,z̄1)eik4·X(z4,z̄4) :

= |z14|α
′k1·k4 :

(
1 + iz14k1 · ∂X + iz̄14k1 · ∂̄X

− z14z̄14(k1 · ∂X)(k1 · ∂̄X) + · · ·
)
ei(k1+k4)·X(z4, z̄4) : [6.273]

Let us take the first term, consider the integration over z14 and write it in radial coordinates
z14 = reiθ. This gives a contribution proportional to∫ 2π

0
dθ

∫
rdr rα

′k1·k4 ∝ 1

α′k1 · k4 + 2
[6.274]
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and so indeed a pole when α′k1 ·k4 = −2 and convergence for α′k1 ·k4 > −2. We also have
(k1 + k4)2 = k2

1 + k2
4 + 2k1 · k4 = 8/α′ + 2k1 · k4 so that the pole corresponds to

−2 = α′k1 · k4 + 2 =
α′

2
(k1 + k4)2 − 4⇒ −u = (k1 + k4)2 =

4

α′
[6.275]

and so the pole occurs as a on-shell tachyon is created in the u-channel. There will of
course be similar poles in the s-channel (from the contractions of the 1 and 2 tachyon
vertex operators) and in the t-channel (from the contractions of the 1 and 3 tachyon vertex
operators).

The next term in the OPE gives an integration∫ 2π

0
dθ

∫
rdr rα

′k1·k4reiθ = 0 [6.276]

due to the θ integration. Every term in the OPE with a different number of z14 and z̄14 will
similarly give zero due to the integration over θ and it is just terms with equal amount of
z14 and z̄14, or equivalently ∂X and ∂̄X that do not vanish and give poles, corresponding
to intermediate particles becoming on-shell.

6.73 p 198: Eq. (6.7.3) The One-Point Function from the Möbius
Group

Let us first remins ourselves of some preliminaries. We will focus on the holomorphic side,
the anti-holomorphic side being just a copy of this. We are choosing operators A(z) that
are Eigenstates under a rigid rescaling by a complex parameter z → z′ = γz, see (2.4.9),
i.e. operators that transform as (2.4.13)

A′(z′) = γ−hA(z) [6.277]

Now, under a general infinitesimal conformal transformation z → z′ = z+v(z) an operator
A(z) transforms as (2.4.12)

δA(z) = −
∞∑
n=0

1

n!
∂nv(z)An(z) [6.278]

where An(z) are the coefficients of the poles of the OPE of the energy-momentum tensor
with the relevant operator, see (2.4.11),

T (z)A(0) ∼
∞∑
n=0

An(0)

zn+1
[6.279]

— 340—



Joe’s Book (version of November 20, 2020) Notes from Stany M. Schrans

We have absorbed the infinitesimal parameter ε in v(z) for convenience. Eigenstates under
rigid transformation then have the OPE given in (2.4.14)

T (z)A(0) ∼ · · ·+ hA(0)

z2
+
∂A(0)

z
[6.280]

From this we read that A1 = hA and A0 = ∂A. The infinitesimal rigid conformal transfor-
mation is z → z + v(z) = γz = (1 + ε)z, i.e. v(z) = εz. The only non-vanishing derivative
of v(z) is ∂v(z) = ε. Thus

δA(z) =A′(z)−A(z) = −
[
∂v(z)A1(z) + v(z)A0(z)

]
= −εhA(z)− εz∂A(z) [6.281]

and thus

A′(z′) =A′(z + εz) = A′(z) + εz∂zA′(z) = A(z)− εhA(z)− εz∂zA(z) + εz∂zA(z)

= [1 + ε(−h)
]
A(z) = (1 + ε)−hA(z) = γ−hA(z) [6.282]

Which recovers [6.277] as it should.
We can now establish (6.7.3). Indeed, on the sphere we have three complex Killing

vectors, so we can always fix the coordinate to z = 0. We then have the transformation
z = 0→ z′ = γz = 0 and so A′(0) = γ−hA(0). This gives (6.7.3).

6.74 p 198: Eq. (6.7.4) The Two-Point Function from the Möbius
Group

We first perform a Möbius transformation z → z − z2. This gives v(z) = −z2 = cte and so
all derivatives of v vanish. Thus9

δA(z) =A′(z)−A(z) = −v(z)A0(z) = z2∂A(z) [6.283]

and

A′(z′) = A′(z − z2) = A′(z)− z2∂A(z) = A(z) + z2∂A(z)− z2∂A(z) = A(z) [6.284]

which leads to

〈Ai(z1, z̄1)Aj(z2, z̄2)〉 = 〈Ai(z12, z̄12)Aj(0, 0)〉 [6.285]

This is, of course, nothing else but translation invariance of the two-point function.

9This is only valide for infinitesimal transformations, but we integrate over all these infinitesimal
transformations to end up with a finite transformation.
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We now perform a rigid transformation z → z′ = z−1
12 z, i.e. γ = z12 in (6.7.3). This

gives immediately the behaviour

〈Ai(z1, z̄1)Aj(z2, z̄2)〉 = z
−hi−hj
12 z̄

−h̃i−h̃j
12 〈Ai(1, 1)Aj(0, 0)〉 [6.286]

Don’t be confused by the fact that we have the weights hi and hj but zij only appears in
Aj . The scale factor comes from the rescaling of both the operators Ai and Aj with the
points z12 → γz = z−1

12 z12 = 1 and 0→ γ 0 = 0.
Let us now require this two-point function to be single-valued. We replace z1 and z2 by

e2πz1 and e2πiz2 respectively and find

〈Ai(z1, z̄1)Aj(z2, z̄2)〉 = e−2πi(hi−hj)z
−hi−hj
12 e+2πi(h̃i−h̃j)z̄

−h̃i−h̃j
12 〈Ai(1, 1)Aj(0, 0)〉

= e−2πi(Jj+Jj) 〈Ai(1, 1)Aj(0, 0)〉 [6.287]

where Ji = hi − h̃i and Jj = hj − h̃j . Single-valuedness indeed requires Jj + Jj ∈ Z.

6.75 p 199: Eq. (6.7.5) The Two-Point Function Of Tensor Fields

Tensor fields, aka primary fields, have OPE with the energy-momentum tensor

T (z)O(0) ∼ hO(0)

z2
+
∂O(0)

z
[6.288]

i.e. the highest order pole is of degree two and we have O1(z) = hO(z) and O0(z) =
∂O(z).We now consider the conformal transformation z → z′ = z + ε(z − z1)(z − z2), i.e.

v(z) = (z − z1)(z − z2) ; ∂v(z) = 2z − (z1 + z2) ; ∂2v(z) = 2 [6.289]

Because we are restricting ourselves to primary fields ∂2v(z) doesn’t contribute and we
have

δO(z) = − ε
[
∂v(z)O1(z) + v(z)O0(z)

]
= − ε

[
(2z − z1 − z2)hO(z) + (z − z1)(z − z2)∂O(z)

]
[6.290]

Therefore

〈Oi(z1)Oj(z2)〉 = 〈O′i(z1)O′j(z2)〉 =
〈
(Oi(z1) + δOi(z1))(Oj(z2) + δOj(z2))

〉
=
〈[
Oi(z1)− ε(z1 − z2)hiOi(z1)

][
Oj(z2) + ε(z1 − z2)hjOj(z2)

]〉
= 〈Oi(z1)Oj(z2)〉 − ε(z1 − z2)(hi − hj)〈Oi(z1)Oj(z2)〉 [6.291]

Which implies that

(z1 − z2)(hi − hj)〈Oi(z1)Oj(z2)〉 = 0 [6.292]

and thus if hi 6= hj , we necessarily have 〈Oi(z1)Oj(z2)〉 = 0.
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6.76 p 199: Eq. (6.7.6) The Three-Point Function Of Tensor Fields

We start by using translational invariance to write

G3 = 〈Oi(z1)Oj(z2)Ok(z3)〉 = 〈Oi(z13)Oj(z23)Ok(0)〉 [6.293]

In order to proceed we will need to work out how a primary field transforms under a
finite Möbius transformation. But this is easily done as a Möbius transformation is also
a conformal transformation. Under an infinitesimal conformal transformation z → z′ =
z + εv(z) a primary field O(z) of weight h transforms as

δO(z) = O′(z)−O(z) = −ε[h∂v(z)O(z) + v(z)∂O(z)] [6.294]

The finite form of this transformation is

(∂z′)hO′(z′) = O(z) [6.295]

as is easily checked by looking at the infinitesimal form z′ = z + εv(z):

(∂z′)hO′(z′) = [1 + ε∂v(z)]h[O′(z) + εv(z)∂O(z)]

=O′(z) + hε∂v(z)O(z) + εv(z)∂O(z) [6.296]

Using this in [6.295] does indeed give [6.294]
We now need the Möbius transformations that transforms the triplet (z13, z23, 0) into

(Λ, 1, 0). Arguably we should take Λ→∞ but if we do that now we will see that it leads to
complications, which are related to the fact that for the point at infinity we actually would
have to go to the u = 1/z patch first. But we can fix the coordinates as three points we
want, so we can as well keep Λ finite.

The Möbius transformation that achieves this is

z → z′ = f(z) =
αz + β

γz + δ
[6.297]

with

α = − Λz12√
Λ(Λ− 1)z12z13z23

β = 0

γ =
Λz23 − z13√

Λ(Λ− 1)z12z13z23

δ = − (Λ− 1)z13z23√
Λ(Λ− 1)z12z13z23

[6.298]
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It is straightforward algebra to check that f(0) = 0, f(z23) = 1 and f(z13) = Λ. It is
also straightforward algebra to check that αδ − βγ = 1 so that this is indeed a Möbius
transformation. Another straightforward calculation gives

∂z′ =
∂f

∂z
= − Λ(Λ− 1)z12z13z23[

(Λ− 1)z13z23 + (z13 − Λz23)z
]2 [6.299]

and from this we find that

∂z′
∣∣∣
z=0

=
Λz12

(Λ− 1)z13z23

∂z′
∣∣∣
z=z23

=
(Λ− 1)z13

Λz12z23

∂z′
∣∣∣
z=z13

=
Λ(Λ− 1)z23

z12z13
[6.300]

These calculation are most easily done in Mathematica. The code for this is shown in
fig.6.11. Note that we can take the limit Λ → ∞ for the first two derivatives, but not for
the last one, that scales as Λ2.

We can now work out the three-point function

G3 = 〈Oi(z13)Oj(z23)Ok(0)〉

=

〈(
∂z′
∣∣∣
z=z13

)hi
Oi(Λ)

(
∂z′
∣∣∣
z=z23

)hj
Oj(1)

(
∂z′
∣∣∣
z=0

)hk
Ok(0)

〉

=

(
Λ(Λ− 1)z23

z12z13

)hi ((Λ− 1)z13

Λz12z23

)hj ( Λz12

(Λ− 1)z13z23

)hk
〈Oi(Λ)Oj(1)Ok(0)〉

= z
hk−hi−hj
12 z

hj−hi−hk
13 z

hi−hj−hk
23 Λhi−hj+hk(Λ− 1)hi+hj−hk 〈Oi(Λ)Oj(1)Ok(0)〉

=Cijk z
hk−hi−hj
12 z

hj−hi−hk
13 z

hi−hj−hk
23 [6.301]

with Cijk a constant, independent of the position of the vertex operators z1, z2 and z3. This
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is (6.7.6).

In[43]:= ClearAll [f, a, b, c, d, z1, z2, z3, x, y]

f[z_] := ( a * z + b) / (c * z + d)

a = L * (y - x) / (L * y - x) * c;

b = 0;

d = (1 - L) * x * y / (L * y - x) * c;

c = (L * y - x) / Sqrt [ L * (1 - L) * x * y * (y - x)];

x = z1 - z3;

y = z2 - z3;

Print ["Transformed Coordinates "]

{f13 = Simplify [f[z1 - z3]], f23 = Simplify [f[z2 - z3]], f33 = Simplify [f[z3 - z3]]}

Print ["Derivatives "]

{df13 = Simplify [D[f[z], z] /. z → z1 - z3], df23 = Simplify [D[f[z], z] /. z → z2 - z3],

df33 = Simplify [D[f[z], z] /. z → z3 - z3]}

Print ["Derivatives in L→Infinity Limit "]

{Ldf13 = Simplify [Limit [df13 / L^2, L → Infinity ]],

Ldf23 = Simplify [Limit [df23 , L → Infinity ]],

Ldf33 = Simplify [Limit [df33 , L → Infinity ]]}

Print ["Jacobian "]

(Ldf13 ^hi) * (Ldf23 ^hj) * (Ldf33 ^hk) /. {z1 - z2 → z12, z1 - z3 → z13, z2 - z3 → z23 }

Transformed Coordinates

Out[52]= {L, 1, 0}

Derivatives

Out[54]= 
(-1 + L) L (z2 - z3)

(z1 - z2) (z1 - z3)
,

(-1 + L) (z1 - z3)

L (z1 - z2) (z2 - z3)
,

L (-z1 + z2)

(-1 + L) (z1 - z3) (-z2 + z3)


Derivatives in L→Infinity Limit

Out[56]= 
z2 - z3

(z1 - z2) (z1 - z3)
,

z1 - z3

(z1 - z2) (z2 - z3)
,

z1 - z2

(z1 - z3) (z2 - z3)


Jacobian

Out[58]= 

z12

z13 z23

hk z13

z12 z23

hj z23

z12 z13

hi

Figure 6.11: Mathematica code for the three-point function from a Möbius transformation.

6.77 p 199: Eq. (6.7.7) The Four-Point Function Of Tensor Fields

We follow the same procedure as for the three-point function. First we use translational
invariance

G4 = 〈Oi(z1)Oj(z2)Ok(z3)O`(z4)〉 = 〈Oi(z14)Oj(z24)Ok(z34)O`(0)〉 [6.302]
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Next we use the same Möbius transformation as for the three-point function to bring z14 to
Λ, z24 to 1. This is just [6.303] with z3 replaced by z4, i.e.

α = − Λz12√
Λ(Λ− 1)z12z14z24

β = 0

γ =
Λz24 − z14√

Λ(Λ− 1)z12z14z24

δ = − (Λ− 1)z14z24√
Λ(Λ− 1)z12z14z24

[6.303]

Under that Möbius transformation one then finds that

z′34 = f(z34) =
Λz12z34

(Λ− 1)(z1z2 + z3z4)− Λ(z2z3 + z1z4) + z1z3 + z2z4
[6.304]

For Λ→∞ this becomes

lim
Λ→∞

z′34 =
z12z34

z13z24
= x [6.305]

The partial derivatives are now

∂z′
∣∣∣
z=z14

=
(Λ− 1)Λz24

z12z14

∂z′
∣∣∣
z=z24

=
(Λ− 1)z14

Λz12z24

∂z′
∣∣∣
z=z34

=
Λ(Λ− 1)z12z14z24

[(Λ− 1)(z1z2 + z3z4)− Λ(z2z3 + z1z4) + z1z3 + z2z4]2

∂z′
∣∣∣
z=0

=
Λz12

(Λ− 1)z14z24
[6.306]

and for Λ→∞ this is

lim
Λ→∞

∂z′
∣∣∣
z=z14

=
z24

z12z14
Λ2

lim
Λ→∞

∂z′
∣∣∣
z=z24

=
z14

z12z24

lim
Λ→∞

∂z′
∣∣∣
z=z34

=
z12z14

z2
13z24

lim
Λ→∞

∂z′
∣∣∣
z=0

=
z12

z14z24
[6.307]

Just as for the three-point function, only one of the derivatives does not have a finite limit as
Λ− → ∞, but scales as Λ2. These calculations are, once again, best done in Mathematica;
the code for this is shown in fig.6.12.
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ClearAll [f, a, b, c, d, z1, z2, z3, z4, x, y]

f[z_] := ( a * z + b) / (c * z + d)

a = L * (y - x) / (L * y - x) * c;

b = 0;

d = (1 - L) * x * y / (L * y - x) * c;

c = (L * y - x) / Sqrt [ L * (1 - L) * x * y * (y - x)];

x = z1 - z4;

y = z2 - z4;

Print ["Transformed Coordinates "]

{f14 = Simplify [f[z1 - z4]], f24 = Simplify [f[z2 - z4]],

f34 = Simplify [f[z3 - z4]], f44 = Simplify [f[z4 - z4]]}

Print ["Derivatives "]

{df14 = Simplify [D[f[z], z] /. z → z1 - z4], df24 = Simplify [D[f[z], z] /. z → z2 - z4],

df34 = Simplify [D[f[z], z] /. z → z3 - z4], df44 = Simplify [D[f[z], z] /. z → z4 - z4]}

Print ["Derivatives in L->Infinity Limit "]

{Ldf14 = Simplify [Limit [df14 / L^2, L → Infinity ]],

Ldf24 = Simplify [Limit [df24 , L → Infinity ]],

Ldf34 = Simplify [Limit [df34 , L → Infinity ]], Ldf44 = Simplify [Limit [df44 , L → Infinity ]]}

Print ["Jacobian "]

(Ldf14 ^hi) * (Ldf24 ^hj) * (Ldf34 ^hk) * (Ldf44 ^hl) /.

{z1 - z2 → z12, z1 - z3 → z13, z1 - z4 → z14, z2 - z3 → z23, z2 - z4 → z24, z3 - z4 → z34 }

Transformed Coordinates

Out[10]= L, 1,
L (z1 - z2) (z3 - z4)

(z2 - z3) z4 + L z3 (-z2 + z4) + z1 ((-1 + L) z2 + z3 - L z4)
, 0

Derivatives

Out[12]= 
(-1 + L) L (z2 - z4)

(z1 - z2) (z1 - z4)
,

(-1 + L) (z1 - z4)

L (z1 - z2) (z2 - z4)
,

(-1 + L) L (z1 - z2) (z1 - z4) (z2 - z4)

((z2 - z3) z4 + L z3 (-z2 + z4) + z1 ((-1 + L) z2 + z3 - L z4))2
,

L (-z1 + z2)

(-1 + L) (z1 - z4) (-z2 + z4)


Derivatives in L->Infinity Limit

Out[14]= 
z2 - z4

(z1 - z2) (z1 - z4)
,

z1 - z4

(z1 - z2) (z2 - z4)
,

(z1 - z2) (z1 - z4)

(z1 - z3)2 (z2 - z4)
,

z1 - z2

(z1 - z4) (z2 - z4)


Jacobian

Out[16]= 

z12

z14 z24

hl z14

z12 z24

hj z12 z14

z132 z24

hk z24

z12 z14

hi

Figure 6.12: Mathematica code for the four-point function from a Möbius transformation.
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Filling in all the details, we find for the four point function

G4 =

(
z24

z12z14

)hi ( z14

z12z24

)hj (z12z14

z2
13z24

)hk ( z12

z14z24

)h`
Λ2h2 〈Oi(Λ)Oj(1)Ok(x)O`(0)〉

= z
−hi−hj+hk+h`
12 z−2hk

13 z
−hi+hj+hk−h`
14 z

+hi−hj−hk−h`
24 Λ2hi 〈Oi(Λ)Oj(1)Ok(x)O`(0)〉

[6.308]

At first sight this does look nothing like (6.7.7). But let us rewrite the z-factors as

z = (z12z34)−hi−hj−hk−h`z
−hi−hj+hk+h`
12 z−2hk

13 z
−hi+hj+hk−h`
14 z

+hi−hj−hk−h`
24

= z
−2hi−2hj
12 z−2hk

13 z
−hi+hj+hk−h`
14 z

+hi−hj−hk−h`
24 z

−hi−hj−hk−h`
34

= z
−hi−hj
12 z−hi−hk13 z−hi−h`14 z

−hj−hk
23 z

−hj−h`
24 z−hk−h`34

× z−hi−hj12 z+hi−hk
13 z

+hj+hk
14 z

+hj+hk
23 z+hi−hk

24 z
−hi−hj
34

= z
−hi−hj
12 z−hi−hk13 z−hi−h`14 z

−hj−hk
23 z

−hj−h`
24 z−hk−h`34

×
(
z13z24

z12z34

)hi (z14z23

z12z34

)hj (z14z23

z13z24

)hk
[6.309]

It turns out that we can express the three fractions in terms of x. Indeed we have x =
z12z34/z13z24, from which it follows that

1− x =
z14z23

z13z24
;

1− x
x

=
z14z23

z12z34
[6.310]

and thus

z =x−hi
(

1− x
x

)hj
(1− x)hkz

−hi−hj
12 z−hi−hk13 z−hi−h`14 z

−hj−hk
23 z

−hj−h`
24 z−hk−h`34

=x−hi−hj (1− x)hj+hk
4∏

i,j=1
i<j

z
−hi−hj
ij [6.311]

The products is a slight abuse of notation, for which I hope I will be forgiven. We thus get
for the four-point function

G4 = (z12z34)h

(
4∏

i,j=1
i<j

z
−hi−hj
ij

)
x−hi−hj (1− x)hj+hkΛ2hi 〈Oi(Λ)Oj(1)Ok(x)O`(0)〉

=Cijk`(x)(z12z34)h
4∏

i,j=1
i<j

z
−hi−hj
ij [6.312]
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where h = hi + hj + hk + h`. Adding the anti-holomorphic part gives (6.7.7).

One last word about the ratio x, which is known as the anharmonic ratio. This ratio is
an invariant under Möbious transformations, in the sense that if calculated for the original
coordinates or for the transformed coordinate the result is the same:

x =
z12z34

z13z24
=

(z1 − z2)(z3 − z4)

(z1 − z3)(z2 − z4)
=

(z′1 − z′2)(z′3 − z′4)

(z′1 − z′3)(z′2 − z′4)
[6.313]

as can be checked by direct calculation.
The four-point function [6.312] is thus determined by Möbius invariance up to some

function of the anharmonic ratio x. This function is not arbitrary but needs to satisfy
some constraints, set by more general conformal transformations. In some cases these
constraints allow to determine this function completely and hence we can have an exact
expression for the four-point function. This process is known as the conformal bootstrap.
This is linked to the associativity of three operators in (2.9.3) and in our fig.2.9.

6.78 p 200: Eq. (6.7.9) The Operator-State Mapping for the Two-Point
Function

At this point it could be useful to review the state operator mapping around (2.8.17) or my
sections 2.73 and 2.74.

The operatorAj at z = 0 is mapped to the state ΨAj [φb(z)] taken at the unit circle z = 1;
likewise, the operator Ai at u = 0, or equivalently z =∞ is mapped to the state ΨAi [φb(u)]
taken at the unit circle z = 1. But we need to take into account that Ai is taken in the
u-patch and we need to write this in the z-patch. Now z = e−iσ+τ , so u = 1/z = e+iσ−τ .
We are working on the unit circle so zz̄ = uū = 1 and thus e2τ = 1 which means that τ is
the same in both patches, but going from u to z we have σ going to −σ. This coordinate,
however, is periodic and defined between 0 and 2π, so to bring it back into the range of its
definition we see that transforming u to z is the same as transforming σ to 2π − σ. All this
then leads to the two-point function in the operator-state mapping

〈
A′i(∞)Aj(0)

〉
S2

=

∫
[dφb]ΨAi [φ

Ω
b ]ΨAj [φb] [6.314]

where the integration is over the fields on the boundary, i.e. the unit circle and φΩ
b (σ) =

φb(2π−σ) reflects the transformation from u to z. The impact of moving the vertex operator
A′i(∞) from z =∞ to the unit circle is thus to replace σ by 2π − σ.

This is of the form
∫
dtf(t − a)g(t) and thus looks like an inner product, but with the

functions taken at different times, t− a and t, i.e. a convolution.
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6.79 p 200: Eq. (6.7.11) The Two-Point Function of Primary Fields
with Zamolodchikov’s Inner Product

We quickly repeat the analysis of the two-point function for operators Ai(z1) and Ai(0) we
did for (6.7.4). The difference here is that we wish to take z1 to infinity rather than to
one. We achieve this by a global re-scaling z → z′ = Λz−1

1 z and let Λ → ∞ This gives
immediately

〈Ai(z1)Aj(0)〉 =
(z1

Λ

)−hi−hj
〈Ai(∞)Aj(0)〉 = z

−hi−hj
1 Λhi+hj 〈Ai(∞)Aj(0)〉 [6.315]

For primary operators Oi and Oj we have

Oi(z)Oj(0) =
[OiOj ]hi+hj
zhi+hj

+ · · · [6.316]

where · · · denote lower order poles. In an expectation value on the two-sphere this be-
comes

〈Oi(z)Oj(0)〉 =
[OiOj ]hi+hj
zhi+hj

〈1〉S2 + · · · [6.317]

From (6.7.10) we can also write this as

〈Oi(z)Oj(0)〉 = z
−hi−hj
1 Λhi+hj 〈〈i|j〉 [6.318]

Thus

[OiOj ]hi+hj 〈1〉S2 = Λhi+hj 〈〈i|j〉 [6.319]

and thus

Oi(z)Oj(0) =
Λhi+hj 〈〈i|j〉
zhi+hj 〈1〉S2

+ · · · [6.320]

I am not sure how to get rid of the Λ-factor.
Let us, just for the fun of it, derive [6.315] for a general Möbius transformation that

changes z1 into Λ and keeps 0 fixed. It is easily checkes that the most general Möbius
transformation achieving this is z → z′ = f(z) = (αz+β)/(γz+δ) with α a free parameter
and

β = 0 ; γ =
α

Λ
− 1

αz1
; δ =

1

α
[6.321]
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One easily checks that f(0) = 0 and f(z1) = Λ. We also know from [6.295] that primary
fields transform under finite conformal transformations as (∂z′)hO′(z′) = O(z) and thus
we need the derivatives at z1 and 0 and these turn out to be

∂z′
∣∣∣
z=0

=α2 ; ∂z′
∣∣∣
z=z1

Λ2

a2z2
1

[6.322]

and so we find

〈Oi(z)Oj(0)〉 =

(
Λ2

a2z2
1

)hi (
a2
)hj 〈Oi(∞)Oj(0)〉

= z−2hi
1 a2(hj−hi)Λ2hi 〈Oi(∞)Oj(0)〉 [6.323]

This does seem different from [6.318] until we remember from (6.7.5) that the two-point
function of primary fields is zero unless both fields have the same conformal weight and
we do indeed recover [6.318].

6.80 p 200: Eq. (6.7.14) The Three-Point Function of Primary Fields
as a Function of the OPE Coefficients, I

The OPE for a general pair of operators is given by (2.4.20)

Ai(z1)Aj(z2) =
∑
k

ckijAk(z2)

z
hi+hj−hk
12

[6.324]

Setting z1 = 1 and z2 = 0 we get〈
A′i(∞)Ak(1)Aj(0)

〉
=
〈
A′i(∞)

∑
`

c`kjA`(0)
〉

=
∑
`

c`kj
〈
A′i(∞)A`(0)

〉
=
∑
`

c`kjGi` = cikj [6.325]

6.81 p 200: Eq. (6.7.15) The Three-Point Function of Primary Fields
as a Function of the OPE Coefficients, II

We first rescale z as z → z′ = z−1
1 z to obtain〈

A′i(∞)Ak(z1)Aj(0)
〉

= z
hi−hk−hj
1

〈
A′i(∞)Ak(1)Aj(0)

〉
[6.326]

Recall that for A′(∞) we are in the u-patch and z = 1/u hence the positive sign of hi. We
then just apply (6.7.14).
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6.82 p 201: Eq. (6.7.18) The Four-Point Function of Primary Fields as
a Function of the OPE Coefficients

Four a general four-point function where two of the coordinates are unfixed, when we
go to the state operator mapping in the Hilbert space formalism we need to define the
ordering of the operators.10 In our case equal-time on the worldsheet means a circle of
fixed radius in the complex plane so time ordering becomes radial ordering.Thus, we start
from (6.7.16). We now assume |z1| > |z2| and insert the complete set – recall that we have
assumed that the Ai form a complete set.

G4 = 〈〈i| Ak(z1)A`(z2) |j〉 =
∑
m,n

〈〈i| Ak(z1) |m〉 Gmn〈〈n| A`(z2) |j〉 [6.327]

We now use (6.715) twice

G4 =
∑
m,n

zhi−hk−hm1 cikmGmnz
hn−h`−hj
2 cn`j [6.328]

Now Joe used the
∑

n Gmn to raise cn`j to cm`j , but there is also a zh2
2 so I am not sure how

this exactly works, unless of course
∑

n Gmnzhncn`j = zhmcm`j .
Let us now check the other way to calculate this that is mentioned in Joe’s book. We

first perform a translation z → z − z1 and get

G4 =
〈
A′i(∞)Ak(0)A`(z2 − z1)Aj(−z1)

〉
[6.329]

In the case of two point z1 and z2 that satisfy both |z1| > |z2| and |z1 − z2| > |z2|, the time
ordering gives in the Hilbert space formalism11

G4 = 〈〈i| A`(z2 − z1)Ak(−z1) |j〉 [6.330]

We now introduce a complete set and get

G4 =
∑
m

zhi−h`−hm21 (−z1)hm−hk−hjci`mc
m
kj [6.331]

Equating both expression for G4 in the region of overlap gives∑
m,n

zhi−hk−hm1 z
hm−h`−hj
2 cikmc

m
`j =

∑
m

zhi−h`−hm21 (−z1)hm−hk−hjci`mc
m
kj [6.332]

10Recall form QFT that time-ordering is needed in the Hilbert space mechanism, but that this is
automatically included in the path-integral formalism.

11Naively one might thinks this is not possible if you think about the radii of circles r1 and r2

as we cannot both have r1 > r2 and r1 − r2 > r1, as this would imply r2 < 0. But we are, of
course talking about complex number. So an example is z1 = 6 + 8i and z2 = 3 − 5i. This gives
|z1| = 10 > |z2| =

√
34 ≈ 5.83 and |z1 − z2| =

√
178 ≈ 13.34 > |z2| =

√
34 ≈ 5.83.
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6.83 p 201: Eq. (6.7.19-22) The Four-Point Function from the Hilbert
Space Expression, I

Eq. (2.7.11) states that

: Xµ(z, z̄)Xν(z, z̄′) := ◦
◦Xµ(z, z̄)Xν(z, z̄′)◦◦ [6.333]

Here : are the (conformal) normal ordering symbols subtracting the singular part of the
product

: Xµ(z, z̄)Xν(z, z̄′) := Xµ(z, z̄)Xν(z, z̄′) +
α′

2
ηµν ln |z − z′|2 [6.334]

and ◦
◦
◦
◦ are the creation-annihilation normal ordering symbols, instructing to put all anni-

hilation operators to the right of the creation operators in the normal ordered product of
the mode expansions. (2.7.11) just states that for the free theory consisting of the fields
Xµ both normal ordering procedures are the same.

The remainder of these equations is just a split of the field Xµ in a creation and anni-
hilation part and a rewriting of the four-point function in the Hilbert space formalism, Eq
(6.7.22). Recall from the paragraph above (2.7.10) that pµ is included in the lowering, i.e.
annihilation, operators and xµ is included in the raising, i.e. creation, operators.

6.84 p 202: Eq. (6.7.19-23) The Four-Point Function from the Campbell-
Baker-Hausdorff Formula

More commonly known as the Baker-Campbell-Hausdorff (BCH) formula it is actually
given by

eXeY = eX+Y+ 1
2

[X,Y ]+ 1
12

[X,[X,Y ]]− 1
12

[Y [X,Y ]]+··· [6.335]

In our case X = ik1 ·X1A and Y = ik2 ·X2C and we have that [X,Y ] is a c-number so that
the BCH formula reduces to

eXeY = eX+Y+ 1
2

[X,Y ] [6.336]

Thus also, trivially,

eY eX = eY+X+ 1
2

[Y,X] = eX+Y− 1
2

[X,Y ] [6.337]

and (
eY eX

)−1
= e−(X+Y )+ 1

2
[X,Y ] [6.338]
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Therefore (
eY eX

)−1
eXeY = e−(X+Y )+ 1

2
[X,Y ]eX+Y+ 1

2
[X,Y ] [6.339]

We can once more apply BCH to the RHS and since [X, [X,Y ]] = [Y, [X,Y ]] = 0 we have(
eY eX

)−1
eXeY = e−(X+Y )+ 1

2
[X,Y ]+X+Y+ 1

2
[X,Y ] = e[X,Y ] [6.340]

Multiplying both sides on the left with eY eX gives

eXeY = eY eXe[X,Y ] [6.341]

and thus

eik1·X1Aeik2·X2C = eik2·X2Ceik1·X1Ae−[k1·X1A,k2·X2C ] [6.342]

Let us now work out the commutator, using (2.75), i.e. [xµ, pν ] = iηµν and [αµm, ανn] =
mδm+nη

µν . We consider the holomoprhic side first as the anti-holomorphic side will follow
from there easily

[Xµ
1A, X

ν
2C ]hol =[Xµ

A hol(z1), Xν
C hol(z2)]

=
[
− iα′

2
pµ ln z1 + i

√
α′

2

∞∑
m=1

1

m

αµm
zm1

, xν − i
√
α′

2

∞∑
n=1

1

n
αν−nz

n
2

]
= − iα′

2
ln z1[pµ, xν ] +

α′

2

∞∑
m,n=1

z−m1 zn2
mn

[αµm, α
ν
−n]

= − α′

2
ηµν ln z1 +

α′

2

∞∑
m,n=1

z−m1 zn2
mn

mδm−nη
µν

= − α′

2
ηµν ln z1 +

α′

2
ηµν

∞∑
m=1

(z2/z1)m

m

= − α′

2
ηµν ln z1 −

α′

2
ηµν ln

(
1− z2

z1

)
= − α′

2
ηµν

(
ln z1 + ln

z1 − z2

z1

)
= −α

′

2
ηµν ln z12 [6.343]

Adding the anti-holomorphic side, which is just a copy we find thus

[Xµ
1A, X

ν
2C ] = −α

′

2
ηµν ln z12 −

α′

2
ηµν ln z̄12 = −α′ ln |z12| [6.344]

and thus

e−[k1·X1A,k2·X2C ] = eα
′k1·k2 ln |z12| = |z12|α

′k1·k2 [6.345]

Plugging this into [6.342] gives the required (6.7.23)
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6.85 p 202: Eq. (6.7.24) The Four-Point Function from the Hilbert
Space Expression, II

We first use (6.7.23) and then recall that all αµm≥1 |0; k3〉 = 0 and 〈〈0; k4|αµm≤−1 = 0. This
gives

G4 = 〈〈0; k4| eik1·X1Ceik1·X1Aeik2·X2Ceik2·X3C |0; k3〉

= |z12|α
′k1·k2〈〈0; k4| eik1·X1Ceik2·X2Ceik1·X1Aeik2·X3C |0; k3〉

= |z12|α
′k1·k2〈〈0; k4| eik1·x+ik2·xe

α′
2

(k1·p ln |z1|2+k2·p ln |z2|2) |0; k3〉

= |z12|α
′k1·k2〈〈0; k4| eik1·x+ik2·xeα

′(k1·k3 ln |z1|+k2·k3 ln |z2|) |0; k3〉

= |z12|α
′k1·k2 |z1|α

′k1·k3 |z2|α
′k2·k3〈〈0; k4| ei(k1+k2)·x |0; k3〉 [6.346]

Now, the action of eik·x on a state is to give it a momentum boost of k. Indeed pµeik·x |0;K〉 =
(kµeik·x + eik·xpµ) |0;K〉 = (kµ +Kµ)eik·x |0;K〉. Thus ei(k1+k2)·x |0; k3〉 ∝ |0; k1 + k2 + k3〉
and we have

G4 ∝ |z12|α
′k1·k2 |z1|α

′k1·k3 |z2|α
′k2·k3〈〈0; k4|0; k1 + k2 + k3〉 [6.347]

We now use the orthogonality condition (4.1.15), i.e. 〈0; k|0; k′〉 = (2π)DδD(k − k′) to
obtain

G4 =CXS2
|z12|α

′k1·k2 |z1|α
′k1·k3 |z2|α

′k2·k3(2π)DδD(
∑
i

ki) [6.348]

The coefficient CXS−2 is the contribution of the zero modes and the functional determinant,
see (6.2.6). In the Polyakov string it combines with the similar ghost coefficient CgS2

and
the cosmological term to form CS2 = e−2λCXS2

CgS2
. see just below (6.6.2) which in turn is

linked to the closed string coupling constant CS2 = 8π/α′g2
c , see (6.6.8).

This is indeed (6.2.31) for n = 4

A4
S2

(k) ∝ δD(
∑
i

ki)
4∏

i,j=1
i<j

|zij |α
′ki·kj

= δD(
∑
i

ki)|z12|α
′k1·k2 |z13|α

′k1·k3 |z14|α
′k1·k4 |z23|α

′k2·k3 |z24|α
′k2·k4 |z34|α

′k3·k4 [6.349]

We set z3 = 0 and take z4 →∞ to get

A4
S2

(k) ∝ |z12|α
′k1·k2 |z1|α

′k1·k3 |z2|α
′k2·k3 |z4|α

′(k1+k2+k3)·k4δD(
∑
i

ki)

= |z12|α
′k1·k2 |z1|α

′k1·k3 |z2|α
′k2·k3 |z4|−α

′k2
4δD(

∑
i

ki) [6.350]
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where we have used momentum conservation. If we wish to compare this to [6.348] we
need to go to the u-patch with u = 1/z4. As eik·X is a primary operator with weight α′k2/4

we can use the formula for the (finite) transformation of such an operator (∂u)h(∂̄ū)h̃O′(u, ū) =
O(z, z̄). Using ∂u = −1/z2 and the fact that eik·X is worldsheet scalar so that O = O′, we
find

z
−α′k2

4/2
4 z̄

−α′k2
4/2

4 eik4·X(u) = eik4·X(z4) [6.351]

We thus see that if we replace eik4·X(z4) by eik4·X(u) we introduce an extra contribution
|z4|+α

′k2
4 that cancels the one in [6.350] so that it is indeed the same as [6.348].
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Chapter 7

One-Loop Amplitudes

Open Questions

I have a number of unanswered points for this chapter. They are briefly mentioned here and
more detail is given under the respective headings. Any help in resolving them can be sent to
hepnotes@hotmail.com and is more than welcome.

♣ (7.3.8) I am not sure about this formula. It seems like Joe is saying that the ghosts cancel the contribution of two
of the non-compact dimensions, and that all the other non-compact dimensions don’t contribute to the partition
function. That seems strange. I would have expected the following. The theory consists of d scalar fields X
and a general CFT that has a Hilbert space H ⊥ with highest weights (hi, h̃i). The total central charge of the
matter sector plus the CFT is d+ cCFT = 26. The ghosts cancel the contribution to the transition function of two
of the matter oscillators, but we are still left with d − 2 matter oscillators that contribute a Dedekind function
|η(τ)|2(d−2). I would thus expect the partition function for this theory to be

ZT2

[
X[d]; CFT

]
= iVd

∫
F0

dτdτ̄

4τ2
(4π2α′τ2)−d/2|η(τ)|2(d−2)

∑
i∈H⊥

qhi−1q̄h̃i−1

♣ (7.4.5) If we consider the integral

I(Λ) =

∫ Λ

0
ds eβs =

1

β

(
eβΛ − 1

)
then the analytic continuation is obtained by just ignoring the Λ dependence. It just means you ignore the
divergence. I don’t understand why this is an analytic continuation. I also don’t understand why the second
term gives a divergence 1/0 as the corresponding integral is

∫∞
0 ds. The argument that this looks like a zero-

momentum closed string propagator between two disks (i.e. open strings) makes sense and thus gives a 1/k2

divergence, but that is a purely heuristic argument.

♣ (7.4.11-7.4.13) Joe has completely lost me here. I understand the idea that you have a closed string propagating
from a time σ1 = 0 to a time σ1 = s and that the partition function is then

ZC2
= 〈B| c0b0e−s(L0+L̃o) |B〉 [7.1]
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with |B〉 denoting the closed string state at the boundary. The b0c0 are the ghost insertions for the cylinder which
has one modulus and one CKV. The central charge term(c+ c̃)/24 vanishes because in the critical dimension the
total central charge of matter plus ghost sector is zero.

But, I don’t understand that you can determine the boundary state |B〉 by requiring it to vanish under ∂1Xµ, c1

and b b12. Why these components? Why not ∂2Xµ, c2 or b11? And what happens with the anti-holomorphic
side?

7.1 p 206: The Torus T 2

The Euler number is given by χ = 2g−2 for a closed oriented surface, and so the only such
surface with Euler number zero has one handle, viz. the torus. We already know that the
torus has two real moduli, reflected in τ . From the Riemann-Roch theorem 3χ = # CKVs−
# moduli and thus the number of CKVs must be two as well. Recall from (5.2.8) that the
CKVs are the holomorphic vector fields, i.e. the fields satisfying ∂̄δz = ∂δz̄ = 0. The only
solutions to this that also satisfy the periodic boundary conditions are fixed translations in
the two directions of the complex plane.

The sewing procedure in the w-space is illustrated in fig. ??; the one in the z-space is
illustrated in fig. 7.10. Zwiebach has about 10 pages at the very end of his book that
describes all this in excruciating detail.

Figure 7.1: The sewing procedure for the torus in w-space

1

e2πτ2

2πτ1

Figure 7.2: The sewing procedure for the torus in z-space
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7.2 p 206: The Cylinder C2

In the w-space the cylinder C2 is a rolled up strip: the thick ends are identified. Taking
t→ 0 gives a very fine cylinder, more like capellini; taking very large t makes it look more
like cannelloni. The cylinder has one moduli t and so there is also only one CKV.

0 π

2πt

σ1

σ2

2πt

0 π

t→ 0

t→∞

Figure 7.3: The cylinder in w-space

To obtain the cylinder from the torus we first take a torus with τ = it, i.e. τ1 = 2 and
τ2 = t so there is no stretching, and identify w ≡ −w̄. Writing w = σ1 + iσ2 this is indeed
equivalent to setting σ1 ≡ −σ1 or identification under a reflection through the imaginary
axis. Under this reflection σ1 = 0 obviously remains fixed and σ1 = π goes to −π , but due
to periodicity this is the same as π and so σ1 = π remains fixed as well. We thus have a
surface with 2 boundaries and one periodic direction, i.e. a cylinder.

Recall the formula for the Euler number (3.5.6) for surface g handles, b boundaries and
c cross-caps

χ = 2− 2g − b− c [7.2]

The cylinder has g = 0, b = 2 and c = 0, hence χ is indeed zero.

7.3 p 206: The Klein Bottle K2

We start from a strip in the complex plane with base 2π and height 2πt. We first make a
cylinder by rolling up, then we perform a reflection around the imaginary axis and identify
the boundary. This is illustrated in fig.7.5
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σ1

σ2

0 π

2πt

0 π

2πt

0 π

2πt

Figure 7.4: The Klein bottle in w-space. The points connected by a dotted line are identified with
one another,

A more artistic representation of the Klein bottle is given in fig.3.33 of these notes,
which we reproduce here for convenience.

The Klein bottle is a two-sphere with two cross-caps, no handles and no boundaries.
From (3.5.6) we then have χ = 2 − 0 − 0 − 2 = 0 and it is indeed an Euler number zero
Riemann surface. There is one modulus, t, and hence also one CKV, translation in the σ2

direction.

7.4 p 206: The Möbius Strip M2

For the Möbius strip we identify w ≡ −w̄ + π + 2πt or

σ1 ≡ − σ21 + π

σ2 ≡σ2 + 2πt [7.3]

There is periodicity in the σ2 direction but one of the ends of the strip is twisted
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σ1

σ2

Figure 7.5: The Möbius strip in w-space. The points connected by a dotted line are identified
with one another,

7.5 p 208: Eq. (7.2.1) The Equation for the Green’s Function on the
Torus T 2

Recall that in section 6.2 Joe worked out the partition function for the bosonic string on
the sphere by expanding the filed Xµ in a complete set Xµ(σ) =

∑
I x

µ
IXI . When we

then considered the partition function with source Z[J ] =
〈

exp
[
i
∫
d2σ J(σ) · X(σ)

]〉
,

all the integrals were Gaussian except for the zero-mode X0, i.e. the mode that satisfies
∇2X0 = 0. The integral over the zero was linear and resulted in momentum conservation.
The Gaussian integrals could be performed and give a functional determinant and the usual
Green’s function contribution of the form exp

[
− 1

2

∫
d2σ d2σ′ J(σ) · J(σ′)G̃′(σ, σ′)

]
. Here

G̃′(σ, σ′) is the Green’s function with the zero mode excluded, (6.2.7)

G̃′(σ, σ′) =
∑
I 6=0

2πα′

ω2
I

XI(σ1)XI(σ2) [7.4]

where ω2
I are the Eigenvalues of the complete set,∇2XI = −ω2

IXI . Because we are dividing
the RHS by ω2

I we see why we had to exclude the zero mode. This Green’s function satisfies
the PDE (6.2.8)

− 1

2πα′
∇2G̃′(σ1, σ2) = g−1/2δ2(σ1 − σ2)− X2

0 [7.5]

When discussing (6.2.8) we explained the appearance of the zero-mode in this equation
as linked to the fact that on a compact surface without boundary, such as the two-sphere
or torus, the Poisson equation ∇2φ = δ2(σ) has no solution. The physical explanation for
this is the equation for an electric field create by a point charge at σ = 0, but on a compact
surface without boundary these electric field lines have nowhere to end. We can solve this
by adding a constant term to the Poisson equation ∇2φ = δ2(σ)− κ−1. This constant term
can be viewed as a density charge over the surface, that cancels the point charge. As a
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final comment, we also noted that the zero mode is essentially the inverse surface of the
manifold X0 =

( ∫
d2σ
√
g
)−1/2, see (6.2.5).

All of this is repetition only, but it helps us understand (7.2.1). Indeed, in the conformal
gauge gab = e2ωδab we have ∇2 = 4e−2ω∂∂̄ and

√
g = e2ω; moreover using also δ2(σ) =

2δ2(z), (6.2.8) becomes

2

α′
∂∂̄G(w, w̄;w′, w̄′) = −2πδ2(w − w′) + πe2ωX2

0 [7.6]

What remains to show is that

πe2ω X2
0 =

1

4πτ2
[7.7]

or that for the torus

πe2ω
( ∫

d2σ
√
g
)−1

=
1

4πτ2
[7.8]

or finally ∫
d2σ
√
g = 4π2e2ωτ2 [7.9]

Does this makes sense? We can represent the torus in the complex plane as a parallelogram
with sides 2π and 2πτ , see fig.7.6, Withe the curvature pulled to infinity, i.e. ω = 0 the
area of the torus is exactly 4π2 Im τ = 4π2τ2 and thus indeed∫

d2σ
√
g = 4π2τ2 [7.10]

0 2π

2πτ

Figure 7.6: The torus as a parallelogram with sides 2π and 2πτ . The surface area of the torus is
4π2 Im τ
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7.6 p 208: Eq. (7.2.3) The Green’s Function on the Torus

We need to show two things: (1) G′ satisfies the equation (7.2.1) and (2) G′ is doubly
periodic, i.e. it is periodic under w → w + 1 and under w → w + 2πτ . We start with the
latter property.

Obviously, if we add one or 2πτ to both w and w′ the Green’s function remains the
same, but we must also have periodicity if we transform only one of the coordinates. In
order to avoid any confusion, let us call G̃′(w, w̄;w′, w̄′) the Green’s function in (7.2.2) and
G′(w, w̄;w′, w̄′) the Green’s function in (7.2.3). If we replace w → w+ 1 in G̃′(w, w̄;w′, w̄′)
we get

G̃′(w, w̄;w′, w̄′)→ − α′

2

[
lnϑ1

(w − w′
2π

+ 1, τ
)

+ lnϑ1

(w − w′
2π

+ 1, τ
)]

[7.11]

Now from (7.2.37d) ϑ1(ν, τ) = −ϑ
[

1/2
1/2

]
(ν, τ) and from (7.2.36) we have, using (7.2.32a),

ϑ [ab] (ν + 1, τ) = eπia
2τ+2πia(ν+1+b)ϑ(ν + aτ + b+ 1, τ)

= e2πiaeπia
2τ+2πia(ν+b)ϑ(ν + aτ + b, τ)

= e2πiaϑ [ab] (ν, τ) [7.12]

and thus

ϑ1(ν + 1, τ) = − ϑ
[

1/2
1/2

]
(ν + 1, τ) = −e2πiaϑ

[
1/2
1/2

]
(ν, τ) = e2πiaϑ1(ν, τ) [7.13]

Therefore

G̃′(w, w̄;w′, w̄′)→ − α′

2

{
ln

[
e−2πaϑ1

(w − w′
2π

, τ
)]

+ ln

[
e2πaϑ1

(w − w′
2π

)]∗}

= − α′

2
ln

[
e2πiaϑ1

(w − w′
2π

, τ
)
e−2πiaϑ1

(w − w′
2π

, τ
)]

= − α′

2
lnϑ1

(w − w′
2π

, τ
)
ϑ1

(w − w′
2π

, τ
)

= G̃′(w, w̄;w′, w̄′) [7.14]

and so we indeed have periodicity under w → w + 1 for G̃′(w, w̄;w′, w̄′). This clearly also
implies periodicity of G′(w, w̄;w′, w̄′) as Im(w − w′)→ Im(w + 1− w′) = Im(w − w′).

Now, if we replace w → w + 2πτ , we get

G̃′(w, w̄;w′, w̄′)→ − α′

2

[
lnϑ1

(w − w′
2π

+ τ, τ
)

+ lnϑ1

(w − w′
2π

+ τ, τ
)]

[7.15]
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From (7.2.37d) ϑ1(ν, τ) = −ϑ
[

1/2
1/2

]
(ν, τ) and from (7.2.36) we have, using (7.2.32b),

ϑ [ab] (ν + τ, τ) = eπia
2τ+2πia(ν+τ+b)ϑ(ν + aτ + b+ τ, τ)

= e2πiaτeπia
2τ+2πia(ν+b)e−πiτ−2πi(ν+aτ+b)ϑ(ν + aτ + b, τ)

= e−πiτ−2πiν−2πibϑ [ab] (ν, τ) [7.16]

and thus

ϑ1(ν + τ, τ) = − ϑ
[

1/2
1/2

]
(ν + τ, τ) = −e−2πiν−πiτ−πiϑ

[
1/2
1/2

]
(ν, τ)

= e−2πiν−πiτϑ
[

1/2
1/2

]
(ν, τ) = −e−2πiν−πiτϑ1(ν, τ) [7.17]

and thus

G̃′(w, w̄;w′, w̄′)→ − α′

2

{
ln

(
−e−2πiw−w

′
2π
−πiτϑ1

(w − w′
2π

, τ
))

+ ln

(
−e−2πiw−w

′
2π
−πiτϑ1

(w − w′
2π

))∗}

= − α′

2
ln

[
e−i(w−w

′)−πiτϑ1

(w − w′
2π

, τ
)
e+i(w̄−w̄′)+πiτ̄ϑ1

(w − w′
2π

, τ
)]

= − α′

2
ln e−i[(w−w

′)−(w̄−w̄′)]−πi(τ−τ̄) − α′

2
lnϑ1

(w − w′
2π

, τ
)
ϑ1

(w − w′
2π

, τ
)

= − α′

2
ln e2Im(w−w′)+2πIm(τ) + G̃′(w, w̄;w′, w̄′)

= − α′
[
Im(w − w′) + πτ2

]
+ G̃′(w, w̄;w′, w̄′) [7.18]

and so the periodicity condition indeed picks up a term −α′
[
Im(w − w′) + πτ2

]
. On the

other hand we have that under w → w + 2πτ

[Im(w − w′)]2 → [Im(w + 2πτ − w′)]2 = [Im(w − w′) + 2πτ2]2

= [Im(w − w′)]2 + 4πτ2Im(w − w′) + 4π2τ2
2 [7.19]

and so

α′[Im(w − w′)]2

4πτ2
→ α′[Im(w − w′)]2

4πτ2
+ α′

[
Im(w − w′) + πτ2

]
[7.20]

Combining the two we thus find that indeed G′(w, w̄;w′, w̄′) is also periodic under w →
w + 2πτ .

Let us now show that G′(w, w̄;w′, w̄′) also satisfies (7.2.1). Let us first consider the
case of G̃′(w, w̄;w′, w̄′) with w 6= w′. In that case we have G̃′(w, w̄;w′, w̄′) is the sum of a
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holomorphic and an anti-holomorphic function of w and so clearly ∂∂̄G′(w, w̄;w′, w̄′) = 0
when w 6= w′. Just as for the case of the sphere, we need to be careful at coinciding points
because we expect that this will generate the delta function. Now the ϑ1(ν, τ) function has
a Taylor expansion in ν and the constant term ϑ1(0, τ) is zero by (7.2.42). Therefore, near
ν = 0,

ϑ1(ν, τ) = ν ϑ′1(0, τ) + o(ν2) [7.21]

where ϑ′1(ν, τ) = ∂νϑ1(ν, τ). We thus have near w = w′

−α
′

2

[
lnϑ1

(w − w′
2π

, τ
)

+ lnϑ1

(w − w′
2π

, τ
)]
≈

− α′

2

{
ln

[
w − w′

2π
ϑ′1(0, τ) + o

(
w − w′)2

)]
+ ln

[
w − w′

2π
ϑ′1(0, τ) + o

(
w − w′)2

)]∗ }

=− α′

2

[
ln |w − w′|2 + ln

∣∣∣∣ϑ′1(0, τ)

2π

∣∣∣∣2 + o
(
w − w′)2

)]
[7.22]

and thus as w → w′ we have the same behaviour as on the sphere – which makes sense
as at coinciding points the global topology should not play a role in this – and we indeed
have

2

α′
lim
w→w′

∂∂̄G̃′(w, w̄;w′, w̄′) = −2πδ2(w − w′) [7.23]

Let us now check the second second term in G′(w, w̄;w′, w̄′):

2

α′
∂̄∂

{
α′
[
Im(w − w′)

]2
4πτ2

}
=

1

2πτ2
∂̄∂

(
w − w′ − w̄ + w̄′

2i

)2

= − 1

8πτ2
∂̄∂(−2ww̄) =

1

4πτ2
[7.24]

The function k(τ, τ̄) obviously satisfies ∂̄∂k(τ, τ̄) = 0 and we thus conclude thatG′(w, w̄;w′, w̄′)
indeed satisfies (7.2.1).

7.7 p 209: Eq. (7.2.4) The Expectation Value of Vertex Operators on
the Torus

The derivation is entirely similar as for the expectation value of vertex operators on the
sphere in the (6.2.13). We refer to that derivation for details. The first ting we did there
was to extract the regularised part of the vertex operators [6.33][

eiki·X(σi)
]
r

= exp

(
−1

2

α′k2
i

2
ln d2(σi, σi)

)
eiki·X(σi) [7.25]
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Using this we obtained via a straightforward calculation that [6.39]

AnS2(k, σ) = iCXT 2(2π)DδD(
∑
i

ki) exp

− n∑
i<j=1

ki · kjG′(σi, σj)−
1

2

n∑
i=1

k2
iG
′
r(σi, σi)


[7.26]

where we defined

G′r(σi, σj) = G′(σi, σj) +
α′

2
ln d2(σi, σj) [7.27]

with d the geodesic distance, which at short distance is given by (3.6.9)

d2(σ1, σ2) = (σ1 − σ2)2e2ω(σ) = |z12|2e2ω(σ) [7.28]

We now need to work out G′r at coinciding points:

lim
w′→w

G′r(w, w̄;w′)w̄′ = lim
w′→w

G′(w, w̄;w′) +
α′

2
ln |w − w′|2 + α′ω(w) [7.29]

But we saw in [7.21] that as ν → 0

ϑ1(ν, τ) = ν ϑ′1(0, τ) + o(ν2) [7.30]

and therefore

lim
w′→w

G′(w, w̄;w′) = −α
′

2

[
ln |w − w′|2 + ln

∣∣∣∣∂νϑ1(0, τ)

2π

∣∣∣∣2 + o
(
w − w′)2

)]
[7.31]

so that

lim
w′→w

G′r(w, w̄;w′) = −α
′

2

[
ln

∣∣∣∣∂νϑ1(0, τ)

2π

∣∣∣∣2 + α′ω(w)

]
[7.32]
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Bringing it all together we find

AnS2(k, σ) = iCXT 2(2π)DδD(
∑
i

ki) exp

{
−

n∑
i<j=1

ki · kj

(
− α′

2
ln
∣∣∣ϑ1

(wij
2π

, τ
)∣∣∣2

+
α′(Im(wij))

2

4πτ2

)
− 1

2

n∑
i=1

k2
i

[
−α
′

2

(
ln

∣∣∣∣∂νϑ1(0, τ)

2π

∣∣∣∣2 + α′ω(wi)

)]}

= iCXT 2(2π)DδD(
∑
i

ki) exp

{
n∑

i<j=1

α′ki · kj ln

[ ∣∣∣ϑ1

(wij
2π

, τ
)∣∣∣ exp

(
−α
′(Imwij)

2

4πτ2

)]

× −1

2

n∑
i=1

α′k2
i ω(wi) +

n∑
i=1

α′

2
k2
i ln

∣∣∣∣∂νϑ1(0, τ)

2π

∣∣∣∣
}

= iCXT 2(2π)DδD(
∑
i

ki) exp

{
n∑

i<j=1

ln

[ ∣∣∣ϑ1

(wij
2π

, τ
)∣∣∣ exp

(
−α
′(Imwij)

2

4πτ2

)]α′ki·kj

− 1

2

n∑
i=1

α′k2
i ω(wi)−

n∑
i=1

ln

∣∣∣∣ 2π

∂νϑ1(0, τ)

∣∣∣∣α
′

2
k2
i

}

= iCXT 2(2π)DδD(
∑
i

ki) exp

[
−1

2

n∑
i=1

α′k2
i ω(wi)

]
n∏

i<j=1

[ ∣∣∣ϑ1

(wij
2π

, τ
)∣∣∣ exp

(
−α
′(Imwij)

2

4πτ2

)]α′ki·kj n∏
i=1

∣∣∣∣ 2π

∂νϑ1(0, τ)

∣∣∣∣−α
′

2
k2
i

[7.33]

We can now rewrite the last product as follows. We use (6.44) with fi = 1 for i = 1, · · · , n

−2

n∑
i<j=1

ki · kj −
n∑
i=1

k2
i = −

n∑
i=1

ki ·
n∑
j=1

kj [7.34]

By momentum conservation the RHS is zero so that
n∑
i=1

k2
i = −2

n∑
i<j=1

ki · kj [7.35]

Therefore
n∏
i=1

∣∣∣∣ 2π

∂νϑ1(0, τ)

∣∣∣∣−α
′

2
k2
i

=

∣∣∣∣ 2π

∂νϑ1(0, τ)

∣∣∣∣−α
′

2

∑n
i=1 k

2
i

=

∣∣∣∣ 2π

∂νϑ1(0, τ)

∣∣∣∣α′
∑n
i<j=1 ki·kj

=

n∏
i<j=1

∣∣∣∣ 2π

∂νϑ1(0, τ)

∣∣∣∣α′ki·kj [7.36]
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This gives our final result

AnS2(k, σ) = iCXT 2(2π)DδD(
∑
i

ki) exp

[
−1

2

∑
i

α′k2
i ω(wi)

]

×
n∏

i<j=1

∣∣∣∣ 2π

∂νϑ1(0, τ)
ϑ1

(wij
2π

, τ
)

exp

(
−α
′(Imwij)

2

4πτ2

)∣∣∣∣α′ki·kj [7.37]

This is (7.2.4), if just as in (6.2.13) we set the conformal factor ω ≡ 0 by taking a confor-
mally flat metric in a region containing all vertex operators.

7.8 p 209: Eq. (7.2.5) The Scalar Partition Function on the Torus, I

We have one translation in "time" and one in "space". The translation is Euclidean time
t is generated by the Hamiltonian , e−Ĥt and the translation in space is generated by the
momentum operator eiP̂ x. Think of the torus w = σ1 + iσ2 ≡ w + 2πτ as being a closed
string of circumference 2πτ1 that evolves and turns into itself after a time 2πτ2. So we
have a time evolution of e−2πτ2H with H the Hamiltonian of the worldsheet field theory.
We worked out in (2.6.10) that this is given by H = L0 + L̃0 − (c + c̃)/24. But that is not
all, when the closed string comes back to itself it has been "twisted" by an amount 2πτ1,
that is a translation of e2piPτ1 with the translation operator given by P = L0 − L̃0.

To calculate the path integral without vertex operators Z(τ) = 〈1〉T 2(τ) we thus start
from any ground state, we let it evolve over time 2πτ2 while at the same time we twist it
over 2πτ1 and then measure the overlap of that evolved state, with the original state. We
need to do this for all possible intermediate states, so we need to sum over all possible
states. Therefore

Z(τ) = 〈1〉T 2(τ) =

∫
T 2(τ)

[dX] e−SP =
∑

all states |ψ〉

〈ψ| e−2πτ2He2πiτ1P |ψ〉

= Tr exp(−2πτ2H + 2πiτ1P ) [7.38]

where the trace is over all states and SP denotes the Polyakov action. Let us now work this
out. We also use the fact that for the matter sector c = c̃ = d, with d the number of scalar
fields.

Z[τ ] = Tr exp

[
−2πτ2

(
L0 + L̃0 −

d

12

)
+ 2πiτ1(L0 − L̃0)

]
= Tr exp

[
2πi(iτ2 + τ1)L0 − 2πi(−iτ2 + τ1)L̃0 + 4πτ2

d

24

]
= Tr exp

[
2πiτL0 − 2πiτ̄ L̃0 + 4πτ2

d

24

]
[7.39]

— 368—



Joe’s Book (version of November 20, 2020) Notes from Stany M. Schrans

We now introduce q = exp 2πiτ so that

qq̄ = exp 2πi(τ − τ̄) = exp(2πi2iImτ) = exp−4πτ2 [7.40]

and thus indeed

Z(τ) = (qq̄)−d/24 Tr qL0 q̄L̃0 [7.41]

7.9 p 209: Eq. (7.2.6) The Scalar Partition Function on the Torus, II

The trace in the partition function is over all states in the Hilbert space. For the scalar field
these states are characterised by their momenta k and their oscillator level. The oscillator
level is given by Nµn where µ = 0, · · · , 25 is the spacetime index and n = 1, · · · ,∞ is the
oscillator index. We saw in (4.3.31) and (4.3.32) that, focussing on the matter part only,1

L0 =
α′

4
(p2 +m2) =

α′

4
p2 +

∞∑
n=1

n

25∑
µ=0

Nµn [7.42]

and the same of course for L̃0. Let us spend a minute to make sure we understand this
formula. Take as an example a state (α0

−3)2α17
−1 |0; k〉. We have chosen a timelike and a

transverse Lorentz index for convenience. This state has non-zero oscillator indices and
levels n = 1;N17,1 = 1 and n = 3;N0,3=3 with all other Nµk = 0. The weight of this state is
thus

L0(α0
−3)2α17

−1 |0; k〉 =

[
α′

4
k2 + (1 + 2× 3)

]
(α0
−3)2α17

−1 |0; k〉

=

α′
4
k2 +

∞∑
n=0

n

25∑
µ=0

Nnµ

 (α0
−3)2α17

−1 |0; k〉 [7.43]

To find the partition function we need to take the trace over all possible states

Z(τ) = (qq̄)−d/24 Tr q
α′
4
p2+

∑∞
n=1 n

∑25
µ=0 Nµn q̄

α′
4
p2+

∑∞
m=1 m

∑25
µ=0 Ñµm [7.44]

To rewrite this is less simple than it is often inferred. Let us ignore the anti-holomorphic
side and the Lorentz index for convenience. We thus wish to evaluate Tr q

∑∞
n=1 nNn . Let us

work this out for the first few levels

1This means ignoring the ghost contributions Nbn, Ncn and ag = 1, see (2.7.21). Recall that
aX = 0, see (2.7.9).
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weight L0 states nr of states
0 1 1
1 α−1 1
2 α−2, α

2
−1 2

3 α−3, α−2α−1, α
3
−1 3

4 α−4, α−3α−1, α−2α−2, α−2α
2
−1, α

4
−1 5

5 α−5, α−4α−1, α−3α−2, α−3α
2
−1, α

2
−2α−1, α−2α

3
−1, α

5
−1 7

Table 7.1: First few states of the string, matter sector

One sees that for weight n one needs to find all partitions of n, denoted by p(n) and we
have

Tr q
∑∞
n=1 nNn =

∞∑
k=0

p(k)qk [7.45]

There is no closed form expression for p(n), but we can rewrite it as

∞∑
k=0

p(k)qk =
∞∏
`=1

∞∑
m=0

q`m [7.46]

One can easily work out the first few cases for oneself, but it quickly becomes very messy.
The easiest way is to use common sense. If you consider the expression(

1 + q + q2 + q3 + q4 + · · ·
)
×
(

1 + q2 + q4 + q6 + q8 + · · ·
)
×
(

1 + q3 + q6 + q9 + · · ·
)

×
(

1 + q4 + q8 + · · ·
)
×
(

1 + q5 + · · ·
)
× · · · [7.47]

If we wish to extract e.g. how many times we find q3 e.g. we have a contribution q3 + q2×
q + q × q × q, so we recognise the partitions of three. This is easily seen to extend to all
power of q which proves [7.46].

Adding the momenta, the Lorentz index and the anti-holomorphic part is straightfor-
ward and we get

Z(τ) = (qq̄)−d/24 Vd

∫
ddk

(2π)d
(qq̄)α

′k2/4
∞∏
n=1

25∏
µ=0

∞∑
Nµn,Ñµn=0

qnNµn q̄nÑµn [7.48]

Using, once more, qq̄ = exp−4πτ2 this gives

Z(τ) = (qq̄)−d/24 Vd

∫
ddk

(2π)d
e−πτ2α

′k2
∏
n,µ

∞∑
Nµn,Ñµn=0

qnNµn q̄nÑµn [7.49]
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7.10 p 210: Eq. (7.2.8)-(7.2.9) The Scalar Partition Function on the
Torus, III

The momentum integration is just a Gaussian, after we perform a Wick rotation of the
spacetime momentum k0 → ikE:∫

ddk

(2π)d
e−πτ2α

′k2
= i

(∫
dκ

2π
e−πτ2α

′κ2

)d
= i

(
1

2π

√
π

πτ2α′

)d
= i(4π2τ2α

′)−d/2 [7.50]

We thus get

Z(τ) = (qq̄)−d/24 Vdi(4π
2τ2α

′)−d/2
∏
n,µ

(1− qn)−1(1− q̄n)−1

= iVd(qq̄)
−d/24(4π2τ2α

′)−d/2
∏
n

(1− qn)−d(1− q̄n)−d

= iVd

(4π2τ2α
′)−1/2

[
q1/24

∏
n

(1− qn)

]−1 [
q̄1/24

∏
n

(1− q̄n)

]−1

d

= iVd

[
(4π2τ2α

′)−1/2|η(τ)|−2
]d

= iVdZX(τ)d [7.51]

with

ZX(τ) = (4π2τ2α
′)−1/2|η(τ)|−2 [7.52]

and

η(τ) = q1/24
∏
n

(1− qn) [7.53]

Let us check the modular invariance of Z(τ). Under τ → τ + 1 we have clearly
4π2τ2α

′ → 4π2τ2α
′ and also

|η(τ)|2 →

[
e2πi(τ+1)/24

∞∏
n=1

(
1− e2πin(τ+1)

)]
×

[
e−2πi(τ̄+1)/24

∞∏
m=1

(
1− e−2πim(τ̄+1)

)]

= e2πi/24e−2πi/24

[
e2πiτ/24

∞∏
n=1

(
1− e2πinτ

)]
×

[
e−2πiτ̄/24

∞∏
m=1

(
1− e−2πimτ̄

)]
= |η(τ)|2 [7.54]

and under τ → −1/τ we find, using (7.2.44), and

τ1 + iτ2 → −
τ1

τ2
1 + τ2

2

+
iτ2

τ2
1 + τ2

2

[7.55]
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that

ZX(τ)→
(

4πα′
iτ2

|τ |2

)−1/2

(−iτ)−1/2η−1(τ)(iτ̄)−1/2η−1(τ̄)

= (4π2τ2α
′)−1/2|τ | 1

|τ |
η−1(τ)η−1(τ̄) = (4π2τ2α

′)−1/2|η(τ)|−2

=ZX(τ) [7.56]

and so also Z(−1/τ) = Z(τ).

7.11 p 210: Eq. (7.2.11) The Change of Metric for the Torus

ds2 = (1 + ε∗ + ε)d[w + ε(w̄ − w)]d[w̄ + ε∗(w − w̄)]

= (1 + ε∗ + ε)[dwdw̄ + ε∗dwd(w − w̄) + εd(w − w̄)dw̄] + o(ε2)

= dwdw̄ + ε∗dwd(w − w̄) + εd(w − w̄)dw̄ + ε∗dwdw̄ + εdwdw̄ + o(ε2)

= dwdw̄ + ε∗dw2 + εdw̄2 [7.57]

which is exactly how the line element changes under δgww̄ = 0, δgww = ε∗ and δgw̄w̄ = ε.

7.12 p 210: Eq. (7.2.12) The Periodicity of w′

Under w′ → w′ + 2π we have

w′ + 2π = w + ε(w̄ − w) + 2π = w + 2π + ε(w̄ − w) = w + ε(w̄ − w) = w′ [7.58]

and under w′ → w′ + 2π(τ − 2iτ2ε), using τ2 = (τ − τ̄)/2i

w′ + 2π(τ − 2iτ2ε) =w + ε(w̄ − w) + 2π(τ − 2iτ2ε)

=w + 2πτ + ε(w̄ − w)− 4πi
τ − τ̄

2i
ε

=w + ε(w̄ − w − 2πτ + 2πτ̄) = w + ε(w̄ − w) = w′ [7.59]

7.13 p 210: Eq. (7.2.13) The Change in Modulus form the Change in
Metric

The torus described by coordinates w, w̄ and moduli τ is thus the same as the torus de-
scribed by coordinates w′ and moduli τ ′ = τ − 2iτ2ε. The change in moduli is thus

δτ = τ ′ − τ = −2iτ2ε [7.60]
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7.14 p 210: Eq. (7.2.14) The Change in the Partition Function due to
a Change in the Metric

We have

δZ(τ) =
δZ(τ)

δgab
δgab =

δ

δgab

(∫
T 2(τ)

[dX] e−SP

)
δgab

= −

(∫
T 2(τ)

[dX] e−SP
δSP
δgab

)
δgab

= −

[∫
T 2(τ)

[dX] e−SP
1

4π

∫
d2σ T ab(σ)

]
δgab

= − 1

2π

∫
d2w

(∫
T 2(τ)

[dX] e−SP T ab(σ)

)
δgab

= − 1

2π

∫
d2w〈T ab(σ)〉δgab = − 1

2π

∫
d2w

[
〈Tww(σ)〉δgww + 〈T w̄w̄(σ)〉δgw̄w̄

]
= − 2

π

∫
d2w

[
〈Tw̄w̄(w̄)〉δgww + 〈Tww(w)〉δgw̄w̄

]
[7.61]

We have used the definition of the energy momentum tensor T ab = 4πδS/δgab, d2σ = 2d2w
and 4Tww = T w̄w̄, 4Tw̄w̄ = Tww. We now fill in the form of the change in metric and then
use the worldsheet translation invariance of the theory to bring the energy momentum
tensor to the origin

δZ(τ) = − 2

π

∫
d2w

[
〈Tw̄w̄(w̄)〉ε∗ + 〈Tww(w)〉ε

]
= − 2

π

∫
d2w

[
〈Tw̄w̄(0)〉ε∗ + 〈Tww(0)〉ε

]
= − 1

π

[
〈Tw̄w̄(0)〉ε∗ + 〈Tww(0)〉ε

] ∫
d2σ [7.62]

We know from [7.10] that the surface area of the torus is 4π2τ2 and we have from (7.2.13)
that ε = iδτ/2τ2

δZ(τ) = − 1

π

[
− iδτ̄

2τ2
〈Tw̄w̄(0)〉+

iδτ

2τ2
〈Tww(0)〉

]
4π2τ2

= − 2πi
[
δτ〈Tww(0)〉 − δτ̄〈Tw̄w̄(0)〉

]
[7.63]

Note that there is an error in the first line of (7.2.14); the coefficient should be 2/π and
not 1/2π. This is not mentioned on Joe’s errata page.
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7.15 p 211: Eq. (7.2.15) The OPE ∂Xµ(w)∂Xµ(0)

From the (2.1.21b) we have

Xµ(w)Xν(z) = −α
′ηµν

2
ln |w − z|2+ : Xµ(w)Xν(z) : [7.64]

and thus

∂Xµ(w)∂Xν(z) = − α′ηµν

2(w − z)2
+ : ∂Xµ(w)∂Xν(z) :

= − α′ηµν

2(w − z)2
+ : ∂Xµ(z)∂Xν(z) : +o(w − z) [7.65]

Therefore

∂Xµ(w)∂Xµ(0) = − α′δµµ
2w2

+ : ∂Xµ∂Xν : (0) + o(w)

= − α′d

2w2
− α′Tww(0) + o(w) [7.66]

where we have used T (w) = −(1/α′) : ∂X∂X : (w).

7.16 p 211: Eq. (7.2.16) The Expectation Value of ∂Xµ(w)∂Xµ(0) on
the Torus, I

The Green’s function is defined as ηµνG′ = 〈∂µX∂νX〉/〈1〉T 2(τ). We divide by the vacuum
expectation value to describe the connected diagrams only. From this it follows that

1

Z(τ)
∂Xµ(w)∂Xµ(0) = d lim

w′→0
∂w∂w′G

′(w, w̄;w′, w̄′) [7.67]

Let us take the derivatives of the Green’s function (7.2.3)

G′(w, w̄;w′, w̄′) = − α′

2
ln
∣∣∣ϑ1

(w − w′
2π

, τ
)∣∣∣2 + α′

[
Im (w − w′)

]2
4πτ2

+ k(τ, τ̄) [7.68]

Let us start with the first term

∂w′∂w ln
∣∣∣ϑ1

(w − w′
2π

, τ
)∣∣∣2 = ∂w′

∂wϑ1

(
w−w′

2π , τ
)

ϑ1

(
w−w′

2π , τ
)

= −
∂wϑ1

(
w−w′

2π , τ
)
∂w′ϑ1

(
w−w′

2π , τ
)

ϑ2
1

(
w−w′

2π , τ
) +

∂w′∂wϑ1

(
w−w′

2π , τ
)

ϑ1

(
w−w′

2π , τ
) [7.69]
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From the definition of the Jacobi theta functions it is clear that ϑ1 is even in its first argu-
ment and so we can replace ∂w′ by ∂w. Thus

∂w′∂w ln
∣∣∣ϑ1

(w − w′
2π

, τ
)∣∣∣2 = +

[
∂wϑ1

(
w−w′

2π , τ
)]2

ϑ2
1

(
w−w′

2π , τ
) −

∂2
wϑ1

(
w−w′

2π , τ
)

ϑ1

(
w−w′

2π , τ
) [7.70]

and thus

−α
′d

2
lim
w′→0

∂w′∂w ln
∣∣∣ϑ1

(w − w′
2π

, τ
)∣∣∣2 = − α′d

2
×

+
[
∂wϑ1

(
w
2π , τ

)]2
− ϑ1

(
w
2π , τ

)
∂2
wϑ1

(
w
2π , τ

)
ϑ2

1

(
w
2π , τ

)
=
α′d

2

ϑ1∂
2
wϑ1 − ∂wϑ1∂wϑ1

ϑ2
1

[7.71]

with ϑ1 ≡ ϑ1(w/2π, τ).
Now for the second part. We already worked this out in [7.24]

∂̄∂

{
α′
[
Im(w − w′)

]2
4πτ2

}
=

α′

8πτ2
[7.72]

Combining both expressions we find

1

Z(τ)
∂Xµ(w)∂Xµ(0) =

α′d

2

ϑ1∂
2
wϑ1 − ∂wϑ1∂wϑ1

ϑ2
1

+
α′d

8πτ2
[7.73]

7.17 p 211: Eq. (7.2.17) The Expectation Value of ∂Xµ(w)∂Xµ(0) on
the Torus, II

We first show that ϑ1(ν, τ) is odd in ν. We use the expression (7.2.37d) and find, using
z = e2πiν → e−2πiν = 1/z,

ϑ1(−ν, τ) = i

∞∑
n=−∞

(−)nq(n−1/2)2
(1/z)n−1/2 = i

∞∑
n=−∞

(−)nq(n−1/2)2
z−n+1/2 [7.74]

Changing summation index n = −m+ 1 gives

ϑ1(−ν, τ) = i
∞∑

m=−∞
(−)( −m+ 1)q(−m+1/2)2

zm−1/2 = −i
∞∑

m=−∞
(−)2q(m−1/2)2

zm−1/2

= − ϑ1(ν, τ) [7.75]
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Now if a function f(x) is odd, then its f ′(x) is even. Indeed

f ′(x) =
∂f(x)

∂x
→ ∂f(−x)

∂(−x)
=
∂(−f(x))

−∂x
=
∂f(x)

∂x
= f ′(x) [7.76]

This is easily generalised to that that if f is odd then its odd derivatives are even and its
even derivatives are odd. Now an odd function f always has f(0) = −f(−0) = −f(0) and
thus all odd functions have f(0) = 0, but also all there even derivatives are zero at zero.
This is a long story to say that ϑ1(ν, τ) and all its even derivatives vanish at ν = 0. We can
thus expand ϑ1(ν, τ) as

ϑ1(ν, τ) = νϑ′1(0, τ) +
1

6
ν3ϑ′′′1 (0, τ) + o(ν5) [7.77]

Let us now write θ for ϑ(0, τ) and likewise for all its derivatives. We thus have

ϑ1(ν, τ) = νθ′ +
1

6
ν3θ′′′ + · · ·

∂νϑ1(ν, τ) = θ′ +
1

2
ν2θ′′′ + · · ·

∂2
νϑ1(ν, τ) = νθ′′′ + · · · [7.78]

We thus get, ignoring the higher order terms

ϑ1∂
2
νϑ1 − ∂νϑ1∂νϑ1

ϑ2
1

=
(νθ′ + 1

6ν
3θ′′′)νθ′′′ − (θ′ + 1

2ν
2θ′′′)2

(νθ′ + 1
6ν

3θ′′′)2

=
ν2θ′θ′′′ − θ′θ′ − ν2θ′θ′′′

ν2θ′θ′(1 + 1
6ν

2θ′′′/θ′)2

= − 1

ν2
(1− 1

6
ν2 θ

′′′

θ′
)2 = − 1

ν2
+

1

3

θ′′′

θ′
[7.79]

We now need to replace ν by ν = w/2π, but both sides have a total of a second derivative,
so we also have

ϑ1∂
2
wϑ1 − ∂wϑ1∂wϑ1

ϑ2
1

= − 1

w2
+

1

3

∂3
wϑ(0, τ)

∂wϑ(0, τ)
[7.80]

Using this, we find for (7.2.16)

1

Z(τ)
∂Xµ(w)∂Xµ(0) = − α′d

2w2
+
α′d

6

∂3
wϑ(0, τ)

∂wϑ(0, τ)
+

α′d

8πτ2
[7.81]

We see that the double pole indeed corresponds to the double pole of the expectation value
of (7.2.15) and that the order w0 term is given by (7.2.17).
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7.18 p 211: Eq. (7.2.18) The Expectation Value of ∂Xµ(w)∂Xµ(0) on
the Torus, III

We take the expectation value of (7.2.15) on the torus

〈∂Xµ(w)∂Xµ(0)〉 = − α′d

2w2
〈1〉T 2(τ) − α

′ 〈Tww(0)〉+ o(w)

= − α′d

2w2
Z(τ)− α′ 〈Tww(0)〉+ o(w) [7.82]

Comparing with [7.81] we find that

〈Tww(0)〉 =

(
−d

6

∂3
wϑ(0, τ)

∂wϑ(0, τ)
− d

8πτ2

)
Z(τ) [7.83]

7.19 p 211: Eq. (7.2.19) The Expectation Value of ∂Xµ(w)∂Xµ(0) on
the Torus, IV

Working out the LHS of (7.2.14) we have

∂Z

∂τ
δτ +

∂Z

∂τ̄
δτ̄ = −2πi [δτ〈Tww(0)〉 − δτ̄〈Tw̄w̄(0)〉] [7.84]

Filling in (7.2.18) and its conjugate this gives

∂Z

∂τ
δτ +

∂Z

∂τ̄
δτ̄ = −2πi

[
δτ

(
−d

6

∂3
wϑ(0, τ)

∂wϑ(0, τ)
− d

8πτ2

)
Z(τ)

−δτ̄

(
−d

6

∂3
wϑ(0, τ)

∂wϑ(0, τ)
− d

8πτ2

)
Z(τ)

]
[7.85]

From the δτ part we thus have Filling in (7.2.18) and its conjugate this gives

∂Z

∂τ
=

(
πid

3

∂3
wϑ(0, τ)

∂wϑ(0, τ)
+

id

4τ2

)
Z(τ) [7.86]

Equivalently

∂τ lnZ(τ) =
πid

3

∂3
wϑ(0, τ)

∂wϑ(0, τ)
+

id

4τ2
[7.87]
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7.20 p 211: Eq. (7.2.20) A Jacobi Function Identity

We have

ϑ1(ν, τ) = −ϑ
[

1/2
1/2

]
(ν, τ) =

∞∑
n=−∞

eπi(n+1/2)2τ+2πi(n+1/2)(ν+1/2) [7.88]

Thus

∂2
νϑ1(ν, τ) = −4π2

∞∑
n=−∞

(
n+

1

2

)2

eπi(n+1/2)2τ+2πi(n+1/2)(ν+1/2) [7.89]

and

∂τϑ1(ν, τ) = πi
∞∑

n=−∞

(
n+

1

2

)2

eπi(n+1/2)2τ+2πi(n+1/2)(ν+1/2) [7.90]

Therefore

∂2
νϑ1(ν, τ) = 4πi∂τϑ1(ν, τ) [7.91]

and setting ν = w/2π

∂2
wϑ1

( w
2π
, τ
)

=
i

π
∂τϑ1

( w
2π
, τ
)

[7.92]

7.21 p 211: Eq. (7.2.21) The Differential Equation for the Partition
Function

We have

∂τ ln ∂wϑ1 =
∂τ∂wϑ1

∂wϑ1
=
π

i

∂3
wϑ1

∂wϑ1
[7.93]

where we have used (7.2.20). Thus, (7.2.19) becomes

∂τ lnZ(τ) =
πid

3

i

π
∂τ ln ∂wϑ1(0, τ) +

id

4τ2

= − d

3
∂τ ln ∂wϑ1(0, τ) +

id

4τ2
[7.94]
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7.22 p 211: Eq. (7.2.22) The Partition Function from the Differential
Equation

We check that (7.2.22) satisfies (7.2.21) and its conjugate equation.

lnZ(τ) ∝ −d
3

ln ∂wϑ1(0, τ)− d

3
ln ∂wϑ1(0, τ)− d

2
ln
τ − τ̄

2i
[7.95]

and thus

∂τ lnZ(τ) = − d

3
∂τ ln ∂wϑ1(0, τ)− d

2

1

τ − τ̄

= − d

3
∂τ ln ∂wϑ1(0, τ)− d

2

1

2iτ2

= − d

3
∂τ ln ∂wϑ1(0, τ) +

id

4τ2
[7.96]

The conjugate equation is satisfied in the same way and so (7.2.22) indeed satisfies (7.2.21).

7.23 p 212: Eq. (7.2.23) The Partition Function for the Ghost System,
I

Our starting formula is an expression for the partition function of the matter sector, [7.48]
which we repeat here for convenience,

Tr e−2πτ2H+2πiτ1P = (qq̄)−d/24 Vd

∫
ddk

(2π)d
(qq̄)α

′k2/4
∞∏
n=1

25∏
µ=0

∞∑
Nµn,Ñµn=0

qnNµn q̄nÑµn [7.97]

What are the changes for the ghost sector? To start with the −d/24 gets replaced by
+26/24 = 13/12. Indeed the d is just the central charge of the matter sector, so for the
ghost sector that is −26.

Tr e−2πτ2H+2πiτ1P = 4(qq̄)13/12 Tr qL0 q̄L̃0 [7.98]

Next, we use again (4.3.32). We don’t need the integration over the momenta for the
ghosts, we don’t need the spacetime index. Furthermore, the ghost occupation number
can be only zero or one so the sum reduces to 1 + qn. So both the b and the c ghosts
contribute a |1 + qn|2 which gives a |1 + qn|4. Moreover we have the normal ordering
constant ag = 1 which leads to an extra factor (qq̄)−1. Finally each holomorphic and anti-
holomorphic sectors have two ground states |↑〉 and |↓〉 so that the closed string has four
ground states |↑, ↑〉 , |↑, ↓〉 , |↓, ↑〉 and |↓, ↓〉. We thus have four times the same contribution.
This formula thus reduces for the ghost sector to

Tr e−2πτ2H+2πiτ1P = 4(qq̄)13/12 (qq̄)−1
∞∏
n=1

|1 + q2|4 = 4(qq̄)1/12
∞∏
n=1

|1 + q2|4 [7.99]
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7.24 p 212: Eq. (7.2.24) The Partition Function for the Ghost System,
II

The appearance of the (−)F is explained in appendix A in (A.2.21) to (A.2.23). Where F
is the Fermion number and is even for |↓〉 and odd for |↑〉. We thus have

(−)F |↑↑〉 = + |↑↑〉 ; (−)F |↓↓〉 = + |↓↓〉
(−)F |↑↓〉 = − |↓↑〉 ; (−)F |↑↓〉 = − |↑↓〉 [7.100]

and so rather than adding up the four ghost ground states cancel one another.

7.25 p 212: Eq. (7.2.25) The Ghost Insertions

The fact that the trace (7.2.24) vanishes should not be surprising as we know that we
need to put ghost insertions in the the expectation value. We need equal number of c
insertions as we have moduli and equal number of b insertions as we have CKVs. We saw
that the torus has two real moduli (the complex τ) and two real CKVs, hence we need
two c and two b insertions. So the vacuum ghost expectation value should indeed be
〈c(w1)b(w2)c̃(w̄3)b̃(w̄4)〉.

7.26 p 212: Eq. (7.2.26) The Trace with the Ghost Insertions

Let us look at the holomorphic part first. We use the Laurent expansion of the ghosts
(2.7.16) and the action of their modes on the ghost ground state (2.7.18).

〈c(w1)b(w2)〉T 2(τ) =

∞∑
m=−∞

∞∑
n=−∞

1

wm−1
1 wn+2

2

〈cmbn〉T 2(τ)

=
∞∑

m=−∞

0∑
n=−∞

1

wm−1
1 wn+2

2

〈cmbn〉T 2(τ)

=
∞∑

m=−∞

0∑
n=−∞

1

wm−1
1 wn+2

2

〈−bncm + δm+n〉T 2(τ)

= − w1

w2
2

〈b0c0〉T 2(τ) +

∞∑
m=−∞

0∑
n=−∞

1

wm−1
1 w−m+2

2

〈1g〉T 2(τ) [7.101]

But 〈1g〉T 2(τ) = 0 by the fact that the trace over the two ground states of the holomorphic
sectors cancel one another due to the (−)F in the trace. We therefore find, adding the
anti-holomorphic sector that indeed

〈c(w1)b(w2)c̃(w̄3)b̃(w̄4)〉 = Tr
[
(−)F c0b0c̃0b̃0e

−2πτ2H+2πiτ1P
]

[7.102]
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7.27 p 212: Eq. (7.2.27) The Partition Function for the Ghost System,
Final Result

Recall (2.7.18) the action of the ghost zero modes on the ghost ground states: b0 |↓〉 =
c0 |↑〉 = 0, b0 |↑〉 = |↓〉 and b0 |↓〉 = |↑〉. This means that

c0b0 |↑〉 = c0 |↓〉 = |↑〉 ; and c0b0 |↓〉 = 0 [7.103]

The ground state |↓〉 is thus projected out of the trace and both the holomorphic and anti-
holomorphic sector only contribute once to the sum. Therefore we lose the factor four in
(7.2.23). We also need to evaluate Tr (−)F q

∑∞
n=1 nNn for the ghost excitations. This looks

like an innocuous and straightforward formula, but, at least for me, it is not and needs
a detailed derivation. We refer to the explanation of (7.2.6). We need to consider the
different level ghost weights and their contributions to the partition function. The issue
here is that we can both have c and b excitations at a given weight, so let us work out the
first few levels in detail.

• level 0: no ghost excitations so a contribution q0 = 1.

• level 1: two ghost excitations: c−1 and b−1. Both have a −1 from the fermion factor (−)F ,
so a contribution −2q.

• level 2: there are three possibilities: c−2, c−1b−1 and b−2. Two have fermion number −1 and
one has fermion number +1. So we have a contribution −q2.

• level 3: the possibilities are c−3, c−2c−1, c−2b−1, c−1b−2 and also b−3 and b−2b−1. There are
six possibilities, two of them have fermion number −1 and four have fermion number +1.
So we have a contribution +2q3.

• level 4: the possibilities are c−4, c−3c−1, c−3b−1, c−2c−1b−1, c−2b−2, c−1b−3, c−1b−2b−1, b−4

and b−3b−1. There are nine possibilities, four of them have fermion number −1 and five
have fermion number +1. So we have a contribution +q4.

• etc.

The pattern should now be clear: we are looking for a double distinct partition at every
weight. We will leave it to the reader to work out that at level five there are six possibilities
with fermion number −1 and eight with fermion number +1 giving a +2q5. So we have
found so far

Tr (−)F q
∑∞
n=1 nNn = 1− 2q − q2 + 2q3 + q4 + 2q5 + · · · [7.104]

It turns out that we can represent this as
∏∞
n=1(1 − qn)2. Indeed using Mathematica to

work this out gives

∞∏
n=1

(1− qn)2 = 1− 2q − q2 + 2q3 + q4 + 2q5 − 2q6 − 2q8 − 2q9 + q10 + 2q13 + 3q14

− 2q15 + 2q16 − 2q19 − 2q20 + 2q21 − 2q22 − 6q23 − q24 + 2q25 + · · · [7.105]
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Adding the anti-holomorphic sector and bringing it all together we see that we can write

〈c(w1)b(w2)c̃(w̄3)b̃(w̄4)〉 = (qq̄)1/12
∞∏
n=1

|1− qn|4 = |η(τ)|4 [7.106]

7.28 p 213: Eq. (7.2.29) Modular Invariance Implies Integer Spin

From (7.2.28) we have

Z(τ + 1) =
∑
i

e2πi(τ+1)(hi−c/24)e−2πi(τ̄+1)(h̃i−c̃/24)

= e2πi[hi−h̃i−(c−c̃)/24]Z(τ) [7.107]

Invariance under τ → τ + 1 thus requires

hi − h̃i −
c− c̃
24
∈ Z [7.108]

One operator that is certainly in the theory is the unit operator 1, which has h1 = h̃1 = 0.
The above equation thus implies that (c−c̃)/24 ∈ Z and thus from that, also that hi−h̃i ∈ Z.

7.29 p 213: Eq. (7.2.30) The Density of States at High Weights

Setting τ = i` the partition function for a general CFT becomes

Z(i`) =
∑
i

e−2π`(hi−c/24)e−2π`(h̃i−c̃/24) =
∑
i

e−2π`[h+h̃i−(c+c̃)/24] [7.109]

For `→ 0 we can expand the partition function

Z(i`) =
∑
i

[
1− 2π`

(
h+ h̃i −

c+ c̃

24

)]
+ o(`2) [7.110]

and it is the states with the large weights that give the largest contribution to Z.
By modular invariance we must have Z(τ) = Z(−1/τ) or with τ = i` this means

Z(i`) = Z(i/`). Now

Z(i/`) =
∑
i

e−
2π
`

[h+h̃i−(c+c̃)/24] [7.111]

Now as we let ` approach zero, it is the smallest weight that contribute, but the state
with lowest weight in a unitary compact CFT is the unit state with weight zero. Thus as
lim`→0 Z(i`) = eπ(c+c̃)/12` and by invariance under τ → −1/tau we have

lim
`→0

Z(i`) = eπ(c+c̃)/12` [7.112]
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7.30 The Jacobi Theta Functions

We will not derive all these equations as it it pure mathematics. For those readers interested
in more details see e.g. the seminal book E.T. Whittaker & G.N. Watson, A Course of Modern
Analysis, pp 462-490.

7.31 p 216: Eq. (7.3.2) The b-Ghost Insertion

By definition

B =
1

4π
(b, ∂τg) =

1

4π

∫
d2σ
√
g bab∂τgab [7.113]

We use 2d2σ = d2w,
√
g = 1 and. va = gabvb = 2va so that bww = 4bw̄w̄ to get

B =
1

2π

∫
d2w (bw̄w̄∂τgww + bww∂τgw̄w̄) [7.114]

Let us now look at the variation of the metric δgww = ε∗ and using (7.2.13) i.e. δτ =
−2iτ2ε:

δτgw̄w̄ = ∂τgw̄w̄δτ + ∂τ̄gw̄w̄δτ̄

= ∂τgw̄w̄(−2iτ2ε) + ∂τ̄gw̄w̄(2iτ2ε
∗) [7.115]

Setting this equal to δgw̄w̄ = ε we find that ∂τ̄gw̄w̄ = 0 and ∂τgw̄w̄ = i/τ2. We have of course
also the conjugate expressions, in particular ∂τgww = 0. Plugging this into [7.114] we find

B =
1

2π

∫
d2w

i

2τ2
bww(w) =

i

4πτ2

∫
d2w bww(w) [7.116]

We use translation invariant to put the ghost field at the origin and are then left with the
surface are of the torus, which we know is

∫
d2w = 2

∫
d2σ = 8π2τ2 and thus

B = 2πibww(0) [7.117]

7.32 p 217: Eq. (7.3.4) The General Amplitude on the Torus

The explanation in Joe’s book is quite detailed already, but let us just recall the main
point. We have used the CKV to fix the location of one vertex operator in w1. But we can
essentially put this anywhere on the torus. We can then just "average" out its location over
the torus. Basically what we do is we replace

V1(w1) =
1

8π2τ2

∫
d2w V1(w1) =

1

8π2τ2

∫
d2w V1(w) =

1

8π2τ2

∫
d2w1 V1(w1) [7.118]
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In the first equation we have kept the vertex operator at the position w1 and multiplied
and divided by (twice) the area of the torus. We have then used translational invariance to
put the vertex operator at w and then change integration variables. Applying this, together
with (7.3.2), to (7.3.1) gives

ST 2(1; 2; · · · ;n) =
1

2

∫
F0

dτdτ̄

〈
2πib(0)[−2πib̃(0)]c̃(0)c(0)

1

8π2τ2

n∏
i=1

Vi(wi, w̄i)

〉

=

∫
F0

dτdτ̄

4τ2

〈
b(0)b̃(0)c̃(0)c(0)

n∏
i=1

Vi(wi, w̄i)

〉
[7.119]

7.33 p 217: Eq. (7.3.6) The Vacuum Amplitude on the Torus

We fill in the matter part (7.2.8) and the ghost part (7.2.27) in (7.3.5)

ZT 2 = iV26

∫
F0

dτdτ̄

4τ2
(4π2α′τ2)−13|η(τ)|−52 |η(τ)|4

= iV26

∫
F0

dτdτ̄

4τ2
(4π2α′τ2)−13|η(τ)|−48 [7.120]

7.34 p 217: Eq. (7.3.7) Modular Invariance of the Vacuum Amplitude
on the Torus

Under τ → τ + 1 we have, using (7.2.44a), that |η(τ)| → |η(τ + 1)| =
∣∣eiπ/12η(τ)

∣∣ = |η(τ)|.
All the other factors in the torus vacuum amplitude are obviously invariant as well, so we
have invariance under τ → τ + 1.

To check invariance under τ → −1/τ , we first rewrite (7.3.6) as

ZT 2 = iV26

∫
F0

dτdτ̄

4τ2
(4π2α′τ2)−13τ2

[
τ2|η(τ)|4

]−12

=
iV26

4(4π2α′)13

∫
F0

dτdτ̄

τ2
2

[
τ2|η(τ)|4

]−12
[7.121]

Now under τ → −1/τ , using (7.2.44b) and the fact that τ2 → −τ2/|τ |2,

τ2|η(τ)|4 = − τ2

|τ |2
∣∣∣(−iτ)1/2η(τ)

∣∣∣4 =
τ2

|τ |2
|τ |2|η(τ)|4 = τ2|η(τ)|4 [7.122]

To show invariance of the measure τ → τ ′ = −1/τ , we first note that the Jacobian is simply

J = det

(
∂τ/∂τ ′ 0

0 ∂τ̄/∂τ̄ ′

)
=

1

τ ′4τ̄ ′4
=

1

|τ ′|4
[7.123]
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Thus
dτ ′dτ̄ ′

τ ′22

=
dτdτ̄

|τ |4
1

[−τ2/|τ |2]2
=
dτdτ̄

τ2
2

[7.124]

and so is invariant as well.

7.35 p 217: Eq. (7.3.8) The Vacuum Amplitude on the Torus for a
General Theory

I am not sure about this formula. It seems like Joe is saying that the ghosts cancel the
contribution of two of the non-compact dimensions, and that all the other non-compact
dimensions don’t contribute to the partition function. That seems strange. I would have
expected the following. The theory consists of d scalar fields X and a general CFT that
has a Hilbert space H ⊥ with highest weights (hi, h̃i). The total central charge of the
matter sector plus the CFT is d + cCFT = 26. The ghosts cancel the contribution to
the transition function of two of the matter oscillators, but we are still left with d − 2
matter oscillators that contribute a Dedekind function |η(τ)|2(d−2). I would thus expect
the partition function for this theory to be

ZT 2

[
X [d]; CFT

]
= iVd

∫
F0

dτdτ̄

4τ2
(4π2α′τ2)−d/2|η(τ)|2(d−2)

∑
i∈H⊥

qhi−1q̄h̃i−1 [7.125]

7.36 p 217: Eq. (7.3.9) The Partition Function for a Particle on a Circle

This is similar to the derivation of (3.3.22) but limited to the point particle. We will in
particular closely follow the discussion in [19] as it solves exercise 5.1 which requires the
partition function for a point particle without periodic boundary conditions. We will, of
course, extend this to a particle on a circle. The formal expression for the path integral of
a particle on a circle is

ZS1 =

∫ X(1)=X0

X(0)=X0

[dX de]

2Vdiff × Vtrans
e−Sm[X,e] [7.126]

with matter action (1.2.5)

Sm[X, e] =
1

2

∫ 1

0
dτ e

(
1

e2
∂Xµ∂Xµ +m2

)
[7.127]

Here e is the einbein2, τ ∈ [0, 1] is a parameter describing the circle and ∂ = d/dτ . Because
we are on the circle the fields Xµ and e are periodic under τ → τ + 1. As discussed in

2The reader shall not be confused by the fact that we use the same symbol for the einbein as for
the the Euler e.
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section 1.2. this action is diffeomorphism invariant. However, as discussed in section 5.1
not all einbeins on a circle are related by a diffeomorphism. Indeed if we define ` to be the
invariant length of the circle ` =

∫ 1
0 dτ e(τ), then under a diffeomorphism τ → τ ′(τ) we

have τ ′(1) = `, see (5.1.4), and so we cannot simultaneously fix the gauge and keep the
coordinate region fixed. The invariant length ` is a modulus and describes circles that are
not diffeomorphism equivalent. Even after gauge fixing the theory has a residual symmetry
of a global translation of τ around the circle, corresponding to the fact that we are free to
choose the origin of the circle. Thus we need to divide by the volume of that translation
group as well. These translations are given by (5.1.6), i.e. τ → τ+vmod 1 and the volume
of that group is obviously `. For now we will write this as Vtrans and only use its value later
on. Even after that, there still is a residual symmetry of replacing τ → −τ and so we need
to divide by factor of two as well.

It will be convenient to introduce an inner product on the space of functions of the unit
interval. For two such functions we define

(f, g) =

∫ 1

0
dτ e(τ)f(τ)g(τ) [7.128]

This is, of course, similar as the inner product we defined for the string. We can now
rewrite the matter action in terms of the inner product

Sm[X, e] =
1

2
(e−1∂Xµ, e−1∂Xµ) +

1

2
`m2 [7.129]

We chose a fiducial gauge ê and define the Faddeev-Popov measure

1 = ∆FP(e)

∫
d` [dε]δ(e− êε) [7.130]

This is the equivalent of [3.27] for the point particle with an integration over all diffeomor-
phism parameters ε and êε being the einbein in the fiducial gauge after a gauge transforma-
tion and ` is the parameter for the global translations. We plug this into the path integral
and perform the usual manipulations, including integrating over all possible moduli `,

ZS1 =

∫ X(1)=X0

X(0)=X0

[dX de]

2Vdiff × Vtrans
∆FP(e)

∫
d`[dε]δ(e− êε)e−Sm[X,e] [7.131]

We carry out the e integration and rename the dummy variable X

ZS1 =

∫ ∞
0

d`

∫ X(1)=X0

X(0)=X0

[dXε dε]

2Vdiff × Vtrans
∆FP(êε)e−Sm[Xε,êε] [7.132]

We use the gauge invariance of the Faddeev-Popov measure, the action and the integration
measure

ZS1 =

∫ ∞
0

d`

∫ X(1)=X0

X(0)=X0

[dXdε]

2Vdiff × Vtrans
∆FP(ê)e−Sm[X,ê] [7.133]
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We can perform the integration over the gauge parameter ε and this gives Vdiff which
cancels the same factor in the denominator. We now also use the volume of the translations
Vtrans = `. All this gives us

ZS1 =

∫ ∞
0

d`

2`

∫ X(1)=X0

X(0)=X0

[dX] ∆FP(ê)e−Sm[X,ê] [7.134]

Let us now calculate the Faddeev-Popov determinant. Just as in (3.3.16) we expand
the einbein for a small change both in the coordinate τ → τ ε = τ + e−1ε and the modulus
`→ `+ δ`. Let us first keep the modulus fixed. Then

δe = eε(τ)− e(τ) = eε(τ ε − e−1ε)− e(τ) = eε(τ ε)− e−1ε∂τe(τ)− e(τ)

= eε(τ ε)− ε∂ ln e(τ)− e(τ) [7.135]

Fom eε(τ ε)dτ ε = e(τ)dτ we have

eε(τ ε) = e(τ)
dτ

dτ ε
= e(τ)

d

dτ
(τ − e−1ε) = e(τ)

(
1 +

1

e2
∂eε− e−1∂ε

)
= e(τ) + ε∂ ln e− ∂ε [7.136]

Therefore

δe = e+ ε∂ ln e− ∂ε− ε∂ ln e− e = −∂ε [7.137]

Adding a small change in the modulus as well then give

δe = −∂ε+ ∂`e δ` [7.138]

Note that as we are working with a fixed coordinate rate and a variable ` we need that
τ ε ∈ [0, 1] as well. This implies that ε(τ = 0) = ε(τ = 1) = 0. From [7.130] it thus follows
that

∆FP(e)−1 =

∫
d` [dε]δ(e− êε) =

∫
d` [dε]δ(∂ε− ∂`e δ`) [7.139]

We rewrite the delta function as an exponential

∆FP(e)−1 =

∫
d` [dε ]δ(e− êε) =

∫
d` [dε dβ] exp

[
2πi

∫
dτ β (∂ε− ∂`e δ`)

]
=

∫
d` [dε dβ] exp

[
2πi

∫
dτ eβ

(
e−1∂ε− e−1∂`e δ`

)]
=

∫
d` [dε dβ] exp

[
2πi(β, e−1∂ε− e−1∂`e δ`)

]
[7.140]
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We have chosen to write it in terms of our inner product for our convenience. We invert
the integral by introducing Grassmann variables ξ, c and b and evaluate the determinant at
ê, our fiducial gauge choice

∆FP(ê) =

∫
dξ[dc db] exp

[
1

4π

(
b, ê−1∂c− ê−1∂`êξ

)]
[7.141]

We can now perform the ξ integration; just keep the linear term as ξ is a Grassmann
variable. Ignoring an overall irrelevant sign we get

∆FP(ê) =

∫
[dc db]

1

4π

(
b, ê−1∂`ê

)
exp

[
1

4π

(
b, ê−1∂c

)]
[7.142]

We can plug this into [7.134] to find our result for the path integral after the Faddeev-
Popov procedure

ZS1 =

∫ ∞
0

d`

2`

∫ X(1)=X0

X(0)=X0

[dX]

∫ c(1)=0

c(0)=0
[dc db]

1

4π

(
b, ê−1∂`ê

)
e−Sm[X,ê]−Sg [b,c,ê] [7.143]

with

Sg[b, c, ê] = − 1

4π

(
b, ê−1∂c

)
[7.144]

Note that ε(0) = ε(1) = 0 translates into the boundary conditions c(0) = c(1) = 0 for the
c-ghost integration.

Let us now evaluate this partition function. We select a gauge ê = `. The inner product
then becomes simply

(f, g) = `

∫ 1

0
dτ fg [7.145]

First look at the ghost part. We expand the ghost fields in Eigenfunctions of the Lapla-
cian

∆`f = −`−2∂2f = ν2f [7.146]

on the circle. The coefficient −`−2 is just a convenient normalisation. A complete set
of solutions satisfying these equations are sin(ντ/`) and cos(ντ/`). Requiring periodicity
under τ → τ + 1 requires ν/` = 2πk with k ∈ N. These Eigenfunctions have Eigenvalues

∆` sin 2πjτ = −`−2∂2 sin 2πjτ =
4π2j2

`2
sin 2πjτ

∆` cos 2πjτ = −`−2∂2 cos 2πjτ =
4π2j2

`2
cos 2πjτ [7.147]
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i.e.

ν2
j =

4π2j2

`2
[7.148]

We thus expand the b and c ghost fields

b =

√
1

`
b0 +

√
2

`

∞∑
j=1

bj cos 2πjτ ; c =

√
2

`

∞∑
j=1

cj sin 2πjτ [7.149]

Note that the c-ghost has no zero mode because we need c(0) = c(1) = 0. The coefficients
are just convenient normalisations.

We now work out the ghost part of the partition function. We start with the ghost
action [7.144]

Sg[b, c, ê] = − 1

4π

(
b, ê−1∂c

)
= − 1

4π

∫ 1

0
dτ

√1

`
b0 +

√
2

`

∞∑
j=1

bj cos 2πjτ

× ∂√2

`

∞∑
k=1

ck sin 2πkτ

= − 1√
2`

∫ 1

0
dτ

b0 +
√

2

∞∑
j=1

bj cos 2πjτ

 ∞∑
k=1

kck cos 2πkτ [7.150]

To work this out we need the following integrals∫ 1

0
dτ cos 2πjτ = 0;

∫ 1

0
dτ cos 2πjτ cos 2πkτ =

1

2
δjk [7.151]

This gives

Sg[b, c, ê] = − 1√
2`

√
2

∞∑
j,k=1

kbjck
1

2
δjk =

1

2`

∞∑
j=1

jbjcj [7.152]

The b-ghost insertion becomes

1

4π
(b, ê−1∂`ê) =

`

4π

∫ 1

0
dτ b `−1∂`` =

1

4π

∫ 1

0
dτ b

=
1

4π

∫ 1

0
dτ

√1

`
b0 +

√
2

`

∞∑
j=1

bj cos 2πjτ

 =
1

4π
√
`
b0 [7.153]
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The ghost contribution to the partition function thus becomes

Zg =

∫ ∞∏
j=1

[dcj db0 dbj ]
1

4π
√
`
b0 exp

 1

2`

∞∑
j=1

jbjcj

 =
1

4π
√
`

∞∏
j=1

j

2`
[7.154]

Using [7.148] we can write this as

Zg =
1

4π
√
`

∞∏
j=1

νj
4π2

=
1

4π
√
`

det ′
(

∆`

16π2

)1/2

[7.155]

where det ′ denotes the determinant excluding the zero mode.

Let us now turn to the matter part. We can either use the approach of section 6.2
and expand the matter fields in generic Eigenfunctions, or we can take the approach of
[19] and use the same Eigenfunctions we have for the ghost system. The latter approach
requires that we first split the matter field in a classical and in a quantum piece, and that
is the approach that we will follow. So we first look at the classical equation of motion for
the matter field, Ẍµ = 0. It has general solution

Xµ
cl = xµ0 + (xµ1 − x

µ
0 )τ [7.156]

where x0 = Xµ(0) and x1 are some constants determined by the boundary conditions. We
then define the quantum fields Xµ as

Xµ = Xµ
cl + Xµ [7.157]

We note that Xµ must also be periodic under τ → τ + 1 and that is satisfies Xµ(0) =
Xµ(0)−Xµ

cl(0) = Xµ(0)−x0 = 0 and likewise for Xµ(1). We can thus expand the quantum
fields in terms of the sin 2πjτ Eigenmodes, just as the c-ghost and the matter field becomes

Xµ = Xµ
cl +

√
2

`

∞∑
j=1

xµj sin 2πjτ [7.158]

The matter action [7.127] then becomes in the gauge ê = `

Sm =
1

2

∫ 1

0
dτ `

 1

`2
∂

Xµ
cl +

√
2

`

∞∑
j=1

xµj sin 2πjτ

2

+m2


=

1

2`

∫ 1

0
dτ

xµ1 − xµ0 + 2π

√
2

`

∞∑
j=1

jxµj cos 2πjτ

2

+ `2m2

 [7.159]
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To work this out we use [7.151] and find

Sm =
1

2`

(xµ1 − x
µ
0 )2 + `2m2 + 4π2 2

`

∞∑
j=1

j2x2
j

1

2


=

(x1 − x0)2

2`
+
`m2

2
+
π2

`2

∞∑
j=1

j2x2
j [7.160]

The matter part of the partition function thus becomes

ZX = exp

[
−(x1 − x0)2

2`
+
`m2

2

] ∫ D∏
µ=1

∞∏
j=1

dxµj exp

−π2

`2

∞∑
j=1

j2x2
j

 [7.161]

The integration is now Gaussian and can be performed and we find for ZX

exp

[
−(x1 − x0)2

2`
− `m2

2

] ∞∏
j=1

√
π

π2j2/`2

d

= exp

[
−(x1 − x0)2

2`
− `m2

2

] ∞∏
j=1

πj2

`2

−d/2

= exp

[
−(x1 − x0)2

2`
− `m2

2

] ∞∏
j=1

ν2
j

4π

−d/2= exp

[
−(x1 − x0)2

2`
− `m2

2

]
det ′ (∆`)

−d/2

[7.162]

It is time to bring everything together. The partition function of the particle on a circle
becomes

ZS1 =

∫ ∞
0

d`

2`
ZXZg

=

∫ ∞
0

d`

2`
exp

[
−(x1 − x0)2

2`
− `m2

2

]
det ′

(
∆`

4π

)−d/2 1

4π
√
`

det ′
(

∆`

16π2

)1/2

=C

∫ ∞
0

d`

`3/2
exp

[
−(x1 − x0)2

2`
− `m2

2

]
det ′ (∆`)

(1−d)/2 [7.163]

where C is some constant coefficient that encapsulates all the previous coefficients, but
whose exact form is not important to us.

In the bosonic string example we ignored the functional determinant at this stage, but
here we cannot do this as it depends on the modulus ` and so we need to extract that
behaviour. The functional determinant is divergent3 and needs to regularised. Appendix

3This is obvious as det ′∆` ∝
∏∞
j=1 j

2/`2.
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A.1 of Joe’s book explains how this can be done via Pauli-Villars regularisation. This adds
a contribution of a field with a very large frequency Ω and the determinant then becomes

det ′∆` →
det ′∆`

det ′(∆` + Ω2)
=

∞∏
j=1

π2j2

π2j2 + Ω2`2
=

Ω`

sinh Ω`
[7.164]

The `2 in the infinite product is easily seen to come from the fact that ∆ = −`−1∂2. For
Ω→ +∞ we have sinh Ω`→ eΩ`/2 and so

det ′∆`

det ′(∆` + ω2)
∼ 2Ω`e−Ω` [7.165]

The partition function function thus becomes

ZS1 =C

∫ ∞
0

d`

`3/2
exp

[
−(x1 − x0)2

2`
− `m2

2

](
2Ω`e−Ω`

)(1−d)/2

=
C

(2Ω)(d−1)/2

∫ ∞
0

d``−d/2−1 exp

[
−(x1 − x0)2

2`
− `[m2 − (d− 1)Ω]

2

]
[7.166]

Let us quickly analyse the divergences. The pre-factor Ω(1−d)/2 is a multiplicative fac-
tor that can be removed via field strength renormalisation, i.e. by redefining redefining
Xµ → Z1/2Xµ for some coefficient Z that will be infinite as well. The divergence in the
exponential is different, but it can be removed by adding a counterterm to the Lagrangian
of the form `A2 for some constant A. This counterterm is of the same form as the mass
term, so we immediately know that it will change the exponential into

exp

[
−(x1 − x0)2

2`
− `[m2 − (d− 1)Ω + 2A2]

2

]
[7.167]

We can then chose a renormalisation condition so that m is the physical mass, which im-
plies choosing A2 = (d− 1)Ω. The counterterm is then divergent as well, but it cancels the
divergence of the original integral, which is the whole point of counterterms.4 The upshot
is that the partition function becomes

ZS1 ∝
∫ ∞

0
d``−d/2−1 exp

[
−(x1 − x0)2

2`
− `m2

2

]
[7.168]

This is the analogous of formula (34) of chapter 5 in [19] for a particle moving from one
point to another. The difference is that we have an extra factor `−1 here, which we can

4To readers who find it hard to follow these points, I would suggest to consult the sections on
perturbative renormalisation in any decent text book on QFT. Alternatively they can consult my
Notes on QFT, available on hepnotes.com.
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trace back to the fact that we needed to divide in the path integral by the volume of the
group of global translations on the circle.

In order to make sense of this we write it as a function of x = x1 − x0 and go to the
Fourier transform

Z̃(k) ∝
∫
ddxeik·x

∫ ∞
0

d``−d/2−1 exp

[
−x

2

2`
− `m2

2

]
=

∫ ∞
0

d``−d/2−1 exp

[
−`m

2

2

] ∫
ddx exp

[
ik · x− x2

2`

]
[7.169]

The x integration is Gaussian and can be performed after completing the square

Z̃(k) ∝
∫ ∞

0
d``−d/2−1 exp

(
−`m

2

2

)∫
ddx exp

[
−(x− i`k)2 + `2k2

2`

]
=

∫ ∞
0

d``−d/2−1 exp

(
−`m

2

2

)
exp

(
− lk

2

2

)
(2π`)d/2

= (2π)d/2
∫ ∞

0

d`

`
exp

(
−`(k

2 +m2)

2

)
[7.170]

This is the partition function for a particular momentum. To get all the particle states
propagating over the circle we need to sum over all possible momenta. This gives the
integration with with volume factor of (7.3.9).

7.37 p 218: Eq. (7.3.10) The Point Particle and the String Spectrum

I must admit that I don’t fully understand what is happening here. We use the partition
function of a point particle on a circle and then sum over the spectrum of the string, as
if every string state has the partition function of a point particle. Joe wants to illustrate
the difference, and in particular the difference in divergent behaviour, between what this
approach would yield versus what a full string approach gives.

In order to achieve this we need to relate the partition function of the point particle on
a circle that that of a particular state of a string. This can be done by relating the mass m2

in (7.3.9) to the mass-shell formula for a string state (4.3.32):

α′

4
m2 = L0 − 1 = h− 1;

α′

4
m̃2 = L̃0 − 1 = h̃− 1 [7.171]

Adding both together we do indeed find, assuming m = m̃ that

α′

2
m2 = h+ h̃− 2 [7.172]

This is the generic relation between the mass and the weight of a state in the closed string.
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7.38 p 218: Eq. (7.3.11) The Constraints on the Weights

Let us work out the RHS of (7.3.11) and call g = h− h̃ ∈ N

RHS(g) =
1

2πig
eigθ
∣∣∣+π
−π

=
1

2πig

[
eigπ − e−igπ

]
=

sinπg

πg
[7.173]

Now if g 6= 0 then sinπg = 0 and the result is zero. If g = 0 then we need to take the limit
witt the l’Hôpital’s rule

lim
g→0

RHS(g) = lim
g→0

sinπg

πg
= lim

g→0

π cosπg

π
= 1 [7.174]

and indeed RHS(g) = δg = δh,h̃.

7.39 p 218: Eq. (7.3.12) The Partition Function for a Stringy Particle

So we now assume that the partition function for a string state with mass given by (7.3.10)
is given by the particle particle on a circle partition function and see what that means if
we sum this over all possible states in the transverse Hilbert space H⊥, taking into account
the condition (7.3.11):

ZS1 =
∑
|i〉∈H⊥

ZS1(mi) = iVd

∫ ∞
0

d`

2`
(2π`)−d/2

∫ +π

−π

dθ

2π

∑
|i〉∈H⊥

ei(hi−h̃i)θe−m
2
i `/2

= iVd

∫ ∞
0

d`

2`

∫ +π

−π

dθ

2π
(2π`)−d/2

∑
|i〉∈H⊥

ei(hi−h̃i)θ−(hi+h̃i−2)`/α′

=
1

2
iVd(2π)−d/2−1

∫ ∞
0

d`

∫ +π

−π
dθ `−d/2−1

∑
|i〉∈H⊥

eihi(θ+i`/α
′)−ih̃(θ−i`/α′)+2`/α′ [7.175]

We set θ + i`/α′ = 2πtau = 2π(τ1 + iτ2). We then find that d` = α′2πdτ2 and the τ2

integration runs from zero to infinity. Similarly dθ = 2πdτ1 and the integration over τ1 is
from −1/2 to +1/2. Let us call this integration region R. We can thus write

ZS1 =
1

2
iVd(2π)−d/2−1

∫
R

2πα′dτ22πdτ1(2πα′τ2)−d/2−1
∑
|i〉∈H⊥

eihi2πτ−ih̃i2πτ̄+4πτ2

=
1

2
iVd(2π)−d/2−1+1+1−d/2−1α′1−d/2−1

∫
R
dτ1dτ2τ

−d/2−1
2

×
∑
|i〉∈H⊥

e2πτhie−2πτ̄ h̃ie+4π(τ−τ̄)/2i [7.176]
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We regroup and use 2dτ1 dτ2 = dτ dτ̄ and write q = e2πiτ

ZS1 = iVd

∫
R

dτ dτ̄

4τ2
(4π2α′τ2)−d/2

∑
|i〉∈H⊥

qhi q̄h̃i(qq̄)−1 [7.177]

which is (7.3.12).

7.40 p 218: Eq. (7.3.13)-(7.3.14) The Integration Region for the Parti-
cle on a Circle and the String on a Torus

The integration region for the particle on a circle summed over all string states is the region
R in (7.3.12). The integration region for the closed string on a torus is the fundamental
domain F0 of the torus, see fig.5.2. Both these regions are illustrated in the figure below.

1
2

1
2

i

R

1
2

1
2

i

F0

Figure 7.7: The integration region for a particle on a circle summed over all string states R and
for a torus F0

To see the divergence in (7.3.9) note that integral is basically the Gamma function

Γ(z) =

∫ ∞
0

dxxz−1e−x [7.178]

So we find a expression for the integral proportional to Γ(−d/2), which is divergent for
even dimensions, in particular for d = 26 and d = 4.
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7.41 p 219: Eq. (7.3.15) The Torus Vacuum Energy for τ →∞ in Flat
Spacetime

Let us first write (7.3.8b) in terms of τ1 and τ2 and take d = 26. With a serious abuse of
notation, we write

ZT 2(τ →∞) = iV26

∫
2dτ1dτ2

4τ2
(4π2α′τ2)−13

∑
|i〉∈H⊥

e2πiτ(hi−1)e−2πiτ̄(h̃i−1)

= iV26

∫
2dτ1dτ2

4τ2
(4π2α′τ2)−13

∑
|i〉∈H⊥

e2π(iτ1−τ2)(hi−1)e−2π(iτ1+τ2)(h̃i−1)

= iV26

∫
2dτ1dτ2

4τ2
(4π2α′τ2)−13

∑
|i〉∈H⊥

e−2πτ2(hi+h̃i−2)e2πiτ1(hi−h̃i) [7.179]

If we consider the theory of 26 flat spacetime dimensions, then what does the the Hilbert
SpaceH⊥ consists of? We have the unit operator 1 of weight (0, 0), potential higher weight
states formed from derivatives the form ∂mXi∂nXj of weight (m,n) form,n = 1, · · · . Note
that ifm−n = p 6= 0 is still integer and then the τ1 integration becomes zero. Ifm = n then
the τ1 integration gives one. Now, as we take τ2 → ∞ it is the states with lowest weight
that give the largest contribution to ZT 2(τ → ∞). So let us consider the unit state of
weight zero and the states of weight (1, 1) obtained by acting with the operators ∂Xi∂Xj .

ZT 2(τ →∞) = iV26

∫
dτ2

2τ2
(4π2α′τ2)−13

e4πτ2 +

24∑
(m,n)=(1,1)

1 + · · ·

 [7.180]

The states of weight (1, 1) are obtained by acting with the operators ∂Xi∂Xj , so there are
24× 24 of them and we obtain (7.3.15):

ZT 2(τ →∞) = iV26

∫
dτ2

2τ2
(4π2α′τ2)−13

(
e4πτ2 + 242 + · · ·

)
[7.181]

Let us now look at this expression the contribution (e4πτ2 comes from unit operator which
comes from a propagating tachyon eik·X .Recall that we are integrating over all momenta,
so the k-dependence disappears. This gives a divergence in the τ2 =∞ integration bound-
ary. The second term in the sum comes from the "graviton" contribution εij∂X

i∂̄Xjeik·X .
The τ2 integration is straightforward and the contribution at τ2 = ∞ vanishes. The next
contribution would be from a state with weight (2, 2) and give rise to a dampening factor
e−4πτ2 and vanishes as τ2 →∞.
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7.42 p 219: Eq. (7.3.16) The Torus Vacuum Energy for τ → ∞ for a
General CFT

Our starting point is [7.179]:

ZT 2(τ →∞) = = iV26

∫
2dτ1dτ2

4τ2
(4π2α′τ2)−13

∑
i

e−2πτ2(hi+h̃i−2)e2πiτ1(hi−h̃i) [7.182]

We saw earlier that unitarity requires hi = h̃i so the τ1 integration decouples in the limit
τ2 →∞. Now use (7.3.10)

ZT 2(τ →∞) = = iV26

∫
dτ2

2τ2
(4π2α′τ2)−13

∑
i

e−πα
′m2

i τ2 [7.183]

showing the divergence for a theory with a state of negative mass.

7.43 p 220: A BRST Null State is Proportional to a Total Derivative on
Moduli Space

This statement refers to (5.4.6) where we saw that the BRST variation of the b-ghost inser-
tion was

δB(b, ∂kĝ) = iε(T, ∂kĝ) [7.184]

where ∂k is a derivative w.r.t. the modulus tk.

7.44 p 219: Eq. (7.3.16) The Torus Vacuum Energy for τ → ∞ for a
General CFT

The one loop partition function for the particle on a circle ZS1(m2) in (7.3.9) can easily
be extended to all loops. Indeed, this is a free theory so there are no interactions and the
higher loops are just disconnected circles, as in fig.7.8

+ + + · · · +

Figure 7.8: Multiloop partition function for a particle on a circle
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A contribution with n loops can be formed in n! different ways, so the total vacuum energy
is indeed given by

Zvac(m
2) =

∞∑
n=0

1

n!
ZS1(m2) = eZS1

(m2) [7.185]

7.45 p 220: Eq. (7.3.20) The `→ 0 Limit of the Particle Partition Func-
tion, I

We use a different way from Joe. We define

I(ε) =

∫ ∞
0

d`

2`1−ε
exp (−∆`) [7.186]

where we defined ∆ = (k2 + m2)/2 and will then take limε→0 I(ε). First we change
integration variables ` = x/∆:

I(ε) =
1

2

∫ ∞
0

dx

∆

( x
∆

)ε−1
e−x =

1

2

1

∆ε

∫ ∞
0

xε−1e−xdx =
1

2∆ε
Γ(ε) [7.187]

where we have used the definition of the Gamma function. Now, if you have had any
exposure to dimensional regularisation you will recognise the expression Γ(ε)/∆ε. If you
haven’t had any exposure to dimensional regularisation, then this is an appropriate time
to remedy this. In any case, any text book on QFT will probably have – most likely in an
appendix – the expansion

lim
ε→0

Γ(ε)

∆ε
=

1

ε
− ln ∆− γ + o(ε) [7.188]

where γ is the Euler constant. Using this we find

lim
ε→0
I(ε) =

1

2

[
1

ε
− ln ∆γ + o(ε)

]
=

1

2ε
− 1

2
ln
(
k2 +m2

)
+

1

2
ln 2− 1

2
γ + o(ε) [7.189]

The regularisation scheme is not just to ignore the divergent term frac12ε but also to
ignore the constant (ln 2−γ)/2. This is known in QFT as the Modified Minimal Subtraction
or MS to the aficionados.5 After all, if we are neglecting an infinite term, what is the harm
of including in that a few small constants? The upshot is that after regularisation, we
indeed find ∫ ∞

0

d`

2`1−ε
exp

(
−k

2 +m2

2
`

)
→ −1

2
ln
(
k2 +m2

)
[7.190]

5Once more, if this is gibberish to you, consult your favourite QFT text book, or even better
consult my QFT Notes on hepnotes.com.

— 398—



Joe’s Book (version of November 20, 2020) Notes from Stany M. Schrans

7.46 p 220: Eq. (7.3.21) The `→ 0 Limit of the Particle Partition Func-
tion, II

In Euclidean space we have

LHS = i

∫ ∞
0

d`

2`

∫ ∞
−∞

idk0

2π
exp

[
−k

2
0 + k2 +m2

2
`

]
= − 1

2π

∫ ∞
0

d`

2`

(∫ ∞
−∞

dk0e−k
2
0`/2

)
exp

[
−k

2 +m2

2
`

]
= − 1

2π

∫ ∞
0

d`

2`

√
2π

`
exp

[
−k

2 +m2

2
`

]
= − 1

2
√

2π

∫ ∞
0

d` `−3/2

[
−k

2 +m2

2
`

]
[7.191]

We introduce ` = 2/(k2 +m2)

LHS = − 1

2
√

2π

∫ ∞
0

2

k2 +m2
dx

(
2

k2 +m2
x

)−3/2

e−x

= − 1

4
√
π

√
k2 +m2

∫ ∞
0

x−1/2−1e−x = − 1

4π

√
k2 +m2Γ(−1/2)

= − 1

4π

√
k2 +m2

∫ ∞
0

x−1/2−1e−x = − 1

4
√
π

√
k2 +m2(−2

√
π)

=
1

2
ωk [7.192]

7.47 p 221: Eq. (7.3.23) The Vacuum Energy of a Scalar Field

All the necessary formulas are available in Appendix A. For an action (A.1.38)

S =
1

2

∫
ddxφ∆φ [7.193]

we can write the vacuum energy, see (A.1.39) and (A.1.48) as

Z[J = 0] =

(
det

∆

2π

)−1/2

→ (det ∆)−1/2 [7.194]

where we have dropped the 2π as it can be removed by a rescaling of the field φ. In our
case we have for a free scalar field of mass m the Klein-Gordon Lagrangian

L = −1

2
∂µφ∂µφ−m2φ2 = φ

∂2 −m2

2
φ [7.195]
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and so we take ∆ = −∂2 +m2 where we have absorbed the 1/2 in a redefinition of φ. We
now use detA = exp Tr lnA to find

lnZ[0] = ln
[
det
(
−∂2 +m2

)]−1/2
= −1

2
ln exp Tr ln

(
−∂2 +m2

)
= − 1

2
Tr ln

(
−∂2 +m2

)
[7.196]

The trace can be taken by using a complete set of solutions to the Klein-Gordon equation
eik·x

Tr ln
(
−∂2 +m2

)
=Vd

∫
ddk

(2π)d
e−ik·x ln

(
−∂2 +m2

)
eik·x

=Vd

∫
ddk

(2π)d
ln
(
k2 +m2

)
[7.197]

and thus

lnZ[0] = − 1

2
Vd

∫
ddk

(2π)d
ln
(
k2 +m2

)
[7.198]

7.48 p 223: Eq. (7.4.1) The Vacuum Energy of a Cylinder

The cylinder represents an open string that evolves over worldsheet time and comes back
where it started after 2πt. The vacuum energy is thus calculated by summing over the time
evolution of all states for that period and overlapping with the original state:

ZC2(t) =
∑

all states |ψ〉

〈ψ| e−2πtH |ψ〉 [7.199]

with H = Lo − c/24 the open string Hamiltonian. Introducing q = e−2πt this becomes

ZC2(t) = q−c/24Tr qL0 [7.200]

Let us evaluate the matter sector first. From (4.3.21) and (4.3.22) we have for the matter
sector of the open string

L0 = α′(p2 +m2) [7.201]

and

α′m2 =
∞∑
n=1

n
∞∑
µ=0

Nµn [7.202]
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The calculation is now similar as for the torus. For the matter sector we find

ZX(t) = q−d/24Tr qα
′p2+

∑∞
n=1 n

∑∞
µ=0 Nµn

= q−d/24Vd

∫
ddk

(2π)d
qα
′k2

∞∏
n=1

25∏
µ=0

∑
Nµn

qnNµn [7.203]

we refer to the derivation of (7.2.6) for this last step. Performing the Gaussian momentum
integral gives

ZX(t) = iVdq
−d/24(8π2tα′)−d/2

∏
n,µ

∑
Nµn

qnNµn

= iVdq
−d/24(8π2tα′)−d/2

∏
n,µ

(1− qn)−1

= iVdq
−d/24(8π2tα′)−d/2

∏
n

(1− qn)−d

= iVd(8π
2tα′)−d/2

[
q1/24

∏
n

(1− q)

]−d
= iVd(8π

2tα′)−d/2η(it)−d [7.204]

with η(it) defined in [7.53] and τ = it in our case.
For the ghost sector we can use the exactly the same argument as for the holomorphic

side of the of the ghost sector on the torus. The result is the analogue of (7.2.27)

Zg = η(it)2 [7.205]

The vacuum energy, without Chan-Paton factors, on the cylinder is then equivalent to
the (7.3.5) on the torus, i.e.

ZC2 =

∫ ∞
0

dt

2t
〈b(0)c(0)〉C2 [7.206]

The differences are that we integrate over all the values of the modulus t from 0 to ∞
as there is no modular invariance on the cylinder that limits the integration region to a
fundamental domain and that we loose the factor 1/2/ that was due to the symmetry
w → −w on the torus. We now fill in the matter and ghost parts, and limit ourselves to the
critical dimension d = 26

ZC2 =

∫ ∞
0

dt

2t
ZXZg =

∫ ∞
0

dt

2t
iVd(8π

2tα′)−d/2η(it)−dη(it)2

= iV26

∫ ∞
0

dt

2t
(8π2tα′)−13η(it)−24 [7.207]
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Let us now add Chan-Paton factors to this. It might be useful to review section 6.5 and
in particular (6.5.4) to remind oneself about Chan-Paton factors. The equivalent of (6.5.4)
or our fig.6.10 for the cylinder is the figure below

i `

j k

λbklλaij

Figure 7.9: Chan-Paton factors for the cylinder. Note that in the λ matrix the first index refers to
the σ = 0 point and the second index to the σ = π point.

Joining the two ends mean that the Chan-Paton factors give a contribution

λaijδ
abδi`δjkλ

b
k` = λaijλ

a
ji = Trλaλa = δaa = n2 [7.208]

where we have used (6.5.2), i.e. Trλaλb = δab and we recall that a runs from one to n2.
Note that it is important to connect the endpoints of the string correctly and to make sure
in the λ matrix the first index refers to the σ = 0 point and the second index to the σ = π
point. Using this coefficient from the Chan-Paton factors we find

ZC2 = iV26n
2

∫ ∞
0

dt

2t
(8π2tα′)−13η(it)−24 [7.209]

which is (7.4.1).

7.49 p 224: Eq. (7.4.2) Modular Transformation of the Dedekind Func-
tion for τ = it

This follows immediately from (7.2.44) by setting τ = it:

η(−1/it) =
√
−i(it)η(it) ⇒ η(it) = t−1/2η(i/t) [7.210]

7.50 p 224: Eq. (7.4.3) The Vacuum Energy for a Very Long Cylinder

We first use (7.4.2) in (7.4.1) and then change variables t = π/s, so that ds = −dt/t2

ZC2 = iV26n
2

∫ ∞
0

dt

2t
(8π2tα′)−13t12η(i/t)−24 =

iV26n
2

2(8π2α′)13

∫ ∞
0

dt

t2
η(i/t)−24

=
iV26n

2

2(8π2α′)13

∫ 0

∞
(−ds) η(is/π)−24 =

iV26n
2

2(8π2α′)13

∫ ∞
0

ds η(is/π)−24 [7.211]
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7.51 p 224: Eq. (7.4.4) Expanding the Dedekind Function for a Very
Long Cylinder

With q = e2πiτ and τ = is/π we have q = e−2s. We use the expansion of the Dedekind
function

η(q) = q1/24(1− q − q2 + q5 + q7 + · · · ) [7.212]

We are slightly abusing notation here because η should really be η(τ) with q = e2πiτ . From
this we find

η(is/π)−24 = q−1(1− q − q2 + q5 + q7 + · · · )−24

= e2s
(
1− e−2s − e−4s + e−10s + e−14s + · · ·

)−24
[7.213]

We now expand to the leading contributions in s:

η(is/π)−24 = e2s(1 + 24e−2s + · · · ) = e2s + 24 + o
(
e−2s

)
[7.214]

7.52 p 224: The Long Cylinder is a Closed String

The partition function for the cylinder can now be written as

ZC2(s→∞) =
iV26n

2

2(8π2α′)13

∫ ∞
0

ds
[
e2s + 24 + o

(
e−2s

)]
[7.215]

We can compare this with the vacuum energy of a torus for large τ2 in (7.3.15)

ZT 2(τ →∞) = iV26

∫
dτ2

2τ2
(4π2α′τ2)−13

(
e4πτ2 + 242 + · · ·

)
[7.216]

It should of course not be identical because a torus is a cylinder closed on itself. But we see
that there is a similarity in the behaviour for large s and large τ2. In both cases the partition
function is divergent due to the contribution from the tachyonic states. The limit s → ∞
corresponds to t→ 0, which is a very long cylinder with very small diameter. In that sense
we can say that it looks like a close string propagating from one point to another, when we
have the Euclidean worldsheet coordinates interchanged. We tend to think as σ2 as being
worldsheet time and σ1 as worldsheet space. But there is no one living on that worldsheet
that can tell us what is time and what is space. As far as the worldsheet is concerned they
are just two coordinates, and even more so, they have the same signature. So who is to say
which coordinate represents what?
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7.53 p 224: Eq. (7.4.5) The Analytic Continuation of the Tachyon Di-
vergence

If we consider the integral

I(Λ) =

∫ Λ

0
ds eβs =

1

β

(
eβΛ − 1

)
[7.217]

then the analytic continuation is obtained by just ignoring the Λ dependence. It just
means you ignore the divergence. I don’t understand why this is an analytic continuation.
I also don’t understand why the second term gives a divergence 1/0 as the corresponding
integral is

∫∞
0 ds. The argument that this looks like a zero-momentum closed string

propagator between two disks (i.e. open strings) makes sense and thus gives a 1/k2

divergence, but that is a purely heuristic argument.

7.54 p 225: UV and IR Divergences

Let us digress a little bit on UV and IR divergences. If what follows is complete gibberish,
then it would be fair to ask the question if the reader should not spend her or his time more
usefully than by trying to read Joe’s book. If it sounds vaguely familiar or reminiscent of
things known a long time ago, the reader could consult her or his favourite QFT text book
or, even better, my QFT notes on hepnotes.com.

UV divergences are divergences at high momentum/energy. This means that as we
increase the energy of the process our theory is not well-defined and breaks down. It is
usually a strong suggestion that the theory is just some kind of an effective field theory that
lacks the details and granularity to describe the process at high energy.

A typical example is the Fermi four point interaction that is quite successful at describ-
ing the weak interaction at low energies. As an illustration, the interaction Lagrangian for
this is of the general form

Lin = 2
√

2GF

[
¯̀γµ

1− γ5

2
ν

] [
ūγµ

1− γ5

2
d

]
+ h.c. [7.218]

This describes a four-point interaction between a lepton, neutrino, up quark and down
quark, represented by the fields `, ν, u and d respectively. The (1 − γ5)/2 is a projection
operator ensuring all fermion fields are left-handed as the weak interaction is chiral. h.c.
stands for Hermitian conjugate and GF is the Fermi constant. This theory describes the
weal interaction well at low energies but not at high energies; in fact it is not renormal-
isable. It is a low-energy effective theory for the electroweak theory where the four-point
interaction is replaced by the propagation of an intermediate W boson. This then reduces
the four-point vertex to two three-point vertices with coupling constant g and reduces the
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dimensionality of the coupling constant and makes the theory renormalisable and a better,
let us just say correct, description at higher energy; see the figure below for an illustration.

GF
g g

Figure 7.10: The non-renormalisable Fermi interaction vs the weak interaction. The propagating
W particle ensures that there are only three–point vertices in this process. As a result the divergence
can be renormalised.

The relation between the Fermi constant GF and the weak coupling constant g is, see e.g,
Peskin & Schröder (17.32).

GF√
2

=
g2

8m2
W

[7.219]

where mW is the mass of the intermediate W boson. Let us do some dimensional analysis.
In the real world, i.e. four dimensions, fermion fields have (mass-)dimension [ψ] = 3/2.
For the action to be dimensionless we need

0 = [GF ] + 4[x] + 4[ψ] = [GF ] + 4(−1) + 4(3/2) ⇒ [GF ] = −2 [7.220]

so the Fermi constant has dimension minus two. We can then find the dimension of the
weak coupling constant g from [7.219]

[g2] = [GF ] + [mW ]2 = −2 + 2 = 0 [7.221]

so g is dimensionless. Now it is, or at least should be well known, that interactions
with negative dimension coupling constants are non-renormalisable, whilst interactions
with dimensionless and positive dimension coupling constants are renormalisable, super-
renormalisable respectively. The UV divergence of the four-point function is not renormal-
isable, but the the introduction of the propagating W -boson still gives a UV divergence but
one that is renormalisable.

IR divergences, on the other hand, occur for very small momenta, or, equivalently,
very large distances. These divergences are generally an artefact of how we solve the
theory. Let us give the standard example from QED for the radiation of soft photons during
Bremsstrahlung. This is the process where a low momentum photon is created and emitted
during the scattering of an electron, see fig.7.11.
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e−

e− p

p′

k +

e−

e− p

p′
k

Figure 7.11: Bremsstrahlung in electron scattering. A very low momentum photon is emitted
fro the incoming or outgoing electron, before and after the scattering process respectively.

The emission of such a soft photon creates a divergence. This is rather surprising because
it is actually very hard, if not impossible, to measure a very soft photon. So something that
is too small to measure would lead to a divergence?

The solution to this is to look at the so-called electron vertex correction. This is the one
loop correction to the electron-electron-photon interaction vertex, see fig.7.12.

−ieΓµ

=

= −ieγµ

+

+−ieΓµ −ieδΓµ(1)

Figure 7.12: Electron vertex one loop radiative correction

The one-loop correction to this vertex also has an IR divergence, but it is exactly of the
same form, but of opposite sign to the soft photon radiation above, so taken together
these Feynman diagrams are perfectly well behaved, as shown in fig,7.13, where we also
indicate the type of divergence . Note, en passant, that this type of divergence has basically
a (log q2)2 form and is known as a Sudakov double logarithm.

There is, of course, much more to IR divergences than just that. But the upshot of this
is that, in general, whilst individual Feynman diagrams may have IR divergences, when all
diagrams of the same order are combined, there is no IR divergence at all. Nature, as far
as we know, does not care about the fact that we calculate results in QFT via diagrams, let
alone on how we split them. So the appearance of IR divergencies, is, at least in this case,
an artefact of how Feynman has told us we can easily calculate things.
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+

+α
π

log q2

m2 log q2

µ2 −α
π

log q2

m2 log q2

µ2

Figure 7.13: Cancellation of the first order QED IR divergence. Here q2 is the momentum squared
of the emitted photon and µ is a very small we have given to the photon.

7.55 p 226: Eq. (7.4.11)–(7.4.13) The Partition Function for the Cylin-
der from the Closed String

I must admit I am completely lost by this part. I understand the idea that you have a
closed string propagating from a time σ1 = 0 to a time σ1 = s and that the partition
function is then

ZC2 = 〈B| c0b0e
−s(L0+L̃o) |B〉 [7.222]

with |B〉 denoting the closed string state at the boundary. The b0c0 are the ghost inser-
tions for the cylinder which has one modulus and one CKV. The central charge term(c+
c̃)/24 vanishes because in the critical dimension the total central charge of matter plus
ghost sector is zero.

But, I don’t understand that you can determine the boundary state |B〉 by requiring
it to vanish under ∂1X

µ, c1 and b b12. Why these components? Why not ∂2X
µ, c2 or b11?

And what happens with the anti-holomorphic side?

Let us assume that these are the right conditions. In the traditional cylinder, see (2.6.4)
we have z = e−iw = e−iσ

1+σ2
. Here we have interchanged the role of σ1 and σ2 and so we

have

z = e−iσ
2+σ1

[7.223]

and consequently

∂1 = ∂1z∂ + ∂1z̄∂̄ = z∂ + z̄∂̄ [7.224]
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We then expand ∂1X
µ |B〉, using the mode expansion (2.7.1)

∂1X
µ |B〉 = − i

√
α′

2

∞∑
m=−∞

(
z
αµm
zm+1

+ z̄
α̃µm
z̄m+1

)
|B〉

= − i
√
α′

2

∞∑
m=−∞

(
αµm
zm

+
α̃µm
z̄m

)
|B〉 [7.225]

We now evaluate this at σ1 = 0,

∂1X
µ |B〉

∣∣∣
σ1=0

= − i
√
α′

2

∞∑
m=−∞

(
αµm

e−imσ2 +
α̃µm

e+imσ2

)
|B〉

= − i
√
α′

2

∞∑
m=−∞

(
αµm + α̃µ−m

)
eimσ

2 |B〉 [7.226]

and so requiring ∂1X
µ |B〉 = 0 is indeed equivalent to

(
αµm + α̃µ−m

)
|B〉 = 0 for all n.

Consider now the condition that c1(w) vanishes at the boundary. Going to complex
indices, we use (2.1.5). i.e. vw = v2 + iv1 and vw̄ = v2 − iv1, where we have interchanged
the indices one and two, as we should. Thus v1(w) = (vw(w)− ww̄(w))/2i and thus

c1(w) =
1

2i
[c(w)− c̃(w)] [7.227]

We now still need to go to the ghost field on the complex z plane with z = e−iw. For that
we need the the rule for the transformation of a weight h primary field under w → z. That
is

(∂wz)
hO(z) = O(w) [7.228]

For the c-ghost with weight −1 this becomes

(−iz)−1ca(z) = ca(w) ⇒ ca(w) = iz−1c(z) [7.229]

and similarly c̃a(w) = −iz̄−1c̃(z̄). Therefore

c1(w) |B〉 =
1

2i
[c(w)− c̃(w)] |B〉 =

1

2i

[
iz−1c(z)−

(
− iz̄−1c̃(z̄)

)]
|B〉

=
1

2

[
z−1c(z) + z̄−1c̃(z̄)

]
|B〉 [7.230]

We know fill in the Laurent expansion

c1(w) |B〉 =
1

2

[
z−1

∞∑
m=−∞

cm
zm−1

+ z̄−1
∞∑

m=−∞

c̃m
z̄m−1

]
|B〉

=
1

2

∞∑
m=−∞

(
cm
zm

+
c̃m
z̄m

)
|B〉 [7.231]
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We now use [7.223] and set σ1 = 0

c1(w) |B〉 =
1

2

∞∑
m=−∞

(
cm

e−imσ2 +
c̃m

e+imσ2

)
|B〉 =

1

2

∞∑
m=−∞

(cm + c̃−m)eimσ
2 |B〉 [7.232]

Requiring c1(w) to vanish on the boundary this implies that (cm + c̃−m) |B〉 = 0 for all m.
The reader should not be confused that we use a different method for the condition on

from ∂1X
µ and from c1. They are actually consistent. In the ∂1X

µ we such used the fact
that∂1 increases the weight by one, so that Xµ has h = 0. One more comment that may
have passed unnoticed. The indices on the c and b ghosts have been chosen so that they
transform nicely under conformal transformations.

Finally, let us consider the condition that b12 vanishes on the boundary. We follow the
same procedure as for the c1 condition. We first go to complex w coordinates using (2.1.5)
and vw = (v2 − iv1)/2 and vw̄ = (v2 + iv1) where we have, dutifully interchanged the
indices. From this we have

v1 = vw + vw̄ and v2 = i(vw − vw̄) [7.233]

And thus

b12 = bw2 + bw̄2 = i(bww − bww̄ + bw̄w − bw̄w̄) = i(bww − bw̄w̄) [7.234]

where we used the fact that b is traceless by the Faddeev-Popov construction, i.e. bww̄ =
bw̄w = 0. We now perform the conformal transformation to z and as b has weight two we
find

(−iz)2bab(z) = bab(w) ⇒ bab(w) = −z2bab(z) [7.235]

and similarly bab(w̄) = −z̄2bab(z̄). Therefore

b12(w) |B〉 = i[bww − b̃w̄w̄] |B〉 = i[−z2bzz − (−z̄2b̃z̄z̄] |B〉
= − i[z2bzz − z̄2b̃z̄z̄] |B〉 [7.236]

Using the Laurent expansion we therefore find

b12(w) |B〉 = i

[
z2

∞∑
m=−∞

bm
zm+2

− z̄2
∞∑

m=−∞

b̃m
z̄m+2

]
|B〉

= i

∞∑
m=−∞

(
bm
zm
− b̃m
z̄m

)
|B〉 [7.237]

We now use [7.223] and set σ1 = 0

b12(w) |B〉 = i

∞∑
m=−∞

(
bm

e−imσ2 −
b̃m

e+imσ2

)
|B〉 = i

∞∑
m=−∞

(bm − b̃−m)eimσ
2 |B〉 [7.238]

Requiring b12(w) to vanish on the boundary this implies that (bm − b̃−m) |B〉 = 0 for all m.
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7.56 p 226: Eq. (7.4.13) The Explicit Form of the Boundary State

Taking into account the correction on Joe’s errata page, we need to show that the state

|B〉 = e−
∑∞
n=1(

1
n
α−n·α̃−n+b−nc̃−n+b̃−nc−n)(c0 + c̃0) |0; 0〉 [7.239]

satisfies the conditions (7.4.12). Let us for simplicity define

X = −
∞∑
n=1

(
1

n
α−n · α̃−n + b−nc̃−n + b̃−nc−n

)
[7.240]

We start by considering (cm + c̃−m)eX(c0 + c̃0) |0; 0〉. We fist work out cmeX and c̃meX.
We need to look at three separate cases depending on whether m < 0,m = 0 or m > 0.

• m < 0: In this case cm and c̃m both commute with X and we simply have

cm |B〉 = cme
X(c0 + c̃0) |0; 0〉 = −eX(c0 + c̃0)cm |0; 0〉 [7.241]

c̃m |B〉 = c̃me
X(c0 + c̃0) |0; 0〉 = −eX(c0 + c̃0)c̃m |0; 0〉 [7.242]

• m = 0: Here cm and X commute as well and we have

cm |B〉 = c0e
X(c0 + c̃0) |0; 0〉 = eXc0(c0 + c̃0) |0; 0〉 = eXc0c̃0 |0; 0〉

c̃m |B〉 = c̃0e
X(c0 + c̃0) |0; 0〉 = eXc̃0(c0 + c̃0) |0; 0〉 = −eXc0c̃0 |0; 0〉 [7.243]

• m > 0: Here we need to be more careful as cm and X don’t commute, but we have

[cm,X] =

[
cm,−

∞∑
n=1

(
1

n
α−n · α̃−n + b−nc̃−n + b̃−nc−n

)]

= −
∞∑
n=1

[cm, b−nc̃−n] = −c̃−m [7.244]

Thus

cmX = Xcm − c̃−m and c̃mX = Xc̃m − c−m [7.245]

Next

cmX2 = (cmX)X = (Xcm − c̃−m)X = XcmX− c̃−mX

=X(Xcm − c̃−m)− Xc̃−m = X2cm − 2Xc̃−m [7.246]

because if m > 0 then c̃−m and X commute. Similarly, of course,

c̃mX2 = X2c̃m − 2Xc−m [7.247]
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Next

cmX3 = (cmX2)X = (X2cm − 2Xc̃−m)X

=X2(Xcm − c̃−m)− 2X2c̃−m = X3 − 3X2c̃−m [7.248]

We see the general pattern: for m > 0 and k > 0 we have

cmXk =Xkcm − kXk−1c̃−m [7.249]

Therefore

cme
X =

∞∑
k=0

1

k!
cmXk = 1 +

∞∑
k=1

1

k!
cmXk = 1 +

∞∑
k=1

1

k!

(
Xkcm − kXk−1c̃−m

)
=

∞∑
k=0

1

k!
Xkcm −

∞∑
k=1

1

(k − 1)!
Xk−1c̃−m = eXcm − eXc̃−m [7.250]

From this

cm |B〉 = cme
X(c0 + c̃0) |0; 0〉 =

(
eXcm − eXc̃−m

)
(c0 + c̃0) |0; 0〉

= eX(c0 + c̃0)c̃−m |0; 0〉 [7.251]

and similarly

c̃m |B〉 = c̃me
X(c0 + c̃0) |0; 0〉 = eX(c0 + c̃0)c−m |0; 0〉 [7.252]

We can now work out the impact of cm + c̃−m on |B〉. If m = 0 the we simply have

(c0 + c̃0) |B〉 = eXc0c̃0 |0; 0〉 − eXc0c̃0 |0; 0〉 = 0 [7.253]

Now take m > 0. We then use [7.251] and [7.242] to find

(cm + c̃−m) |B〉 = eX(c0 + c̃0)c̃−m |0; 0〉 − eX(c0 + c̃0)c̃−m |0; 0〉 = 0 [7.254]

Of course, a similar relation holds if m < 0. We have thus shown that (cm + c̃−m) |B〉 = 0,
which is what we set out to do.

Next, let us turn to (αmun + α̃µ−n) |B〉. Here we consider two cases

• m ≤ 0: αµm commutes through X and we have

αµm |B〉 = eX(c0 + c̃0)αµm |0; 0〉
α̃µm |B〉 = eX(c0 + c̃0)α̃µm |0; 0〉 [7.255]

• m > 0: We have

αµmX = −
∞∑
n=1

1

n
αµmα−n · α̃−n = −

∞∑
n=1

1

n

(
α−n · α̃−nαµm +mδm−nδ

µ
ν α̃

ν
−m
)

=Xαµm − α̃
µ
−m [7.256]

This is a similar relation as for the c-ghost and so we can immediately write down

αµme
X = eXαµm − eXα̃

µ
−m [7.257]
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Thus, for m = 0 we have

(αµ0 + α̃µ0 ) |B〉 = (αµ0 + α̃µ0 )eX(c0 + c̃0) |0; 0〉 = eX(c0 + c̃0)(αµ0 + α̃µ0 ) |0; 0〉 = 0 [7.258]

by the fact that αµm = α̃µm |0; 0〉 = 0 for m ≥ 0, the definition of the matter ground state.
For m > 0 we have

(αµm + α̃µ−m) |B〉 = (αµm + α̃µ−m)eX(c0 + c̃0) |0; 0〉

=
(
eXαµm − eXα̃

µ
−m

)
(c0 + c̃0) |0; 0〉+ eXα̃µ−m(c0 + c̃0) |0; 0〉 = 0 [7.259]

as two of the terms cancel and the other one annihilates the ground state. The same, of
course, holds for m < 0 and we have thus shown that (αµm + α̃µ−m) |B〉 = 0 as well for all
m.

Let us finally tackle the case of (bn − b̃−n) |B〉 and see how this sign comes in handy
here. We split in two cases

• m ≤ 0: The b-ghost commutes through the X and we simply have

bm |B〉 = eXbm(c0 + c̃0) |0; 0〉
b̃m |B〉 = eXb̃m(c0 + c̃0) |0; 0〉 [7.260]

• m > 0: We have

bmX = −
∞∑
n=1

bmb̃−nc−n = +

∞∑
n=1

b̃−nbmc−n = −
∞∑
n=1

b̃−nc−nbm + b̃−m

=Xbm + b̃−m [7.261]

This generalises to

bmXk = Xkbm + kXk−1b̃−m [7.262]

and

bme
X = eXbm + eXb̃−m [7.263]

Thus we have

(b0 − b̃0) |B〉 = (b0 − b̃0)eX(c0 + c̃0) |0; 0〉 = eX(b0 − b̃0)(c0 + c̃0) |0; 0〉
= eX(b0c0 + b0c̃0 − b̃0c0 − b̃0c̃0) |0; 0〉 [7.264]

The second and the third term vanish because the b0 and b̃0 can be moved to the right
and gives zero by the definition of the ghost ground state. For the first and last term we
can mode the b-ghost to the right but pick up a factor one for each of them due to the
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anti-commutator. These two factor cancel and we thus find that (b0− b̃0) |B〉 = 0. Now, for
m > 0 we have

(bm − b̃−m) |B〉 = (bm − b̃−m)eX(c0 + c̃0) |0; 0〉

=
(
eXbm + eXb̃−m

)
(c0 + c̃0) |0; 0〉 − eXb̃−m(c0 + c̃0) |0; 0〉

= 0 [7.265]

because in the first term we can move the bm to the right and it gives zero, whilst in the
second term cancels the third term. The same, of course, holds for m < 0. We have thus
shown that (bm − b̃−m) |B〉 = 0 for all m.

We will not show that plugging (7.4.13) into (7.4.11) gives, up to a normalisation,
(7.4.3). That seems like a real nightmare calculation. If anyone has a simple way to
demonstrate this, please send me an e-mail via hep.notes@hotmail.com.

7.57 p 226: Eq. (7.4.14) The Vacuum Amplitude for the Klein Bottle, I

Recall that the Klein bottle is a cylinder with a parity transformation Ω on one of the
boundaries and the boundaries then sewn together. The Klein bottle has one modulus and
one CKV. We thus have one b and one c insertion. We thus have the same integration
over the moduli as for the cylinder. The momentum integration contribution of 8π2α′t that
came from the open string of the cylinder now gets replaced by 4π2α′t from the closed
string contribution. The extra factor 1/2 comes, I believe, from the same symmetry as for
the torus w → −w. All of this gives (7.4.14).

7.58 p 226: Eq. (7.4.14) The Vacuum Amplitude for the Klein Bottle,
II

Consider a typical state of the form

|ψ〉 = (αµ−k)
K(αν−`)

L(α̃σ−m)M |0; 0〉 [7.266]

The contribution of that state to the trace is

〈ψ|Ω |ψ〉 =
〈

(αµ−k)
K(αν−`)

L(α̃σ−m)M
∣∣∣Ω∣∣∣(αµ−k)K(αν−`)

L(α̃σ−m)M
〉

=
〈

(αµ−k)
K(αν−`)

L(α̃σ−m)M
∣∣∣(α̃µ−k)K(α̃ν−`)

L(ασ−m)M
〉

[7.267]

where we have use (1.4.19) i.e. ΩαµnΩ−1 = α̃µn, its conjugate and the fact that the ground
state is invariant under Ω. We see that this contribution is zero and that a non-zero contri-
bution to the trace can only occur if every left-handed oscillator is matched a right-handed
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oscillator with the same index, and vice-versa. Only then do we have just the right amount
of left- and right-handed oscillators to commute through one another and leave a non-
zero result. If we have a general state of left-moving oscillators that we denote by L and
right-moving oscillators that we denote by R then that state has a non-vanishing contri-
bution to the trace 〈LR|Ω |LR〉 iff L = ΩRΩ−1, and, of course, it follows that conversely
R = ΩLΩ−1. So, if we denote by Ã the operation of adding a tilde where A has none
and removing one when A already has one, then the trace is s sum over all states A of
the form 〈ÃA|ÃA〉. So if we sum over all left-moving states and call that A, then all the
right-moving states are included. Hence this is the same as the sum over open string states.
Looking at (7.4.1) this would give us a contribution η(it)−24. But recall that the t comes
from the sum in the exponent of qL0 = qα

′p2+
∑∞
n=1 n

∑∞
µ=0Nµn in [7.203]. Now we have

qL0+L̃0 with only non-vanishing contributions to the trace if L0 = L̃0 so we double that
amount and need to replace t by 2t.6

Taking all this into account, we conclude that we can write the vacuum amplitude for
the Klein bottle from looking at the vacuum amplitude for the cylinder (7.4.1) as

ZK2 = iV26

∫ ∞
0

dt

t
(4π2α′t)−13η(2it)−24 [7.268]

which is (7.4.15).

7.59 p 227: Eq. (7.4.17) An Identification for the Klein Bottle, I

With w = σ1 + iσ2, we have form

w ∼= w + 2π ⇔ σ1 + iσ2 ∼= σ1 + 2π + iσ2 ⇒ σ1 ∼= σ1 + 2π [7.269]

and also

w ∼= w̄ + 2πit ⇔ σ1 + iσ2 ∼= −σ1 + iσ2 + 2πit ∼= (2π − σ1) + i(σ2 + 2πt) [7.270]

where we have used the periodicity of σ1 to bring it back in the range [0, π]. This is exactly
the description of the Klein bottle, see fig.7.5.

7.60 p 227: Eq. (7.4.17) An Identification for the Klein Bottle, II

We show that (7.4.18) follows from (7.4.17).

w ∼= w + 4πit ⇔ σ1 + iσ2 ∼= σ1 + i(σ2 + 4πt) ⇒ σ2 ∼= σ2 + 4π [7.271]

6This is also consistent with replacing the opens string factor 8π2α′t by 4π2α′t. Indeed a factor
two comes from replacing t by 2t and a factor 1/4 comes because for the closed string we replace
α′ by α′/4, so overall we have to divide the open string contribution by two.
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We can obtain this by applying the second part of (7.4.17) twice. Indeed, that part says
that

σ1 ∼= −σ1 with σ2 ∼= σ2 + 2πt [7.272]

Let us apply it once more and we have

−σ1 ∼= σ1 with σ2 + 2πt ∼= σ2 + 2πt+ 2πt = σ2 + 4πt [7.273]

and so we have indeed σ2 ∼= σ2 + 4πt or w ∼= w + 4πit.

The second part of (7.4.18) is obtained by first taking the second part of (7.4.17) and then
applying the first part

w ∼= −w̄ + 2πit ∼= −(w̄ + 2π) + 2πit [7.274]

from which it follows that, by adding π to both sides,

w + π ∼= −(w̄ + π) + 2πit [7.275]

If we work this out for the components we find

σ1 + π + iσ2 ∼= −(σ1 + π) + i(σ2 + 2πt) [7.276]

or, using σ1
∼= σ1 + 2π,

σ1 + π ∼= π − σ1 and σ2 ∼= σ2 + 2πt [7.277]

which fits the description in the text of a cross-cap.

7.61 p 227: Eq. (7.4.19) The Klein Bottle Amplitude as a Cylinder with
Two Cross-Caps

We perform the transformation t = 1/2s in (7.4.15).

ZK2 = iV26

∫ 0

∞

(
− ds

2s2

)
1

4/2s

(
4π2α′

2s

)−13

η

(
2i

2s

)−24

=
iV26

4

(
8π2α′

4

)−13 ∫ ∞
0

ds s12η(i/s)−24

=i
226V26

4(8π2α′)13

∫ ∞
0

ds s12η(−1/is)−24 [7.278]
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Use (7.2.44b) η(−1/τ) = (−iτ)1/2η(τ) to find

ZK2 = i
226V26

4(8π2α′)13

∫ ∞
0

ds s12
[
(−iis)1/2η(is)

]−24

= i
226V26

4(8π2α′)13

∫ ∞
0

ds s12s−12η(is)24

= i
226V26

4π(8π2α′)13

∫ ∞
0

ds η(is/π)24 [7.279]

In the last line we have just rescaled s→ s/π.

7.62 p 227: Eq. (7.4.21) The Oscillator Trace for the Möbius Strip

The trace over the matter sector is similar as for the left-handed side of the torus, see table
7.1, but all odd level acquire a minus sign. The trace is then, for one matter field,

Tr Ωq
∑∞
n=1 nNn−1 = q−1

∞∑
k=0

(−)kp(k)qk [7.280]

q = e2πiτ = e−2πt and p(k) the number of partitions of n. One can rewrite this as

Tr Ωq
∑∞
n=1 nNn−1 = q−1

∞∏
`=1

∞∑
m=0

(−q)`m [7.281]

as is easily checked by working out the first few factors of the infinite product(
1− q + q2 − q3 + q4 − · · ·

)
×
(

1− q2 + q4 − q6 + · · ·
)
×
(

1− q3 + q6 − q9 + · · ·
)

×
(

1− q4 + q8 + · · ·
)
× · · · [7.282]

The geometric sums can be rewritten as

Tr Ωq
∑∞
n=1 nNn−1 = q−1

∞∏
`=1

1

1− (−q)`
[7.283]

Taking into account 24 transverse oscillations we this get for the trace

q−1
∞∏
n=1

[1− (−q)n]−24 [7.284]
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We now use (7.2.38a) the product representation for ϑ00(ν, τ) and (7.2.43) the definition
of the Dedekind function, with τ = 2it

ϑ00(0, 2it)η(2it) =

[ ∞∏
m=1

(1− e−4πtm)(1− e−4πt(m−1/2))2

]
e−4πt/24

∞∏
m=1

(1− e−4πtm)

= e−4πt/24
∞∏
m=1

(1− e−4πtm)2(1− e−4πt(m−1/2))2 [7.285]

so that

ϑ00(0, 2it)−12η(2it)−12 = e2πt
∞∏
m=1

[
(1− e−4πtm)(1− e−4πt(m−1/2))

]−24

= q−1
∞∏
m=1

[
(1− q2m)(1− q2(m−1/2))

]−24

= q−1
∞∏
m=1

(1− q2m + q2m−1 − q4m−1)−24 [7.286]

It so happens that

∞∏
m=1

(1− (−q)m) =
∞∏
m=1

(1− q2m + q2m−1 − q4m−1) [7.287]

as can easily be checked by e.g. working out the first few powers of q. Adding the momen-
tum integral and the ghost insertions we thus find for the vacuum energy of the Möbius
strip

ZM2 = iV26

∫ ∞
0

dt

4t
(8π2α′t)−13ϑ00(0, 2it)−12η(2it)−12 [7.288]

7.63 p 227: Eq. (7.4.23) The Möbius Strip as Cylinder with a Boundary
and a Cross-Cap

Setting t = π/4s we find

ZM2 = ± inV26

∫ 0

∞

(
−ds

4s

)(
8π2α′

π

4s

)−13 [
ϑ00

(
0, 2i

π

4s

)
η
(

2i
π

4s

)]−12

= ± inV26

4(8π2α′)13

(
4

π

)13 ∫ ∞
0

ds s−12
[
ϑ00

(
0,− π

2is

)
η
(
− π

2is

)]−12
[7.289]

— 417—



Joe’s Book (version of November 20, 2020) Notes from Stany M. Schrans

Using the transformation of ϑ00 in (7.2.40) and of η in (7.2.44)

ZM2 = ± inV26

4(8π2α′)13

(
4

π

)13 ∫ ∞
0

ds s−12

[(
−i2is

π

)1/2

ϑ00

(
0,

2is

π

)(
−i2is

π

)1/2(2is

π

)]−12

= ± inV26

4(8π2α′)13

(
4

π

)13 ∫ ∞
0

ds s−12

(
2s

π

)−12 [
ϑ00

(
0,

2is

π

)(
2is

π

)]−12

= ± 2in213V26

4π(8π2α′)13

∫ ∞
0

ds

[
ϑ00

(
0,

2is

π

)(
2is

π

)]−12

[7.290]
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Chapter 8

Toroïdal Compactification and
T -Duality

Open Questions

I have a number of unanswered points for this chapter. They are briefly mentioned here and
more detail is given under the respective headings. Any help in resolving them can be sent to
hepnotes@hotmail.com and is more than welcome.

♣ (8.1.6) In deriving the infinite tower of fields due to the Kaluza-Klein compactification, one needs to assume
Gµd = 0. I believe this derivation of the equation and the corresponding mass of these states is meant to be in
flat spacetime and merely serves as an illustration of the more general case.

♣ p240 When considering the action of a DDF operator on a state of given momentum q, i.e. corresponding to
the OPE ∂Xieink0X

+
(z)f(∂i∂̄jXk)eiq·X(0) Joe finds a term with a factor z−α

′nk0q
−/2. I believe this should

rather be a term with a factor z−α
′nk0q

+/2. Indeed this term comes from theX+(z)X−(0) OPE and theX−(0)
comes with q+. It is a bit strange that this is not on Joe’s errata page.

♣ (8.3.3) In the compactified bosonic string the massless scalar α25
−1α̃

25
−1 |0; k〉 is said to be "the modulus for the

radius of the compactified direction". It is clear that this state is linked to the compactified dimension, but what
does this statement exactly mean?

♣ (8.4.25) Show that if Γ is an even self-dual lattice then so is ΛΓ with Λ and O(k, k; R) transformation.

♣ (8.5.19) In discussing general orbifold theory with a non-Abelian subgroup H and projection operator PH =
[order(h)]−1

∑
h2∈H ĥ2 Joe argues that the diagonal matrix elements of ĥ2 are zero. I don’s see that.

♣ (8.6.6) I have a sign difference with the Hamiltonian for a point particle with charge q in a compactified di-
mension. It must be linked to some Minkowski-Euclidean transformation I did incorrectly, but I can’t figure it
out.

♣ (8.6.9) It isn’t clear to me why |ij〉 has charge +1 under U(1)i and change−1 under U(1)j . The charge is linked
to the phase the open string picks up in Wilson loop. The open string has an λi Chan-Paton factor on one end
and a λj Chan Paton factor at the other end. Why do they pick up a different sign?

♣ (8.7.5) In his Little Book of Strings [16] Joe refers to Pythagoras. Yes, it looks like an application of Pythagoras,
but where does it come from? The original infinitesimal two-dimensional element dX1 dX2 gets collapsed into
a one-dimensional one. How does good-old Pythagoras come into play? This is a Greek mystery to me.
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♣ (8.7.23) I cannot reproduce the graviton propagator from the spacetimeaction.

8.1 p 231: Eq. (8.1.2) The Metric in D = d+ 1 Dimensions

Write out (8.1.2)

ds2 =Gµνdx
µdxµ +Gdd(dx

ddxd + 2Aµdx
µdxd +AµAνdx

µdxν)

= (Gµν +GddAµAν)dxµdxν + 2GddAµdx
µdxd +Gdddx

ddxd [8.1]

Comparing this with ds2 = GDMN we see that

GDµν =Gµν +GddAµAν

GDµd =GddAµ

GDdd =Gdd [8.2]

8.2 p 232: Eq. (8.1.4) The Gauge Transformation of the Kaluza-Klein
Vector

Let us do this carefully. In the primed reference frame we have

ds′2 = [G′µν(x′µ) +G′ddA
′
µ(x′µ)A′ν(x′µ)]dx′µdx′ν + 2G′dd(x

′µ)A′µ(x′µ)dx′µdx′d

+G′dd(x
′µ)dx′ddx′d [8.3]

We are only looking at a transformation of xd so x′µ = xµ:

ds′2 = [G′µν(xµ) +G′dd(x
µ)A′µ(xµ)A′ν(xµ)]dxµdxν + 2G′dd(x

µ)A′µ(xµ)dxµdx′d

+G′dd(x
µ)dx′ddx′d [8.4]

We don’t write the xµ dependence anymore and use dx′d = dxd + ∂µλdx
µ

ds′2 = (G′µν +G′ddA
′
µA
′
ν)dxµdxν + 2G′ddA

′
µdx

µ(dxd + ∂νλdx
ν)

+G′dd(dx
d + ∂µλdx

µ)(dxd + ∂νλdx
ν)

= [G′µν +G′ddA
′
µA
′
ν +G′dd(A

′
µ∂νλ+A′ν∂µλ) +G′dd∂µλ∂νλ)]dxµdxν

+ (2G′ddA
′µ + 2G′dd∂µλ)dxµdxd +G′dddx

ddxd [8.5]

Requiring ds′2 = ds2 we find from the dxddxd term

G′dd = Gdd [8.6]
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so Gdd transforms as a scalar under this transformation. From the dxµdxd term we see that
we have invariance if the vector field transforms as

A′µ = Aµ − ∂µλ [8.7]

Indeed, using this we find that

ds′2 = [G′µν +Gdd
[
(Aµ − ∂µλ)(Aν − ∂νλ) + (Aµ − ∂µλ)∂νλ

+ (Aν − ∂νλ)∂µλ+ ∂µλ∂νλ)
]
dxµdxν +Aµdxµdxd +Gdddx

ddxd

= (G′µν +GddAµAν)dxµdxν + 2Aµdxµdxd +Gdddx
ddxd

=G′µνdx
µdxν +Gdd(A

µdxµ + dxd)2 [8.8]

and so we have invariance if G′µν = Gµν as well.
We conclude that we have invariance under xd → x′d = xd + λ(xµ) and xµ → x′µ = xµ

with Gµν and Gdd unchanged and Aµ → A′µ = Aµ − ∂µλ. This is a U(1) gauge transforma-
tion.

8.3 p 232: Eq. (8.1.5) Expanding the Compact Coordinate in a Com-
plete Set

A complete set of functions for any coordinate x is eipx; it just provides the Fourier trans-
form. For the compact coordinate we need to impose the boundary condition

eipdx
d ∼= eipd(xd+2πR) = eipdx

d
e2πipdR [8.9]

so this implies pdR = n for n ∈ Z, i.e. quantisation of the "momentum" pd = n/R. We can
thus expand the dependence on the compact dimension of any scalar field in this complete
set

φ(x) =

∞∑
n=−∞

φn(xµ)eipdx
d

=

∞∑
n=−∞

φn(xµ)einx
d/R [8.10]

8.4 p 232: Eq. (8.1.6) The Wave Equation for the Kaluza-Klein Theory

The location of the indices is crucial here. As ∂dφ = (in/R)φ we have

∂M∂
Mφ = (∂µ∂

µ + ∂d∂
d)

∞∑
n=−∞

φn(xµ)einx
d/R

= ∂µ∂
µ
∞∑

n=−∞
φn(xµ)einx

d/R + ∂d
∞∑

n=−∞

in

R
φn(xµ)einx

d/R [8.11]
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Now ∂d = Gdµ∂µ +Gdd∂d and thus

∂M∂
Mφ = ∂µ∂

µ
∞∑

n=−∞
φn(xµ)einx

d/R +Gµd∂µ

∞∑
n=−∞

in

R
φn(xµ)einx

d/R

+Gdd∂d

∞∑
n=−∞

in

R
φn(xµ)einx

d/R

=
∞∑

n=−∞

[
∂µ∂

µ +Gµd
in

R
∂µ −

n2

R2

]
φn(xµ)einx

d/R [8.12]

and so the wave equation ∂M∂Mφ = 0 becomes(
∂µ∂

µ +
in

R
Gµd∂µ

)
φn =

n2

R2
φn [8.13]

We have an additional term compared to Joe. One could argue that Gµd∂µ = ∂d and
that we have assumed there is no dependence on the compactified dimension. But that
is no dependence on xd. And ∂d = ∂ /∂xd with xd = GdMx

M = Gµdx
µ + Gddx

d.
So one needs to assume as well that Gµd = 0 but that would imply that there is no
vector field Aµ. I actually believe that Joe meant this to be an example in flat spacetime,
so that indeed Gµd = 0 and that it just serves as a simple illustration. This certainly
seems to be suggested in the Notes of Chris Pope on Kaluza-Klein theory on page 3 of
http://people.physics.tamu.edu/pope/ihplec.pdf.

Assuming this to be the case, we deduce that

∂µ∂
µφn(xµ) =

n2

R2
φn(xµ) [8.14]

where we have re-instated the xµ dependence.

8.5 p 232: Eq. (8.1.7) The Infinite Tower of Kaluza Klein Fields

Eq. (8.1.6) is nothing but the Klein-Gordon equation for a field φn with mass squared
n2/R2. The compactification of one of the dimensions of a scalar field φ thus leads to
an infinite set of fields φn that behave like scalar fields of mass n2/R2 in the d spacetime
dimensions. The mass shell condition for that field is −p2 = n2/R2.

8.6 p 232: Eq. (8.1.18) The Ricci Scalar in the Kaluza-Klein Theory

This is an entirely straightforward albeit exceedingly tedious calculation. Even if one con-
siders the fact that we should really only consider the terms that involve a Gdd and/or a
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Aµ as everything without any of these automatically leads to Rd. There is an argument
based on dimensional analysis and symmetries that bypasses some of the calculation, even
though there is still a lot left to do.

Let us denote the D dimensional quantities with a ˜ and the d-dimensional quantities
without one. We start by looking at the mass-dimensions of the various quantities. These
are

quantity dimension explanation
xµ, xd, r −1 standard dimension of length

G̃µν , Gµν , σ 0 [ds2] = −2 and ds2 = GMNdx
MdxN

R̃, R, Fµν +2 R ∝ ∂Γ ∝ ∂2G and [∂] = +1, [F ] = [∂A] and [A] = +1

Table 8.1: Mass-dimensions of Kaluza-Klein Fields. xd is the compactified dimen-
sion and r is the radius of compactification.

Let us now write down all combinations of mass dimension two that we could use to
expand R̃. But let us keep in mind that we have a d-dimensional diffeomorphism so that
we should have scalars under that and also that a gauge symmetry of the metric, i.e. under
xd −→ xd + λ we have Aµ −→ Aµ − ∂λ, so that Aµ can only appear in gauge invariant
combinations. We are then lead to a combination

R̃ = aR+ bFµνF
µν + c(∇σ)2 + dσ∇2σ + e∇2σ + f [8.15]

Here a, b, c, d, e and f are to be determined. They can depend on σ as that is a scalar in d-
dimensional space time, but they cannot depend on Gµν or on Aµ, as any such dependence
is already in R and FµνF

µν respectively. We could combine dσ∇2σ + e∇2σ into a g∇2σ
with g a function of σ, but it is convenient to split it in this way.

What else can we say? Under a scaling

xd −→λxd

Aµ −→λAµ

e2σ −→λ−2e2σ [8.16]

and keeping xµ and Gµν fixed, with λ a constant, the line element ds2 = Gµνdx
µdxν +

e2σ(dxd +Aµdx
µ)2 is manifestly invariant. Under this scaling we obviously have

FµνF
µν −→λ2FµνF

µν

∇µσ −→∇µσ [8.17]

The latter relation follows from σ −→ σ − lnλ. How does the curvature scale under this?
It turns out that R̃ remains unchanged under this scaling, and so does R as well.
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This is not too hard to see if we investigate the scaling of the metric components. Let
us for arguments sake momentarily take D = 5. We will just use this for illustration and
will see that the arguments are general. The metric G̃MN is now

G̃MN =


G00 + e2σA0A0 G01 + e2σA0A1 G02 + e2σA0A2 G03 + e2σA0A3 e2σA0

G10 + e2σA1A0 G01 + e2σA1A1 G02 + e2σA1A2 G03 + e2σA1A3 e2σA1

G20 + e2σA2A0 G01 + e2σA2A1 G02 + e2σA2A2 G03 + e2σA2A3 e2σA2

G30 + e2σA3A0 G01 + e2σA3A1 G02 + e2σA3A2 G03 + e2σA3A3 e2σA3

e2σA0 e2σA1 e2σA2 e2σA3 e2σ

 [8.18]

The first thing we notice is that the determinant of the D dimensional metric is very simply
related to the determinant of the d dimensional metric. This can either be done by direct
calculation, for those with sufficient stamina, or by noting that if one adds a column (row)
of a matrix to another column (row) then the determinant of original and new matrices
are the same. We see that the first three columns are just the G metric plus a coefficient
times the fourth column.1 This means that

det G̃ = det


G00 G01 G02 G03 e2σA0

G10 G11 G12 G13 e2σA1

G20 G21 G22 G23 e2σA2

G30 G31 G32 G33 e2σA3

0 0 0 0 e2σ

 = e2σ detG [8.19]

The second observation is that the inverse of G̃MN is very simple

G̃MN =


G00 G01 G02 G03 −A0

G10 G11 G12 G13 −A1

G20 G21 G22 G23 −A2

G30 G31 G32 G33 −A3

−A0 −A1 −A2 −A3 e−2σ +AµA
µ

 [8.20]

In other words

G̃µν =Gµν

G̃µd = −Aµ

G̃dd = e−2σ +AµA
µ [8.21]

and let us just remind ourselves that

G̃µν =Gµν + e2σAµAν

G̃µd = e2σAµ

G̃dd = e2σ [8.22]

1It is this property of factorisation of the determinant, which, as we will see later, remains valid
if more than one dimension is compactified, that warrants the choice of metric (8.1.2).
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Here Gµν is the inverse of Gµν . It is easily checked that G̃MN G̃
NK = δKM . Indeed

G̃µN G̃
Nρ = G̃µνG̃

νρ + G̃µdG̃
dρ = (Gµν + e2σAµAν)Gνρ + e2σAµ (−Aρ)

=GµνG
νρ = δρν

G̃µN G̃
Nd = G̃µνG̃

νd + G̃µdG̃
dd = (Gµν + e2σAµAν)(−Aν) + e2σAµ(e−2σ +AνA

ν)

= −GµνAν +Aµ = 0

G̃dN G̃
Nd = G̃dνG̃

νd + G̃ddG̃
dd = e2σAν(−Aν) + e2σ(e−2σ +AµA

µ) = 1 [8.23]

From these expressions of the metric we find the scaling

G̃µν −→ G̃µν

G̃µd −→λG̃µd

G̃dd −→λ2G̃dd [8.24]

and for the inverse metric

G̃µν −→ G̃µν

G̃µd −→λ−1G̃µd

G̃dd −→λ−2G̃dd [8.25]

We see that any upper index d gives a factor λ and any lower index d gives a factor λ−1.
As the Ricci scalar is formed from the curvature tensor with all indices contracted and any
d can only contract with a d we conclude that R̃ indeed remains unchanged. R is also
unchanged as both G̃µν and G̃µν are invariant under our scaling.

Let us now go back to [8.15] which we repeat for convenience

R̃ = aR+ be2σFµνF
µν + c(∇σ)2 + dσ∇2σ + e∇2σ + f [8.26]

The LHS is invariant under our scaling. So the RHS must be invariant as well. Recall that
a, b, c, d, e and f are still allowed to be functions of σ, but as R is invariant and a(σ)R must
also be invariant we need to have that a is independent of σ. Similarly as FµνFµν scales as
λ2, we must have that b scales as λ−2 and so b ∝ e2σ. Finally ∇σ is invariant, so c, d and e
must be independent of σ. We have thus established that

R̃ = αR+ βe2σFµνF
µν + γ(∇σ)2 + δσ∇2σ + ε∇2σ + f [8.27]

for some constants α, β, γ, δ and ε. We now see the reason why we kept the split into d and
e. We can still have f to be a function of σ, but with f(σ = 0) = 0, obviously.

To fix these constants we can look at special cases of the metric. But in order to do so
we unfortunately need the expression for the Ricci scalar and this starts with an expression
for the connections. Before we tackle this calculation, let me give you some pep-talk.
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It turns out that Kaluza had first developed his theory with G̃µν = Gµν , G̃µd = κAµ
and G̃dd = κ. This, however, made it prohibitively difficult to "split" the four dimensional
theory from the fifth dimension, as we can see from the fact that the determinant G̃ is
then not easily expressible in terms of G, and from the fact that the inverse metric G̃MN

is already a mess. Imagine how the connections and curvature tensor must look like, let
alone the Ricci tensor. It was Klein’s insight, about five years later, to write the metric as
we are now doing. And this led to dramatic simplifications in the calculations. Dramatic
being a relative term here.

With this anecdote off our chest, we are ready to tackle the calculation of the connec-
tions. We start with

Γ̃λµν =
1

2
G̃Mλ(∂µG̃Mν + ∂νG̃Mµ − ∂M G̃µν)

=
1

2
G̃ρλ(∂µG̃ρν + ∂νG̃ρµ − ∂ρG̃µν) +

1

2
G̃dλ(∂µG̃dν + ∂νG̃dµ − ∂dG̃µν)

=
1

2

{
Gρλ

[
∂µ(Gρν + e2σAρAν) + ∂ν(Gρµ + e2σAρAµ)− ∂ρ(Gµν + e2σAµAν)

]
−Aλ

[
∂µ(e2σAν) + ∂ν(e2σAµ)− ∂d(Gµν + e2σAµAν)

] }
= Γλµν +

1

2
e2σ
{
Gρλ

[
2∂µσAρAν + ∂µAρAν +Aρ∂µAν

+ 2∂νσAρAµ + ∂νAρAµ +Aρ∂νAµ − 2∂ρσAµAν − ∂ρAµAν −Aµ∂ρAν
]

−Aλ
[
2∂µσAν + ∂µAν + 2∂νσAµ + ∂νAµ

]}
[8.28]

We have used the fact that there is no xd dependence so that ∂d(Gµν + e2σAµAν) = 0. Let
us first consider the terms with a ∂σ:

e2σ
[
Gρλ

(
∂µσAρAν + ∂νσAρAµ − ∂ρσAµAν

)
−Aλ∂µσAν −Aλ∂νσAµ

]
= e2σ

(
∂µσA

λAν + ∂νσA
λAµ − ∂λσAµAν − ∂µσAλAν − ∂νσAλAµ)

= − e2σ∂λσAµAν [8.29]
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The terms without a ∂σ give

1

2
e2σ

[
Gρλ

(
∂µAρAν +Aρ∂µAν + ∂νAρAµ +Aρ∂νAµ − ∂ρAµAν −Aµ∂ρAν

)
−Aλ∂µAν −Aλ∂νAµ

]
=

1

2
e2σ
(
Gρλ∂µAρAν +Aλ∂µAν +Gρλ∂νAρAµ +Aλ∂νAµ − ∂λAµAν −Aµ∂λAν

−Aλ∂µAν −Aλ∂νAµ
)

=
1

2
e2σ
[
Aν
(
Gρλ∂µAρ − ∂λAµ

)
+Aµ

(
Gρλ∂νAρ − ∂λAν

)]
=

1

2
e2σ
[
AνG

ρλ
(
∂µAρ − ∂ρAµ

)
+AµG

ρλ
(
∂νAρ − ∂ρAν

)]
=

1

2
e2σ
(
AνG

ρλFµρ +AµG
ρλFνρ

)
=

1

2
e2σ
(
AνF

λ
µ +AµF

λ
ν

)
[8.30]

We thus find

Γ̃λµν = Γλµν − e2σ∂λσAµAν +
1

2
e2σ
(
AνF

λ
µ +AµF

λ
ν

)
[8.31]

Next, we have

Γ̃λµd =
1

2
G̃Mλ(∂µG̃Md + ∂dG̃Mµ − ∂M G̃µd)

=
1

2
G̃ρλ(∂µG̃ρd + ∂dG̃ρµ − ∂ρG̃µd) +

1

2
G̃dλ(∂µG̃dd + ∂dG̃dµ − ∂dG̃µd) [8.32]

We use the fact that all ∂d’s are zero

Γ̃λµd =
1

2
Gρλ

[
∂µ
(
e2σAρ

)
− ∂ρ

(
e2σAµ

)]
− 1

2
Aλ∂µ

(
e2σ)

=
1

2
e2σ
(

2∂µσA
λ +Gρλ∂µAρ − 2∂λσAµ −Gρλ∂ρAµ − 2∂µσA

λ
)

= − e2σ∂λσAµ +
1

2
e2σGρλFµρ = −e2σ∂λσAµ +

1

2
e2σF λ

µ [8.33]

And on we go

Γ̃λdd =
1

2
G̃Mλ(∂dG̃Md + ∂dG̃Md − ∂M G̃dd)

=
1

2
G̃ρλ(∂dG̃ρd + ∂dG̃ρd − ∂ρG̃dd) +

1

2
G̃dλ(∂dG̃dd + ∂dG̃dd − ∂dG̃dd)

= − 1

2
G̃ρλ∂ρG̃dd = −1

2
Gρλ∂ρe

2σ = −e2σ∂λσ [8.34]
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Next

Γ̃dµν =
1

2
G̃Md(∂µG̃Mν + ∂νG̃Mµ − ∂M G̃µν)

=
1

2
G̃ρd(∂µG̃ρν + ∂νG̃ρµ − ∂ρG̃µν) +

1

2
G̃dd(∂µG̃dν + ∂νG̃dµ − ∂dG̃µν)

= − 1

2
Aρ
[
∂µ
(
Gρν + e2σAρAν

)
+ ∂ν

(
Gρµ + e2σAρAµ

)
− ∂ρ

(
Gµν + e2σAµAν

)]
+

1

2

(
e−2σ +AρA

ρ
)[
∂µ
(
e2σAν

)
+ ∂ν

(
e2σAµ

)]
[8.35]

Let us first consider the terms without a ∂σ: ignoring a factor 1/2 these are

−Aρ∂µGρν −Aρ∂νGρµ +Aρ∂ρGµν

+ e2σ
(
−Aρ∂µAρAν −AρAρ∂µAν −Aρ∂νAρAµ −AρAρ∂νAµ +Aρ∂ρAµAν +AρAµ∂ρAν

)
+ ∂µAν + ∂νAµ + e2σ

(
AρA

ρ∂µAν +AρA
ρ∂νAµ

)
[8.36]

Now look at the terms without e2σ and consider

∇µAν +∇νAµ = ∂µAν − ΓλµνAλ + ∂νAµ − ΓλνµAλ

= ∂µAν + ∂νAµ −Gλρ
(
∂µGρν + ∂νGρµ − ∂ρGµν

)
Aλ

= ∂µAν + ∂νAµ −Aρ
(
∂µGρν + ∂νGρµ − ∂ρGµν

)
[8.37]

which we see gives exactly these terms. Let us now focus on the terms with e2σ. This
simplifies to

AρAν(−∂µAρ + ∂ρAµ) +AρAµ(−∂νAρ + ∂ρAν) = AρAνFρµ +AρAµFρν [8.38]

We can thus write

Γ̃dµν =
1

2

(
∇µAν +∇νAµ

)
+

1

2
e2σ
(
AρAνFρµ +AρAµFρν

)
+ ∂σ terms [8.39]

Let us now consider those terms with a ∂σ in [8.35]:

e2σ
(
−Aρ∂µσAρAν −Aρ∂νσAρAµ +Aρ∂ρσAµAν

)
+ ∂µσAν + ∂νσAµ + e2σ

(
AρA

ρ∂µσAν +AρA
ρ∂νσAµ

)
= ∂µσAν + ∂νσAµ + e2σAµAνA

ρ∂ρσ [8.40]

We thus have

Γ̃dµν =
1

2

(
∇µAν +∇νAµ

)
+

1

2
e2σ
(
AρAνFρµ +AρAµFρν

)
+ ∂µσAν + ∂νσAµ + e2σAµAνA

ρ∂ρσ [8.41]
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Two more to go

Γ̃dµd =
1

2
G̃Md(∂µG̃Md + ∂dG̃Mµ − ∂M G̃µd)

=
1

2
G̃ρd(∂µG̃ρd − ∂ρG̃µd) +

1

2
G̃dd∂µG̃dd

= − 1

2
Aρ
[
∂µ
(
e2σAρ

)
− ∂ρ

(
e2σAµ

)]
+

1

2

(
e−2σ +AρA

ρ
)
∂µe

2σ

=
1

2
e2σ
(
−Aρ∂µAρ +Aρ∂ρAµ

)
+ e2σ

(
−AρAρ∂µσ +AρAµ∂ρσ +AρA

ρ∂µσ
)

+ ∂µσ

=
1

2
e2σAρFρµ + e2σAµA

ρ∂ρσ + ∂µσ [8.42]

and finally

Γ̃ddd =
1

2
G̃Md(∂dG̃Md + ∂dG̃Md − ∂M G̃dd) = −1

2
G̃µd∂µG̃dd

=
1

2
Aµ∂µe

2σ = e2σAµ∂µσ [8.43]

Let us for convenience write all the connections out once more:

Γ̃λµν = Γλµν − e2σ∂λσAµAν +
1

2
e2σ
(
AνF

λ
µ +AµF

λ
ν

)
Γ̃λµd = − e2σ∂λσAµ +

1

2
e2σF λ

µ

Γ̃λdd = − e2σ∂λσ

Γ̃dµν =
1

2

(
∇µAν +∇νAµ

)
+

1

2
e2σ
(
AρAνFρµ +AρAµFρν

)
+ ∂µσAν + ∂νσAµ + e2σAµAνA

ρ∂ρσ

Γ̃dµd =
1

2
e2σAρFρµ + e2σAµA

ρ∂ρσ + ∂µσ

Γ̃ddd = e2σAµ∂µσ [8.44]

As an aside we note that, evidently, the connections scale with a factor λ for each d and a
factor λ−1 for each d.

We now return to [8.27] which we repeat for convenience.

R̃ = αR+ βe2σFµνF
µν + γ(∇σ)2 + δσ∇σ + ε∇2σ + f [8.45]

To fix these constants we can look at special cases of the metric. Let us set Aµ = σ = 0. In
that case we simply have R̃ = R and so we find that α = 1.
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Next, let us take Gµν = δµν and Aµ = 0, leaving only σ free.2 The only non-vanishing
metric component with upper indices and connections are then

G̃µν = δµν

G̃dd = e−2σ

Γ̃µdd = − e2σ∂µσ

Γ̃dµd = ∂µσ [8.46]

The Ricci scalar thus reduces to

R̃ = G̃LM
(
∂N Γ̃NML − ∂M Γ̃NNL + Γ̃NNK Γ̃KML − Γ̃NMK Γ̃KNL

)
= G̃λµ

(
∂N Γ̃Nµλ − ∂µΓ̃NNλ + Γ̃NNK Γ̃Kµλ − Γ̃NµK Γ̃KNλ

)
+ G̃dd

(
∂N Γ̃Ndd − ∂dΓ̃NNd + Γ̃NNK Γ̃Kdd − Γ̃NdK Γ̃KNd

)
= G̃λµ

(
−∂µΓ̃ddλ − Γ̃dµdΓ̃

d
dλ

)
+ G̃dd

(
∂νΓ̃νdd + Γ̃ddκΓ̃κdd − Γ̃νddΓ̃

d
νd − Γ̃ddκΓ̃κdd

)
= − ∂µ∂µσ − ∂µσ∂µσ + e−2σ

[
∂µ
(
−e2σ∂µσ

)
− ∂µσ

(
−e2σ∂µσ

)]
= − ∂µ∂µσ − ∂µσ∂µσ − 2∂µσ∂

µσ − ∂µ∂µσ + ∂µσ∂
µσ

= − 2(∂µ∂
µσ + ∂µσ∂

µσ) [8.47]

From [8.27] we have for this choice of metric

R̃ = γ(∂σ)2 + δσ∂2σ + ε∂2σ + f [8.48]

and we thus find that γ = ε = −2 and δ = f = 0. To link this to the expression in (8.1.8)
note that

e−σ∂2eσ = e−σ∂µ

(
∂µσe

σ
)

= ∂µ∂
µσ + ∂µσ∂

µσ [8.49]

and e−σ∇2eσ is just the covariant expression of this. So we have a contribution−2e−σ∇2eσ.
Finally, let us takeGµν = δµν and σ = 0, leaving only theAµ free. Here we don’t have to

do any calculations as the theory we have is just a Euclidean d dimensional flat spacetime
with an Abelian gauge field Aµ and we know that the action reduces to −1

4FµνF
µν so that

β = −1
4 . For the assiduous reader who is not yet tired of these calculations we will do them

in detail. Less assiduous readers can immediately skip to [8.57]. The only non-vanishing
metric component with upper indices and connections are in this case

G̃µν = δµν

G̃µd = −Aµ

G̃dd = 1 +AµA
µ

[8.50]

2Note that taking Gµν = 0 is not an allowed choice as the metric would then not be invertible.
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and

Γ̃λµν =
1

2

(
AνF

λ
µ +AµF

λ
ν

)
Γ̃λµd =

1

2
F λ
µ

Γ̃dµν =
1

2

(
∂µAν + ∂νAµ

)
+

1

2

(
AρAνFρµ +AρAµFρν

)
Γ̃dµd =

1

2
AρFρµ [8.51]

The Ricci scalar is given by

R̃ = G̃LM
(
∂N Γ̃NML − ∂M Γ̃NNL + Γ̃NNK Γ̃KML − Γ̃NMK Γ̃KNL

)
[8.52]

Let us do the four terms separately. Because Gµν = δµν we do not have to make a distinc-
tion between upper and lower indices in d-spacetime and will move them all downstairs,
but we do need to be careful with the order. We start with

G̃LM∂N Γ̃NML = G̃LM∂νΓ̃νML = G̃λM∂νΓ̃νMλ + G̃dM∂νΓ̃νMd

= G̃λµ∂νΓ̃νµλ + G̃λd∂νΓ̃νdλ + G̃dµ∂νΓ̃νµd + G̃dd∂νΓ̃νdd

=
1

2
δλµ∂ν

(
AµFλν +AλFµν

)
− 1

2
Aλ∂νFλν −

1

2
Aµ∂νFµν

=
1

2

(
∂νAµFµν +Aµ∂νFµν + ∂νAµFµν +Aµ∂νFµν −Aµ∂νFµν −Aµ∂νFµν

)
= ∂νAµFµν =

1

2
Fµν(∂νAµ − ∂µAν) = −1

2
FµνFµν [8.53]

where in the last line we have antisymmetrised the result. Next we have

−G̃LM∂M Γ̃NNL = − G̃Lµ∂µΓ̃NNL = −G̃Lµ∂µΓ̃ννL − G̃Lµ∂µΓ̃ddL

= − G̃λµ∂µΓ̃ννλ − G̃dµ∂µΓ̃ννd − G̃λµ∂µΓ̃ddλ − G̃dµ∂µΓ̃ddd

= − 1

2
δλµ∂µ

(
AνFλν +AλFνν

)
+

1

2
Aµ∂µFνν −

1

2
δλµ∂µ

(
AρFρλ

)
=

1

2

(
− ∂µAνFµν −Aν∂µFµν − ∂µAρFρµ −Aρ∂µFρµ

)
= 0 [8.54]

The third and fourth terms with the products of the connections are a lot more tedious
to work out, and is most easily done with a software package such as Mathematica. The
result of this is

G̃LM Γ̃NNK Γ̃KML = 0 and − G̃LM Γ̃NMK Γ̃KNL =
1

4
FµνFµν [8.55]
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The Mathematica calculation is shown in fig.8.1.
Bringing the four terms together we conclude that

R̃ = −1

2
FµνFµν +

1

4
FµνFµν = −1

4
FµνFµν [8.56]

and hence β = −1/4.

In[167]:= dim = 5;

Do[g[a, b] = 0, {a, dim }, {b, dim }]

Do[g[a, a] = 1, {a, dim - 1}]

Do[g[a, dim ] = -A[a], {a, dim - 1}]

Do[g[dim, a] = -A[a], {a, dim - 1}]

g[dim, dim ] = 1 + Sum [A[m] * A[m], {m, dim - 1}];

Do[G[a, b, c] = 0, {a, dim }, {b, dim }, {c, dim }]

F[a_, b_] := dA[a, b] - dA[b, a];

Do[G[a, b, c] = (1 / 2) * ( A[b] * F[c, a] +  A[c] * F[b, a]), {a, dim - 1}, {b, dim - 1}, {c, dim - 1}]

Do[G[a, b, dim ] = (1 / 2) * F[b, a], {a, dim - 1}, {b, dim - 1}]

Do[G[a, dim, b] = (1 / 2) * F[b, a], {a, dim - 1}, {b, dim - 1}]

Do[G[dim, m, n] = (1 / 2) *

( dA[m, n] + dA[n, m] + Sum [A[r] * A[n] * F[r, m] + A[r] * A[m] * F[r, n], {r, dim - 1}]), {a, dim - 1}]

Do[G[dim, m, dim ] = (1 / 2) * Sum [A[r] * F[r, m], {r, dim - 1}], {m, dim - 1}]

Do[G[dim, dim, m] = (1 / 2) * Sum [A[r] * F[r, m], {r, dim - 1}], {m, dim - 1}]

F2 = Sum [F[a, b] * F[a, b], {a, dim - 1}, {b, dim - 1}];

In[164]:= GG1 =

Simplify [Expand [Sum [g[l, m] * G[n, n, k] * G[k, m, l], {l, dim }, {k, dim }, {m, dim }, {n, dim }]]]

GG2 = Simplify [

Expand [- Sum [g[l, m] * G[n, m, k] * G[k, n, l], {l, dim }, {k, dim }, {m, dim }, {n, dim }]]]

Expand [GG2 - 1 / 4 * F2]

Out[164]= 0

Out[165]= 

1

2
dA[1, 2]2 + dA[1, 3]2 + dA[1, 4]2 + dA[1, 5]2 - 2 dA[1, 2] dA[2, 1] + dA[2, 1]2 +

dA[2, 3]2 + dA[2, 4]2 + dA[2, 5]2 - 2 dA[1, 3] dA[3, 1] + dA[3, 1]2 - 2 dA[2, 3] dA[3, 2] +

dA[3, 2]2 + dA[3, 4]2 + dA[3, 5]2 - 2 dA[1, 4] dA[4, 1] + dA[4, 1]2 - 2 dA[2, 4] dA[4, 2] +

dA[4, 2]2 - 2 dA[3, 4] dA[4, 3] + dA[4, 3]2 + dA[4, 5]2 - 2 dA[1, 5] dA[5, 1] + dA[5, 1]2 -

2 dA[2, 5] dA[5, 2] + dA[5, 2]2 - 2 dA[3, 5] dA[5, 3] + dA[5, 3]2 - 2 dA[4, 5] dA[5, 4] + dA[5, 4]2

Out[166]= 0

Figure 8.1: Mathematica code for Ricci scalar in Kaluza-Klein theory. We are illsutarting this with
D = 5, but it is obviously a general result.
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Taking everything together, we conclude thus that α = 1, β = −1/4 and γ = δ = −2
and thus

R̃ = R− 1

4
e2σFµνF

µν − 2e−σ∇2eσ [8.57]

which is what we set out to show.

8.7 p 233: Eq. (8.1.9) The Kaluza-Klein Action with a Dilaton

Let us now add a dilaton to the Kaluza-Klein theory. The action is the D dimensional
Einstein-Hilbert action augmented with a dilaton field Φ.

S =
1

2κ2
0

∫
dDx
√
−Ge−2Φ [R+ 4∇µΦ∇µΦ] [8.58]

Note also that we have
√
−G, the square root of the determinant of GDMN and not

√
−Gd,

the square root of the determinant of the non-compactified metric, as per Joe’s errata page.
We have also replaced ∂µΦ by ∇µΦ as Φ is a spacetime scalar.

As we are ignoring any dependence on the compactified dimension xd, we can just
integrate it out and find a factor 2πR. We also use [8.19] , i.e.

√
−G = e2σ

√
−Gd, and

(8.1.8). This gives

S =
πR

κ2
0

∫
ddx

√
−Gde−2Φ+σ

[
Rd − 2e−σ∇2eσ − 1

4
e2σFµνF

µν + 4∂µΦ∂µΦ

]
[8.59]

where we have used the fact that Φ is a spacetime scalar. In order to rewrite this as the
second line of (8.1.9) we to replace −2e−σ∇2eσ by −4∂µΦ∂σ. The solution to this was
given to me by "Kosm" on the Physics Stack Exchange and involves the ubiquitous partial
integration.

We first note that

e−σ∇2eσ = e−σ∇µ (∇µσeσ) = ∇2σ +∇µσ∇µσ = ∇2σ + ∂µσ∂
µσ [8.60]

Next we consider

∇µ
(
e−2Φ+σ∇µσ

)
= (−2∇µΦ +∇µσ)∇µσe−2Φ+σ +∇2σe−2Φ+σ

= (−2∂µΦ∂µσ + ∂µσ∂
µσ +∇2σ)e−2Φ+σ [8.61]

We now integrate both sides over
∫
ddx
√
−Gd. The LHS is a total derivative and hence

zero. Thus

0 =

∫
ddx

√
−Gde−2Φ+σ(−2∂µΦ∂µσ + ∂µσ∂

µσ +∇2σ) [8.62]
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From which we have∫
ddx

√
−Gde−2Φ+σ∇2σ =

∫
ddx

√
−Gde−2Φ+σ(2∂µΦ∂µσ − ∂µσ∂µσ) [8.63]

From this and from [8.60] we then get∫
ddx

√
−Gde−2Φ+σ

(
−2e−σ∇2eσ

)
=

∫
ddx

√
−Gde−2Φ+σ

(
−2∇2σ − 2∂µσ∂

µσ
)

=

∫
ddx

√
−Gde−2Φ+σ (−4∂µΦ∂µσ + 2∂µσ∂

µσ − 2∂µσ∂
µσ)

=

∫
ddx

√
−Gde−2Φ+σ (−4∂µΦ∂µσ) [8.64]

so that we can indeed replace −2e−σ∇2eσ by −4∂µΦ∂σ.

To find the last line of (8.1.9) just write Φ = Φd + σ/2 in

−4∂µΦ∂µσ + 4∂µΦ∂µΦ = − 4∂µ

(
Φd +

σ

2

)
∂µσ + 4∂µ

(
Φd +

σ

2

)
∂µ
(

Φd +
σ

2

)
= − 4∂µΦd∂

µσ − 2∂µσ∂
µσ + 4∂µΦd∂µΦd + 4∂µΦd∂

µσ + ∂µσ∂
µσ

= 4∂µΦd∂µΦd − ∂µσ∂µσ [8.65]

It looks like the dilation kinetic term has the wrong sign. But as explained in Joe’s book
we have seen this before. Indeed the lowest order effective action for the bosonic string
(3.7.20) also had such a wrong sign. We then performed a Weyl transformation Gµν −→
G̃µν = e2ω(x)Gµν , see (3.722). We also shifted the dilaton Φ̃ = Φ−Φ0 and found in (3.7.25)
that the kinetic term of this new dilaton field was − 4

D−2∂µΦ̃∂µΦ̃ and so has the right sign.
The situation here is identical.

8.8 p 234: Eq. (8.1.11) The Relation Between the Graviton and Gauge
Coupling in Kaluza-Klein Theory

We rewrite the action (8.1.9) with the definitions of the couplings

S =

∫
ddx

√
−Gd

[
1

2κ2
d

Rd −
πR

κ2
0

[
−(∂σ)2 + 4(∂Φ)2

]
− 1

4g2
d

F̃ 2

]
[8.66]

Equating the coefficient of Rd with that in (8.1.9) gives

1

2κ2
d

= e−2Φd
πR

κ2
0

⇒ e2Φdκ2
0 = 2πRκ2

d [8.67]
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Equating the coefficients of the field tensor gives

− 1

4g2
d

= −e−2Φd
πR

κ2
0

R2

4
[8.68]

The extra R2 on the RHS coming from the definition Aµ = RÃµ. We thus have

g2
d =

e2Φdκ2
0

πR3
=

2πRκ2
d

πR3
=

2κ2
d

R2
[8.69]

8.9 p 234: Eq. (8.1.12) The Relation Between the Graviton Coupling
in D and in d Dimensions

Focussing on the Einstein-Hilbert part of the action we have in D dimensional spacetime

S =
1

2κ2

∫
dDx
√
−GR+ · · · = 1

2κ2
2πR

∫
ddx
√
−GR+ · · · [8.70]

But if we wouldn’t know about the compactified dimension and thought we lived in a d
dimensional spacetime we would simply write

S =

∫
ddx

√
−Gd

1

2κ2
d

Rd + · · · [8.71]

Comparing the coupling constants we find

πR

κ2
=

1

2κ2
d

⇒ 1

κ2
d

=
2πR

κ2
[8.72]

8.10 p 234: Eq. (8.1.14) The Antisymmetric Tensor in the Kaluza-Klein
Theory

This is once more a straightforward albeit tedious calculation, which we will not write
out in detail. We will just illustrate how the term with the vector potential arises. From
(3.7.20) the contribution from the antisymmetric tensor is

SH = − 1

24κ2
0

∫
dDx
√
−Ge−2ΦHKLMH

KLM

= − 1

24κ2
0

2πR

∫
ddx

√
−Gdeσe−2ΦGKNGLOGMPHKLMHNOP [8.73]

We extract the terms that have a Gdd:

SH = − πR

12κ2
0

∫
ddx

√
−Gde−2Φd

(
GddGLOGMPHdLMHdOP

+GKNGddGMPHKdMHNdP +GKNGLOGddHKLdHNOd + · · ·
)

[8.74]
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and take all other indices to be d-dimensional:

SH = − πR

12κ2
0

∫
ddx

√
−Gde−2Φd

(
GddGλρGµπHdλµHdρπ

+GκνGddGµπHκdµHνdπ +GκνGλρGddHκλdHνρd + · · ·
)

[8.75]

Now use the inverse metric as derived in [8.21]

G̃µν =Gµν

G̃µd = −Aµ

G̃dd = e−2σ +AµA
µ [8.76]

This gives

SH = − πR

12κ2
0

∫
ddx

√
−Gde−2Φd(e−2σ +A2)

(
GλρGµπHdλµHdρπ

+GκνGµπHκdµHνdπ +GκνGλρHκλdHνρd + · · ·
)

[8.77]

We have been sloppy with the notation as we have used Gµν both for the metric in D
dimensions as in d dimensions, but as they are the same, we will be forgiven for this sin.
The three terms are identical by symmetry and we can thus write

SH = − πR

12κ2
0

∫
ddx

√
−Gde−2Φd

[
3e−2σHdλµH

λµ
d + · · ·

]
[8.78]

where we have also moved the terms with Aµ into the · · · . Note that this is the only
place where the e−2σ can occur. We now also have found a term of the form A2HdλµH

λµ
d .

Hopefully this term will combine with terms that contain the inverse metric Gµd = −Aµ.
We will leave this as an exercise for the reader.

8.11 p 236: Eq. (8.2.5) The Coordinate Change and the Winding Num-
ber

If we allow a winding number w then going around the string we have periodicity up to
2πRw and the relation

2πRw =

∮
C
(dz ∂X + dz̄ ∂̄X) [8.79]

Here C is a closed contour counter-clockwise around the origin. We plug in the Laurent
expansion

2πRw = −i
√
α′

2

∮
C

∞∑
m=−∞

(
dz

αm
zm+1

+ dz̄
α̃m
z̄m+1

)
[8.80]
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In the second term we perform a change of variables z̄ = w, a counter-clockwise closed
contour in the z plane e2πiτ with τ ∈ [0, 1] now becomes e−2πiτ and thus a clock-wise
contour. Flipping the direction of the contour introduces a minus sign so we have

2πRw = − i
√
α′

2

∮
C

∞∑
m=−∞

(
dz

αm
zm+1

− dw α̃m
wm+1

)

= − i
√
α′

2
2πi(α0 − α̃0) = 2π

√
α′

2
(α0 − α̃0) [8.81]

8.12 p 236: Eq. (8.2.6) The Noether Momentum for the Closed String

We worked this out in (2.7.3), see our [2.114]

pµ =
1√
2α′

(α0 + α̃0) [8.82]

8.13 p 236: Eq. (8.2.7) The Left and Right Momentum

From (8.2.5) and (8.2.6) we have

α0 − α̃0 =
2wR√

2α′

α0 + α̃0 =
√

2α′p [8.83]

from which we get

α0 =
1

2

(
2wR√

2α′
+
√

2α′p

)
α̃0 =

1

2

(
− 2wR√

2α′
+
√

2α′p

)
[8.84]

and thus from the definition of pL =
√

2/α′α0 and pR =
√

2/α′α̃0,

pL =

√
2

α′
1

2

(
2Rw√

2α′
+
√

2α′p

)
=
wR

α′
+ p =

n

R
+
wR

α′

pR =

√
2

α′
1

2

(
− 2Rw√

2α′
+
√

2α′p

)
= −wR

α′
+ p =

n

R
− wR

α′
[8.85]

where we have used the quantisation condition (8.2.2).
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8.14 p 237: Eq. (8.2.9) The Partition Function for the Compactified
Dimension

We have for a single dimension from (7.2.5)

(qq̄)−1/24Tr qL0 q̄L̃0 [8.86]

with q = e2πiτ = e2π(iτ1−τ2). The oscillator part and the (qq̄)−1/24 give the Dedekind func-
tion |η(τ)|−2. The momentum is now quantized and not continuous and so the integration
is replaced by a sum over all possible momentum states, i.e. over all n and w. Plugging in
(8.2.7) this gives

∞∑
n,w=−∞

q
α′
4
p2
L q̄

α′
4
p2
R

=

∞∑
n,w=−∞

e(iτ1−τ2)πα
′

2 ( nR+wR
α′ )

2

e(−iτ1−τ2)πα
′

2 ( nR−
wR
α′ )

2

=

∞∑
n,w=−∞

e
iτ1

πα′
2

[
( nR+wR

α′ )
2−( nR−

wR
α′ )

2
]
e
−τ2 πα

′
2

[
( nR+wR

α′ )
2
+( nR−

wR
α′ )

2
]

=
∞∑

n,w=−∞
eiτ1

πα′
2

4nw
α′ e

−τ2 πα
′

2
2
(
n2

R2 +w2R2

α′2

)
=

∞∑
n,w=−∞

e2πiτ1nwe
−πτ2

(
α′n2

R2 +w2R2

α′

)
[8.87]

Together with the Dedekind function we find (8.2.9).

8.15 p 237: Eq. (8.2.10) The Poisson Resummation Formula

This formula is also known as the Poisson summation formula and links an infinite sum of
a function to an infinite sum of its Fourier transform:

∞∑
n=−∞

f(n) =

∞∑
k=−∞

f̂(k) [8.88]

where f̂(k) =
∫∞
−∞ dx e

−2πixkf(x) is the Fourier transform of f(x). In our case we have

f̂(k) =

∫ ∞
−∞

dx e−2πixke−πax
2+2πibx =

∫ ∞
−∞

dx e−πax
2+2πi(b−k)x

=

√
π

πa
e
−4π2(b−k)2

4πa = a−1/2e
−π(b−k)2

a [8.89]
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where we have used the Gaussian integral∫ ∞
−∞

dx e−αx
2+βx =

√
π

α
e
β2

4α [8.90]

Thus
∞∑

n=−∞
exp
(
−πan2 + 2πibn

)
= a−1/2

∞∑
m=−∞

exp

[
−π(m− b)2

a

]
[8.91]

8.16 p 237: Eq. (8.2.11) The Partition Function After the Poisson Re-
summation Formula

We now use the Poisson summation formula with a = α′τ2/R
2 and b = wτ1 on (8.2.9)

(qq̄)−1/24Tr qL0 q̄L̃0 = |η(τ)|−2
∞∑

w=−∞
exp

(
−πτ2R

2w2

α′

)

×
(
α′τ2

R2

)−1/2 ∞∑
m=−∞

exp

[
−π(m− wτ1)2

α′τ2/R2

]

= |η(τ)|−2 R

(α′τ2)1/2

∞∑
m,w=−∞

e
− πR

2

α′τ2

[
τ2
2w

2+(m−wτ1)2
]

= |η(τ)|−2 R

(α′τ2)1/2

∞∑
m,w=−∞

e
− πR

2

α′τ2

[
w2(τ2

1 +τ2
2 )+m2−2mwτ1

]
[8.92]

Note now that

|m− wτ |2 = (m− wτ)(m− wτ̄) = m2 + w2|τ |2 −mw(τ + τ̄)

= m2 + w2(τ2
1 + τ2

2 )− 2mwτ1 [8.93]

and thus

(qq̄)−1/24Tr qL0 q̄L̃0 = |η(τ)|−2 R

(α′τ2)1/2

∞∑
m,w=−∞

e
−πR

2 |m−wτ |2
α′τ2 [8.94]

We use (7.2.9), i.e. |η(τ)|−2 = (4π2α′τ2)1/2ZX(τ) to find

(qq̄)−1/24Tr qL0 q̄L̃0 = (4π2α′τ2)1/2ZX(τ)
R

(α′τ2)1/2

∞∑
m,w=−∞

e
−πR

2 |m−wτ |2
α′τ2

= 2πRZX(τ)
∞∑

m,w=−∞
e
−πR

2 |m−wτ |2
α′τ2 [8.95]
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We can view this as the partition function ZX(τ) of the non-compact theory times the
volume of the compactified dimension 2πR times correction due to the discrete momentum
spectrum and the winding number.

Note that the partition function ZX(τ2) for the uncompactified free scalar has a factor
τ
−1/2
2 . You will recall that this factor comes from the integration over the continuous

momentum. This factor τ−1/2
2 is not present in the original form of the partition function

(8.2.9) for the compactified free scalar, but it does arise from the resummation formula.

This partition function is modular invariant. We have shown earlier that the non-
compactified partition function ZX is modular invariant, so we need to focus on the infinite
sum part only. Under τ −→ τ + 1 we have m − wτ −→ m − w(τ + 1) = m − w − wτ and
so replacing m by n = m− w shows invariance of the infinite sum.

Under τ −→ −1/τ we have τ1 −→ −τ1/|τ |2 and τ2 −→ τ2/|τ |2. Thus

∑
m,w

exp

(
−πR

2

α′
|m− wτ |2

τ2

)
−→

∑
m,w

exp

(
−πR

2

α′
|m+ w/τ |2

τ2/|τ |2

)

=
∑
m,w

exp

(
−πR

2

α′
|mτ + w|2

τ2

)

=
∑
w,m

exp

(
−πR

2

α′
| − wτ +m|2

τ2

)
[8.96]

In the last lime we have set w′ = −m and m′ = w.

8.17 p 237: Eq. (8.2.13) The Periodicity of the Classical Solution

Xcl has the right periodic boundary conditions

Xcl(σ
1 + 2π, σ2) = (σ1 + 2π)wR+ σ2(m− wτ1)R/τ2 = Xcl(σ

1, σ2) + 2πwR [8.97]

and

Xcl(σ
1 + 2πτ1, σ

2 + 2πτ2) = (σ1 + 2πτ1)wR+ (σ2 + 2πτ2)(m− wτ1)R/τ2

=Xcl(σ
1, σ2) + 2πτ1wR+ 2πτ2(m− wτ1)R/τ2

=Xcl(σ
1, σ2) + 2πmR [8.98]

If we now split the compactified dimension in its classical and quantum part X = Xcl + X
then X satisfies the ordinary boundary conditions X(σ1 + 2π, σ2) = X(σ1, σ2) and X(σ1 +
2πτ1, σ

2 + 2πτ2) = X(σ1, σ2). So the path integral over X is just like the path integral

— 440—



Joe’s Book (version of November 20, 2020) Notes from Stany M. Schrans

over a non-compactified dimension and gives ZX the 2πR comes from the volume of the
compactified dimension. We thus need to evaluate e−Scl where, see (1.2.13),

Scl = − 1

4πα′

∫
d2σ γab∂aXcl∂bXcl [8.99]

We have applied the Faddeev-Popov procedure so we have fixed the gauge γab = δab. We
now simply have ∂1Xcl = wR and ∂2Xcl = (m− wτ1)R/τ2. Thus

e−Scl = exp

{
− 1

4πα′
[
w2R2 + (m− wτ1)2R2/τ2

2

] ∫
d2σ

}
[8.100]

Here
∫
d2σ = 4π2τ2 is the surface area of the torus, see [7.10]. Thus

e−Scl = exp

[
− R2

4πα′τ2
2

(
w2τ2

2 +m2 + w2τ2
1 − 2mwτ1

)
4π2τ2

]
= exp

[
−πR

2

α′τ2

(
w2|τ |2 +m2 − 2mwτ1

)]
= exp

(
−πR

2|m− wτ |2

α′τ2

)
[8.101]

In the last line we have used [8.93]. This is the infinite sum of (8.2.11).

8.18 p 238: Eq. (8.2.20) The Phase when a Vertex Operator Circles
Another Vertex Operator

To describe how a point z on the complex plane circles the origin, we describe a curve
e2πisz with s ∈ [0, 1] a parameter. At s = 1 we have come full circle and are back to the
original point in the complex plane. To describe how a point z1 circles another point z2 we
first shift the reference frame so that z2 is now at the origin and then circle the transformed
point z1 around the origin, thus we describe a curve e2πis(z1− z2) = e2πisz12. So encircling
it completely once, means replacing z12 by e2πiz12.

Circling z1 around z2 in the OPE (8.2.19) thus gives

VkL kR(z1, z̄2)Vk′L k′R(z2, z̄2) −→
(
e2πiz12

)α′kLk′L/2 (e−2πiz̄12

)α′kRk′R/2 V(k+k′)L (k+k′)R(z2, z̄2)

= eπiα
′(kLk

′
L−kRk

′
R)VkL kR(z1, z̄2)Vk′L k′R(z2, z̄2) [8.102]

and so we pick up a phase eπiα
′(kLk

′
L−kRk

′
R). If kL = kR and k′L = k′R then the phase is zero.

This corresponds to a non-compact dimension. However if we have different momenta,
then we have, by (8.2.7), different winding numbers w and w′ and so we need to be able
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to wind the string around something and thus have a compact dimension. Filling in the
possible values of the momenta explicitly we have for the phase

eπiα
′(kLk

′
L−kRk

′
R) = exp

{
πiα′

[(
n

R
+
wR

α′

)(
n′

R
+
w′R

α′

)
−
(
n

R
− wR

α′

)(
n′

R
− w′R

α′

)]}
= exp

[
πiα′2

(
n

R

w′R

α′
+
wR

α′
n′

R

)]
= exp

[
2πi(nw′ + n′w)

]
[8.103]

For the OPE, and consequently amplitudes, to be well-defined we need this phase to disap-
pear, i.e. (nw′ + n′w) ∈ Z.

8.19 p 239: Eq. (8.2.21) The Equal Time Commutator [XL(z1), XL(z2)]

We chose the worldsheet coordinate σ1 to be in the range [−π, π]; it still has periodicity
2π. Defining as usual z = e−iw = e−iσ

1+σ2
we thus have ln z = −iσ1 + σ2 and thus σ1 =

−Im ln z. The logarithm has a branch cut that we put on the negative real axis. Working
out [XL(z1), XL(z2)], the only non-zero commutation relations we have are [xL, pL] = i
and and [αm, αn] = mδm+n. Thus

[XL(z1), XL(z2)] =
[
xL − i

α′

2
pL ln z1 + i

√
α′

2

∑
m6=0

αm
mzm1

,

xL − i
α′

2
pL ln z2 + i

√
α′

2

∑
n6=0

αn
nzn2

]
= − iα

′

2
ln z2[xL, pL]− iα

′

2
ln z1[pL, xL]− α′

2

∑
m,n 6=0

[αm, αn]

mnzm1 z
n
2

=
α′

2

ln z2 − ln z1 −
∑
m,n 6=0

mδm+n

mnzm1 z
n
2


=
α′

2

ln z2 − ln z1 −
∑
n6=0

zn1
nzn2

 [8.104]

Now from ln(1− x) = −
∑∞

n=1 x
n/n we have

ln

(
1− z1

z2

)
− ln

(
1− z2

z1

)
= −

∞∑
n=1

zn1
nzn2

+

∞∑
n=1

zn2
nzn1

= −
∞∑
n=1

zn1
nzn2
−

−1∑
m=−∞

zm1
mzm2

= −
∑
n6=0

zn1
nzn2

[8.105]
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and thus

[XL(z1), XL(z2)] =
α′

2

[
ln z2 − ln z1 + ln

(
1− z1

z2

)
− ln

(
1− z2

z1

)]
=
α′

2

[
ln z2 − ln z1 + ln

(z2 − z1)/z2

(z1 − z2)/z1

]
=
α′

2

[
ln z2 − ln z1 + ln

(
−z1

z2

)]
[8.106]

Using z = e−iσ
1+σ2

and the fact that we have equal time commutators, i.e. that σ2
1 = σ2

2

we have

[XL(z1), XL(z2)] =
α′

2

[
−iσ1

2 + σ2
2 + iσ1

1 − σ2
1 + ln

(
e±iπ

e−iσ
1
1+σ2

1

e−iσ
1
2+σ2

2

)]

=
α′

2

(
−iσ1

2 + iσ2
1 + ln e±iπ−iσ

1
1+iσ1

2

)
= i

α′

2

(
−σ1

2 + σ1
1 ± π − σ1

1 + σ1
2

)
= ±πiα

′

2
[8.107]

Let us now sort out the sign. Let us look at the logarithm in more detail ln ei(±π−σ
1
1+σ1

2). If
σ1

1 > σ1
2 then −σ1

1 + σ1
2 < 0 and we need to take the + sign. Indeed the most negative we

can have σ1
1 = +π and σ1

2 = −π. This gives −σ1
1 + σ1

2 = −2π. But this is on the branch
cut, and we can bring it back in the range [−π, π] by adding +π. Similarly, if σ1

1 < σ1
2

then −σ1
1 + σ1

2 > 0 and we need to take the − sign. Indeed the most positive we can have
σ1

1 = −π and σ1
2 = +π. This gives −σ1

1 + σ1
2 = 22π and we can bring it back in the range

[−π, π] by subtracting π. We thus conclude that, indeed,

[XL(z1), XL(z2)] =
πiα′

2
sign (σ1

1 − σ1
2) [8.108]

8.20 p 239: Eq. (8.2.22) The Correct Oscillator Expression for the
Vertex Operator

We need the equal-time commutation relation for XR. This derivation is very similar to the
one of (8.2.21); we only have to change z by z̄. This leads us immediately to the similar
relation to [8.106]

[XR(z1), XR(z2)] =
α′

2

[
ln z̄2 − ln z̄1 + ln

(
− z̄1

z̄2

)]
[8.109]
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We now use z̄ = e+iσ1+σ and the fact that we have equal time commutators. to find

[XR(z1), XR(z2)] =
α′

2

[
iσ1

2 + σ2
2 − iσ1

1 − σ2
1 + ln

(
e±iπ

e+iσ1
1+σ2

1

e+iσ1
2+σ2

2

)]

=
α′

2

(
+iσ1

2 − iσ2
1 + ln e±iπ+iσ1

1−iσ1
2

)
= ±πiα

′

2
[8.110]

We work out the sign in the same way as before, but now as the argument of the loga-
rithm is ln ei(±π+σ1

1−σ1
2) and not ln ei(±π−σ

1
1+σ1

2) we have the rôle of σ1
1 and σ1

2 interchanged.
Therefore

[XR(z1), XR(z2)] = − πiα′

2
sign (σ1

1 − σ1
2) [8.111]

We now wish to see find the relation between

VkL1
kR1

(z1, z̄1)VkL2
kR2

(z2, z̄2) and VkL2
kR2

(z2, z̄2)VkL1
kR1

(z1, z̄1) [8.112]

with the vertex operator as defined in (8.2.22). Let us reflect a little bit on this before
we start calculating anything. The commutator of an XL and an XR vanishes and the
commutators of two XL’s or two XR’s is a scalar. So, from the Baker-Campbell-Haussdorf
formula formula we have eAeB = e[A,B]eBeA if [A,B] is a scalar. We thus have

eikL1
XL(z1)eikL2

XL(z2) = eikL1
kL2

[XL(z1),XL(z2)]eikL2
XL(z2)eikL1

XL(z1)

= eikL1
kL2

πiα′
2

sign (σ1
1−σ1

2)eikL2
XL(z2)eikL1

XL(z1)

= e−(πα′/2)kL1
kL2

sign (σ1
1−σ1

2)eikL2
XL(z2)eikL1

XL(z1) [8.113]

and similarly

eikR1
XR(z1)eikR2

XR(z2) = e+(πα′/2)kR1
kR2

sign (σ1
1−σ1

2)eikR2
XR(z2)eikR1

XR(z1) [8.114]

Together we have

eikL1
XL(z1)+ikR1

XR(z̄1)eikL2
XL(z2)+ikR2

XR(z̄2) = e−(πα′/2)kL1
kL2

sign (σ1
1−σ1

2)

× e+(πα′/2)kR1
kR2

sign (σ1
1−σ1

2)eikL2
XL(z2)+ikR2

XR(z̄2)eikL1
XL(z1)+ikR1

XR(z̄1)

= e−(πα′/2)(kL1
kL2
−kR1

kR2
) sign (σ1

1−σ1
2)

× eikL2
XL(z2)+ikR2

XR(z̄2)eikL1
XL(z1)+ikR1

XR(z̄1) [8.115]

Now

kL1kL2 − kR1kR2 =

(
n1

R
+
w1R

α′

)(
n2

R
+
w2R

α′

)
−
(
n1

R
− w1R

α′

)(
n2

R
− w2R

α′

)
= 2

n1w2 + w1n2

α′
[8.116]
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and thus

eikL1
XL(z1)+ikR1

XR(z̄1)eikL2
XL(z2)+ikR2

XR(z̄2) = e−π(n1w2+w1n2) sign (σ1
1−σ1

2)

× eikL2
XL(z2)+ikR2

XR(z̄2)eikL1
XL(z1)+ikR1

XR(z̄1)

= (−)n1w2+w1n2eikL2
XL(z2)+ikR2

XR(z̄2)eikL1
XL(z1)+ikR1

XR(z̄1) [8.117]

We thus see that if we define the vertex operators as in (8.2.18) then they would commute
only if n1w2 + w1n2 is even and anti-commute if n1w2 + w1n2 is odd. This vindicates the
remark under (8.2.21).

Let us now add the cocyles. We use C12, with the subscripts denoting the order of the
vertex operators, i.e.

C12 = eiπ(kL1
−kR1

)(pL+pR)α′/4eikL1
XL(z1)+ikR1

XR(z̄1)

× eiπ(kL2
−kR2

)(pL+pR)α′/4eikL2
XL(z2)+ikR2

XR(z̄2) [8.118]

The p are momentum operators, so they pick up the momentum component of everything
that is to their right. This thus becomes

C12 = eiπ(kL1
−kR1

)(kL1
+kL2

+kR1
+kR2

)α′/4eikL1
XL(z1)+ikR1

XR(z̄1)

× eiπ(kL2
−kR2

)(kL2
+kR2

)α′/4eikL2
XL(z2)+ikR2

XR(z̄2)

= eiπ
[
(kL1

−kR1
)(kL1

+kL2
+kR1

+kR2
)+(kL2

−kR2
)(kL2

+kR2
)
]
α′/4

× eikL1
XL(z1)+ikR1

XR(z̄1)eikL2
XL(z2)+ikR2

XR(z̄2) [8.119]

Use [8.117]

C12 = eiπ
[
(kL1

−kR1
)(kL1

+kL2
+kR1

+kR2
)+(kL2

−kR2
)(kL2

+kR2
)
]
α′/4

× (−)n1w2+w1n2eikL2
XL(z2)+ikR2

XR(z̄2)eikL1
XL(z1)+ikR1

XR(z̄1) [8.120]

and re-introduce the cocycles and their inverse. This gives

C12 = eiπ
[
(kL1

−kR1
)(kL1

+kL2
+kR1

+kR2
)+(kL2

−kR2
)(kL2

+kR2
)
]
α′/4

× (−)n1w2+w1n2e−iπ(kL2
−kR2

)(kL1
+kL2

+kR1
+kR2

)e−iπ(kL1
−kR1

)(kL1
+kR1

)α′/4C21 [8.121]

It remains to work out the phase:

C12 = (−)n1w2+w1n2eiπ
[
(kL1

−kR1
)(kL2

+kR2
)−(kL2

−kR2
)(kL1

+kR1
)
]
α′/4C21

= (−)n1w2+w1n2eiπ(+2kL1
kR2
−2kR1

kL2
)α′/4C21

[8.122]
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We find

kL1kR2 − kR1kL2 =

(
n1

R
+
w1R

α′

)(
n2

R
− w2R

α′

)
−
(
n1

R
− w1R

α′

)(
n2

R
+
w2R

α′

)
= − 2

n1w2 − w1n2

α′
[8.123]

and thus

C12 = (−)n1w2+w1n2e−iπ(n1w2−w1n2)C21 = (−)n1w2+w1n2(−)n1w2−w1n2C21

= (−)2n1w2C21 = C21 [8.124]

as 2n1w2 is always even. We thus see that adding the cocycle indeed ensures that the vertex
operators commute.

8.21 p 240: Eq. (8.2.26) The OPEs in the Light-Cone Reference Frame

Ignoring the L and R we have the OPEs Xµ(z)Xν(0) = −(α′/2)ηµν ln z so that

X+(z)X−(w) ∼ 1

2

[
X0(z) +X1(z)

] [
X0(0)−X1(0)

]
=

1

2

[
X0(z)X0(0)−X1(z)X1(0)

]
= − α′

2
ln z

X±(z)X±(w) ∼ 1

2

[
X0(z)±X1(z)

] [
X0(0)±X1(0)

]
=

1

2

[
X0(z)X0(0) +X1(z)X1(0)

]
= 0 [8.125]

Recall that spacetime has Lorentz signature (−+ · · ·+).

8.22 p 240: Eq. (8.2.27) V i(nk0, z) is a Primary Field

We can split the energy-momentum tensor as

T (z) = − 1

α′
[
−∂X0∂X0(z) + ∂X1∂X1(z) + ∂Xi∂Xi(z)

]
=T (2···D)(z)− 1

2α′
[
−(∂X+ + ∂X−)(∂X+ + ∂X−)(z) + (∂X+ − ∂X−)(∂X+ − ∂X−)

]
=T (2···D)(z) +

2

α′
∂X+∂X−(z) [8.126]

where T (2···D(z) = − 1
α′∂X

i∂Xi(z) is the energy-momentum tensor for all but the first two
space-time fields. As T (2···D)(z)X+(0) is regular we can break down the calculation in
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parts. We clearly have, ignoring the normalisation
√

2/α′,

T (2···D)(z)V i(nk0, 0) =T (2···D)(z)∂Xieink0X+
(0)

∼ ∂X
ieink0X+

(0)

z2
+
∂2Xieink0X+

(0)

z
[8.127]

We also have have

2

α′
∂X+∂X−(z)V i(nk0, 0) =

2

α′
∂X+∂X−(z)∂Xieink0X+

(0)

∼ 2

α′
∂X+(z)∂Xi(0)(ink0)

α′

2z
eink0X+

(0)

∼ ∂X
iink0∂X

+eink0X+
(0)

z
=
∂Xi∂eink0X+

(0)

z
[8.128]

where we have used ∂X−(z)X+(0) ∼ α′/2z and have expanded ∂X+(z) around z = 0.
Therefore

T (z)V i(nk0, 0) =T (z)∂Xieink0X+
(0)

∼ ∂X
ieink0X+

(0)

z2
+
∂2Xieink0X+

(0)

z
+
∂Xi∂eink0X+

(0)

z

=
∂Xieink0X+

(0)

z2
+
∂
(
∂Xieink0X+)

(0)

z

=
V i(nk0, 0)

z2
+
∂V i(nk0, 0)(0)

z
[8.129]

and so V i(nk0, z) is indeed a primary field with weight one.

8.23 p 240: Eq. (8.2.28) The V i(nk0, z)V j(mk0, z) OPE

This is straightforward as the only non-singular terms come from the ∂Xi(z)∂Xj(0) =
−α′δij/2z2 part:

V i(nk0, z)V
j(mk0, 0) =

2

α′
∂Xieink0X+

(z)∂Xjeimk0X+
(0)

= − 2

α′
α′δijeink0X+

(z)eimk0X+
(0)

2z2

= − δijei(n+m)k0X+
(0)

2z2
− ink0∂X

+δijei(n+m)k0X+
(0)

z
[8.130]
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8.24 p 240: Eq. (8.2.30) The Commutation Relation of the DDF
Operators

It’s been a while since we did one of these, so we go slowly. Our staring point is (2.6.14)

[Aim, A
j
n] =

∮
dz2

2πi
Resz1→z2V

i(nk0, z1)V j(mk0, z2)

=

∮
dz2

2πi
Resz1→z2

[
−δ

ijei(n+m)k0X+
(z2)

2(z1 − z2)2
− ink0∂X

+δijei(n+m)k0X+
(z2)

z1 − z2

]

=

∮
dz2

2πi

(
−ink0∂X

+δijei(n+m)k0X+
)

= − ink0δ
ij

∮
dz2

2πi
∂X+ei(n+m)k0X+

(z2) [8.131]

Let us work this out. For n+m = 0 we simply have

−ink0δ
ij

∮
dz2

2πi
∂X+ = + imk0δ

ij

(
−i
√
α′

2
α+

0

)
= mk0δ

ij

√
α′

2
α+

0

=mk0δ
ij

√
α′

2

√
α′

2
p+ =

mk0α
′p+

2
δij [8.132]

where we have used (2.7.2), i.e. αµm =
√

2/α′
∮

(dz/2π) zm∂Xµ and (2.7.3), i.e. pµ =√
2/α′αµu.

If m + n 6= 0 then we can write ∂X+ei(n+m)k0X+
(z2) = ∂ei(n+m)k0X+

(z2). But by
definition ei(n+m)k0X+

(z2) is normal ordered and all its singularities are subtracted, so that
it is regular, and so is its derivative. Thus in that case

∮
X+ei(n+m)k0X+

(z2) = 0.
We conclude that

[Aim, A
j
n] =

mk0α
′p+

2
δijδm+n [8.133]

8.25 p 240: The DDF Operators as Building Blocks for Physical States

A physical state of momentum q of the form |ψ〉 = f(∂i∂̄jXk)eiq·X |0〉 with f a function
of the derivatives of the transverse fields, such that Lm |ψ〉 = 0 for m ≥ 0. The vertex
operator creating that state is V = f(∂i∂̄jXk)eiq·X . If we take the OPE with a DDF oper-
ator V i(nk0, z) then we see that the exponential in that operator only contracts with the
exponential in the vertex operator giving something proportional to

∂Xieink0X+
(z)f(∂i∂̄jXk)eiq·X(0) = ∂Xieink0X+

(z)f(∂i∂̄jXk)ei(−q
+X−−q−X+qiXi)(0)

∼ z−α′nk0q+/2 : ∂Xieink0X+
(z)f(∂i∂̄jXk)ei(−q

+X−−q−X+qiXi)(0) :

+ other contractions [8.134]
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Here the "other contractions" are terms that arise from contractions of the transverse coor-
dinates. The important point here is that all these other terms are by construction single
valued. The only possible non-single-valued terms is thus the one above. So if we require
the OPE of a DDF operator with a vertex operator of momentum q to be single-valued we
necessarily need α′nk0q

+/2 ∈ Z. In particular, the choice k0 = 2/αq+ gives a single-valued
OPE.3 This means that the action of a DDF operator on a physical state, that is, after all,
created by action of a vertex operator on the ground state, is well-defined.

To show that Virasoro operators and DDF operators commute we use (2.6.24), which
says that for a primary operator O of weight h we have [Lm,On] =

[
(h − 1)m − n

]
Om+n,

with the mode Om =
∮

(dz/2πi)zm+h−1O(z). As a V i(nk0, z) is a primary weight one
operator its zero mode is

V i
0 (nk0) =

∮
dz

2πi
z0+1−1V i(nk0, z) = −i

∮
dz

2π
V i(nk0, z) = −iAin [8.135]

and so

[Lm, A
i
n] = −[Lm, V

i
0 (nk0)] =

[
(1− 1)m− 0

]
V im+0(nk0) = 0 [8.136]

8.26 p 241: Eq. (8.3.1) The Mass-Shell Condition with a Compactified
Dimension, I

This starts from our all time favourites (4.3.31) and (4.3.32) which we just repeat here

L0 =
α′

4
(p2 +m2) [8.137]

with

α′

4
m2 =

∞∑
n=1

n

Nbn +Ncn +

25∑
µ=0

Nµn

− 1 [8.138]

The mass-shell condition for the matter sector L0 |ψ〉 = 0 thus becomes m2 = −p2. But
now we have to split this in the non-compactified and the compactified dimensions. For
the non-compactified dimensions we can use the above equation. As we are looking at
the matter sector only we can ignore the ghost contributions and set the total level of the

3

Joe has k0 = 2/αq−. I believe this is an error as the contribution clearly comes from the
X+(z)X−(0) OPE and the X−(0) comes with q+. It is a bit strange that this is not on Joe’s
errata page.
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matter excitations as N =
∑∞

n=1

∑25
µ=0Nµn. For the compactified dimension we need to

treat the momentum separately as it is quantised. We thus have

m2 = −p2 =
4

α′
(N − 1) +

(
k25
L

)2
[8.139]

We have reintroduced the fact that we were working in the left-moving sector. There is a
similar equation for the right sector.

8.27 p 241: Eq. (8.3.2) The Mass-Shell Condition with a Compactified
Dimension, II

We rewrite the mass-shell conditions (8.3.1) into two new equations. For the first one, we
use the quantisation (8.2.7) and take the average of both sectors

m2 =
1

2

[(
k25
L

)2
+
(
k25
R

)2
+

4

α′
(N − 1) +

4

α′
(Ñ − 1)

]
=

1

2

[(
n

R
+
wR

α′

)2

+

(
n

R
− wR

α′

)2

+
4

α′
(N + Ñ − 2)

]

=
n2

R2
+
w2R2

α′2
+

2

α′
(N + Ñ − 2) [8.140]

For the second equation we take the difference of the two mass-shell conditions:

0 =
(
k25
L

)2 − (k25
R

)2
+

4

α′
(N − 1)− 4

α′
(Ñ − 1)

=

(
n

R
+
wR

α′

)2

−
(
n

R
− wR

α′

)2

+
4

α′
(N − Ñ)

= 4
n

R

wR

α′
+

4

α′
(N − Ñ) [8.141]

From this we get

0 = nw +N − Ñ [8.142]

8.28 p 241: Eq. (8.3.3) The Massless States

The identification of the different states should be obvious. The only clarification I want
to make is about the scalar α25

−1α̃
25
−1 |0; k〉. This the modulus for the radius of the compact

dimension. What does this exactly mean? A modulus is a flat background field. Here is
corresponds to the compactified dimension in both the left- and right-handed sector, so it
is clearly linked to the compactified dimension.
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But what does it exactly mean to say that it is "the modulus for the radius of the com-
pactified direction"? That is not clear to me.

The second statement, that "its vertex operator, : ∂X25∂̄X25eik·X : is a perturbation of
the metric G25,25 follows from the discussion in section 3.7 about strings in curved back-
grounds. There we saw that the interaction with different states created by the vertex
operators can be viewed as perturbations of the spacetime metric. As an example, expand-
ing the spacetime metric (assuming an uncompactified string) Gµν(X) = ηµν +χµν(X) the
integrand in the worldsheet path integral is, see (3.7.3) and (3.7.4)

e−SP
[
1− 1

4πα′

∫
M
d2σ
√
g gabχµν(X)∂aX

µ∂bX
ν + · · ·

]
[8.143]

where SP is the Polyakov action. This corresponds to the introduction in a correlation
function of a vertex operator gabχµν(X)∂aX

µ∂bX
ν with χµν(X) = −4πgce

ik·Xsµν . And
so the introduction of a vertex operator : ∂X25∂̄X25eik·X: does indeed correspond to a
perturbation of G25,25.

8.29 p 242: Eq. (8.3.7) The Gauge Coupling

We need to evaluate

Sµ[±]
3 =

〈√
2gc,25

α′
:
(
∂Xµ∂̄X25 ± ∂X25∂̄Xµ

)
eik1·X(z1, z̄1) : gc,25 : eik2L·XL(z2)+ik2R·XR(z̄2) :

× gc,25 : eik3L·XL(z3)+ik3R·XR(z̄3) :

〉
[8.144]

Let us consider the term with ∂Xµ∂̄X25. The other term will follow from this immediately.

Sµ[±]
3 (a) = c

〈
: ∂Xµ∂̄X25eik1·X(z1, z̄1) : : eik2L·XL(z2)+ik2R·XR(z̄2) :

× : eik3L·XL(z3)+ik3R·XR(z̄3) :

〉
[8.145]

where c =
√

2g3
c,25/α

′. We now use (6.6.14), or even better, our derivation of that equation,
so it might be worthwhile revisiting that. The first equation we use is [6.241]. We repeat
it here for convenience. What we did there is calculate

Ss2(k1, ε1; k2; k3) = g2
cg
′
ce
−2λε1µν

〈
: c̃c∂Xµ∂̄Xνeik1·X : (z1, z̄1)

× : c̃ceik2·X : (z2, z̄2) : c̃ceik3·X : (z3, z̄3)
〉

[8.146]
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and this lead to

Ss2(k1, ε1; k2; k3) = − iα′2

4
g2
cg
′
ce
−2λCXS2

CgS2
(2π)26δ26(

∑
i

ki)ε
1
µν

× |z12|α
′k1·k2+2|z13|α

′k1·k3+2|z23|α
′k2·k3+2

(
kµ2
z12

+
kµ3
z13

)(
kν2
z̄12

+
kν3
z̄13

)
[8.147]

Let us now see how we need to adapt this result. First we note that we have 25 non-
compact dimensions in stead of 26. The factor (2π)26δ26(

∑
i ki) came from the zero

mode contribution, see the derivation of (6.2.13). The compact dimension has no zero
mode as such a mode cannot satisfy the boundary conditions. So these factors become
(2π)25δ25(

∑
i ki). Moreover the holomorphic and anti-holomorphic sectors split and as

X = XL+XR these two sectors only talk to one another. Ignoring the details of the overall
constant, for now, we thus find

Sµ[±]
3 (a) = c̃(2π)25δ25(

∑
i

ki)z
α′k1·k2L/2+1
12 z̄

α′k1·k2R/2+1
12 z

α′k1·k3L/2+1
13 z̄

α′k1·k3R/2+1
13

× zα
′k2L·k3L/2+1

23 z̄
α′k2R·k3R/2+1
23

(
kµ2L
z12

+
kµ3L
z13

)(
k25

2R

z̄12
+
k25

3R

z̄13

)
[8.148]

The remainder is analogous to the derivation of (6.6.14). The tachyon mass shell condition
implies that k1 · k2L,R = k1 · k3L,R = 0 and the gauge boson mass shell condition implies
that k2L,R · k3L,R = −4/α′. We thus get

Sµ[±]
3 (a) = c̃(2π)25δ25(

∑
i

ki)|z12|2|z13|2|z23|−2

(
kµ2L
z12

+
kµ3L
z13

)(
k25

2R

z̄12
+
k25

3R

z̄13

)
[8.149]

This enables us to write down immediately the corresponding result from [6.247]

Sµ[±]
3 (a) =

c̃

4
(2π)25δ25(

∑
i

ki)k
µ
23Lk

25
23R [8.150]

From this it follows that the second term is

Sµ[±]
3 (b) =

c̃

4
(2π)25δ25(

∑
i

ki)k
25
23Lk

µ
23R [8.151]

and thus

Sµ[±]
3 =

c̃

4
(2π)25δ25(

∑
i

ki)
(
kµ23Lk

25
23R ± k25

23Lk
µ
23R

)
[8.152]

But from momentum conservation in the non-compact dimensions we have

kµ23L = kµ2L − k
µ
3L = kµ2L + kµ1 + kµ2L → 2kµ2L = 2kµ2 [8.153]
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where we can ignore the kµ1 due to the Ward identity for a gauge boson ε · k1 = 0 as the
gauge boson vertex operator will be contracted with a polarisation vector. We also use the
fact that for the non-compact dimensions we don’t have a split of the momenta in a left-
and right handed part and kµ2L = kµ2R = kµ2 . We have, of course, similarly kµ23R → 2kµ2 .
Therefore

Sµ[±]
3 =

c̃

2
(2π)25δ25(

∑
i

ki)k
µ
2

(
k25

23R ± k25
23L

)
[8.154]

Finally we also write for the compact dimension

k25
23L = k25

2L − k25
3L = k25

2L + k25
1 + k25

2L → 2k25
2L [8.155]

where this time we have taken k1 → 0. Similarly we have k25
23R → 2k25

2R. This gives our
final result

Sµ[±]
3 = − c̃(2π)25δ25(

∑
i

ki)k
µ
2

(
k25

2L ± k25
2R

)
[8.156]

We will leave it to the reader to work out the proportionality constant. Filling in the
momenta (8.2.7) this gives

Sµ[+]
3 = − 2c̃(2π)25δ25(

∑
i

ki)k
µ
2

n2

R

Sµ[−]
3 = − 2c̃(2π)25δ25(

∑
i

ki)k
µ
2

w2R

α′
[8.157]

So one couples to the compact quantised compact momentum and the other one to the
winding number.

8.30 p 242: Eq. (8.3.8) The Mass-Shell Condition at R =
√
α′

We start from (8.3.1) and use k25
L,R = (α′)−1/2(n± w):

0 = (k25
L )2 +

4

α′
(N − 1) =

1

α′
[
(n+ w)2 + 4N − 4

]
⇒ 4 = (n+ w)2 + 4N

0 = (k25
R )2 +

4

α′
(Ñ − 1) =

1

α′

[
(n− w)2 + 4Ñ − 4

]
⇒ 4 = (n− w)2 + 4Ñ [8.158]

Note that there are also additional massless states at other values for the compactifi-
cation radius. Set R = 2(p/q)

√
α′ for integers p and q with p mod q = 0. The mass-shell

conditions then become

1 =
p2

q2
(n+ w)2 +N and 1 =

p2

q2
(n− w)2 + Ñ [8.159]
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This shows that we cannot have massless states for N, Ñ > 1. For N = Ñ = 1 the only
massless states have necessarily n = w = 0. For N = Ñ = 0 we get

1 =
p2

q2
(n+ w)2 and 1 =

p2

q2
(n− w)2 [8.160]

From this we get that (n + w)2 = (n − w)2, which implies that either n or w is zero. If
w = 0 then n2 = q2/p2. As n needs to be an integer we need p = 1 and s solution is given
by n = ±q. We have similar solutions for w when n = 0. In summary we have R = 2/q

√
α′

then we have the following massless states written as (n,w;NÑ):

(±q, 0; 0, 0); (0,±q; 0, 0); (0, 0, 1, 1) [8.161]

8.31 p 242: Eq. (8.3.9)-(8.3.10) The Special Massless States atR =
√
α′

We put the extra massless states at that level of the compactification radius in a table for
our convenience

n w N Ñ
√
α′k25L

√
α′k25R vertex operator

+1 +1 0 1 +2 0 ∂̄Xµeik·Xe+2i(α′)−1/2X25
L

−1 −1 0 1 −2 0 ∂̄Xµeik·Xe−2i(α′)−1/2X25
L

+1 −1 1 0 0 +2 ∂Xµeik·Xe+2i(α′)−1/2X25
R

−1 +1 1 0 0 −2 ∂Xµeik·Xe−2i(α′)−1/2X25
R

+2 0 0 0 +2 0 eik·Xe+2i(α′)−1/2X25
L

−2 0 0 0 −2 0 eik·Xe−2i(α′)−1/2X25
L

0 +2 0 0 0 −2 eik·Xe−2i(α′)−1/2X25
R

0 −2 0 0 0 +2 eik·Xe+2i(α′)−1/2X25
R

Table 8.2: Special massless states at R =
√
α′

In order to see what couples with what, let us take the (n,w,N, Ñ) = (0, 0, 0, 1) state in
(8.3.5). It is proportional to ∂X25∂̄Xµeik·X . Because there is an ∂X25 it can only have
a non-zero amplitude with another state if that state also has an X25

L in its vertex oper-
ator. This means that it can only couple to the states (n,w,N, Ñ) = (±1,±1, 0, 1) and
(n,w,N, Ñ) = (±2, 0, 0, 0) from the above tables. Under that gauge vector, these states
have a charge of ±1. They also have a charge zero under the gauge vector corresponding
to the XR symmetry. We thus have three operators that couple with one another on the
holomorphic side with charge 0,±1. The anti-holomorphic side has similarly three opera-
tors that couple with one another and have charge 0,±1. Each sector is neutral under the
action of the other one. The gauge group we have uncovered is thus SU(2)× SU(2).
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8.32 p 243: Eq. (8.3.12) The SU(2)× SU(2) Current Algebra

The three operators involving a ∂̄Xµ from an SU(2). The operator ∂X25∂̄Xµeik·X has zero
charge and so we can take this to be the j3. The operators ∂̄Xµeik·Xe±2i(α′)−1/2X25

L have
charge ±1 and hence are the j±. We can combine the latter to create the standard SU(2)
generators. Including appropriate normalisation these are (8.3.12).

8.33 p 243: Eq. (8.3.13) The SU(2) Current Algebra OPEs

We will just show this for a couple of OPEs. As a warm-up let us first do an easy one, the
normalisation of j3(z)

j3(z)j3(w) = − 1

α′
∂X25

L (z)∂X25
L (w) ∼ − 1

α′

(
− α′/2

(z − w)2

)
=

1

2(z − w)2
[8.162]

Marginally increasing the level of complexity and calling a = (α′)−1/2.

j3(z)j1(z) = ia∂X25
L (z) cos 2aX25

L (w) = ia∂X25
L (z)

1

2

(
e+2iaX25

L + e−2iaX25
L

)
(w) [8.163]

Now

∂X25
L (z)e±2iaX25

L (w) = ∂X25
L (z)

∞∑
k=0

(±2ia)k

k!
(X25

L )k(w)

= ∂z

∞∑
k=1

(±2ia)k

k!
k

[
−α
′

2
ln(z − w)

]
(X25

L )k−1(w)

= ∓ iaα′e±2iaX25
L (w)

z − w
[8.164]

and thus

j3(z)j1(z) =
ia

2

(
− iaα

′e+2iaX25
L (w)

z − w
+
iaα′e−2iaX25

L (w)

z − w

)

=
a2α′

2

e+2iaX25
L (w)− e−2iaX25

L (w)

z − w
=
i sin 2iaX25

L (w)

z − w
=
ij2(w)

z − w
[8.165]

We will leave the rest to the reader if he/she is bored enough to do this.
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8.34 p 243: Eq. (8.3.14) The Affine Lie Algebra Commutation Rela-
tions

This should be entirely standard by now, but in the spirit of being as complete as possible
we will do this. Our starting point is, of course, (2.6.14) which becomes in this case

[jim, j
j
n] =

∮
dz2

2πi
Resz1→z2z

m
1 z

n
2 j

i(z1)jj(z2)

=

∮
dz2

2πi
Resz1→z2z

m
1 z

n
2

[
δij

2(z1 − z2)2
+
iεijkjk(z2)

z1 − z2

]
=

∮
dz2

2πi
Resz1→z2z

m
1 z

n
2

[
−1

2
δij∂1

1

z1 − z2
+
iεijkjk(z2)

z1 − z2

]
=

∮
dz2

2πi
Resz1→z2

1
2δ
ijmzm−1

1 zn2 + zm1 z
n
2 iε

ijkjk(z2)

z1 − z2

=

∮
dz2

2πi

[m
2
δijzm+n−1

2 + iεijkjk(z2)zm+n
2

]
=
m

2
δijδm+n + iεijkjkm+n [8.166]

8.35 p 244: Eq. (8.3.15) The Relation Between the Gauge and the
Gravitational Coupling in the Compactified Dimension

(8.1.11) is g2
d = 2κ2

d/ρ
2, where ρ = R =

√
α′ is the compactified dimension. Using d = 25,

this immediately gives (8.3.15).

8.36 p 244: Eq. (8.3.16) The Magnitude of the String Length
√
α′

Here we are back in traditional Kaluza-Klein with five dimensions. The compactified fifth
dimension, confusingly x25, gives rise to the gauge field with gauge-coupling g4. This
gauge coupling is, give or take, of the order of one. Indeed for QED the coupling is the fine
structure constant α ≈ 1/137. The weak gauge coupling is also smaller than one, hence
perturbation theory works there as well. For QCD the coupling constant is larger and
perturbation theory fails, but as we increase the energy of the system, we need to take into
account the renormalisation of the coupling constants. For QED and the weak interaction,
the coupling constant slowly increase, for QCD it decreases – asymptotic freedom. So in
terms of order of magnitudes, saying that the coupling constants are of the order of one,
isn’t too far of the mark. Setting g2

4 ≈ 1 we get
√
α′ ≈

√
2κ4.
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8.37 p 244: Eq. (8.3.17) The Effective Gauge Coupling

We refer to table 8.3 for the mass dimensions of the different fields. As [∂] = [A] = +1
and we have Dµ = ∂µ + igAµ we thus have [g] = 0. The gauge group coupling constant
is dimensionless (and hence a gauge theory is renormalisable). The gravitational coupling
appears in the Einstein-Hilbert action κ−2

∫
d4x
√
gR. With [d4x] = −4, [g] = 0 and [R] = 2

we have −[κ2
4]−4+2 = 0 or [κ2

4] = −2 (and hence quantum gravity is not renormalizable).
As energy has mass-dimension one; recall E = mc2, we can make a dimensionless effective
gravitational coupling

g2
G,4(E) = κ2

4E
2 [8.167]

with indeed [g2
G,4(E)] = [κ2

4] + [E2] = −2 + 2 = 0.
The gauge coupling g4 gets renormalised as well so has an energy dependence, but for

Yang-Mills type theory this change in running of the coupling constant is at a snail’s pace
and involves the logarithm of the energy; see your favourite book on QFT, or even better,
my QFT Notes. Using (8.3.16) we also have

κ2
4 = E−2g2

G,4(E) =
α′

2
g2

4 ⇒ g2
G,4(E) =

α′

2
E2g2

4 [8.168]

The string mass scale is where the string effects become relevant, i.e. when the energy of
the system is of the order α−1/2, in which case g2

G,4(E) ≈ g2
4, i.e. when the gravitational

coupling is of the order of the gauge coupling.

8.38 p 245: Eq. (8.3.20) The Gauge Boson Mass for near the Enhanced
Symmetry SU(2)× SU(2)

The general mass-shell formula is given by (8.3.2)

m2 =
n2

R2
+
w2R2

α′2
+

2

α′
(N + Ñ − 2) [8.169]

The enhanced symmetry states at (n,w,N, Ñ) = (±1,±1, 0, 1) or (±1,∓1, 1, 0) and there-
fore

m2 =
1

R2
+
R2

α′2
− 2

α′
[8.170]
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and we see that they are massless as R =
√
α′. We now take R2 = α′+ ε with ε small. This

gives

m2 =
1

α′ + ε
+
α′ + ε

α′2
− 2

α′

=
1

α′

(
1− ε

α′
+

ε2

α′2
+ o(ε3) + 1 +

ε

α′
− 2

)
=
ε2

α′3
+ o(ε3) =

(R2 − α′)2

α′3
+ o(ε3) [8.171]

We can rewrite this, to lowest order as, as m2 = (R2 − α′)2/R2α′2. Indeed

(R2 − α′)2

R2α′2
=

ε2

α′2(α′ + ε)
=

ε2

α′3

(
1− ε

α′

)
=

ε2

α′3
+ o(ε3) [8.172]

Taking the square root we find

m =
|R2 − α′|
Rα′

[8.173]

In order to show that this is the same as the second equation of (8.3.20), let us square both
sides. We need to show that, to lowest order,

(R2 − α′)2

R2
= 4

(
R−
√
α′
)2

[8.174]

Now R2 = α′ + ε so that

R =
√
α′ + ε =

√
α′
√

1 +
ε

α′
=
√
α′
(

1 +
ε

2α′

)
[8.175]

The LHS of [8.174] becomes

LHS =
ε2

α′(1 + ε/2α′)2
=

ε2

α′(1 + ε/α′)
=
ε2

α′

(
1− ε

α′

)
=
ε2

α′
+ o(ε3) [8.176]

The RHS of [8.174] is

RHS = 2
[√

α′
(

1 +
ε

2α′

)
−
√
α′
]2

= 4

(
ε

2
√
α′

)2

=
ε2

α′
+ o(ε3) [8.177]

so that LHS = RHS, showing (8.3.20).
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8.39 p 245: The Ten Massless Scalars at the Enhanced Symmetry Com-
pactification Radius

The first two massless scalars are from the list (8.3.3). They are the dilaton, which is
the traceless part of αµ−1α

ν
−1 |0; k〉 and the modulus for the radius of compactification,

α25
−1α

25
−1 |0; k〉. The enhanced symmetry providers eight more scalars. Four come from

the states (8.3.9) with vertex operators (8.3.11). These split into a spacetime vector in the
non-compactified dimension with µ = 0, · · · , 24 and a spacetime scalar for the compactified
component µ = 25. This gives four spacetime scalars

∂̄X25 eik·Xe±2iα−1/2X25
L and ∂X25 eik·Xe±2iα−1/2X25

R [8.178]

Finally, there are four more massless scalars coming from (8.3.10). These have vertex
operator

eik·Xe±2iα−1/2X25
L e±2iα−1/2X25

R [8.179]

8.40 p 245: Eq. (8.3.21) The (3, 3) of SU(2)× SU(2)

We consider the vertex operators V ij = ji̃jeik·X . From the definition of the ji and ̃j in
(8.3.1) it is clear that these 9 vertex operators create 9 out of the 10 massless scalars. The
one not created by these operators is the dilaton.

The operators V 1j , V 2j and V 3j transform under the left SU(2). Each such operator has
three components, e.g. V 1j consists of V 11, V 12 and V 13. It thus forms a three-dimensional
representation of the first SU(2) of SU(2) × SU(2) which is denoted by 3. Similarly the
V i1, V i2 and V i3 from a three-dimensional representation of the second SU(2) of SU(2)×
SU(2). The currents V ij thus form a (3,3) of SU(2)× SU(2).

8.41 p 246: Eq. (8.3.22) The Invariance of the Potential U(M) under
SU(2)× SU(2)

We wish to show that the potential u(m) = εijkmimjmk is invariant under an SU(2)
transformation. We are using small letters here as we are only considering the left-handed
side of the potential. The situation for the right-handed side is entirely similar. An SU(2)
transformation is obtained by acting with a generator t` on such a field. Here k = 1, 2, 3
the dimension of SU(2). This means that we wish to show that the potential is invariant
under a transformation mi −→ (t`m)i. As m is in the 3 representation of SU(2), i.e. the
adjoint representation, the generators are given by the structure constants: (t`

)
ij

= ε`ij .
We are being somewhat sloppy with upstairs and downstairs indices, but they are raised
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and lowered with a Kronecker delta, so it doesn’t matter. We thus need to check the
potential under the transformation4 mi −→ (δij + iεε`ij)mj . To lowest order in ε we have

u(m) −→ εijk(δim + iεε`im)mm(δjn + iεε`jn)mn(δkp + iεε`kp)mp

= εijkmimjmk + iεεijk
(
ε`imδjnδkp + δimε`jnδkp + δimδjnε`kp

)
mmmnmp

= u(m) + iε
(
εinpε`im + εmjpε`jn + εmnkε`kp

)
mmmnmp

= u(m) + iε
(
εinpεim` + εipmεin` + εimnεip`

)
mmmnmp

= u(m) + iε
(
δnmδp` − δn`δpm + δpnδm` − δp`δmn + δmpδn` − δm`δnp

)
mmmnmp

= u(m) [8.180]

Adding the right-handed side we see that U(M) is invariant under an SU(2) × SU(2)
transformation.

8.42 p 246: Eq. (8.3.24) The Equations for the Scalar Fields Mij

If only the diagonal elements of M are nonzero then U(M) = detM = M11M22M33 and
so the equation of motion U(M) = 0 implies M11M22M33 = 0. In addition, ∂U(M)/∂Mij

is zero automatically for i 6= j. For i = j we have, e.g. 0 = ∂U(M)/∂M11 = M22M33.
Similarly, we have M11M33 = 0 and M22M33 = 0.

To solve these equations, we note that a first solution is M11 = M22 = M33 = 0; this
solution does not have any of the nine scalars. Another solution is M11 = M22 = 0 and
M33 6= 0, and similar solutions for M22 6= 0 and M33 6= 0 by symmetry. There are no other
solutions.

8.43 p 247: Eq. (8.3.27) The Momenta under T -Duality

Under n←→ w and R←→ α′/R we have

p25
L =

n

R
+
wR

α′
−→ w

R

α′
+
n

R
= p25

L

p25
R =

n

R
− wR

α′
−→ w

R

α′
− n

R
= −

(
n

R
− wR

α′

)
= −p25

R [8.181]

4The εijk are the generators of the Lie algebra su(2) to find the group generator we need to
exponentiate the Lie algebra generators. We are only considering an infinitesimal transformation
with parameter ε, but the group is connected.
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8.44 p 247: Eq. (8.3.28) T -Duality gives Equivalent Theories

We have from (8.2.16), dropping the superscript 25 for convenience,

+XL = + xL −
iα′

2
pL ln z + i

√
α′

2

∑
m 6=0

αm
mzm

−XR = − xR +
iα′

2
pR ln z̄ − i

√
α′

2

∑
m6=0

α̃m
mz̄m

[8.182]

In XR we can change α̃m into −α̃m. This doesn’t change the commutation relations
[α̃m, α̃n] = mδm+2 or anything else. Similarly xR is just the c.o.m. momentum. The
only real impact is that pR comes with the wrong sign. Now pR is a combination of mo-
mentum and winding number, but we know from (8.3.27) that we can change pR into −pR
by interchanging n and w and replacing R by α′/R. So the theory with X ′ = XL − XR

is just the theory with X = XL + XR after the T -duality transformation. But the theory
with X and X ′ are exactly the same CFTs, and this is a non-perturbative statement, as they
have the same OPE and energy-momentum tensor. The two theories related by T -duality
are thus the same, also at a non-perturbative level.

8.45 p 248: Eq. (8.3.30) The Gravitational Coupling under T -Duality

Consider the scattering amplitudes of gravitons with n = w = 0. The amplitude must be
the same under n ←→ w and ρ −→ α′/ρ. In this particular case, it is only the compactifi-
cation radius that changes. The amplitude of these gravitons depends on the gravitational
coupling constant in the non-compactified dimensions – as these are the dimensions in
which we define the graviton – i.e. κ25. Under T -duality that coupling constant must be
unchanged, i.e. κ25 −→ κ′25 = κ25. We know the relation between the gravitational cou-
pling in the non-compactified dimensions and the gravitational coupling in the full theory:
κ2

26 = 2πρκ2
25.5 After a T -duality transformation this becomes κ′26 =

√
2πα′/ρκ′25. Setting

κ′25 = κ25 then gives

κ26√
2πρ

=
κ′26√

2πα′/ρ
⇒ κ′26 =

√
α′

ρ
κ26 [8.183]

5Recall that this is due to the fact that we assume that there is no dependence on the compacti-
fied dimension, so it can be integrated out. It just sits there and does nothing.
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8.46 p 248: Eq. (8.3.31) The Dilaton under T -Duality

The low-energy effective action (8.1.9) is of the form

S ∝
∫
ddx

√
−Gd e−2Φ(Rd + · · · ) [8.184]

where Φ is the dilaton field. The Einstein-Hilbert action for the full theory is

S ∝ κ−2
26

∫
ddx

√
−GdRd [8.185]

and thus κ−2
26 ∝ e−2Φ or κ26 ∝ eΦ. Plugging this in (8.3.30) gives (8.3.31).

8.47 p 249: Eq. (8.4.2) The Low Energy Action for k Compactified
Dimensions

This is an extension of (8.1.9) and (8.1.13) for the case that more than one dimension is
compactified. We will not give a full derivation, but only check a number of things.

Let us first recall the origin of this equation. Go back to section 3.7 of Joe’s book,
where he analysed Weyl invariance of the non-linear sigma model

∫
d2σGµν∂aXµ∂

aXν

and showed how this lead to the requirement of the vanishing of the β function. This in
turn gave the Einstein equations plus string corrections. He then wrote the most general
non-linear sigma model, by introducing, next to the spacetime metric Gµν , also the anti-
symmetric tensor Bµν and the dilaton Φ. This gives the more general equations for the
vanishing of the β functions, viz. (3.7.14). Next, he claimed, and we checked, that these
equations followed from the variation principle with a low energy action given by (3.7.20).

Let us now check the number of scalars. The D = 26-dimensional metric splits into
GMN = (Gµν , Gµm, Gmn) with µ, ν = 0, · · · , d = 26 − k and m,n = 1, · · · , k. The Gµν is
the (spacetime) graviton. TheGµm are k spacetime vector fields and theGmn are spacetime
scalars. Gmn is symmetric so there are k(k+1)/2 such scalars. Similarly, the anti-symmetric
tensor splits into BMN = (Bµν , Bµm, Bmn). Here again, Bmn are spacetime scalars and due
to antisymmetry there are k(k−1)/2 of them. In total we thus have k(k+1)/2+k(k−1)/2 =
k2 scalars from both these fields.

Next, let us first check that for one compactified dimension (8.4.2) reduces to (8.1.9)
and (8.1.13). In that case m and n can only take the value d and Gdd = e2σ and Bdd = 0
by symmetry. The dilaton is defined as Φd = Φ− 1

4 ln detGmn which becomes

Φd = Φ− 1

4
ln det e2σ = Φ− 1

4
ln e2σ = Φ− σ

2
[8.186]
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which is the same formula as used in (8.1.9). We thus get in this case for (8.4.2)

S =
(2πR)1

2κ2
0

∫
ddx

√
−Gd e−2Φd

[
Rd + 4∂µΦd∂

µΦd −
1

4
e−2σe−2σ∂µe

2σ∂µe2σ

− 1

4
e2σFµνF

µν − 1

4
e−2σHdµνH

µν
d − 1

12
HµνλH

µνλ
]

=
πR

κ2
0

∫
ddx

√
−Gd e−2Φd

[
Rd + 4∂µΦd∂

µΦd − ∂µσ∂µσ

− 1

4
e2σFµνF

µν − 1

4
e−2σHdµνH

µν
d − 1

12
HµνλH

µνλ
]

[8.187]

and this is indeed (8.1.9) plus (8.1.13).

Let us now turn to the longer stuff. We first find the relationship between the determi-
nants of the D and the d-dimensional metric. As in the derivation of (8.1.9), we use a ˜ to
denote D dimensional quantities. The D dimensional metric is given by the generalisation
of (8.1.2), or in our case [8.22],

G̃µν =Gµν +GmnA
m
µ A

n
ν

G̃µm =GmnA
n
µ

G̃mn =Gmn [8.188]

Note that we now have k vector fields Amµ for m = 1, · · · , k. The inverse metric is

G̃µν =Gµν

G̃µm = −GµνAmν
G̃mn =Gmn +GµνAmµ A

n
ν [8.189]

One easily checks this:

G̃µN G̃
Nρ = G̃µνG̃

νρ + G̃µnG̃
nρ = (Gµν +GmnA

m
µ A

n
ν )Gνρ +GmnA

m
µ (−GρσAmσ )

=GµνG
νρ +GmnA

m
µ A

n
νG

νρ −GmnGρσAmµ Amσ = GµνG
νρ = δρµ

G̃µN G̃
N` = G̃µνG̃

ν` + G̃µnG̃
n` = (Gµν +GmnA

m
µ A

n
ν )(−GνσA`σ) +GknA

n
µ(Gk` +GσνAkσA

`
ν)

= −GµνGνσA`σ −GmnGνσAmµ AnνA`σ +GknG
k`Anµ +GknG

σνAnµA
k
σA

`
ν

= −A`µ +AµnA
σnA`σ +A`µ +AkµA

kνA`ν = 0 [8.190]

and finally

G̃mN G̃
N` = G̃mνG̃

ν` + G̃mnG̃
n` = GmnA

n
ν (−GµνA`µ) +Gmn(Gn` +GµνAnµA

`
ν)

= −GmnGµνAnνA`µ +GmnG
n` +GmnG

µνAnµA
`
ν

= −AµmA`µ + δ`m +AνmA
`
ν = δ`m [8.191]
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As is the case for a single compactified dimension, the specific choice of metric implies
that the determinant of the D dimensional metric factorises:

det G̃ = detG detGmn [8.192]

Just to remind ourselves here G is the D dimensional metric GD, G is the d dimensional
metric Gd and Gmn is the metric in the compactified dimensions. This property can either
be worked out explicitly, or as in the case of one compactified dimension, by noting the
structure of the rows. We can rewrite this as√

G̃ =
√
G
√
Gmn =

√
G exp ln

√
detGmn =

√
G exp

1

2
ln detGmn [8.193]

and thus√
G̃e−2Φ =

√
G̃e−2Φe

1
2

ln detGmn =
√
G̃e−2(Φ− 1

4
ln detGmn) =

√
G̃e−2Φd [8.194]

where Φd = Φ − 1
4 ln detGmn. This explains in (8.4.2) the coefficients of the integrand in

front of the square brackets.
It remains to derive what is in the square brackets. The first two terms, the first part

of the second line and the first term of the third line are merely the decomposition of R̃.
We will not do the detailed calculation, but remind ourselves that we just showed that
it reduces to the correct formula for k = 1 and that it is the natural generalisation of
one compactified dimension to k compactified dimensions. Note that we now have k field
strengths Fmµν = ∂µA

m
ν − ∂νAmµ .

Let us now turn to the antisymmetric product in (3.7.20), i.e. − 1
12HMNLH

MNL. This
is

− 1

12
HMNLH

MNL = G̃MP G̃NQG̃LRHMNLHPQR

= − 1

12
G̃MP G̃NQG̃LR(∂MBNL + ∂NBLM + ∂LBMN )

× (∂PBQR + ∂QBRP + ∂RBPQ) [8.195]

Clearly if we consider all the indices to be in the non-compact dimensions we find a con-
tribution

− 1

12
HMNLH

MNL = − 1

12
HµνλH

µνλ + · · · [8.196]

Where we have also used the fact that G̃µν = Gµν . We now focus on the terms that have

— 464—



Joe’s Book (version of November 20, 2020) Notes from Stany M. Schrans

the same index in the derivative, i.e.

HMNLH
MNL = G̃MP G̃NQG̃LR(∂MBNL∂PBQR + ∂NBLM∂QBRP + ∂LBMN∂RBPQ) + · · ·

= G̃NQG̃LR∂MBNL∂
MBQR + G̃MP G̃LR∂NBLM∂

NBRP

+ G̃MP G̃NQ∂LBMN∂
LBPQ + · · ·

= 3G̃NQG̃LR∂MBNL∂
MBQR∂

MBQR + · · ·
= 3G̃NQG̃LR∂µBNL∂

µBQR + · · · [8.197]

In the last two lines we have renamed the summation indices and used the fact that we
assume that there is no dependence on the coordinates of the compact dimensions, ∂m = 0.
If we now take the remaining indices those of the compact dimensions, we find, in addition
to [8.196], a contribution6

− 1

12
HMNLH

MNL = − 1

12
HµνλH

µνλ − 1

4
GnqG`r∂µBn`∂

µBqr + · · · [8.198]

and we have already recovered two of the terms in the square bracket of (8.4.2).
One can proceed in the same way with all the possible combinations of indices to

recover (8.4.2).

8.48 p 249: Eq. (8.4.3) The Antisymmetric Tensor in the Worldsheet
Lagrangian

The antisymmetric tensor appears in the worldsheet Lagrangian in the nonlinear sigma
model in (3.7.6)

S =
1

4πα′

∫
d2σ
√
g
(
· · ·+ iεabBµν∂aX

µ∂bX
ν + · · ·

)
[8.199]

We now have

Bmn∂a

(√
gεabXm∂bX

n
)

=Bmn

(
∂a
√
g
)
εabXm∂bX

n +
√
gεab∂aX

m∂bX
n +
√
gεabXm∂a∂bX

n

=Bmn
√
gεab∂aX

m∂bX
n [8.200]

The last term vanishes due to symmetry considerations and the first because we have fixed
the gauge to Euclidean spacetime.

6G̃mn = Gmn+GµνAmµ A
n
ν so there will also be contributions quadratic inA, but we are focussing

on the terms that don’t have any A’s.
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8.49 p 249: Eq. (8.4.4) The Zero Mode of the Compactified String

We have

Xm(σ1 + 2π, σ2) =xm(σ2) + wmR(σ1 + 2π) = Xm(σ1, σ2) + 2πwmR [8.201]

Here wm is the winding number in the m-th dimension and not some winding number to
the m-th power. We see that we recover the boundary condition (8.2.3) as we should.

8.50 p 249: Eq. (8.4.5) The Worldsheet Action for the Zero-Mode of
the Compactified Dimensions

We plug the zero-mode contribution (8.4.4) in the nonlinear worldsheet action (3.7.6), i.e.

S =
1

4πα′

∫
d2σ
√
g
[(
gabGµν(X) + iεabBµν

)
∂aX

µ∂bX
ν + α′RΦ(X)

]
[8.202]

We fix the gauge gab = δab and ignore the dilaton term because we are considering the low
energy action, i.e the lowest order in α′. We focus on the compactified dimensions only
and find for the Lagrangian

L =
1

4πα′

[
Gmn

(
∂1X

m∂1X
n + ∂2X

m∂2X
n
)

+ 2iBmn∂1X
m∂2X

n + · · ·
]

[8.203]

Now

∂1X
m = ∂1

[
xm(σ2) + wmRσ1

]
= wmR

∂2X
m = ∂2

[
xm(σ2) + wmRσ1

]
= ẋm [8.204]

and thus

L =
1

4πα′

[
Gmn

(
wmRwnR+ ẋmẋn

)
+ 2iBmnw

mRẋn
]

=
1

2π

[
1

2α′
Gmn

(
wmRwnR+ ẋmẋn

)
− i

α′
Bmnẋ

mwnR

]
[8.205]

We have interchanged the dummy indices m and n in the last term to obtain a minus sign.
This is in line with the correction on Joe’s errata page. I am not sure what happens with
the factor 1/2π but it is not relevant for our purposes.

8.51 p 249: Eq. (8.4.6) The Canonical Momenta of the Zero Modes

We have by definition

pm =
∂L

∂(∂σ2
(M)

xm)
=

∂L
∂(∂iσ2xm)

= − ∂L
i∂ẋm

[8.206]
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where σ2
(M) = σ0 is in Minkowski signature and σ2

(M) = iσ2 is the Wick rotation. With
vm = iẋm we thus have

pm = − ∂L
∂vm

= −1

i

(
1

2α′
Gkn2δkmẋ

n − i

α′
Bknδ

k
mw

nR

)
=

1

α′
(iGmnẋ

n +Bmnw
nR) =

1

α′
(Gmnv

n +Bmnw
nR) [8.207]

8.52 p 250: Eq. (8.4.7) The Quantisation of the Canonical Momenta
of the Zero Mode

Using pm = nm/R with nm ∈ Z in (8.4.6) we have

nm
R

=
1

α′
[vm +Bmnw

nR] [8.208]

with vm = Gmnv
n. From this it follows that

vm = α′
nm
R
−BmnwnR [8.209]

8.53 p 250: Eq. (8.4.8) The Zero Mode Contribution to the Hamilto-
nian

The Hamiltonian H of a system with generalised coordinates qi and canonical momenta pi
for a given Lagrangian isH =

∑
i q̇
ipi−L. As the canonical pair of coordinates is (−vm, pm),

see (8.4.6), we thus find for the contribution of the zero modes to the Hamiltonian

H = − (−v̇mpm) + L

= v̇m
1

α′
[Gmnv

n +Bmnw
nR] +

[
1

2α′
Gmn

(
wmRwnR+ ẋmẋn

)
− i

α′
Bmnẋ

mwnR

]
=

1

α′

[
vmGmnv

n + vmBmnw
nR+

1

2
Gmnw

mwnR2 +
1

2
Gmn(−ivm)(−ivn)

− iBmn(−ivm)wnR
]

=
1

2α′
Gmn(vmvn + wmwnR2) [8.210]

There seems to be an overall minus sign that I can’t trace, but this form is positive definite,
so it must be correct.
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8.54 p 250: Eq. (8.4.9) The Compactified Closed String Mass Formula

From (8.4.9b) we have

vmL v
n
L + vmR v

n
R = (vm + wmR)(vn + wnR) + (vm − wmR)(vn − wnR)

= 2(vmvn + wmwnR2) [8.211]

The mass formula (4.3.31) and (4.3.32) gives α′m2/4 = L0 +N − 1 = L̃0 + Ñ − 1 so that
α′m2/2 = L0 + L̃0 +N + Ñ − 2. Now L0 + L̃0 is nothing but the Hamiltonian so we have

α′

2
m2 =H +N + Ñ − 2 =

1

2α′
Gmn(vmvn + wmwnR2) +N + Ñ − 2

=
1

2α′
Gmn

1

2
(vmL v

n
L + vmR v

n
R) +N + Ñ − 2 [8.212]

or

m2 =
1

2α′2
Gmn(vmL v

n
L + vmR v

n
R) +

2

α′
(N + Ñ − 2) [8.213]

What is the interpretation of this? Let us recall the case of one compactified dimension
where the momenta split in a left- and a right-moving part, (8.2.7), i.e. pL,R = n/R ±
wR/α′. We now have a momentum

vmL,R = vm ± wmR = α′
nm
R
−BmnwnR± wmR

=α′
(
nm
R
± wmR

α′

)
−BmnwnR = α′p

[B=0]
L,R −BmnwnR [8.214]

We see that the appearance of the the spacetime scalars Bmn shifts the momenta of states
with non-zero winding numbers, and accordingly also the mass of these states.

8.55 p 250: Eq. (8.4.10) The L0 − L̃0 Constraint for the Compactified
Closed String

The second constraint from (4.3.31) and (4.3.32) is that L0 +N = L̃0 + Ñ . This gives with
L0 = α′(p2

L +m2)/4 and L̃0 = α′(p2
R +m2)/4

0 =α′(p2
L +m2)/4 +N − α′(p2

R +m2)/4− Ñ

=
1

4α′
(v2
L − v2

R) +N − Ñ [8.215]

or

v2
L − v2

R + 4α′(N − Ñ) = 0 [8.216]
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As v2
L,R = Gmnv

m
L,Rv

n
L,R this is the first line of (8.4.10). To get the second line, we work

out

v2
L − v2

R = (vm + wmR)2 − (vm − wmR)2 = 4vmw
mR

= 4
(
α′
nm
R
−BmnwnR

)
wmR = 4α′nmw

m [8.217]

In the last line we have used (8.4.7) and the antisymmetry of Bmn. The constraints [8.216]
thus becomes

0 = 4α′nmw
m + 4α′(N − Ñ) = 4α′(nmw

m +N − Ñ) [8.218]

8.56 p 250: Eq. (8.4.12) The World-Sheet Action for the Bmn Field on
the Torus

The Lagrangian contribution in this case is, using (8.4.3)

L =
1

4πα′
iεabBmn∂aX

m∂bX
n + · · · = 1

4πα′
i2Bmn∂1X

m∂2X
n + · · ·

=
1

2π

iBmn
α′

wm1 Rw
n
2R+ · · · = 1

2π
ibmnw

m
1 w

n
2 + · · · [8.219]

The world-sheet action is obtained by integrating over d2σ with both σ1 and σ2 ranging
from 0 to 2π. In the cae of constant Bmn, which is what we are considering, this gives a
factor (2π)2 and thus

S = 2πibmnw
m
1 w

n
2 + · · · [8.220]

We now estimate the partition function from the canonical approach and show that
we recover the same phase. So we need to work out Zk = (qq̄)−1/24tr qL0 q̄L̃0 . For the
compactified spacetime dimensions we have

L0 =
1

4α′
v2
L +

∞∑
k=1

Gmnα
m
−kα

n
k

L̃0 =
1

4α′
v2
R +

∞∑
k=1

Gmnα̃
m
−kα̃

n
k [8.221]

and we can repeat the calculation of (8.2.9) for more than one compact dimension

Zk = (qq̄)−1/24tr q
1

4α′ v
2
L+
∑∞
k=1 Gmnα

m
−kα

n
k q

1
4α′ v

2
R+
∑∞
k=1 Gmnα̃

m
−kα̃

n
k [8.222]
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The oscillator part and the (qq̄)−1/24 gives as usual the Dedekind function for each com-
pactified dimension. Thus

Zk = |η(τ)|−2ktr q
1

4α′ v
2
Lq

1
4α′ v

2
R

= |η(τ)|−2k
∑

n,w∈Zk

eiπτ
1

2α′ v
2
Le−iπτ

1
2α′ v

2
R

= |η(τ)|−2k
∑

n,w∈Zk

e
π

2α′ (iτ1−τ2)v2
Le

π
2α′ (−iτ1−τ2)v2

R

= |η(τ)|−2k
∑

n,w∈Zk

e
iπτ1
2α′ (v2

L−v
2
R)e−

πτ2
2α′ (v

2
L+v2

R) [8.223]

We already found that v2
L − v2

R = 4α′nmw
m in [8.217]. We also have

v2
L + v2

R = (vm + wmR)2 + (vm − wmR)2 = 2(v2
m + w2

mR
2) [8.224]

Therefore

Zk = |η(τ)|−2k
∑

n,w∈Zk

e2πiτ1nmwme−
πτ2
α′ (v2

m+w2
mR

2) [8.225]

We now have

v2
m =Gmnvmvn = Gmn

(
α′nm
R
−BmkwkR

)(
α′nn
R
−Bn`w`R

)
=
α′2

R2
nmn

m − 2α′GmnBn`w
`nm +R2GmnBmkBn`w

kw` [8.226]

and thus

Zk = |η(τ)|−2k
∑

n,w∈Zk

e2πiτ1nmwme−
πτ2
α′ (α

′2
R2 nmn

m−2α′GmnBn`w
`nm+R2GmnBmkBn`w

kw`+w2
mR

2)

= |η(τ)|−2k
∑

n,w∈Zk

e−πτ2
α′
R2 nmn

m+2πi(τ1wm−iτ2GmnBn`w`)nm−
πτ2R

2

α′ (GmnBmkBn`w
kw`+w2

m)

= |η(τ)|−2k
∑

n,w∈Zk

e−πτ2
α′
R2 nmn

m+2πi(τ1δm` −iτ2G
mnBn`)w`nm

× e−
πτ2R

2

α′ (GmnBmkBn`+Gk`)w
kw` [8.227]

As a quick check, let us set k = 1 and hence also Bmn = 0. Then

Z1 = |η(τ)|−2
∑
n,w∈Z

e−πτ2
α′
R2 n

2+2πiτ1wn−πτ2R
2

α′ w2

[8.228]
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and we recover the case of a single compactified dimension [8.87] as we should indeed.
In order to show that we recover from the path integral the partition function for the

shifted spectrum, we need a generalisation of the Poisson resummation formula (8.2.10)
which is ∑

n∈Zk

e−πS
αβnαnβ+2πibαnβ = S1/2

∑
n∈Zk

e−πSαβ(nα−bα)(nβ−bβ) [8.229]

Here Sαβ is a symmetric invertible matrix with inverse Sαβ and S = detSαβ. We will not
prove this, but just check the k = 1 case, when it becomes∑

e−πSn
2+2πibn = S−1/2

∑
e−π(m−b)2/S [8.230]

which is precisely (8.2.10). We now apply this to [8.227]. We have

Smn =
α′

R2
τ2G

mn

bm = (τ1δ
m
` − iτ2G

mnBn`)w
` [8.231]

Smn is obviously symmetric and invertible with

Smn =
R2

α′τ2
Gmn [8.232]

and

S = detSmn =

(
R2

α′τ2

)k
detGmn [8.233]

Applying the Poisson resummation formula then gives

Zk = |η(τ)|−2k Rk

(α′τ2)k/2
detGmn

∑
n,w∈Zk

e
−π R2

α′τ2
Gmn[nm−(τ1δm` −iτ2G

mkBk`)w`][nn−(τ1δnp−iτ2GnrBrp)wp]

× e−π
τ2R

2

α′ (GmnBmkBn`+Gk`)w
kw` [8.234]

Let us work out the argument of the exponential

a = − πR2

α′τ2

[
Gmn(nmnn − τ1n

mδnpw
p + iτ2G

nrBrpw
pnm

− τ1δ
m
` w

`nn + τ2
1 δ

m
` δ

n
pw

`wp − iτ1τ2δ
m
` G

nrBrpw
`wp

+ iτ2G
mkBk`w

`nn − iτ1τ2G
mkBk`δ

n
pw

`wp − τ2
2G

mkBk`G
nrBrpw

`wp

+ τ2
2G

mnBmkBn`w
kw` + τ2

2Gk`w
kw`
]

[8.235]

— 471—



Joe’s Book (version of November 20, 2020) Notes from Stany M. Schrans

Denoting a · b = Gmna
mbn and a2 = a · a this gives

a = − πR2

α′τ2

(
n2 − 2τ1n · w + τ2

1w
2 + 2iτ2GmnG

nrBrpw
pnm − 2iτ1τ2Gmnδ

m
` G

nrBrpw
`wp

− τ2
2GmnG

mkBk`G
nrBrpw

`wp + τ2
2G

mnBmkBn`w
kw` + τ2

2w
2
)

= − πR2

α′τ2

[
n2 − 2τ1n · w + (τ2

1 + τ2
2 )w2 + 2iτ2Bmpw

pnm + 2τ1τ2B`pw
`wp

+ τ2
2 (−Bn`GnrBrpw`wp +GmnBmkBn`w

kw`)
]

= − πR2

α′τ2

[
n2 − 2τ1n · w + (τ2

1 + τ2
2 )w2 + 2iτ2Bmpw

pnm
]

[8.236]

We use [8.93]. i.e. |m− wτ |2 = m2 + w2(τ2
1 + τ2

2 )− 2mwτ1 and Bmn = α′bmn/R
2 to get

a = − πR2

α′τ2

(
|n− wτ |2 + 2iτ2

α′

R2
bmpw

pnm
)

= − πR2

α′τ2
|n− wτ |2 − 2πibmpw

pnm [8.237]

and so our partition function becomes

Zk =
Rk

(α′τ2)k/2
detGmn |η(τ)|−2k

∑
n,w∈Zk

e
− πR

2

α′τ2
|n−wτ |2−2πibmpwpnm [8.238]

Finally, using the partition function for the uncompactified dimension (7.2.9), i.e. |η(τ)|−2 =
(4π2α′τ2)1/2ZX(τ) we find

Zk =
Rk

(α′τ2)k/2
detGmn

[
(4π2α′τ2)1/2ZX(τ)

]k ∑
n,w∈Zk

e
− πR

2

α′τ2
|n−wτ |2−2πibmpwpnm

= (2πR)k detGmn ZX(τ)k
∑

n,w∈Zk

e
− πR

2

α′τ2
|n−wτ |2−2πibmpwpnm [8.239]

and we indeed see that the the calculation of the partition function from the canonical
approach also gives the phase (8.4.12), i.e 2πibmpw

pnm that we see in the path integral.

8.57 p 250: Eq. (8.4.13) Introducing the Spacetime Tetrad

If we write Gmn = erme
r
n, with r = 1, · · · , k, then the corresponding term in the worldsheet

Lagrangian becomes

L =
1

4πα′

∫
d2σ erme

r
n∂aX

m∂bX
n + · · · = 1

4πα′

∫
d2σ ∂aX

r∂bX
r [8.240]
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where Xr = ermX
m. Here erm is the spacetime tetrad; it lives in the tangent space of

the spacetime coordinates Xm and so does not depend on the worldsheet coordinate, i.e
∂ae

r
m = 0 by construction. In terms of the Xr the action is now that of the free scalars and

so we can use that, including their standard OPE.

8.58 p 250: Eq. (8.4.14) The Momentum for the Vertex Operator with
Xr = ermX

m

We can write a vertex operator for the left-moving field Xm
L as

eipL·XL = eipLmX
m
L = eipLme

m
r X

r
L = ei(vLm/α

′)emr X
r
L = eikLrX

r
L [8.241]

where

kLr =
emr vLm
α′

[8.242]

Here we have used emr as the inverse of erm, i.e. emr e
r
n = δmn and have used [8.214], i.e.

vL = α′pL. A similar relation holds, of course for the right-moving part.

8.59 p 251: Eq. (8.4.15) The Mass Shell Conditions for the Vertex
Operator with Xr = ermX

m

For the mass-shell conditions, we just rewrite (8.4.9a) in terms of the "tetradic" spacetime
coordinates

m2 =
1

2α′2
Gmn(vmL v

n
L + vmR v

n
R) +

2

α′
(N + Ñ − 2)

=
1

2α′2
erme

r
n(α′ems k

s
Lα
′ent k

t
L + α′ems k

s
Rα
′ent k

t
R) +

2

α′
(N + Ñ − 2)

=
1

2
erme

r
ne
m
s e

n
t (ksLk

t
L + ksRk

t
R) +

2

α′
(N + Ñ − 2)

=
1

2
δrδrt (k

s
Lk

t
L + ksRk

t
R) +

2

α′
(N + Ñ − 2)

=
1

2
(krLk

r
L + krRk

r
R) +

2

α′
(N + Ñ − 2) [8.243]

We have been a bit sloppy with the location of the indices r, s, t but these live in a tangent
space and so the metric is flat and indices can be raised and lowered at will.
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For the second condition we use [8.216]

0 = v2
L − v2

R + 4α′(N − Ñ) = Gmnv
m
L v

n
L −GmnvmR vnR + 4α′(N − Ñ)

= erme
r
nα
′ems k

s
Lα
′ent k

t
L − ermernα′ems ksRα′ent ktR + 4α′(N − Ñ)

=α′2erme
r
ne
m
s e

n
t (ksLk

t
L − ksRktR) + 4α′(N − Ñ)

=α′2δrsδ
r
t (k

s
Lk

t
L − ksRktR) + 4α′(N − Ñ)

=α′2(krLk
r
L − krRkrR) + 4α′(N − Ñ) [8.244]

8.60 p 251: Eq. (8.4.16) The OPE of Vertex Operators for Winding
States

: eikL·XL(z)+ikR·XR(z) : : eik
′
L·XL(0)+ik′R·XR(0) :

= zα
′kL·k′L/2z̄α

′kR·k′R/2 : ei(kL+k′L)·XL(z)+i(kR+k′R)·XR(z) :

= z`L·`
′
L z̄`R·`

′
R : ei(kL+k′L)·XL(z)+i(kR+k′R)·XR(z) : [8.245]

8.61 p 251: Eq. (8.4.17) The Phase for One Vertex Operator Encircling
Another One

This was already worked out in (8.2.20). The net phase when z1 circles z2 is

e2πiϕ = eπiα
′(kLk

′
L−kRk

′
R) = eπiα

′ 2
α′ (`L`

′
L−`R`

′
R) = e2πi(`L`

′
L−`R`

′
R) [8.246]

(8.4.17), i.e. ` ◦ `′ ∈ Z is the requirement that this OPE is single-valued.

8.62 p 251: Eq. (8.4.19) The Condition ` ◦ ` ∈ 2Z

The requirement that L0−L̃o ∈ Z was derived in (7.2.29). We now use L0 = α′(p2
L+m2)/4,

vL = α′pL, (8.4.14) and `L = (α′/2)1/2k`, and the same for the right-handed components

α′(p2
L − p2

R) =
1

α′
(v2
L − v2

R) =
1

α′
α′2(k2

L − k2
R) = α′

2

α′
(`2L − `2R) = 2(`2L − `2R) [8.247]

So the condition L0 − L̃o ∈ Z becomes

2(`2L − `2R)/4 ∈ Z ⇒ `2L − `2R = ` ◦ ` ∈ 2Z [8.248]
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8.63 p 251: Eq. (8.4.20) τ −→ τ + 1 Implies Single-Valuedness

We have

(`+ `′) ◦ (`+ `′)− ` ◦ `− `′ ◦ `′

= (`L + `′L) · (`L + `′L)− (`R + `′R) · (`R + `′R)− `L · `L − `′L · `′L − `R · `R − `′R · `′R
= 2`L · `′L − 2`R · `R = 2` ◦ `′ [8.249]

Modular invariance of the partition function under τ −→ τ + 1 implies, according to
(8.4.19), that `◦` ∈ 2Z for all ` ∈ Γ. But then we also have that (`+`′)◦(`+`′)−`◦`−`′◦`′ ∈
2Z and thus that 2`◦`′ ∈ 2Z and hence `◦`′ ∈ Z. Wich is the condition for single-valuedness
of the OPE of two vertex operators (8.4.17).

8.64 p 251: Eq. (8.4.21) The Partition Function for Compactification
on a Lattice

The partition function for compactification of k dimensions is given by [8.223]

Zk = |η(τ)|−2k
∑

n,w∈Zk

e
iπτ1
2α′ (v2

L−v
2
R)e−

πτ2
2α′ (v

2
L+v2

R) [8.250]

From (8.4.14) and the definition `L = (α′/2)1/2kL we have v2
L = α′2k2

L = 2α′`2L. Thus

ZΓ = |η(τ)|−2k
∑
`∈Γ

e
iπτ1
2α′ (2α′`2L−2α′`2R)e−

πτ2
2α′ (2α

′`2L−2α′`2R)

= |η(τ)|−2k
∑
`∈Γ

eiπτ1(`2L−`
2
R)−πτ2(`2L+`2R)

= |η(τ)|−2k
∑
`∈Γ

eiπ(τ1+iτ2)`2L−iπ(τ1−iτ2)`2R

= |η(τ)|−2k
∑
`∈Γ

eiπτ`
2
L−iπτ̄`

2
R [8.251]

8.65 p 252: Eq. (8.4.22) The Delta Function Sum over the Lattice

Consider the function

f(`) =
∑
k∈Γ∗

e2πik◦` [8.252]
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Let us first consider the case where ` ∈ Γ. From the definition of the dual lattice Γ∗ we
know that ` ◦ k = n ∈ Z for any k ∈ Γ∗. Note that n is here an integer number, not a point
on the lattice or the dual lattice. Thus, in this case,

f(`) =
∑
k∈Γ∗

e2πin =
∑
k∈Γ∗

1 [8.253]

Now if ` /∈ Γ, then ` ◦ k /∈ Z for any k ∈ Γ∗. If ` ◦ k would be an integer, then ` would be
in Γ∗, which is a contradiction. We then have a non-vanishing phase and the sum averages
to zero. We thus have that f(`) is non-zero if and only if ` is in Γ. We can write this more
precisely as

f(`) =
∑
k∈Γ∗

e2πik◦` = N
∑
k∈Γ

δ(`− k) [8.254]

Indeed
∑

k∈Γ δ(` − k) is zero unless ` is a point in Γ. Here N is a normalisation constant,
which turns out to be the volume of a unit cell of Γ.

8.66 p 252: Eq. (8.4.23) The Change in Partition Function under
τ −→ −1/τ

Let us first consider the RHS of the first line of (8.4.23). On the one hand, we can write
this, using (8.4.22), as

RHS = |η(τ)|−2k

∫
d2k`

(
V −1

Γ

∑
`′′∈Γ∗

e2πi`′′◦`

)
eiπτ`

2
L−iπτ̄`

2
R

= |η(τ)|−2k

∫
d2k`

∑
`′∈Γ

δ(`− `′)eiπτ`2L−iπτ̄`2R

= |η(τ)|−2k
∑
`′∈Γ

eiπτ`
′
L

2−iπτ̄`′R
2

= ZΓ(τ) [8.255]

On the other hand we can perform the ` integration first

ZΓ(τ) = |η(τ)|−2kV −1
Γ

∑
`′′∈Γ∗

∫
d2k` e2πi`′′◦`eiπτ`

2
L−iπτ̄`

2
R

= |η(τ)|−2kV −1
Γ

∑
`′′∈Γ∗

∫
d2k` e2πi(`′′L`L−`

′′
R`R)+iπτ`2L−iπτ̄`

2
R

= |η(τ)|−2kV −1
Γ

∑
`′′∈Γ∗

∫
dk`L e

πi(τ`2L+2`′′L`L)

∫
dk`R e

−πi(τ̄ `2R+2`′′R`R) [8.256]
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We now use the Gaussian integral
∫ +∞
−∞ e−ax

2+bx = (π/a)1/2eb
2/4a:

ZΓ(τ) = |η(τ)|−2kV −1
Γ

∑
`′′∈Γ∗

(
π

−πiτ

)k/2
e−4π2`′′L

2/(−4πiτ)
( π

πiτ̄

)k/2
e−4π2`′′R

2/(4πiτ̄)

= |η(τ)|−2kV −1
Γ

(
1

−iτ iτ̄

)k/2 ∑
`′′∈Γ∗

e−πi`
′′
L

2/τ+πi`′′R
2/τ̄

= |η(τ)|−2kV −1
Γ (τ τ̄)−k/2ZΓ∗(−1/τ)|η(−1/τ)|2k [8.257]

Using (7.2.44b), i.e. η(−1/τ) = (−iτ)1/2η(τ) we get

ZΓ(τ) = |η(τ)|−2kV −1
Γ (τ τ̄)−k/2ZΓ∗(−1/τ)

∣∣(−iτ)1/2η(τ)
∣∣2k

=V −1
Γ ZΓ∗(−1/τ) [8.258]

8.67 p 252: Eq. (8.4.24) The Lattice Must be Self-Dual

If Γ = Γ∗ then (8.4.23) becomes

ZΓ(τ) = V −1
Γ ZΓ(−1/τ) [8.259]

From VΓ = V −1
Γ∗ we have for a self-dual lattice that V 2

Γ = 1, and so VΓ = 1. Therefore, for
a self-dual lattice we have indeed modular invariance ZΓ(τ) = ZΓ(−1/τ). Joe claims that
"a little thought shows that it is also necessary if modular invariance is to hold for all τ ".
Unfortunately that little thought has escaped me so far.

8.68 p 252: Eq. (8.4.25) The Lorentz Invariance of Even Self-Dual
Lattices

We need to show that if Γ is and even self-dual lattice then so is Γ′ = ΛΓ where Λ is
an O(k, k; R) rotation, i.e. it satisfies ΛTηΛ = η, with η the (k, k) Minkowski metric η =
(+1, · · · ,+1,−1, · · · ,−1).

If we write

Λ =

(
ΛLL ΛLR
ΛRL ΛRR

)
[8.260]

then the fact that Λ ∈ O(k, k; R) means that(
1 0
0 −1

)
=

(
ΛLL ΛRL
ΛLR ΛRR

)(
1 0
0 −1

)(
ΛLL ΛLR
ΛRL ΛRR

)
=

(
Λ2
LL − Λ2

RL ΛLLΛLR − ΛRLΛRR
ΛLRΛLL − ΛRRΛRL Λ2

LR − Λ2
RR

)
[8.261]

— 477—



Joe’s Book (version of November 20, 2020) Notes from Stany M. Schrans

This gives three equations

1 = Λ2
LL − Λ2

RL

1 = Λ2
RR − Λ2

LR

0 = ΛLLΛLR − ΛRRΛRL [8.262]

We now have `′ = Λ` or(
`′L
`′R

)
=

(
ΛLL ΛLR
ΛRL ΛRR

)(
`L
`R

)
=

(
ΛLL`L + ΛLR`R
ΛRL`L + ΛRR`R

)
[8.263]

Let us now check that if Γ is even, i.e. ` ◦ ` ∈ 2Z then also ΛΓ is even, i.e. `′ ◦ `′ ∈ 2Z.
Indeed

`′ ◦ `′ =
(
`′L
)2 − (`′R)2 = (ΛLL`L + ΛLR`R)2 − (ΛRL`L + ΛRR`R)2

=
(
Λ2
LL − Λ2

RL

)
`2L +

(
Λ2
LR − Λ2

RR

)
`2R + 2(ΛLLΛLR − ΛRLΛRR)`L`R

= (`L)2 − (`R)2 = ` ◦ ` ∈ 2Z [8.264]

I am not sure how I can show that Γ′ = ΛΓ is also self-dual. Indeed in order to show this
I need to work out (ΛΓ)∗ and I am not sure how to do that. Any help is welcome

8.69 p 252: Eq. (8.4.26) The Narain Momenta for One Compactified
Dimension

We first establish the relation between `L,R and pLR . Dropping the subscripts L,R for sim-
plicity we have

`r =

√
α′

2

emr vm
α′

=

√
α′

2

emr α
′pm
α′

=

√
α′

2
emr pm =

√
α′

2
pr [8.265]

Using (8.2.7) we thus find the quantisation

`Lr =

√
α′

2

(
n

R
+
wR

α′

)
=

√
α′

2

1

R

(
n+

wR2

α′

)
=

√
α′

2

√
2

α′
1

r

(
n+

wα′

2α′

)
[8.266]

and thus

`Lr =
n

r
+
wr

2
[8.267]

We have, entirely similarly,

`Rr =
n

r
− wr

2
[8.268]
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Let us check that this is an even self-dual lattice. First we check

` ◦ ` = `2L − `2R =
(n
r

+
wr

2

)2
−
(n
r
− wr

2

)2
= 2nw ∈ 2Z [8.269]

Next we find the dual lattice. It consists of pairs k = (kL, kR) such that k ◦ ` ∈ Z for all
` in the original lattice. I.e.

kL

(n
r

+
wr

2

)
− kR

(n
r
− wr

2

)
∈ Z [8.270]

or

(kL − kR)
n

R
+ (kL + kR)

wr

2
∈ Z [8.271]

and this must be valid for all integers n and w and for all radii r. Thus we need to have

kL − kR = rp

kL + kR =
2

r
q [8.272]

for some integers p and q. Thus

kL =
q

r
+
pr

2

kR =
q

r
− pr

2
[8.273]

and so k = (kL, kR) spans exactly the same lattice as ` and hence the lattice is self-dual.

8.70 p 253: Eq. (8.4.27) Lorentz Boosts for One Compactified Dimen-
sion

It should be obvious that this is a O(1, 1) transformation, but let us check for completeness.
We have

Λ =

(
coshλ sinhλ
sinhλ coshλ

)
[8.274]

and

ΛTηΛ =

(
coshλ sinhλ
sinhλ coshλ

)(
1 0
0 −1

)(
coshλ sinhλ
sinhλ coshλ

)
=

(
coshλ sinhλ
sinhλ coshλ

)(
coshλλ sinhλ
− sinhλ − coshλ

)
=

(
cosh2 λ− sinh2 λ 0

0 sinh2 λ− cosh2 λ

)
=

(
1 0
0 −1

)
= η [8.275]
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Now we write the transformed momenta in terms of n and m:

`′L =
(n
r

+
mr

2

)
coshλ+

(n
r
− mr

2

)
sinhλ

=
n

r
(coshλ+ sinhλ) +

mr

2
(coshλ− sinhλ)

=
n

r
e+λ +

mr

2
e−λ =

n

re−λ
+
mre−λ

2
=
n

r′
+
mr′

2
[8.276]

with r′ = re−λ. A similar relation holds for `′R as is easily checked.

8.71 p 253: Eq. (8.4.28) The Space of Inequivalent Even Self-Dual
Lattices, I

When we set Bmn = 0 and are at the compactification radius of the enhanced gauge sym-
metry, i.e. R =

√
α′, for each of the k compactified dimensions, then each such dimension

has an SU(2) × SU(2) symmetry as we have seen. Assuming these compactified dimen-
sions are not mixed up in some way – that is probably what is meant with them being
orthogonal – then we have k copies of this, i.e we have a (SU(2) × SU(2))k = SU(2)2k

gauge symmetry.
We know that if if perform a Lorentz rotationO(k,R)×O(k,R) on the quantum numbers

(nL, wL) × (nR, wR) then the transformed theory has the same spectrum and is thus the
the same as the original theory. Thus, if we have a given even self-dual lattice Γ with
a given signature (k, k) then we can get all other even self-dual lattices by acting with
an O(k, k,R) rotation on the lattice ΛO(k,k,R)Γ. But all these lattices that are related by
an O(k,R) × O(k,R) rotation ΛO(k,R)×O(k,R) give the same theory. The space of different
theories is this given by

O(k, k,R)

O(k,R)×O(k,R)
[8.277]

8.72 p 253: Eq. (8.4.28) The Space of Inequivalent Even Self-Dual
Lattices, II

Assume that we have a given even self-dual lattice Γ and that this lattice has a (discrete)
symmetry group, which we call O(k, k,Z). This means that Γ and ΛO(k,k,Z)Γ are the same
lattice. We then obtain all even self-dual lattices by acting with a ΛO(k,k,R) on this original
lattice Γ, or equivalently on ΛO(k,k,Z)Γ. All these new even-self-dual lattices that are related
by an O(k,R)×O(k,R) transformation are equivalent. Thus we conclude that the lattices

ΛO(k,k,R)Γ; ΛO(k,R)×O(k,R)ΛO(k,k,R)Γ; ΛO(k,R)×O(k,R)ΛO(k,k,R)ΛO(k,k,Z)Γ [8.278]
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are all equivalent. Taking into account the discrete symmetries of the even self-dual lattice
Γ the space of inequivalent theories is thus in fact

O(k, k,R)

O(k,R)×O(k,R)×O(k, k,Z)
[8.279]

8.73 p 254: Eq. (8.4.32) The SL(k,Z) Part of O(k, k,Z)

Joe says that " [...] large spacetime coordinate transformations respecting the periodicity

x′m = Lmnx
n

with Lmn integers and detL = 1 for invertibility" are transformations of the T -duality group
O(k, k,Z). This rather cryptic statement deserves some explanation. Remember the most
general worldsheet action is (3.7.6)

S =
1

4πα′

∫
d2σ
√
g
[(
gabGµν(X) + iεabBµν

)
∂aX

µ∂bX
ν + α′RΦ(X)

]
[8.280]

This action is by construction invariant underGL(1, d,R) transformations ofXµ, i.e. Xµ −→
X ′µ = LµνXν . We can normalise this and restrict ourselves to those transformations with
unit determinant so the symmetry group is SL(1, d,R). If we compactify k dimensions then
we have a symmetry under the subgroup SL(k,R) on these compactified dimensions, i.e
Xm −→ X ′m = LmnX

n. However, we need to ensure that these transformed spacetime
fields satisfy the boundary conditions. Recall that the compactified coordinates are given
by (8.2.15)

Xm(z, z̄) = xm − iα
′

2
pmL ln z − iα

′

2
pmR ln z̄ + i

√
α′

2

∑
m 6=0

1

m

(
αm
zm

+
α̃m
z̄m

)
[8.281]

with xm = xmL + xmR and the c.o.m. coordinate. But we still need to ensure that the
transformed coordinates X ′m satisfy the appropriate boundary conditions (8.2.1) X ′m ≡
X ′m + 2πR together with the condition (8.2.3) that one can wind the string around a com-
pact dimension, i.e. X(σ + 2π) = X(σ) + 2πRw with w ∈ Z. Recall from the discussion in
section 8.2. that the former condition requires the total c.o.m. momentum to be quantised,
p = n/R, n ∈ Z whereas the latter condition allows to split this total momentum in a left-
and right-moving sector p = pL + pR, with pL and pR taking values on an even self-dual
lattice as per the Narain analysis of modular invariance of the torus partition function. Let
us now check that these conditions are also satisfied for the transformed coordinate. We
have

X ′m(z, z̄) =Lmn

xn − iα′
2
pnL ln z − iα

′

n
p2
R ln z̄ + i

√
α′

2

∑
n6=0

1

n

(
αn
zn

+
α̃n
z̄n

)
[8.282]
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The total c.o.m. momentum after the transformation needs to be quantised

p′m = Lmn(pnL + pnR) =
km

R
, km ∈ Z [8.283]

or RLmn(pnL + pnR) ∈ Z. We know that R(pnL + pnR) = `n ∈ Z, so that the requirement
becomes that Lmn`

n ∈ Z for all `n ∈ Z. This can only be the case if the Lmn themselves are
integers and so in order to satisfy the boundary condition X ′m ≡ X ′m + 2πR the group
SL(k,R) is actually reduced to SL(k,Z).

We still need to check that an SL(k,Z) transformation satisfies the second boundary
condition, i.e. X(σ + 2π) = X(σ) + 2πRw. Recall that we have z = eiw = eiσ

1−σ2
. Under

σ1 −→ σ1 + 2π we thus have z −→ z and similarly z̄ −→ z̄. We need to be careful with the
momentum terms as they contain logarithms. We have ln z = iσ1−σ2 −→ 2πi+ iσ1−σ2 =
2πi+ ln z and similarly ln z̄ = −iσ1 + σ2 −→ −2πi− iσ1 + σ2 = −2πi+ ln z̄. Therefore

X ′m(σ1 + 2π, σ2) =Lmn

[
xn − iα

′

2
pnL(2πi+ ln z)− iα

′

n
p2
R(−2πi+ ln z̄)

+ i

√
α′

2

∑
n6=0

1

n

(
αn
zn

+
α̃n
z̄n

)]
=X ′m(σ1, σ2) + α′πLmn(pnL − pnR) [8.284]

Here we also know that α′π(pnL − pnR) = 2πRwm, wm ∈ Z as Xm satisfies these boundary
conditions. Thus α′πLmn(pnL − pnR) = Lmn2πRwm = 2πRw′m with w′m = Lmnw

n ∈ Z as all
the Lmn are integers as we have already established.

In summary we have shown that an SL(k,Z) is indeed a symmetry of the theory that
preserves the boundary conditions, both for the quantisation of the momentum as for the
winding of the string around the compactified dimension. This transformation mixes up
the n and w numbers into new ones, nm −→ Lmnn

n and wm −→ Lmnw
n, and so necessarily

transforms one point of the even self-dual lattice into another such point and is thus part
of the T -duality. I.e. it is a part of the O(k, k,Z) symmetry. Notice that we did not have to
use the explicit form of the momenta pL and pR, i.e. the explicit form of the even self-dual
lattice. This reasoning is valid for any Gmn and Bmn.

— 482—



Joe’s Book (version of November 20, 2020) Notes from Stany M. Schrans

8.74 p 254: Eq. (8.4.33) Integer Shifts of the Antisymmetric Tensor

We consider the shift bmn −→ bmn+Nmn withNnm integers on vm = iẋm given in (8.4.7.2).
Using Bmn = bmnα

′/R2 we find

vm =α′
nm
R
−
(
α′

R2
bmn

)
wnR =

α′

R
(nm − bmnwn)

α′

R
−→ [nm − (bmn +Nnm)wn] =

α′

R

(
n′m − bmnwn

)
[8.285]

with n′m = nm −Nnmw
n ∈ Z, which is another point on the lattice and hence a symmetry.

Alternatively, putting this in the phase (8.4.12) we get

2πibmnw
m
1 w

n
2 −→ 2πi(bmn +Nmn)wm1 w

n
2 = 2πiNmnw

m
1 w

n
2 + 2πibmnw

m
1 w

n
2 [8.286]

The first term is 2π times an integer and so that phase doesn’t contribute. leaving the par-
tition function invariant. As the partition function "measures" the spectrum of the theory,
recall Z ∝ tr qL0 q̄

L̃0 , such a transformation leaves the spectrum unchanged.

8.75 p 254: Eq. (8.4.35) The Kinetic Terms of the Moduli

We will not perform the detailed calculation but show that it is a reasonable result by com-
paring to previous calculations. Let us remind ourselves of what the Weyl transformation
is and why it is needed. We go back to the low energy action of the uncompactified closed
string in (3.7.20)

S =
1

2κ2
0

∫
dDx
√
−Ge−2Φ

[
− 2(D − 26)

3α′
+R− 1

12
HµνλH

µνλ + 4∂µΦ∂µΦ

]
[8.287]

plus terms of order α′ and higher. Here Hµνλ is the field tensor of the antisymmetric tensor
Bµν . Recall that this action gives the field equations necessary for Weyl invariance at the
quantum level, at first order, of the most general worldsheet action, i.e. the vanishing of
their β functions. The dilation factor e−2Φ is inconvenient and we could simplify the action
by making a field redefinition G̃µν = e2ω(x)Gµν(x) of the spacetime metric. This is effectively
a Weyl transformation. Under such a transformation the spacetime Ricci scalar transforms
as (3.7.23)

R̃ = e−2ω
[
R− 2(D − 1)∇2ω − (D − 2)(D − 1)∂µω∂

µω
]

[8.288]
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By choosing ω = 2(Φ0−Φ)/(D−2), for some constant Φ0, and defining a new dilaton field
Φ̃ = Φ− Φ0 all the terms in the action recombine as

S =
1

2κ2

∫
dDX

√
−G̃

[
− 2(D − 26)

3α′
e4Φ̃/(D−2) + R̃− 1

12
e−8Φ̃/(D−2)HµνλH̃

µνλ

− 4

D − 2
∂µΦ̃∂µΦ̃ + o(α′)

]
[8.289]

The H̃ denoting that spacetime indices are here raised with G̃µν . We see that the Weyl
transformation has gotten rid of the nasty e−2Φ factor in the action and has left us with
nice kinetic terms coming from R or ∂µΦ̃∂µΦ̃.

We now apply the same reasoning to the low energy action with compactified dimen-
sion (8.4.2). Let us focus on the terms that will contribute to the kinetic terms:

S =
(2πR)k

2κ2
0

∫
ddx
√
−Gde−2Φd

[
4∂µΦd∂

µΦd

− 1

4
GmnGpq(∂µGmp∂

µGnq + ∂µBmp∂
µBnq) + · · ·

]
[8.290]

One sees by comparison with the uncompactified case that these kinetic terms become

S ∝
∫
ddx
√
−Gd

[
− 4

D − 2
∂µΦ∂µΦ̃

− 1

4
GmnGpq(∂µGmp∂

µGnq + ∂µBmp∂
µBnq)

]
[8.291]

which is (8.4.35).

8.76 p 255: Preliminary Considerations to the d = 2 Example

Before we look at the d = 2 example it is useful to put the preceding results in a more
formal framework. We are looking for a general formula of how the moduli G and B
transform under anO(k, k,R) transformation and what transformations leave the spectrum
invariant. In order to achieve this we follow Giveon et al hep-th/9401139v1, section 2.

We start by rescaling the spacetime coordinates to a dimensionless one.

X −→ X̂ = RX [8.292]

The periodicity of the coordinate is now 2π. The worldsheet action is the

S =
1

4πα′

∫
d2σ
√
g
[(
gabGmn + iεabBmn

)
R2∂aX

m∂bX
n + α′RΦ(RX)

]
=

1

4π

∫
d2σ
√
g
[(
gabĜmn + iεabB̂mn

)
∂aX

m∂bX
n +RΦ(RX)

]
[8.293]
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where we have defined the spacetime metric and antisymmetric field

Ĝmn =
R2Gmn
α′

; B̂mn =
R2Bmn
α′

[8.294]

Note that the hatted fields are dimensionless, just as the unhatted fields are. In the above
equation R is the worldsheet Ricci scalar, not to be confused with the compactification
radius R. We also rescale the compactification radius as

R −→ R̂ =
√
α′R [8.295]

Under T -duality the rescaled R now simply transforms as R −→ 1/R.

We now rewrite the mass-shell formula (8.4.9) in a convenient way. We start using the
unhatted fields. Focussing on the terms without the oscillator contribution we have

m2 =
1

2α′2
Gmn(vmL v

n
L + vmR v

n
R)

=
1

2α′2
Gmn [(vm + wmR)(vn + wnR) + (vm − wmR)(vn − wnR)]

=
1

α′2
Gmn(vmvn +R2wmwn) [8.296]

We need to be careful about the location of the indices. In order to use (8.4.7) we need to
lower the indices on the vs.

m2 =
1

α′2
Gmn(GmpGnqvpvq +R2wmwn)

=
1

α′2
Gmn

[
GmpGnq

(
α′

R
np −RBprwr

)(
α′

R
nq −RBqsws

)
+R2wmwn)

]
[8.297]

First, consider the terms in n2:

1

α′2
Gmn

(
GmpGnq

α′

R
np
α′

R
nq

)
=

1

R2
npG

pqnq [8.298]

Next, take the terms in w2

1

α′2
Gmn

(
GmpGnqRBprw

rRBqsw
s +R2wmwn

)
=
R2

α′2
wr (GpqBprBqs +Grs)w

s =
R2

α′2
wr (Grs −BrpGpqBqs)ws [8.299]

Finally, the term in nw gives

− 1

α′2
GmnG

mpGnq
(
α′

R
npRBqsw

s +RBprw
rα
′

R
nq

)
= − 1

α′
Gpq(npBqsw

s + nqBprw
r) =

2

α′
wsBsqG

qpnp [8.300]
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We bring the contributions together and use a matrix notation

G ≡ Gmn ; G−1 ≡ Gmn ; B ≡ Bmn [8.301]

and see that we can write the mass-shell condition in the simple form

m2 =
1

R2
nG−1n+

R2

α′2
w(G−BG−1B)w +

2

α′
wBG−1n [8.302]

We now go to the hatted fields Gmn = (α′/R2)Ĝmn, Bmn = (α′/R2)B̂mn and (G−1)mn =
(R2/α′)(Ĝ−1)mn and obtain

m2 =
1

R2
n
R2

α′
Ĝ−1n+

R2

α′2
w(

α′

R2
G− α′

R2
B
R2

α′
G−1 α

′

R2
B)w +

2

α′
w
α′

R2
B
R2

α′
G−1n [8.303]

which simplifies to

α′m2 = nG−1n+ w(G−BG−1B)w + 2wBG−1n [8.304]

where we have here, and in the forthcoming expressions, deleted the hats for convenience.
We can simplify this even further. We put the momentum quanta and the winding

numbers in a 2k-dimensional row matrix

Zt = (w1, · · · , wk, n1, · · ·nk) [8.305]

and introduce the 2k × 2k matrix

M =

(
G−BG−1B BG−1

−G−1B G−1

)
[8.306]

The mass-shell condition then becomes simply

m2 = ZtMZ [8.307]

We will also denote E = G + B where the matrix E has as symmetric part G and an
antisymmetric part B.

The moduli space for the toroïdal compactification is (8.4.28), i.e. O(k, k,R)/O(k,R)×
O(k,R). The group O(k, k,R) acting on a given even self-dual lattice, generates all possible
even self-dual lattices of the same signature.7 Let us work out how this group acts on the
moduli G and B. We represent an element g ∈ O(k, k,R) by the 2d× 2d matrix

g =

(
a b
c d

)
[8.308]

7This is a standard mathematical result, see e.g. J.P. Serre, A Course in Arithmetic, Springer-
Verlag 1973.
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such that it preserves

J =

(
0 1
1 0

)
[8.309]

i.e. J = gtJg: (
0 1
1 0

)
=

(
at ct

bt dt

)(
0 1
1 0

)(
a b
c d

)
=

(
at ct

bt dt

)(
c d
a b

)
=

(
atc+ cta atd+ ctb
btc+ dta btd+ dtb

)
[8.310]

Hence

atc+ cta = btd+ dtb = 0; atd+ ctb = 1 [8.311]

Under an orthogonal transformation g, the matrix M in [8.306] transforms as

M −→ mg = gMgt [8.312]

Note that from J = gtJg we have J−1 = (gtJg)−1 = g−1J−1(gt)−1. Using J−1 = J this
gives J = g−1J(gt)−1. Multiply both sides with g on the left and gt on the right to get
J = gJgt which shows that if g ∈ O(k, k,R) then so is gt.

We now write the moduli G and B in an O(k, k,R) form as

gE =

(
e B(et)−1

0 (et)−1

)
[8.313]

Here e is the vielbein (in matrix form) satisfying G = eet. One easily checks that gtEJgE =
J . Indeed(

et 0
e−1Bt (e)−1

)(
0 1
1 0

)(
e B(et)−1

0 (et)−1

)
=

(
et 0

e−1Bt e−1

)(
0 (et)−1

e B(et)−1

)
=

(
0 et(et)−1

e−1e e−1Bt(et)−1 + e−1B(et)−1

)
=

(
0 1
1 0

)
[8.314]

as B is antisymmetric, Bt = −B and ee−1 = et(et)−1 = 1.
Define the action of an element of g ∈ O(k, k,R) on a k-dimensional matrix F as a

fractional linear transformation

g(F ) = (aF + b)(cF + d)−1 [8.315]

Note the multiplication of the inverse is form the right. Using this we find (with here 1 the
k-dimensional unit matrix)

gE(1k) = (e1k +B(et)−1)(0 + (et)−1)−1 = (e+B(et)−1)et = eet +B

= (G+B) = E [8.316]
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This is how we can extract G and B from an O(k, k,R) transformation.
Furthermore we have

gEg
t
E =

(
e B(et)−1

0 (et)−1

)(
et 0

e−1Bt e−1

)
=

(
eet +B(et)−1e−1Bt B(et)−1e−1

(et)−1e−1Bt (et)−1e−1

)
=

(
G+BG−1Bt BG−1

G−1Bt G−1

)
=

(
G−BG−1B BG−1

−G−1B G−1

)
= M [8.317]

where we have again used Bt = −B.
Using all this it follows that under a transformation g ∈ O(k, k,R)

M −→Mg = gMgt = ggEg
t
Eg

t = (ggE)(ggE)t = gE′g
t
E′ [8.318]

where gE′ = ggE is also an O(k, k,R) transformation. From [8.316] we have that

E′ = gE′(1k) = ggE(1k) = g(E) = (aE + b)(cE + d)−1 [8.319]

We have found how the moduli transform under an O(k, k,R) transformation g =(
a b
c d

)
, i.e.

E −→ E′ = (aE + b)(cE + d)−1 [8.320]

By taking the symmetric and antisymmetric parts of both sides, we find the transformation
rule for G and B respectively.

Now that we have found how an O(k, k,R) transformation acts on the moduli, we will
look at such special transformations that leave the spectrum invariant.

1. Consider the element

gΘ =

(
1 Θ
0 1

)
[8.321]

with Θ and antisymmetric k × k matrix with integers as entries, i.e. Θij = −Θji ∈ Z. One
easily checks that, because Θ is antisymmetric, gtΘJgΘ = J so that gΘ ∈ O(k, k,R). The
moduli are transformed as per [8.320]:

E′ = (E + Θ)(0 + 1)−1 = E + Θ [8.322]

Taking the symmetric and antisymmetric side we find that

G′ = G and B′ = B + Θ [8.323]

— 488—



Joe’s Book (version of November 20, 2020) Notes from Stany M. Schrans

This transformation thus leaves G invariant and shifts B by integers. Let us now check the
mass spectrum [8.306]. The hurried reader can check that this transformation leaves the
mass spectrum invariant if we change n into n−Θw and leave w unchanged. and then rush
to the second symmetry, about two pages from here. The more assiduous reader can follow
the derivation below of how we come to this solution.

The mass spectrum for the transformed moduli is given by

α′m′2 =nG−1n+ w[G− (B + Θ)G−1(B + Θ)]w + 2w(B + Θ)G−1n

=nG−1n+ w(G−BG−1B)w + 2wBG−1n

+ w
[
GG−1Θ−BG−1Θ−ΘG−1B −ΘG−1Θ

]
w + 2wΘG−1n

=nG−1n+ w(G−BG−1B)w + 2wBG−1n

− 2wBG−1Θw − wΘG−1Θw + 2wΘG−1n [8.324]

We have used the fact that wΘG−1Bw = wBG−1Θw and that wΘw = 0 by antisymmetry of
Θ. We now wish to see if we can rewrite this as [8.306] with n replaced by n′ = n+ ∆n and
w replaced by w′ = w + ∆w with ∆n and ∆w integers, i.e.

α′m′2 = (n+ ∆n)G−1(n+ ∆n) + (w + ∆w)(G−BG−1B)(w + ∆w)

+ 2(w + ∆w)BG−1(n+ ∆n) [8.325]

Let us first analyse the terms in the middle. This gives

0 = 2w(G−BG−1B)∆w + ∆w(G−BG−1B)∆w

= (2w + ∆w)∆w(G−BG−1B) [8.326]

This is one equation for k components (∆w1, · · · ,∆wk), but this must be valid for any pos-
sible background G and B. We must thus have ∆w = 0 or ∆w = −2w. Both give integers so
both need to be taken into consideration.
Next consider the last term in [8.325]:

0 = 2wBG−1Θw + 2wBG−1∆n+ 2∆wBG−1n+ 2∆wBG−1∆n [8.327]

Let us firs look at the ∆w = 0 solution. This equation then becomes

0 = 2wBG−1Θw + 2wBG−1∆n = 2wBG−1(Θw + ∆n) [8.328]

Once more this needs to be valid for all G and B and thus this implies that ∆n = −Θw, and
this is an integer. For the other solution ∆w = −2w we have

0 = 2wBG−1Θw + 2wBG−1∆n− 4wBG−1n− 4wBG−1∆n

= 2wBG−1(Θw −∆n− 2n) [8.329]

which implies ∆n = Θw + 2n which is also an integer.
We thus have two sets of possible solutions:

(∆n,∆w) = (−Θw, 0) or (Θw + 2n,−2w) [8.330]
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It remains to check the first term in [8.325]:

0 =wΘG−1Θw − 2wΘG−1n+ 2nG−1∆n+ ∆nG−1∆n [8.331]

For the first solution the RHS becomes

RHS = wΘG−1Θw − 2wΘG−1n− 2nG−1Θw + ΘwG−1Θw [8.332]

Let us look at the last term

ΘwG−1Θw = Θijw
j
(
G−1

)ik
Θk`w

` = w`Θk`

(
G−1

)ik
Θijw

j

= − w`Θ`k

(
G−1

)ki
Θijw

j = −wΘG−1Θw [8.333]

and so the last term cancels the first term. Similarly we find that the third term cancels the
second term:

nG−1Θw = ni
(
G−1

)ij
Θjkw

k = −wkΘkj

(
G−1

)ji
ni = −wΘG−1n [8.334]

We have thus found that we can rewrite the mass-shell condition [8.306] as

α′m′2 =n′G−1n′ + w′(G−BG−1B)w′ + 2w′BG−1n′ [8.335]

with

n′ = n−Θw and w′ = w [8.336]

As Θ consists of integers n′ and w′ range over all integers and this solutions does leaves the
spectrum invariant. In other words, the transformation [8.323], i.e. G′ = G,B′ = B + Θ is
a symmetry of the spectrum.8

2. Next, we consider a transformation

gA =

(
A 0
0 (At)−1

)
[8.337]

with A ∈ GL(k,Z), i.e. a matrix of integers. We leave it as an exercise that gtAJgA = J .
From [8.320] we find that this corresponds with a change of moduli

E −→ E′ = (aE + b)(cE + d)−1 = AEAt [8.338]

Let us first work out how the moduli change under this transformation

G′ =
1

2
(E′ + E′t) =

1

2
(AEAt + (AEAt)t) =

1

2
(AEAt +AEtAt) = A

1

2
(E + Et)At

=AGAt [8.339]

8What happens with the second solution? It doesn’t matter we already have one working solu-
tion. Never mind about the extra work.
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and similarly

B′ =
1

2
(E′ − E′t) =

1

2
(AEAt − (AEAt)t) =

1

2
(AEAt −AEtAt) = A

1

2
(E − Et)At

=ABAt [8.340]

The mass-shell condition [8.306] then becomes simply

α′m′2 =n(At)−1G−1A−1n+ α′w(AGAt −ABAt(At)−1G−1A−1ABAt)w

+ 2wABAt(At)−1G−1A−1n

=n(At)−1G−1A−1n+ α′wA(G−BG−1B)Atw + 2wABG−1A−1n

=
(
A−1n

)t
G−1(A−1n) + α′(Atw)(G−BG−1B)(Atw)

+ 2(Atw)BG−1(A−1n) [8.341]

From this we immediately see that if we define n′ = A−1n and w′ = Atw then we can write
this as

α′m′2 =n′G−1n′ + w′(G−BG−1B)w′ + 2w′BG−1n′ [8.342]

with n′ and w′ ranging over all integers, by virtue of the fact that A ∈ GL(k,Z) and that A−1

exists. Hence, this is also a symmetry of the theory. We see from the form of n′ and w′ that
this symmetry actually orresponds to a change of of basis for the compactification lattice.

3. A third symmetry is given by the matrix

GDi =

(
1− ei ei

ei 1− ei

)
[8.343]

Here 1 is the k-dimensional unit matrix and ei is a k-dimensional matrix, with all zero entries,
except for the ii component, which is one; i.e. its elements are (ei)jk = δijδik. Note that
(ei)2 = ei (no sum) and the e−1 = eti = ei.
Let us proceed as for the previous cases

GtDiJGDi =

(
1− ei ei

ei 1− ei

)(
0 1
1 0

)(
1− ei ei

ei 1− ei

)
=

(
1− ei ei

ei 1− ei

)(
ei 1− ei

1− ei ei

)
=

(
(1− ei)ei + ei(1− ei) (1− ei)2 + e2

i

e2
i + (1− ei)2 ei(1− ei) + (1− ei)ei

)
=

(
ei − e2

i + ei − e2
i 1 + e2

i − 2ei + e2
i

e2
i + 1 + e2

i − 2ei ei − e2
i + ei − e2

i

)
=

(
0 1
1 0

)
= J [8.344]

so GDi is an appropriate transformation.
The background fields then transform as

E −→ E′ =
[
(1− ei)E + ei

]
(eiE + 1− ei)

−1 [8.345]
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with G and B following from the symmetric and antisymmetric part respectively. These are
in general messy formula. To understand what these transformations means, let us look at
the case k = 2. Taking i = 2 one finds after some algebra that

G′11 =
B2

12 +G

G22
; G′12 =

B12

G22
; G′22 =

1

G22
; B′12 =

G12

G22
[8.346]

where, as usual G = detGij . Note also that detG′ = detG/G2
22. To see what this means, let

us take the example where the two dimensions are compactified in two circles that factorise
completely. This means thatG12 = 0 and that also the anti-symmetric field vanishes,B12 = 0.
In that case, the above transformation reduces to

G′11 = G11; G′12 = 0; G′22 =
1

G22
; B′12 = 0 [8.347]

What happens with the mass spectrum? With this background we have

α′m2 =
n2

1

G11
+

n2
2

G22
+G11w

2
1 +G22w

2
2 [8.348]

After the transformation with i = 2 we thus find

α′m′2 =
n2

1

G′11

+
n2

2

G′22

+G′11w
2
1 +G′22w

2
2

=
n2

1

G11
+G22n

2
2 +G11w

2
1 +

w2
2

G22
[8.349]

If we interchange n2 with w2, then we get exactly α′m2. We thus see that this case corre-
sponds exactly to the T -duality transformation of the second compactified dimension. Sim-
ilarly, of course i = 1 corresponds to the T -duality transformation of the first compactified
dimension. We can thus see that the transformation for a general background corresponds
to generalisations of the T -duality.
At this point, Giveon et al. write that "It can be shown straightforwardly that this transfor-
mation leaves the partition function invariant as well". As so often happens, straightforward
usually means anything but that. If it were that straightforward why do they not even give
a hint? At other points in the text they sometimes go to excriucating detail to show very
simple facts. Alas, I have not found this straightforward at all and shall just have to accept
the result. Any help on this is more than welcome.

4. A last symmetry comes from the worldsheet parity σ −→ −σ. It corresponds to a change of
sign of the antisymmetric field B −→ −B. Contrary to the three previous symmetries, this is
not an O(k, k,Z) symmetry. In fact it interchanges pL with pR.

The first three symmetries of the theory are O(k, k,Z) symmetries. Indeed in all three
cases the matrix has integer entries. Contrary to the first three symmetries, the last sym-
metry is not an O(k, k,Z) symmetry. In fact it interchanges pL with pR. For convenience it
is in the discussion treated as part of the O(k, k,Z) symmetry group.

An important caveat is on order. We have only that the above transformations are a
symmetry of of the mass-shell spectrum, without the oscillator terms. In order to show that
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they are a symmetry of the full interacting theory, we need to show that the oscillator terms
and the correlation functions are invariant as well. We refer to the Giveon et al article for
details on this.

From here on we will revert to the original unhatted fields and compactification radius.

8.77 p 255: Eq. (8.4.36)-(8.4.37) The Complex Moduli τ and ρ

There are four moduli from the spacetime action: three from the symmetric spacetime
metric Gmn, i.e. G24,24, G25,25, G24,25 and one from the antisymmetric tensor Bmn, i.e.
B24,25. We rewrite these four moduli in terms of two complex fields τ and ρ and find the
transformation law between them.

Just under (8.4.12) bmn is defined as bmn = R2Bmn/α
′, which explains the first term

of (8.4.36). For the second term, recall that G1/2 = (detGmn)1/2 gives the unit volume of
the two-dimensional surface described by the metric Gmn. The volume of the two torus of
the compactified dimension is V =

∫
dX24dX25G1/2 = (2πR)2G1/2. We thus have

i
R2

α′
G1/2 =

i

4π2α′
(2πR)2G1/2 =

i

4π2α′
(2πR)2 V

(2πR)2
=

iV

4π2α′
[8.350]

which gives the second term of (8.4.36). We thus already have

ρ1 =
R2

α′
B24,25

ρ2 =
R2

α′

√
G [8.351]

Consider now (8.4.37). Recall that Gmn defines the spacetime metric, i.e.

ds2 = GmndX
mdXn = G24,24dX

24dX24 +G25,25dX
25dX25 + 2G24,25dX

24dX25 [8.352]

From (8.4.37) we also have

ds2 =
α′ρ2

R2τ2
(dX24 + τdX25)(dX24 + τ̄ dX25)

=
α′ρ2

R2τ2
(dX24dX24 + |τ |2dX25dX25 + 2τ1dX

24dX25) [8.353]
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and thus

G24,24 =
α′ρ2

R2τ2

G25,25 =
α′ρ2|τ |2

R2τ2

G24,25 =
α′ρ2τ1

R2τ2

B24,25 =
α′ρ1

R2
[8.354]

We have also added the expression for the antisymmetric tensor for completeness.
For later use, it turns out to be convenient to write this as

Gmn =
α′ρ2

R2
Gmn(τ) [8.355]

with

G = Gmn(τ) =
1

τ2

(
1 τ1

τ1 |τ |2
)

[8.356]

We first note that

detGmn =
1

τ2
2

(|τ |2 − τ2
1 ) =

1

τ2
2

(τ2
1 + τ2

2 − τ2
1 ) = 1 [8.357]

We thus have

G−1 = Gmn(τ) =
1

τ2

(
|τ |2 −τ1

−τ1 1

)
[8.358]

We also have

Gmn =
R2

α′ρ2

(
G−1

)mn
[8.359]

Indeed, one see immediately that GmnGmp = δpm as it should. Finally, using [8.357] we
also have √

detGmn =
α′ρ2

R2

√
detGmn =

R2

α′ρ2
[8.360]
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Repeating [8.351]t and inverting [8.354] we find

ρ1 =
R2

α′
B24,25 = b24,25

ρ2 =
R2

α′

√
G24,24G25,25 −G2

24,25 =
R2

α′

√
G

τ1 =
G24,25

G24,24

τ2 =

√
G24,24G25,25 −G2

24,25

G24,24
=

√
G

G24,24
[8.361]

as can be checked by direct calculation.

8.78 p 255: Eq. (8.4.38) The Full T -Duality Group for Two Compacti-
fied Dimensions

[1] The symmetry transformation (8.4.32) for k = 2 i.e. xm −→ Lmnx
n with L ∈

SL(2,Z) does not affect ρ as can be seen from (8.4.36 ). Indeed b24,25 is unchanged
by this transformation and and so is the volume of the two-torus V . So these transfor-
mations can only affect the τ moduli. There is moreover a symmetry Xm −→ −Xm

and so the symmetry group is PSL(2,Z) and it acts on the modulus τ of the space-
time two-torus, leaving ρ invariant.

Let us now repeat this using the framework of our section 8.76. We simplify the dimension
by renaming (24, 25) ≡ (1, 2). We have an O(2, 2,Z) transformation with

gL =

(
L 0
0 (Lt)−1

)
[8.362]

with L a matrix of integers with detL = 1. The moduli transform according to [8.339] and
[8.340]. Working this out we find

G′11 =L2
11G11 + 2L11L12G12 + L2

12G22

G′12 =L11L21G11 + (L11L22 + L12L21)G12 + L12L22G22

G′22 =L2
21G11 + 2L21L22G12 + L2

22G22

B′12 =B12 [8.363]

We also find that detG′ = detG. In these expressions, we have used detL = 1. From this
and the relation with the complex moduli ρ in [8.361] we find that

ρ′1 =B′12 = B12 = ρ1

ρ′2 =
√
G′ =

√
G = ρ2 [8.364]
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and so ρ does indeed not change under this transformation. For τ we find from [8.361]

τ ′1 =
G′12

G′11

=
L11L21G11 +G12(L11L22 + L12L21) + L12L22G22

L2
11G11 + 2L11L12G12 + L2

12G22

τ ′2 =

√
G′

G′11

=

√
G

L2
11G11 + 2L11L12G12 + L2

12G22
[8.365]

We now express the moduli G in terms of τ and ρ using [8.354] and find, after some algebra

τ ′1 =
L12L22(τ2

1 + τ2
2 ) + (L11L22 + L12L21)τ1 + L11L21

L2
12(τ2

1 + τ2
2 ) + 2L11L12τ1 + L2

11

τ ′2 = − τ2
L2

12(τ2
1 + τ2

2 ) + 2L11L12τ1 + L2
11

[8.366]

We now wish to show that this corresponds to an SL(2,Z) transformation of τ , i.e. for
a, b, c, d ∈ Z

τ ′ = τ ′1 + iτ ′2 =
aτ + b

cτ + d
=

(aτ + b)(cτ̄ + d)

(cτ + d)(cτ̄ + d)

=
acτ τ̄ + adτ + bcτ̄ + bd

c2τ τ̄ + cd(τ + τ̄) + d2

=
ac(τ2

1 + τ2
2 ) + (ad+ bc)τ1 + bd

c2(τ2
1 + τ2

2 ) + 2cdτ1 + d2
+ i

(ad− bc)τ2
c2(τ2

1 + τ2
2 ) + 2cdτ1 + d2

[8.367]

Equating this with [8.365] gives for τ ′1 and for τ ′2

L12L22(τ2
1 + τ2

2 ) + (L11L22 + L12L21)τ1 + L11L21

L2
12(τ2

1 + τ2
2 ) + 2L11L12τ1 + L2

11

=
ac(τ2

1 + τ2
2 ) + (ad+ bc)τ1 + bd

c2(τ2
1 + τ2

2 ) + 2cdτ1 + d2

+
τ2

L2
12(τ2

1 + τ2
2 ) + 2L11L12τ1 + L2

11

=
τ2

c2(τ2
1 + τ2

2 ) + 2cdτ1 + d2
[8.368]

we have used the fact that detL = 1 and also ad − bc = 1. This gives a set of equation that
can be easily solved

a = L22; b = L21; c = L12; d = L11 [8.369]

up to an overall sign that drops out in the transformation. We notice that a, b, c and d are all
integers.

We conclude that the O(k, k,Z) transformation

gL =

(
L 0
0 (Lt)−1

)
[8.370]

corresponds to a transformation of the moduli where ρ remains invariant and and τ trans-

forms as an SL(2,Z) transformation with matrix
(
L22 L21

L12 L11

)
.
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[2a] The shift (8.4.33) of the antisymmetric tensor, i.e. bmn −→ bmn+Nnm with Nnm ∈ Z
obviously changes ρ to ρ + N24,25 as can be seen from (8.4.36); more specifically it
changes changes ρ1 to ρ1 +N24,25. This transformation leaves ρ2 and τ invariant.
As for the previous example, let us repeat this with the general framework we developed.
This symmetry corresponds to an O(k, k,Z) transformation of the form [8.321]

gΘ =

(
1 Θ
0 1

)
[8.371]

which leaves G invariant and transforms B as B′ = B+ Θ. Here Θ is an antisymmetric k×k
matrix of integers. In our example of two compactified dimensions, B thus has only one
non-zero element, B12 = −B21, and so has Θ, i.e. Θ12 = −Θ21. The mass-shell condition is
preserved, provided we take n′ = n−Θw and w′ = w, see [8.336].

Let us now work out the change in the moduli. From [8.361] we immediately see that, as G
is invariant, τ is invariant as well, τ ′ = τ . Similarly ρ2 is invariant and ρ1 −→ ρ′1 = B′12 =
B12 + Θ12 = ρ1 + Θ12. Thus we see that ρ −→ ρ+ Θ12.

[2b] Let us look at this using our familiar framework. This corresponds to the third symmetry
[8.343]

GDi =

(
1− ei ei

ei 1− ei

)
[8.372]

But we combine the two transformations, so we are consideringGD2
GD1

. We already worked
out the transformation rules for two compactified dimensions in [8.346] for GD2

. For the
transformation GD1

we need to interchange 1 and 2. Performing GD1
followed by GD2

gives
after some algebra. See the Mathematica code below for details.

G′′11 =
G22

B2
12 +G

G′′12 = − G12

B2
12 +G

G′′22 =
G11

B2
12 +G

B′′12 = − B12

B2
12 +G

[8.373]

We can now easily work out the transformation of the moduli τ and ρ. We find after some
algebra

τ ′′1 = − τ1
τ2
1 + τ2

2

; τ ′′2 = +
τ2

τ2
1 + τ2

2

ρ′′1 = − r4ρ1

ρ2
1 + ρ2

2

; ρ′′2 = +
r4ρ2

ρ2
1 + ρ2

2

[8.374]

or thus

τ −→ −1

τ
; ρ −→ −r

4

ρ
[8.375]
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In[325]:= e1 = {{1, 0}, {0, 0}};

e2 = {{0, 0}, {0, 1}};

u = {{1, 0}, {0, 1}};

EE = {{G11, G12 + B12 }, {G12 - B12, G22 }};

G = {{G11, G12 }, {G12, G22 }};

EEp1 = Simplify [ExpandAll [((u - e1).EE + e1). Inverse [ e1.EE + u - e1]]];

EEp2 = Simplify [ExpandAll [((u - e2).EE + e2). Inverse [ e2.EE + u - e2]]];

Gp1 = Simplify [ExpandAll [(EEp1 + Transpose [EEp1 ]) / 2]];

Bp1 = Simplify [ExpandAll [(EEp1 - Transpose [EEp1 ]) / 2]];

Gp2 = Simplify [ExpandAll [(EEp2 + Transpose [EEp2 ]) / 2]];

Bp2 = Simplify [ExpandAll [(EEp2 - Transpose [EEp2 ]) / 2]];

T1 = {G11 → Gp1 [[1, 1]], G12 → Gp1 [[1, 2]], G22 → Gp1 [[2, 2]], B12 → Bp1 [[1, 2]]};

T2 = {G11 → Gp2 [[1, 1]], G12 → Gp2 [[1, 2]], G22 → Gp2 [[2, 2]], B12 → Bp2 [[1, 2]]};

SOL = {G11 → Simplify [ExpandAll [(G11 /. T1) /. T2]],

G12 → Simplify [ExpandAll [(G12 /. T1) /. T2]],

G22 → Simplify [ExpandAll [(G22 /. T1) /. T2]],

B12 → Simplify [ExpandAll [(B12 /. T1) /. T2]]};

sol = {G11 → R^ (-2) * r2 / t2,

G22 → R^ (-2) * r2 * (t1 ^2 + t2 ^2) / t2, G12 → R^ (-2) * r2 * t1 / t2, B12 → R^ (-2) * r1};

solt = {t1 → G12 / G11, t2 → Sqrt [Det [G]] / G11, r1 → R^2 * B12, r2 → R^2 * Sqrt [ Det [G]] };

Print [{"r1 -> ", Simplify [ExpandAll [(r1 /. solt ) /. SOL /. sol ]],

"r2 -> ", Simplify [ExpandAll [(r2 ^2 /. solt ) /. SOL /. sol ]],

"t1 -> ", Simplify [ExpandAll [(t1 /. solt ) /. SOL /. sol ]],

"t2 -> ", Simplify [ExpandAll [((t2 ^2) /. solt ) /. SOL /. sol ]]}]

r1 -> , -

R4 r1

r12 + r22
, r2 -> ,

R8 r22

r12 + r222
, t1 -> , -

t1

t12 + t22
, t2 -> ,

t22

t12 + t222


Figure 8.2: Mathematica code for the change of the moduli ρ and τ for a T -duality transforma-
tions of both of the two compactified dimensions

The factor r4 shouldn’t be there, but is probably just an error of dimensionality some-
where earlier. Indeed, Giveon et al work with dimensionless fields, effectively eliminating
the R/

√
α′ from the calculation. I have reintroduced it and must have made an error

somewhere, that I really can’t be bothered to check at this point.

Another point is that Joe’s example τ remains invariant. This is not the case here, but we

can always apply a symmetry of the first type with L =

(
0 1
−1 0

)
. We have seen there

that this leaves ρ invariant and transforms τ −→ −1/τ . Thus we see that a transformation
GLGD2

GD1
indeed leaves τ invariant and transforms ρ into −1/ρ.

[3] We now consider duality on X1 alone using our framework. The calculation is similar and
the Mathematica code is given below. The background fields transform as

G′11 =
1

G11
; G′12 = −B12

G11
; G22 =

B2
12 +G

G11
; B12 = −G12

G11
[8.376]
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From this we find that the moduli transform as

ρ −→ −τ̄ ; τ −→ −ρ̄ [8.377]

In order to bring this into the form of Joe’s book, where ρ and τ are interchanged, we need
to include the fourth symmetry, given hereunder. That symmetry transforms ρ into −ρ̄ and τ
into −τ̄ . So combining this symmetry, we indeed have ρ −→ τ and τ −→ ρ.

In[293]:= e1 = {{1, 0}, {0, 0}}; e2 = {{0, 0}, {0, 1}}; u = {{1, 0}, {0, 1}};

EE = {{G11, G12 + B12 }, {G12 - B12, G22 }};

G = {{G11, G12 }, {G12, G22 }};

EEp1 = Simplify [ExpandAll [((u - e1).EE + e1). Inverse [ e1.EE + u - e1]]];

EEp2 = Simplify [ExpandAll [((u - e2).EE + e2). Inverse [ e2.EE + u - e2]]];

Gp1 = Simplify [ExpandAll [(EEp1 + Transpose [EEp1 ]) / 2]];

Bp1 = Simplify [ExpandAll [(EEp1 - Transpose [EEp1 ]) / 2]];

Gp2 = Simplify [ExpandAll [(EEp2 + Transpose [EEp2 ]) / 2]];

Bp2 = Simplify [ExpandAll [(EEp2 - Transpose [EEp2 ]) / 2]];

T1 = {G11 → Gp1 [[1, 1]], G12 → Gp1 [[1, 2]], G22 → Gp1 [[2, 2]], B12 → Bp1 [[1, 2]]};

SOL = {G11 → Simplify [ExpandAll [(G11 /. T1)]],

G12 → Simplify [ExpandAll [(G12 /. T1)]],

G22 → Simplify [ExpandAll [(G22 /. T1)]],

B12 → Simplify [ExpandAll [(B12 /. T1)]]};

sol = {G11 → R^ (-2) * r2 / t2,

G22 → R^ (-2) * r2 * (t1 ^2 + t2 ^2) / t2, G12 → R^ (-2) * r2 * t1 / t2, B12 → R^ (-2) * r1};

solt = {t1 → G12 / G11, t2 → Sqrt [Det [G]] / G11, r1 → R^2 * B12, r2 → R^2 * Sqrt [ Det [G]] };

Print [{"r1 -> ", Simplify [ExpandAll [(r1 /. solt ) /. SOL /. sol ]],

"r2 -> ", Simplify [ExpandAll [(r2 ^2 /. solt ) /. SOL /. sol ]],

"t1 -> ", Simplify [ExpandAll [(t1 /. solt ) /. SOL /. sol ]],

"t2 -> ", Simplify [ExpandAll [((t2 ^2) /. solt ) /. SOL /. sol ]]}]

r1 -> , - R
2
t1, r2 -> , R

4
t2

2
, t1 -> , -

r1

R2
, t2 -> ,

r22

R4


Figure 8.3: Mathematica code for the change of the moduli ρ and τ for a T -duality transforma-
tions of both of the two compactified dimensions

[4] Under spacetime parity X24 −→ −X24 we necessarily need G24,25 −→ −G24,25,
B24,25 −→ −B24,25 and Φ an even function of X for the worldsheet action to be
invariant. From [8.361] we readily see that this corresponds to ρ1 −→ −ρ1 and
τ1 −→ −τ1 and leaves ρ2 and τ2 invariant. We can write this as (ρ, τ) −→ (−ρ̄,−τ̄).
The same holds, of course for the parity transformation X25 −→ −X25. As the world
we live in is, as far as we can see, parity invariant, this transformation must yield the
same theory.

Let us now summarise this. The symmetry [1] gives a symmetry under PSL(2,Z) acting
on τ , leaving ρ invariant. The symmetry [2a] combined with [2b] and an action of [1] gives
a symmetry under PSL(2,Z) acting on ρ, leaving τ invariant. The symmetry [3] gives a
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Z2 symmetry and so does the symmetry [4]. Note that the latter two symmetries do not
commute with the former two and so the product is semi-direct. The full T -duality group
is thus

PSL(2,Z)⊗ PSL(2,Z) n Z2 n Z2 [8.378]

8.79 p 255: Eq. (8.4.39) The Kinetic Terms as a Function of the Moduli

Let us now work out the scalar kinetic terms of (8.4.35) ignoring the dilaton,

SK =GmnGpq(∂µGmp∂
µGnq + ∂µBmp∂

µBnq) [8.379]

We start with the first term and note that

Gmn∂µGmp =Gmn∂µ

(
α′ρ2

R2
Gmp(τ)

)
=Gmn

α′

R2
Gmp∂µρ2 +Gmn

α′ρ2

R2
∂µGmp(τ)

=GmnGmpρ
−1
2 ∂µρ2 +

R2

α′ρ2

(
G−1

)mn α′ρ2

R2
∂µGmp(τ)

= δnp ρ
−1
2 ∂µρ2 +

(
G−1

)mn
∂µGmp(τ)

= ρ−1
2 ∂µρ2δ

n
p +

(
G−1∂µG

)n
p

[8.380]

Thus

SK1 =GmnGpq∂µGmp∂
µGnq =

[
ρ−1

2 ∂µρ2δ
n
p +

(
G−1∂µG

)n
p

][
ρ−1

2 ∂µρ2δ
p
n +

(
G−1∂µG

)p
n

]
= 2ρ−2

2 ∂µρ2∂
µρ2 + 2ρ−1

2 ∂µρ2

(
G−1∂µG

)p
p

+
(
G−1∂µG

)n
p

(
G−1∂µG

)p
n

[8.381]

We can rewrite the second term as 2ρ−1
2 ∂µρ2 tr ∂µ lnG and we note that because 1 =

detG = exp tr lnG we have that tr lnG = 0 and also ∂µtr lnG = 0. The second term thus
vanishes and we have

SK1 = 2ρ−2
2 ∂µρ2∂

µρ2 + tr
(
G−1∂µGG−1∂µG

)
[8.382]

The last term becomes

tr
(
G−1∂µGG−1∂µG

)
= tr

[
1

τ2

(
1 −τ1

−τ1 |τ |2
)
∂µ

1

τ2

(
1 τ1

τ1 |τ |2
)]2

[8.383]
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It is a matter of straightforward algebra, best left to a machine or a keen student, to work
out that this is

tr
(
G−1∂µGG−1∂µG

)
= tr

 (∂1τ1)2+(∂2τ1)2+(∂1τ2)2+(∂2τ2)2

τ2
2

0

0 (∂1τ1)2+(∂2τ1)2+(∂1τ2)2+(∂2τ2)2

τ2
2



= 2
(∂1τ1)2 + (∂2τ1)2 + (∂1τ2)2 + (∂2τ2)2

τ2
2

[8.384]

We also have

∂µτ∂
µτ̄ = ∂µ(τ1 + iτ2)∂µ(τ1 − iτ2) = ∂µτ1∂

µτ1 + ∂µτ2∂
µτ2

= (∂1τ1)2 + (∂2τ1)2 + (∂1τ2)2 + (∂2τ2)2 [8.385]

Therefore

SK1 = 2ρ−2
2 ∂µρ2∂

µρ2 + 2τ−2
2 ∂µτ∂

µτ̄ [8.386]

We now consider the second term in [8.379], i.e.

SK2 =GmnGpq∂µBmp∂
µBnq = 2G24,nG25,q∂µB24,25∂

µBnq

= 2(G24,24G25,25∂µB24,25∂
µB24,25 +G24,25G25,24∂µB24,25∂

µB25,24)

= 2
[
G24,24G25,25 − (G24,25)2

]
∂µB24,25∂

µB24,25

= 2(detGmn)∂µB24,25∂
µB24,25 = 2

R4

α′2ρ2
2

∂µB24,25∂
µB24,25 [8.387]

Using [8.351] this becomes

SK2 = 2
R4

α′2ρ2
2

(
α′

R2

)2

∂µρ1∂
µρ1 = 2ρ−2

2 ∂µρ1∂
µρ1 [8.388]

We thus find for the kinetic term

SK = SK1 + SK2 = 2ρ−2
2 ∂µρ2∂

µρ2 + 2τ−2
2 ∂µτ∂

µτ̄ + 2ρ−2
2 ∂µρ1∂

µρ1

= 2(τ−2
2 ∂µτ∂

µτ̄ + ρ−2
2 ∂µρ∂

µρ̄) [8.389]

8.80 p 256: The Number of Fixed Points of an Orbifold

We consider the orbifold

rm : Xm ≡ −Xm and tm : Xm ≡ Xm + 2πR for m = 1, · · · , k [8.390]
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Any spacetime point of the form (x1, · · · , xk) where xm is either 0 or πR is a fixed point
under all rm and tm. So the number of fixed point is given by 2k. E.g. for k = 2
they are (0, 0), (0, πR), (πR, 0) and (πR, πR). For k = 3 we have the eight possibili-
ties (0, 0, 0), (0, 0, πR), (0, πR, 0), (0, πR, πR), (πR, 0, 0), (πR, 0, πR), (πR, πR, 0) and finally
(πR, πR, πR). And so on for k ≥ 4.

8.81 p 256: Eq. (8.5.5) The Effect of a Reflection on a General State

A general state in the compactified dimension X is obtained by acting with a vertex oper-
ator of the vacuum:

i=A∏
i=1

(
∂kiX

)pi j=B∏
j=1

(
∂̄`jX

)qj
eik·X(z,z̄) |0〉 [8.391]

The compactified spacetime field X(z, z̄) given by (8.2.15), i.e.

X(z, z̄) =x0 − i
α′

2
(pL ln z + pR ln z̄) + i

√
α′

2

∑
m6=0

1

m

(
αm
zm

+
α̃m
z̄m

)
[8.392]

with x0 = xL+xR and the momenta pL and pR depending on the momentum quantisation
number n and the winding number w according to (8.2.7), i.e.

pL =
n

R
+
R

α′
w; pR =

n

R
− R

α′
w [8.393]

Reflection symmetry X −→ −X, thus changes αm −→ −αm, α̃m −→ −α̃m, and pL,R −→
−pL,R. The latter is the same as (n,w) −→ (−n,−w).

A general state in the compactified dimension X is obtained by acting with a vertex
operator of the vacuum:

|NÑ ; k;n,w〉 =

∞∏
m,n=1

αkm−mα̃
`n
−n |0; k;n,w〉 [8.394]

The n and w appear because the momentum state is created by the vertex operator eik·X

and X contains pL and pR, as per the above, and hence also n and w. Applying the
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reflection symmetry on this state gives

r
[
|NÑ ; k;n,w〉

]
= r

 ∞∏
m,n=1

αkm−mα̃
`n
−n |0; k;n,w〉


=

∞∏
m,n=1

(−α−m)km (−α̃−n)`n |0; k;−n,−w〉

= (−)
∑
m km(−)

∑
n `n

∞∏
m,n=1

αkm−mα̃
`n
−n |0; k;−n,−w〉

= (−)
∑
m km+

∑
n `n |NÑ ; k;−n,−w〉 [8.395]

which is (8.5.5), taking into account that from Joe’s errata page N25 =
∑

m km and simi-
larly for Ñ25.

8.82 p 256: Eq. (8.5.6) The Mode Expansion in the Twisted Sector

This is a solution to the equations of motions that satisfies the twisted boundary conditions.
We first rewrite X(z, z̄) in terms of σ and τ . We have z = e−iw = e−i(σ+iτ) = eτ−iσ. Thus

X(σ, τ) =x0 − i
α′

2
[pL(τ − iσ) + pR(τ + iσ)]

+ i

√
α′

2

∑
m 6=0

1

m

(
αme

−m(τ−iσ) + α̃me
−m(τ+iσ)

)
[8.396]

and

X(σ + 2π, τ) =x0 − i
α′

2
[pL(τ − i(σ + 2π)) + pR(τ + i(σ + 2π))]

+ i

√
α′

2

∑
m6=0

1

m

(
αme

−m(τ−i(σ+2π)) + α̃me
−m(τ+i(σ+2π))

)
[8.397]

Requiring X(σ + 2π) = −X(σ) one see that necessarily x0 = pL = pR = 0 so that we are
left with ∑

m 6=0

1

m

(
αme

−m(τ−iσ)+2πim) + α̃me
−m(τ+iσ)−2πim

)
= −

∑
m 6=0

1

m

(
αme

−m(τ−iσ) + α̃me
−m(τ+iσ)

)
[8.398]
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We thus need e2πim = −1 or m = is half-integer. The mode expansion in twisted sector is
therefore

X(σ, τ) = i

√
α′

2

+∞∑
n=−∞

1

n+ 1/2

(
αn+1/2e

−(n+1/2)(τ−iσ) + α̃n+1/2e
−(n+1/2)(τ+iσ)

)
= i

√
α′

2

+∞∑
n=−∞

1

n+ 1/2

(
αn+1/2

zn+1/2
+
α̃n+1/2

z̄n+1/2

)
[8.399]

8.83 p 257: Eq. (8.5.8) The Mass Shell Condition for the Twisted Sec-
tor

Let us start by recalling the mnemonic for the zero-point energy of section 2.9, p 73, and
apply it to a few familiar cases, before we look at the case at hand. The mnemonic is as
follows

1. Zero point energies will give a contribution ε
2ω for each bosonic (ε = +1) or fermionic

(ε = −1) modes.

2. In summing the individual modes one needs the regularised sum

∞∑
n=1

(n− θ) =
1

24
− 1

8
(2θ − 1)2 [8.400]

where θ is the coming from non-trivial boundary conditions. It can be found from the Laurent
expansion of the field F (z) =

∑
m∈Z Fm/z

m+θ.

3. Add the contribution from the conformal transformation from the cylinder to the plane; for
L0 this is c/24 with c the central charge of the contributing field.

Let us look at this for a free periodic boson. From the first point we take a factor +1/2.
For the second point we have periodic boundary conditions and thus θ = 0. This gives a
contribution 1/24 − 1/8 = −2/24 = −1/12. For the third point we use the central charge
of the free boson, cX = 1. We thus find

aXP =
1

2

(
− 1

12

)
+

1

24
= 0 [8.401]

For a bc ghost system we have similarly −1/2 from the first part, twice −1/12 from the
second part as we have two ghosts b and c, and a ghost central charge of cg = −26. Thus

ag = −1

2
2

(
− 1

12

)
− 26

24
= −1 [8.402]
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Let us now apply this to the anti-periodic bosonic field. The only change vs the periodic
bosonic field is that we have θ = 1/2. Thus the second part becomes

aXA =
1

2

(
1

24

)
+

1

24
=

3

48
=

1

16
[8.403]

The mass-shell condition for a twisted boson thus becomes, from (4.3.32),

m2 =
4

α′
(N + aXA + ag) =

4

α′

(
N +

1

16
− 1

)
=

4

α′

(
N − 15

16

)
[8.404]

Requiring L0 = L̃0 gives the usual N = Ñ condition.

8.84 p 258: Twisted Sector Oscillators Make Half-Integer Contribu-
tions to the Level Number

Recall that the level number N counts the total level of the oscillations of a general state.
In the twisted sector it is defined as

N =
+∞∑

m=−∞
α−m−1/2αm+1/2 [8.405]

To count the level of a state we then use the commutation relations [αm+1/2, α−n−1/2] =
(m + 1/2)δm+1/2−n−1/2 = (m + 1/2)δm−n and this introduces half-integer numbers. For
example

Nα−3/2 |k〉 =
+∞∑

m=−∞
α−m−1/2αm+1/2α−3/2 |k〉 = α−3/2α3/2α−3/2 |k〉

=
3

2
α−3/2 |k〉 [8.406]

8.85 p 258: Eq. (8.5.10) The Partition Function for the Untwisted
Sector

The term with the projection operator is a sum of terms of the form

〈n,w; k| f †(α, α̃)rqL0 q̄L̃0f(α, α̃) |k;n,w〉 [8.407]

with f(α, α̃) a combination of creation oscillators. The L0 and L̃0 acting on f(α, α̃) |k;n,w〉
will give some number, depending on the level of the oscillators, so we have

〈n,w; k| f †(α, α̃)rqL0 q̄L̃0f(α, α̃) |k;n,w〉 =F (ni, ñi) 〈n,w; k| r |k;n,w〉

= (−)N25Ñ25F (ni, ñi) 〈n,w; k|k;−n,−w〉 [8.408]
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By orthogonality this is zero unless n = −n and w = −w, i.e. n = w = 0. I.e. we pick up
only the massless states. TheN25 and Ñ25 pick up the level of the oscillators; it ensures that
for even level we have a plus sign, but for odd levels we have a minus sign. The rest of the
calculation is the same as our derivation of (7.2.6), except that each oscillator has a minus
sign due to the r reflection. So we consider table 7.1 with the appropriate pre-factors

L0 partitions pre-factor
0 − +1
1 {1} −q
2 {2}, {1, 1} −+ = 0
3 {3}, {2, 1}, {1, 1, 1} −+− = −q3

4 {4}, {3, 1}, {2, 2}, {2, 1, 1}, {1, 1, 1, 1} −+ +−+ = +q4

5 {5}, {4, 1}, {3, 2}, {3, 1, 1}, {2, 2, 1}, {2, 1, 1, 1}, {1, 1, 1, 1, 1} −+ +−−+− = −q5

Table 8.3: Oscillator counting for the untwisted sector

More generally the oscillator counting can be obtained from the Mathematica function

Sum[(-1)∧Length[IntegerPartitions[n][[k]]],{k,PartitionsP[n]}]

and one easily checks that this is the same as

Series[Product[1/(1+q∧k),{k,100}],{q,0,20}]

to any order one might desire. Adding the anti-holomorphic sector gives (8.5.10).

8.86 p 259: Eq. (8.5.11) The Partition Function for the Twisted Sector

This time we need to look at the oscillators with half-integer indices, such as α1−/2 |0〉,
α2

1−/2 |0〉, α−3/2 |0〉, α3
−1/2 |0〉 etc. A moment’s thought reveals that for tr qL0 q̄

L̃0 we need to
count the number of partitions of the integers into odd integers only. This gives the series

1 + q1/2 + q + 2q3/2 + 2q2 + 3q5/2 + 4q3 + 5q7/2 +O
(
q4
)

=
∞∏
m=1

1

1− qm−1/2
[8.409]

This can be easily checked with Mathematica. The partitions in odd numbers only can be
obtained from the Mathematica function for each power of q

Length[IntegerPartitions[n,All,ODD]]* q∧{n/2}

where ODD is the set of odd positive integers, ODD = {1, 3, 5, 7, 9, 11, · · · }.
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For the part with the reflection, tr rqL0 q̄
L̃0 , one needs to count the number of partitions

including a sign plus or minus depending on whether there is an even or odd number
oscillators. We then obtains

1− q1/2 + q − 2q3/2 + 2q2 − 3q5/2 + 4q3 − 5q7/2 +O
(
q4
)

=
∞∏
m=1

1

1 + qm−1/2
[8.410]

Note that in this case the coefficient of each power of q is still the total number of partitions
in odd integers, but it acquires an alternating sign. This sum can be obtained from the
Mathematica function for each power of q

Sum[(-1)∧Length[IntegerPartitions[n,All,ODD][[k]]],
{k,Length[IntegerPartitions[n,All,ODD]]}]*q∧{n/2}

There are two twisted sector, depending on the boundary condition of (8.5.4) or that
of (8.5.7) hence the extra factor of two. The pre-factor (qq̄)1/48 replaces the (qq̄)−1/24 for
the periodic bosonic field, as per our calculation of the zero-point energy in [8.403]. All
this together gives (8.5.11).

8.87 p 259: Eq. (8.5.12) The Orbifold Partition Function in Terms of
Theta Functions

Let us now work out |η(τ)/ϑ10(0, θ)|. We use (7.2.10) for the Dedekind function:

η(τ) = q1/24
∏
n

(1− qm) [8.411]

and (7.2.38) for the Theta functions. Here using z = e2πiν i.e. z = 1 for ν = 0 and q = e2πiτ

ϑ10(0, τ) = 2q1/8
∏
m

(1− qm)(1 + qm)2 [8.412]

So

η(τ)

ϑ10(0, τ)
=

q1/24
∏
n(1− qm)

2q1/8
∏
m(1− qm)(1 + qm)2

=
1

2
q−1/12

∏
m

(1 + qm)−2 [8.413]

and thus ∣∣∣∣ η(τ)

ϑ10(0, τ)

∣∣∣∣2 =
1

2
q−1/12

∏
m

(1 + qm)−2 × 1

2
q̄−1/12

∏
m

(1 + q̄m)−2

=
1

4
(qq̄)−1/12

∏
m

|1 + qm|−4 [8.414]
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and finally ∣∣∣∣ η(τ)

ϑ10(0, τ)

∣∣∣∣ =
1

2
(qq̄)−1/24

∏
m

|1 + qm|−2 [8.415]

This is exactly the second term of the untwisted part in (8.5.10)
Similarly from (7.2.38)

ϑ01(0, τ) =
∏
m

(1− qm)(1− qm−1/2)2 [8.416]

Thus

η(τ)

ϑ01(0, τ)
=

q1/24
∏
n(1− qm)∏

m(1− qm)(1− qm−1/2)2
= q1/24

∏
m

(1− qm−1/2)−2 [8.417]

and thus ∣∣∣∣ η(τ)

ϑ01(0, τ)

∣∣∣∣ = (qq̄)1/48
∏
m

|1− qm−1/2|−2 [8.418]

which is the first term of the twisted partition function.
Finally

ϑ00(0, τ) =
∏
m

(1− qm)(1 + qm−1/2)2 [8.419]

Thus

η(τ)

ϑ00(0, τ)
=

q1/24
∏
n(1− qm)∏

m(1− qm)(1 + qm−1/2)2
= q1/24

∏
m

(1 + qm−1/2)−2 [8.420]

and thus ∣∣∣∣ η(τ)

ϑ00(0, τ)

∣∣∣∣ = (qq̄)1/48
∏
m

|1 + qm−1/2|−2 [8.421]

Bringing it all together we indeed find

Zorb(R, τ) =
1

2
Ztor(R, τ) +

∣∣∣∣ η(τ)

ϑ10(0, τ)

∣∣∣∣+

∣∣∣∣ η(τ)

ϑ01(0, τ)

∣∣∣∣+

∣∣∣∣ η(τ)

ϑ00(0, τ)

∣∣∣∣ [8.422]

which is (8.5.12).

Let us now consider the modular invariance of the orbifold partition function. The
toroïdal part Ztor(R, τ) is modular invariant as we have already seen, so we need to focus
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only on the Theta functions. First consider T : τ −→ τ+1. The Dedekind function (7.2.10)
is manifestly invariant under T . Also, from (7.2.39) ϑ00 and ϑ01 are interchanged with one
another and |ϑ10| is invariant by itself. Thus Zorb(R, τ) is invariant under T .

Invariance under S is only slightly more complicated. From (7.2.40) we see that the
Theta functions get mixed up

ϑ00(0,−1/τ) = (−iτ)1/2ϑ00(0, τ)

ϑ01(0,−1/τ) = (−iτ)1/2ϑ10(0, τ)

ϑ10(0,−1/τ) = (−iτ)1/2ϑ01(0, τ) [8.423]

But from (7.2.44) we also have that

η(−1/τ) = (−iτ)1/2η(τ) [8.424]

and therefore

Zorb(R,−1/τ) =
1

2
Ztor(R, τ) +

∣∣∣∣ η(τ)

ϑ01(0, τ)

∣∣∣∣+

∣∣∣∣ η(τ)

ϑ10(0, τ)

∣∣∣∣+

∣∣∣∣ η(τ)

ϑ00(0, τ)

∣∣∣∣
=Zorb(R, τ) [8.425]

The interesting point here is the contribution |η(−1/τ)/ϑ10(0,−1/τ)| of the untwisted sec-
tor gets transformed into a contribution from the the twisted sector |η(−1/τ)/ϑ01(0,−1/τ)|
and vice-versa. This means that the untwisted sector is not modular invariant by itself, but
that the twisted sector is necessarily present for a consistent theory.

8.88 p 259: Eq. (8.5.13) Relating the Theta Functions to the Path
Integral

Consider first the case a = 1 and b = 0, i.e.

X(σ1 + 2π, σ2) = X(σ1, σ2) and X(σ1 + 2πτ1, σ
2 + 2πτ2) = −X(σ1, σ2) [8.426]

There are normal boundary conditions along the worldsheet coordinate σ1 and a reflection
as you go around the torus.

Similarly for a = 0 and b = 1, i.e.

X(σ1 + 2π, σ2) = −X(σ1, σ2) and X(σ1 + 2πτ1, σ
2 + 2πτ2) = X(σ1, σ2) [8.427]

There are twisted boundary conditions along the worldsheet coordinate σ1 and a normal
boundary conditions around the torus.

Finally for a = 0 and b = 0, i.e.

X(σ1 + 2π, σ2) = −X(σ1, σ2) and −X(σ1 + 2πτ1, σ
2 + 2πτ2) = X(σ1, σ2) [8.428]

There are twisted boundary conditions along the worldsheet coordinate σ1 and as you go
around the torus.
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8.89 p 260: Eq. (8.5.16) The Partition Function for a General Twisted
Theory

Let us see how this works in our previous example. h1 is the sum over twists in the spacial
directions, i.e. X(σ1 + 2π, σ2) = ±X(σ2, σ1). The projection operator PH here becomes
(1 + r)/2 with r the reflection X ≡ −X. Thus we have the group elements ĥ2 ∈ {1, r}.
Denote by Zh1h2 the contribution to the partition function with twist h1 and projection
contribution h2. The order of the discrete symmetry group Z2 is two, so we have a factor
1/2. For the untwisted sector we thus have

1

2
(Z11 + Z1r) = (qq̄)−1/24trU

(
1 + r

2
qL0 q̄L̃0

)
=

1

2
Ztor(R, τ) +

∣∣∣∣ η(τ)

ϑ10(0, τ)

∣∣∣∣ [8.429]

For the twisted sector we have

1

2
(Zr1 + Zrr) = (qq̄)1/48trT

(
1 + r

2
qL0 q̄L̃0

)
=

∣∣∣∣ η(τ)

ϑ01(0, τ)

∣∣∣∣+

∣∣∣∣ η(τ)

ϑ00(0, τ)

∣∣∣∣ [8.430]

and the total partition function is

1

2
(Z11 + Z1r + Zr1 + Zrr) = Zorb(R, τ) [8.431]

Let us now look at the modular transformations in this case. S : τ −→ −1/τ . We have

1

2
Ztor(R, τ)→ 1

2
Ztor(R, τ) or Z11 −→ Z11 [8.432]

In this case h1 = 1, i.e. no twist, and h2 = 1, i.e. the projection is with the identity
element of the group. Therefore (h2, h

−1
1 ) = (1,1) = (h1, h2) as we should. Next we take

the reflection part of the untwisted sector. Under S we have∣∣∣∣ η(τ)

ϑ10(0, τ)

∣∣∣∣ −→ ∣∣∣∣ η(τ)

ϑ01(0, τ)

∣∣∣∣ or Z1r −→ Zr1 [8.433]

In this case h1 = 1, i.e. no twist, and h2 = r, i.e. reflection. Thus (h2, h
−1
1 ) = (r, 1) as we

should.
Turn to the twisted sector. First∣∣∣∣ η(τ)

ϑ01(0, τ)

∣∣∣∣ −→ ∣∣∣∣ η(τ)

ϑ10(0, τ)

∣∣∣∣ or Zr1 −→ Z1r [8.434]

In this case h1 = r, i.e. no twist, and h2 = 1, i.e. reflection. Thus (h2, h
−1
1 ) = (1, r−1) =

(1, r) as we should. Finally∣∣∣∣ η(τ)

ϑ00(0, τ)

∣∣∣∣ −→ ∣∣∣∣ η(τ)

ϑ00(0, τ)

∣∣∣∣ or Zrr −→ Zrr [8.435]
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In this case h1 = h2 = r and thus (h2, h
−1
1 ) = (r, r−1) = (r, r) as we should.

Similarly, we find under under T : τ −→ τ+1 for the untwisted sector that Z11 −→ Z11,
i.e. (h1, h1h2) = (1,11) = (1, 1) and that Z1r −→ Z1r, i.e. (h1, h1h2) = (1, 1r) = (1, r),
so that these contributions are invariant by themselves. For the twisted sector we find that
Zr1 −→ Zrr, i.e. (h1, h1h2) = (r, r1) = (r, r) and that Zrr −→ Zr1, i.e. (h1, h1h2) =
(r, rr) = (r, 1). So the twisted contributions get transformed into one another.

Let us now check the modular invariance of the general formula (8.5.16). First

Z(−1/τ) =
1

order(H)

∑
h1,h2

Zh1,h2(−1/τ) =
1

order(H)

∑
h1,h2

Zh2,h
−1
1

(τ)

=
1

order(H)

∑
h3,h2

Zh2,h3(τ) = Z [8.436]

where we have written h3 = h−1
1 and have used the fact that every element of G (and H)

has a unique inverse. So in stead of summing over h1 we might as well sum over h−1
1 = h3.

Next

Z(τ + 1) =
1

order(H)

∑
h1,h2

Zh1,h2(τ + 1) =
1

order(H)

∑
h1,h2

Zh1,h1h2(τ)

=
1

order(H)

∑
h1,h

−1
1 h3

Zh1,h3(τ) =
1

order(H)

∑
h1,h3

Zh1,h3(τ) = Z [8.437]

where we have set h3 = h1h2 and used the fact that if h−1
1 h3 runs over all elements of H

then so does h3. Indeed let us assume that h and h′ transform to the same element h′′ ∈ H
under the action of h−1

1 , i.e. h−1
1 h = h−1

1 h′ = h′′. Then also h = h′ = h1h
′′ and so every

element of H transforms to a different element of h under the action of H.

8.90 p 260: Eq. (8.5.17)–(8.5.19) Twisting with a Non-Abelian Sub-
group

The twisting means that we have different sectors φ(σ1 + 2π) = hi · φ(σ1). Now let us
consider a twist h1 followed by a twist h2:

h2h1 · φ(σ1) = h2 · φ(σ1 + 2π) = φ(σ1 + 2π + 2π) = φ(σ1 + 4π) [8.438]

For a twist h2 followed by a twist h1 we find

h1h2 · φ(σ1) = h1 · φ(σ1 + 2π) = φ(σ1 + 2π + 2π) = φ(σ1 + 4π) [8.439]
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Thus necessarily h2h1 = h1h2 and thus for consistency the symmetry group needs to be
Abelian.

Another way to look at it is to consider a field φ under a twist h1. We next define a field
ϕ that is obtained by acting with another group element, h2 on φ, i.e. ϕ(σ1) = h2 · φ(σ1).
Let us look at the boundary condition for ϕ:

ϕ(σ1 + 2π) = h2 · φ(σ1 + 2π) = h2h1 · φ(σ1) = h2h1h
−1
2 · ϕ(σ1) = h′1 · ϕ(σ1) [8.440]

with h′1 = h2h1h
−1
2 .

Joe mentions that because of this the diagonal elements of ĥ2 are zero. I don’t understand
this.

The fields fields with twists h1 and h′1 are linked. Indeed a conjugacy class of a group
element g is defined all group element hgh−1 for all h ∈ G. So that h1 and h′1 are in the
same conjugacy class (of h2).

8.91 p 261: Eq. (8.5.20) c = 1 Theories, I

We begin by noticing that the orbifold has the same T -duality symmetry under R −→√
α′/R as the toroïdal theory. Indeed the orbifold partition function can be written as (one

half) the toroïdal partition function plus terms that don’t depend on the compactification
radius, see [8.422]:

Zorb(R, τ) =
1

2
Ztor(R, τ) +

∣∣∣∣ η(τ)

ϑ10(0, τ)

∣∣∣∣+

∣∣∣∣ η(τ)

ϑ01(0, τ)

∣∣∣∣+

∣∣∣∣ η(τ)

ϑ00(0, τ)

∣∣∣∣ [8.441]

so we have the same symmetry and we can restrict both theories to the half line R ≥
√
α′.

Let us now perform consider the theory at the SU(2) × SU(2) point R =
√
α′ and

allow an additional sector with a twist (8.5.20) of π
√
α′. This means that we take the

endpoint of the string X(σ1 + 2π) and identify it with the starting point X(σ1) “twisted”
by π
√
α′. Don’t be confused by the fact that this does’t have a minus sign and so doesn’t

really remind us of twisting anything. Twist is just a general word that is used for unusual
boundary conditions X(σ1 + 2π) = h · X(σ1), with h a discrete symmetry. We thus have
the “twisted” boundary condition

X(σ1 + 2π) ≡ X(σ1) + π
√
α′ [8.442]

We rewrite this as

X(σ1 + 2π) ≡ X(σ1) + 2π

√
α′

2
[8.443]
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And we thus see that boundary condition for the sector with the twisted boundary condi-
tion is the same boundary condition for a standard toroïdal compactification on a radius
R =

√
α′/2, which by T -duality is equivalent to a toroïdal compactification on a radius

α′/R = α′/(
√
α′/2) = 2

√
α′.

Under this twist the SU(2) currents in (8.3.12) transform as

j1(z) =: cos
2√
α′
XL(z) : −→ : cos

2√
α′

(
XL(z) +

π

2

√
α′
)

:

= : cos

(
2√
α′
XL(z) + π

)
:= − : cos

2√
α′
XL(z) :

j2(z) =: sin
2√
α′
XL(z) : −→ : sin

2√
α′

(
XL(z) +

π

2

√
α′
)

:

= : sin

(
2√
α′
XL(z) + π

)
:= − : sin

2√
α′
XL(z) :

j3(z) =
i√
α′
∂XL(z) −→ i√

α′

(
∂XL(z) +

π

2

√
α′
)

=
i√
α′
∂XL(z) [8.444]

and thus indeed j1,2(z) −→ −j1,2(z) and j3(z) −→ j3(z). Note that because X = XL+XR

the twist for the left-and dight-moving parts are by half the original value, i.e. π/2
√
α′.

This indeed corresponds to a rotation of ϕ = π around the third axis in SU(2):j′1j′2
j′3

 =

 cosπ + sinπ 0
− sinπ cosπ 0

0 0 1

j1

j2

j3

 [8.445]

If we now consider the orbifold X(σ1 + 2π) = −X(σ1) at the SU(2) × SU(2) radius
R =

√
α′. Then [8.444] becomes

j1(z) =: cos
2√
α′
XL(z) : −→ : cos

(
− 2√

α′
XL(z)

)
:=: cos

2√
α′
XL(z) :

j2(z) =: sin
2√
α′
XL(z) : −→ : sin

(
− 2√

α′
XL(z)

)
:= − : sin

2√
α′
XL(z) :

j3(z) =
i√
α′
∂XL(z) −→ − i√

α′
∂XL(z) [8.446]

and so j1 is unchanged and j2 and j3 flip sign. This is thus a rotation around the first axis.
The choice of basis axis is irrelevant and we thus see that both these SU(2) represent the
same theory. In other words the toroïdal theory with R = 2

√
α′ is the same as the orbifold

theory with R =
√
α′. Note that in both theories we still have the SU(2)×SU(2) symmetry.

This reasoning is illustrated in the figure below
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Tor : R =
√
α′

SU(2)× SU(2)

twist: X(σ1 + 2π) = X(σ1) + π
√
α′

Tor : R =
√
α′/2

T -duality: R −→ α′/R

Tor : R = 2
√
α′

R3π ×R3π [SU(2)× SU(2)]

twist: X(σ1 + 2π) = −X(σ1)

Orb : R =
√
α′

R1π ×R1π [SU(2)× SU(2)]

Figure 8.4: Equivalence of toroïdal theory at R = 2
√
α′ and orbifold theory at R =

√
α′

Joe then mentions that this equivalence can be verified via theta function identities. This
may be so, but I fear this is not obvious and I will not try to do so.

8.92 p 262: The Low Energy Physics near the Crossing Point of the
Toroïdal and the Orbifold Theory

Under the reflection X(σ1 + 2π) = X(σ1) + π
√
α′, we have j1,2 −→ −j1,2 and j3 −→ j3.

The following SU(2)× SU(2) combinations thus remain invariant under this twist:

j1j̃1, j1j̃2, j2j̃1, j2j̃2 and j3j̃3 [8.447]

All the other combinations of the generators pick up a minus sign. The generic form of the
potential at the SU(2)× SU(2) point was discussed on p 246. If Mij are the nine massless
scalars then the masslesness implies that the first possible term in a potential is cubic and
the only cubic invariant is detM , see (8.3.22). The solution of the equations of motion is
similar as in the previous case, M11M22M33 = M11M22 = M11M33 = M22M33 = 0, which
implies three types of solutions, M11 6= 0,M22 = M33 = 0 and its two permutations.

8.93 p 262: Extra Massless States on the Toroïdal Branch

We go back to the mass-shell condition (8.3.1), i.e. m2 = k2
L + 4(N − 1)/α′ = k2

R + 4(Ñ −
1)/α′ with kL,R = n/R ± wR/α′ as per (8.2.7). Let us set the compactification radius as
R = k

√
α′ for some k ∈ N. We find extra massless states at (N, Ñ ;n,w) = (0, 0;±2k, 0).

Indeed, we then have

kL,R =
1√
α′

(n
k
± kw

)
[8.448]
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and thus

m2 =
1

α′

(n
k
± kw

)2
+

4

α′
(N − 1) =

1

α′
[
(2± 0)2 − 4

]
= 0 [8.449]

8.94 p 263: Eq. (8.5.22) Twisting the SU(2)× SU(2) theory by Zk

We write this twist as

X(σ1 + 2π) = X(σ1) + 2π

√
α′

k
[8.450]

and so this is the same as a toroïdal theory with compactification radius R =
√
α′/k. By

T -duality this is equivalent to a toroïdal theory with compactification radius R = k
√
α′.

8.95 p 263: Eq. (8.5.23) The Massless Scalars of the Zk Twisted Theory

Let us define j± = j1 ± ij2. We thus have

j± =: cos
2√
α′
XL(z) : ±i : sin

2√
α′
XL(z) :=: e

±i 2√
α′
XL(z)

: [8.451]

To check the transformation of j± under a twist recall that if X transforms as X(σ1 +2π) =
X(σ1) + 2π

√
α′/k then XL,R transform as XL,R(σ1 + 2π) = XL,R(σ1) + π

√
α′/k. Thus

j±(σ1 + 2π) =: e
±i 2√

α′

[
XL(z)+π

√
α′
k

]
:= e

±2πi
k j±(σ1) [8.452]

and similar for the right-moving parts ̃±. We thus see that the combinations j+̃− and
j−̃+, as well as the combination j3̃3 remain invariant under the twist. We combine the
first two as

j+̃− + j−̃+ = (j1 + ij2)(̃1 − i̃2) + (j1 − ij2)(̃1 + i̃2) = 2(j1̃1 + j2̃2)

j+̃− − j−̃+ = (j1 + ij2)(̃1 − i̃2)− (j1 − ij2)(̃1 + i̃2) = 2i(j2̃1 − j1̃2) [8.453]

We thus have three massless invariants

j3̃3, j1̃1 + j2̃2 and j1̃2 − j2̃1 [8.454]

Recall from p 246 the definition of a flat direction as a continuous family of static
background solutions. Recall also that a solution for direction is that, in a diagonalised
matrix Mij , we cannot have two of the diagonal elements non-vanishing, or their prod-
uct, say M11M22 6= 0, so that the flat condition 0 = ∂U(M)/∂M33 = ∂ detM/∂M33 =
∂(M11M22M33)/∂M33 is not satisfied. Thus j3̃3 can remain a flat direction, but in j1̃1 +
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j2̃2 not both M11 = j1̃1 and M22 = j2̃2 can be zero and so this this not a flat direction. I
am not sure about the scond condition, M12 = −M21

A complete analysis of the c = 1 theories can be found in [18]. We reproduce here his
figure 14 of c = 1 theories and refer to that excellent review for details.

. . .
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Figure 8.5: c = 1 CFTs. Axes not to scale.

8.96 p 263: Eq. (8.6.1) The U(1) Constant Background Gauge Field

Equation (8.6.1) should be obviously correct. The statement that locally it is pure gauge
means that locally we can set the field to zero by a U(1) gauge transformation A −→ A′ =
A+∂Ω = 0. This implies that −θ/2πR+∂Ω = 0 which is solved by a gauge transformation
Ω = (θ/2πR)x+ cte.

The field strength is Fµν = ∂µAν−∂νAµ and obviously vanishes as A is constant. Under
a space-time periodicity x −→ x+ 2πR we have

Λ −→ exp

[
− iθ

2πR
(x+ 2πR)

]
= e−iθΛ [8.455]
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and so Λ does not have the periodicity. Of course, Λ−1∂Λ does have the required periodic-
ity, so I must admit that I am a bit lost about the the subtlety of that remark. Indeed , the
only thing you are doing is writing 1 = e−x∂ex and you can do that at will. Hopefully the
reason for this will become clear later!

8.97 p 263: Eq. (8.6.2) The Wilson Line

All physical quantities need to be gauge invariant, or they would depend on the gauge
choice. As such the gauge field A is not a physical quantity and that is why we have the
field tensor, which is gauge invariant. However there is another gauge invariant quantity
we can build from the gauge field, i.e. the Wilson line as defined in (8.6.2).

Straightforward use of the definition of A gives

Wq = eiq
∮
dxA = e−iqθ/(2πR)

∮
dx = e−iqθ/(2πR)2πR = e−iqθ [8.456]

This is indeed gauge invariant. Indeed performing a gauge transformation would give an
additional contribution

eiq
∮
dx ∂Ω(x) = eiqΩ(x)

∣∣∣x=2π

x=0
= 0 [8.457]

as Ω(x) must be periodic with period 2π. For more details on the gauge invariant Wilson
loops see e.g. the chapter on Yang-Mills in my notes on QFT [11] for details.

8.98 p 264: Eq. (8.6.3) The Action for a Point Particle with Charge q

The action (8.6.3) is the equivalent of the non-linear sigma model for a point particle. The
field XM is coupled to an external gauge field AM . The coupling needs to happen via
the derivative of the field, ẊM , in order to preserve worldline diffeomorphism invariance
(recall that XM and AM are worldline scalars and that we take AM to be a constant
background field). Note that this action has Euclidean worldsheet time, compare to the
action for Minkowski time that has a minus sign in the mass term, see (1.2.5).

The statement that the gauge action is simply −iq
∫
dxM AM surely refers to the anal-

ogous statement for the string, where we found a low-energy spacetime action whose
equations of motion are the conditions for Weyl invariance at the quantum level, i.e. the
vanishing of the β functions of the worldsheet theory. From (8.6.2) we see that paths
winding around the compact dimension indeed pick up a phase eiqθ in the spacetime path
integral.
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8.99 p 264: Eq. (8.6.4) The Momentum of Point Particle with Charge
q in a Compactified Dimension

We consider one compactified dimension Xd. We first rewrite the Euclidean action using
Ẋd = −ivd:

SM =

∫
dτ

(
−1

2
vdvd +

1

2
m2 − qAdvd

)
=

∫
dτ

[
−1

2
(vd)2 +

1

2
m2 − qAdvd

]
[8.458]

where we have used the fact that vd = vd for our spacetime metric, Minkowski or other-
wise. The canonical momentum in Minkowski space is defined as

p =
∂L

∂(∂tMX)
[8.459]

We now go to Euclidean time tE = itM and use ∂tM = i∂tE to find

p =
∂L

∂(i∂tEX)
= − ∂L

∂(iẊ)
= − ∂L

∂vd
[8.460]

Because we wish to integrate out the dynamics over the compactified field X, we replace
the gauge field by its average contribution over the compactified dimension, i.e. we con-
sider the case where the particle can wind around the compactified dimension and pick up
a phase. Therefore

pd =− ∂

∂vd

[
−1

2
(vd)2 +

1

2
m2 − qAdvd

]
= vd +

q

2πR

∫
dxA = vd − qθ

2πR
[8.461]

8.100 p 264: Eq. (8.6.5) The Quantised Momentum of Point Particle
with Charge q in a Compactified Dimension

The quantisation of the momentum pd follows for the same reason as that that in (8.1.5).
Therefore

pd =
n

R
= vd − qθ

2πR
[8.462]

From this we have that

vd =
n

R
+

qθ

2πR
=

2πn+ qθ

2πR
[8.463]
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8.101 p 264: Eq. (8.6.6) The Hamiltonian Point Particle with Charge q
in a Compactified Dimension

The Hamiltonian consists of a contribution from the non-compactified dimensions, which
is simply 1

2(pµp
µ + m2), plus that of the compactified dimension. For the compactified

dimension we thus have, in Minkowski space,

H =
∂Xd

∂tM
pd − LC =

∂Xd

i∂tE
pd − LC = −iẊdpd − LC = −vdpd − LC [8.464]

Using [8.458] and [8.461] we find

H = − vd
(
vd − qθ

2πR

)
−
[
−1

2
(vd)2 − q

(
− θ

2πR

)
vd
]

= −1

2
(vd)2 [8.465]

This has a different sign from Joe. I can’t figure out what is incorrect.

8.102 p 264: Eq. (8.6.8) Diagonalising the Background Field with
Chan-Paton Factors

Recall the discussion about Chan-Paton factors λa, a = 1, · · · , n starting on page 184. These
are basically n×n Hermitian matrices and there are n of them. Each end-point of the open
string has a Chan-Paton Factor associated to it. These factors always appear in amplitudes
as traces of the form tr λa1λan · · ·λak and thus we have a symmetry under Hermitian
matrices λa −→ UλaU †. As explained in that section this symmetry results in a spacetime
gauge symmetry.

As we have included Chan-Paton factors in our theory, the background is now an n× n
matrix and this can be diagonalised using a Hermitian matrix U , i.e. Ad −→ Adiag

d =
U−1AU = U †AU , i.e.

Ad = − 1

2πR
diag(θ1, θ2, · · · , θm) [8.466]

where we have dropped the diag superscript for convenience. Thus matrix is clearly a
Hermitian matrix, as the θi are real, so it is an element of U(N). It is moreover a matrix
that commutes with all other elements of U(N) and so is an element of the subgroup
U(1)n.9

9Each non-zero θ generates a U(1), and all these U(1) commute with one another, so a diagonal
element of U(n) sits automatically in U(1)n.
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8.103 p 264: Eq. (8.6.9) The Quantised Momentum with Chan-Paton
Factors

It isn’t clear to me why |ij〉 has charge +1 under U(1)i and change −1 under U(1)j . The
charge is linked to the phase the open string picks up in Wilson loop. The open string
has an λi Chan-Paton factor on one end and a λj Chan Paton factor at the other end.
Why do they pick up a different sign?

Assuming that the state |ij〉 has charge +1 under U(1)i and change −1 under U(1)j then
the two ends are just like particles with charge q = ±1 from a Wilson line point of view.
We can thus apply the same reasoning as for the point particle and we find indeed that we
have the quantisation

vd =
2π`+ θi − θj

2πR
[8.467]

8.104 p 264: Eq. (8.6.10) The Mass Spectrum with Chan-Paton Factor

The mass spectrum is thus a combination of the non-compact and the compact dimensions.
We have a contribution from the oscillator modes α′−1(N − 1) and from the Wilson line
and quantised compact momentum v2

d. Together this gives (8.6.10).

8.105 p 265: Open Strings with Neumann Boundary Conditions

Recall that the Neumann boundary conditions are ∂σXµ = 0 at the open string endpoints.
These endpoints are thus free to move and can be unwound around any compactified di-
mension. Dirichlet boundary conditions, on the contrary, have the endpoint fixed and such
strings cannot be unwound around a compactified dimension. But for Neumann boundary
conditions there is thus no boundary condition X(σ + 2π) = X(σ) + 2πR. Ignoring the
Chan-Paton factors, the mass spectrum (8.6.10) is thus given, in this case, by

m2 =
(2π`)2

4π2R2
+
N − 1

α′
[8.468]

Strings with non-zero momentum, i.e. with ` 6= 0, thus have infinite mass as R −→ 0. If
we include the Chan-Paton factors we get for the numerator of the first term in the mass
spectrum (2π`− θj + θi)

2. This can be zero for very specific combinations of θi and θj but
this is not the case for generic such values. Because theres is no term w2R2/α′2 that is
present in the closed string torïdal compactification, there seems to be no duality and no
infinite set of massless states. Because an open string with Neumann boundary conditions
can just be unwound around the compactified dimension it seems like it lives in the the
25 dimensional spacetime, ignoring the compactified dimension. But as explained by Joe,
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this is not quite right; it is the endpoints only that live in 25 dimensional spacetime. The
interior stuff of the string vibrates in the full 26 dimensions.

8.106 p 266: Eq. (8.6.15) The Boundary Conditions between a Theory
and its Dual

We consider for simplicity a rectangular worldsheet

n = σ

t = τ

Figure 8.6: The boundary vectors on an open string worldsheet

We use the usual complex coordinates z = e−iw = e−i(σ+iτ) = eτ−iσ and z̄ = eτ+iσ.
From this we have ∂σ = −i(∂ − ∂̄) and ∂τ = ∂ + ∂̄. Therefore

∂σX(z, z̄) = −i(∂ − ∂̄) [XL(z) +XR(z̄)] = −i
[
∂XL(z)− ∂̄XR(z̄)

]
[8.469]

and

∂τX
′(z, z̄) = (∂ + ∂̄) [XL(z)−XR(z̄)] = ∂XL(z)− ∂̄XR(z̄) [8.470]

and thus indeed

∂σX(z, z̄) = −i∂τX ′(z, z̄) [8.471]

The Neumann boundary condition on the X coordinate, i.e. ∂σX(0) = ∂σX(2π) = 0
implies that on the dual coordinate ∂τX ′(0) = ∂τX

′(2π) = 0 and so that X ′ is fixed at the
end-points, i.e. Dirichlet boundary conditions for the dual coordinate X ′.

8.107 p 266: Eq. (8.6.16) The Endpoints of the Compactified Open
String Lie on one hyperplane

We drop the superscript 25 for convenience. The first line of (8.6.16) is obvious using
(8.6.15). For the second line we use (8.2.16). But that is an equation for the closed string,
so we first have to rewrite it for the open string. Using (2.7.26) we find

XL(z) =xL − iα′pL ln z + i

√
α′

2

∑
m 6=0

αm
mzm

XR(z̄) =xR − iα′pR ln z̄ + i

√
α′

2

∑
m 6=0

αm
mz̄m

[8.472]
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Recall that for the open string there is no α̃m; both left- and right-moving part have the
same oscillators. Note also that we have pL = pR = p in order to recover (2.7.26).

First we have

∂2XL(z) = ∂2

xL − iα′pL ln z + i

√
α′

2

∑
m 6=0

αm
mzm

 [8.473]

With z = e−iw = e−i(σ
1+iσ2) = eσ

2−iσ1
we find

∂2XL(z) = ∂2

−iα′pL(σ2 − iσ1) + i

√
α′

2

∑
m 6=0

αm
m
em(σ2−iσ1)


= − iα′pL + i

√
α′

2

∑
m 6=0

αme
m(σ2−iσ1) [8.474]

Integrating, we find

−i
∫ π

0
dσ1∂2XL = − i

∫ π

0
dσ1

−iα′pL + i

√
α′

2

∑
m 6=0

αme
m(σ2−iσ1)


= − πα′pL +

√
α′

2

∑
m6=0

αm
em(σ2−iσ1)

−im

∣∣∣∣∣
σ1=π

σ1=0

= − πα′pL + i

√
α′

2

∑
m 6=0

αm
m

(
em(σ2−iπ) − emσ2

)
= − πα′pL + i

√
α′

2

∑
m 6=0

αme
mσ2

m
((−1)m − 1)

[8.475]

Similarly for the right-moving sector

∂2XR(z) = ∂2

xR − iα′pR ln z̄ + i

√
α′

2

∑
m 6=0

αm
mz̄m


∂2XL(z) = ∂2

−iα′pR(σ2 + iσ1) +

√
α′

2

∑
m 6=0

αm
m
em(σ2+iσ1)


= − iα′pR + i

√
α′

2

∑
m 6=0

αme
m(σ2+iσ1) [8.476]
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and integration yields

−i
∫ π

0
dσ1∂2XR = − i

∫ π

0
dσ1

−iα′pR + i

√
α′

2

∑
m 6=0

αme
m(σ2+iσ1)


= − πα′pR +

√
α′

2

∑
m6=0

αm
em(σ2+iσ1)

im

∣∣∣∣∣
σ1=π

σ1=0

= − πα′pR − i
√
α′

2

∑
m 6=0

αm
m

(
em(σ2+iπ) − emσ2

)
= − πα′pR − i

√
α′

2

∑
m 6=0

αme
mσ2

m
((−1)m − 1)

[8.477]

Therefore

−i
∫ π

0
dσ1 ∂2X = − i

∫ π

0
dσ1 ∂2(XL +XR)

= − πα′(pL + pR) = −πα′p = −2πα′v [8.478]

where we have used (8.6.4), pL + pR = 2p = 2v, with no Wilson line, i.e. θ = 0. Using
(8.6.9) with θi = 0 we further have v = `/R so that

X ′(π)−X ′(0) = −2πα′`

R
= −2π`R′ [8.479]

where in the last equality we have used compactification radius of the dual theory, R′ =
α′/R.

8.108 p 266: The Endpoints of Two Interacting Open Strings Lie on
the Same hyperplane

We can represent graphically the interaction of two open strings via a graviton using the
second and fourth example of fig.3.1 that shows how an open string can evolve into a
closed string and vice-versa. This gives
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1
2 3

4

5
6

7
8

Figure 8.7: Two open strings interacting via a graviton

The diagram can be deformed in such a way that any endpoint may be connected to any
other endpoint, i.e. there isn’t a precise concept of which endpoint of a string corresponds
to which other endpoint -remember crossing symmetry. As a result we can have the point
1 being an endpoint of an open string with other end-point 2,3, · · · ,8 and so by the argu-
ment of (8.6.16) the endpoint 1 must be on the same hyperplane as any of the endpoints
2,3, · · · ,8. This argument is, of course equally valid for the endpoint 2 etc, and so all the
endpoints of these two interacting open strings must lie on the same hyperplane. But all
open strings interact with one another (it is an interacting theory!). so all the endpoints of
all the open strings must lie on the same hyperplane. Quite daunting to try to visualise if
you ask me.
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8.109 p 267: Eq. (8.6.17) The Endpoints of the Compactified Open
String with Wilson Lines, I

We now have

X ′(π)−X ′(0) = − 2πα′v = −2πα′
2π`− θj + θi

2πR
= −α

′

R
(2π`− θj + θi)

= − (2π`− θj + θi)R
′ [8.480]

where we have again used the compactification radius of the dual theory, R′ = α′/R.

8.110 p 267: Eq. (8.6.18) The Endpoints of the Compactified Open
String with Wilson Lines, II

The endpoint with σ = 0 contributes a Wilson line with θi and the endpoint with σ = π
contributes a Wilson line with θj . So if the endpoint with i sits on a hyperplane X ′(0) =
θiR
′ + ki for some ki and the endpoint with j sits on a hyperplane X ′(π) = θiR

′ + kj for
some kj , then

X ′(π)−X ′(0) = θjR
′ + kj − θiR′ − ki = −(−θj + θi)R

′ + (kj − ki) [8.481]

We recover (8.6.17) provided kj − ki = 0, up to the periodic boundary condition. In other
words we have X ′(0) = θiR

′ + k and X ′(π) = θjR
′ + k. So the endpoints are on the

respective hyperplanes up to an arbitrary additive constant, k.
Using (8.6.8), i.e. the fact that the θi are the diagonal elements of gauge field, θi =

−2πRAii = −(2πα′/R′)Aii we get thus

X ′(0) = − 2πα′

R′
AiiR

′ = −2πα′Aii [8.482]

up to an additive arbitrary constant.

8.111 p 267: Eq. (8.6.19) The Mode Expansion of the Compactified
Open String with Wilson Lines

Using the general expression for the left- and right-moving parts of the compactified di-
mension [8.472] we find that

X ′(z, z̄) =XL(z, z̄)−XR(z̄) = xL − xR − iα′p(ln z − ln z̄) + i

√
α′

2

∑
m 6=0

αm
m

(zm − z̄m)

=xL − xR − iα′p ln z/z̄ + i

√
α′

2

∑
m 6=0

αm
m

(zm − z̄m) [8.483]
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From (8.6.7) we have p = v = (2π`− θj + θi)/2πR. We thus have

X ′(z, z̄) = θiR
′ − iα′ 2π`− θj + θi

2πR
ln z/z̄ + i

√
α′

2

∑
m6=0

αm
m

(zm − z̄m) [8.484]

Here we have replaces xL − xR by θiR′. We will see shortly that this is necessary to ensure
that both endpoints are fixed at the right hyperplane. Using R′ = α/R we thus get

X ′(z, z̄) = θiR
′ − iR′

2π
(2π`− θj + θi) ln z/z̄ + i

√
α′

2

∑
m 6=0

αm
m

(zm − z̄m) [8.485]

which is the first line of (8.6.19).
Let us now check the second line of this. We have z = e−iw = eσ

2−iσ1
. Thus

X ′(z, z̄) = θiR
′ − iR′

2π
(2π`− θj + θi) ln

eσ
2−iσ1

eσ2+iσ1 + i

√
α′

2

∑
m 6=0

αm
m

(
e−mσ

2+imσ1 − e−mσ2−imσ1
)

= θiR
′ − iR′

2π
(2π`− θj + θi) ln e−2iσ1

+ i

√
α′

2

∑
m 6=0

αm
m
e−mσ

2
(
e+imσ1 − e−imσ1

)
= θiR

′ − R′σ1

π
(2π`− θj + θi)−

√
2α′

∑
m 6=0

αm
m
e−mσ

2
sinmσ1

= θiR
′ +

σ1

π
∆X ′ −

√
2α′

∑
m 6=0

αm
m
e−mσ

2
sinmσ1 [8.486]

In the last line we have used (8.6.17). The last term has a different sign from (8.6.17), but
that is an error found on Joe’s errata page.

Finally, let us check that the endpoints are fixed. At σ = 0 we obviously have X ′(σ1 =
0)− θiR′. At σ1 = π we find

X ′(σ1 = π) = θiR
′ + ∆X ′ = θiR

′ − (2π`− θj + θi)R
′ = θjR

′ − 2π`R′ ≡ θjR′ [8.487]

where we have used, once more, (8.6.17) and the periodicity of the compactified dimen-
sion. Both endpoints are thus fixed and satisfy (8.6.18) as they should.

8.112 p 268: Eq. (8.6.20) The Mass Spectrum of the Compactified
Open String with Wilson Lines

From (8.6.10) and (8.6.17) we have

m2 =
(∆X ′/R′)2

4π2R2
+
N − 1

α′
=

(∆X ′R/α′)2

4π2R2
+
N − 1

α′
=

(
∆X ′

2πα′

)2

+
N − 1

α′
[8.488]
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8.113 p 268: Eq. (8.7.1) Vertex Operators for the Massless States

Massless states need ∆X ′ = 0 and N = 1 according to (8.6.0). The first condition means,
using (8.6.17) that

2π`− θj + θi = 0 [8.489]

For generic Wilson lines, this can only be the case if we take i = j and ` = 0. A massless
state of a generic such theory is thus of the form αM−1 |k; ii〉. Recall from e.g. (3.6.26) that
the open string vertex operator for the massless particle in the uncompactified theory is
given by ∂τeik·X . In the compactified theory ∂τ = ∂t, i.e. the derivative along the tangent
of the hyperplane on which the end-points are fixed. Thus the vertex operator is of the form
Veik·X with V = i∂tX

M . For a compactified dimension we can use (8.6.15) that relates
the derivative along the tangent of the hyperplane on a compactified spacetime coordinate
with the derivative along the normal of the hyperplane on the dual of the compactified
spacetime coordinate, and we thus see that the state αd−1 |k; ii〉 can indeed be obtained
from the vertex operator with V = i∂tX

d = ∂nX
d.

8.114 p 269: Eq. (8.7.1) The State with Perpendicular Polarisation is
a Collective Coordinate for the hyperplane

This is my understanding of this statement. The hyperplane is fully determined by the
normal coordinate and by the location of the endpoint at a given worldsheet time τ0, see
fig.8.8.

n

Figure 8.8: The hyperplane and its normal vector. Given the endpoint of the open string at a
worldsheet time τ0 and a normal, the hyperplane is fully determined.

Choosing a different constant background Ad will according to (8.6.18), i.e. X ′ =
−2πα′Adii will just translate the hyperplane in spacetime. It is in that sense that a constant
gauge background corresponds to a uniform translation of the hyperplane. If the gauge
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field is now not constant, but depends on the (uncompactified) spacetime coordinates xµ

hen the translation becomes xµ dependent , i.e. a curved hyperplane. The background
field Adii then determines the dynamics of the hyperplane.

8.115 p 270: Eq. (8.7.2) The D-Brane Action

I must admit that I find the discussion around (8.7.20) very hard to follow, especially the
derivation of the Born-Infeld term 2πα′Fab in the D-brane action. I will therefore take a
(few) step(s) back and follow the derivation of that term as presented in [22], albeit that
their the superstring is considered, so that we will have to make the necessary adjustments.
Also, when we actually calculate the path integral, I will use the original calculation [23]
as I find this more clear. Unfortunately there will be quite a lot of repetition from what we
have already explained. But if it that repetition doesn’t benefit, it surely won’t harm.

FIXED GAUGE BACKGROUND

Our aim is to describe the dynamics of a D-brane and to show that their collective
coordinates can be described in terms of Wilson lines of a standard gauge theory. This will
then naturally lead to the low-energy action of a D-brane including the Born-Infeld term.

Let us start by recalling what we call a Dp-brane: that is a p+1 dimensional hyperplane
in a D dimensional spacetime onto which the endpoints of open strings can attach. These
hyperplanes arise when the open string has Dirichlet boundary conditions, rather that
Neumann boundary conditions. Remember that the Dirichlet boundary conditions arise
by taking the T -duality of a compactified spacetime dimension with Neumann boundary
conditions.

To be specific our string has Neumann boundary conditions in the directions along the
hyperplane:

∂σX
µ
∣∣∣
σ=0,π

= 0 for µ = 0, 1, · · · , p [8.490]

and Dirichlet boundary conditions in the transverse directions:

∂τX
µ
∣∣∣
σ=0,π

= 0 for µ = p+ 1, · · · , D [8.491]

The latter means that the end-points live on the hyperplane. We represent this graphically
in fig.8.11.

The position of the D-brane is fixed at the boundary points of the space-time coordi-
natesXp+1, · · · , XD. Following (8.6.18) we write that the dual coordinatesX ′p+1, · · · , X ′D
have their endpoints fixed as

X ′k = −2πα′Ak,ii for k = p+ 1, · · · , D [8.492]
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where i is the Chan-Paton index. This links the end-points to a particular string theory
background Ak.

Figure 8.9: D-brane boundary conditions. The shaded (hyper)surfaces are two D-branes with
open strings having their endpoints attached to them. One open string has both endpoints on the
sameD-brane; the other opens string has its end-points on two differentD-branes. The open strings
have Neumann boundary conditions in the directions along the D-brane – i.e. they can move in
that hyperplane, but Dirichlet boundary conditions in the directions transverse to the D-branes –
i.e. they are stuck to the hyperplane.

Let us now, for simplicity, first assume that only one dimension is compactified. We
introduce U(N) Chan-Paton factors and consider an open string vertex operator like in
(8.7.1b) corresponding to a fixed background Abelian gauge field Ad. Due to the U(N)
Chan-Paton factors this is an n×N matrix. We consider the background

Ad =
1

2πR


θ1 0 · · · 0
0 θ2 · · · 0

. . .
0 · · · 0 θN

 [8.493]

with the θi constant. This background field can be written as

Ad = −iΛ−1∂dΛ [8.494]

with

Λ =


eiθ1X

d/2πR 0 · · · 0

0 eiθ2X
d/2πR · · · 0

. . .
0 · · · 0 eiθNX

d/2πR

 [8.495]

and is pure gauge, i.e. it can be set to zero by a local gauge transformation A −→ A′ =
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A+ ∂Ω = 0 with

Ω(X) =


− θ1

2πR 0 · · · 0

0 − θ2
2πR · · · 0

. . .
0 · · · 0 − θN

2πR

 [8.496]

We can thus gauge away Ad to zero by a local gauge transformation. But due to the com-
pactification of the dimension we cannot gauge away this field globally. This is manifest
from the fact that Λ(X) is not periodic in Xd. Indeed

Λ(Xd + 2πR) =


eiθ1(Xd+2πR)/2πR 0 · · · 0

0 eiθ2(Xd+2πR)/2πR · · · 0
. . .

0 · · · 0 eiθN (Xd+2πR)/2πR



=


eiθ1eiθ1X

d/2πR 0 · · · 0

0 eiθ2eiθ2X
d/2πR · · · 0

. . .
0 · · · 0 eiθN eiθNX

d/2πR



=


eiθ1 0 · · · 0
0 eiθ2 · · · 0

. . .
0 · · · 0 eiθN

Λ(Xd) = W · Λ(Xd) [8.497]

Gauge invariant states can thus pick up a phase after the periodic translation Xd −→
Xd + 2πR. But this phase is exactly the Wilson line (8.6.2)

W = ei
∮
dxd Ad [8.498]

This is precisely is the gauge invariant observable that appears in the path integral of the
Polyakov action for scattering amplitudes. We cannot set the gauge field globally to zero
and hence we pick up non-trivial phases. This is responsible for the braking of the U(N)

symmetry into
[
U(1)

]N as explained in the discussion around (8.6.8).
This symmetry breaking mechanism has a simple explanation when using T -duality.

We know from (8.6.4) that the string momenta along the compactified dimensions are
quantised, and so in the T -dual description the dual field has open string end-points that,
in general, lie on different hyperplanes, see (8.6.17).

Consider now an open string state with Chan-Paton factors on its end-points, say |k; ij〉.
Under a U(1) gauge transformation [8.495] the corresponding wave function Ψ(k; ij) will

— 530—



Joe’s Book (version of November 20, 2020) Notes from Stany M. Schrans

pick up a phase, in order to leave the corresponding Lagrangian invariant. For the end-
point i this phase is e−iθi/2πR. For the end-point j this phase is e−iθj/2πR.10 The open string
wavefunction will therefore pick up phase e−i(θi−θj)/2πR an under a periodic translation
Xd → X2 + 2πR the state |k; ij〉 transforms as

|k; ij〉 −→ ei(θj−θi)/2πR |k; ij〉 [8.499]

Following the derivation of (8.6.9) we then see that the momentum of that state is quan-
tised as

pD(ij) =
n

R
+
θj − θi
2πR

[8.500]

Continuing with Joe’s derivation, this then leads to the fact that the open string end-points
of the dual coordinates are fixed on hyperplanes, (8.6. 18)

X ′D(σ = 0; i) = 2πα′ADii and X ′D(σ = π; j) = 2πα′ADjj [8.501]

The open string with D − p coordinates Xm for m = p + 1, · · · , D compactified thus
has its end-points on N hyperplanes of dimension p+ 1. These are called Dp-branes. Just
to be sure there is no misunderstanding; the end-points of the open string of the original
theory Xµ = Xµ

L + Xµ
R for µ = 0, · · · , D are not fixed and still satisfy Neumann boundary

conditions. It is the dual coordinates of the compactified dimensions X ′m = XD
L − XD

R

for m = p+ 1, · · · , D that satisfy Dirichlet boundary conditions and have end-points fixed
on the Dp-branes. From this point of view we can consider the uncompactified string as
having p = D. The end-points are then fixed on DD-branes of dimension p + 1 = D + 1
which is the entire space-time. The end-points of the uncompactified open string are thus
free to move in space-time.

We can now consider applying a T -duality to space-time coordinates parallel and per-
pendicular to a D-brane. As a T -duality transformation interchanges Neumann and Dirich-
let boundary conditions, if we apply it to a coordinate parallel to a Dp-brane, we change
a Neumann boundary condition into a Dirichlet boundary condition and the result is a
D(p − 1)-brane. If we apply a T -duality transformation to a coordinate perpendicular to
a Dp-brane, we change a Dirichlet boundary condition into a Neumann boundary condi-
tion and the result is a D(p + 1)-brane. Duality transformations thus allow us to view a
given theory in terms of different types of D-branes. This important remark allows one to
establish dualities between different string theories, e.g.type IIA and type IIB superstrings.

10

Here again, it is not entirely clear to me why that is the case.
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THE MASS SPECTRUM, THE MASSLESS VERTEX OPERATORS AND THE GAUGE SYMMETRY

We now wish to consider how the massless open string states contribute to the fluc-
tuation of the D-brane. Recall from the mass spectrum (8.6.20) for one compactified
dimension. This formula is easily generalised if more than one dimension is compactified:

m2 =
D∑

k=p+1

(
∆X ′k

2πα′

)2

+
N − 1

α′
[8.502]

Generic massless states are thus level one states with end-points on the same hyperplane,
with zero winding, i.e. the states in (8.7.1).

These massless states are split into two:

• p + 1 states αµ−1 |k; ii〉 for µ = 0, · · · , p with polarisation parallel to the hyperplane, making

a gauge field Aµ on the hyperplane. These provide a
[
U(1)

]p+1
gauge symmetry. The vertex

operator for that field is of the form ∂‖X
µeik·X .

• D − p states with perpendicular polarisation αk−1 |k; ii〉 for µ = p + 1, · · · , D. These are the
gauge fields Ak,ii = Φk, k = p + 1, · · · , D in the compact directions. In the dual theory
they are linked to the dual coordinates X ′k according to (8.6.18) and these dual coordinates
determine the location of the hyperplanes, i.e. the D-branes. The vertex operator for that
field is of the form ∂‖X

meik·X = ∂⊥X
′meik·X .

We have thus established the fact that the gauge fields in the compactified dimensions
Φm, m = p + 1, · · · , D are scalars that determine the location of the D-branes. Thus,
a hyperplane has fluctuations described by massless open string states that correspond
to gauge fields. This provides a description of D-branes in terms of gauge theory. Now
all of this has been explained for constant gauge fields, but if these gauge fields are not
constant then the hyperplanes would becomes curved and the gauge fields would therefore
describe the dynamics of the D-branes. These facts provide the basis for the gauge/gravity
correspondences in string theory such as the famous AdS/CFT correspondence.

So far we have considered the generic case where all θi are different. Let us now
assume that k of them have the same value,

θ1 = θ2 = · · · = θk = θ [8.503]

In that case the mass spectrum

m2 =

D∑
k=p+1

(
∆X ′k

2πα′

)2

+
N − 1

α′
=

D∑
k=p+1

(
2π`k − θi + θj

2πα′

)2

+
N − 1

α′
[8.504]

For 1 ≤ i, j ≤ k we have massless states for `k = 0 and N = 1 even if the end-points
are on different hyperplanes. The physical interpretation of this is that these different
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hyperplanes are actually located at the same place and so strings stretched between these
hyperplanes can attain a vanishing length and so require no extra energy. There are k2

such extra massless states and they transform under the adjoint representation of U(k). It
corresponds to the Wilson line in [8.497]

W =


eiθ1k×k 0k×1 · · · 0k×1

01×k eiθ2 · · · 0
. . .

01×k · · · 0 eiθN

 [8.505]

The result is an unbroken U(k) symmetry and we have now a gauge theory based on
U(k)×

[
U(1)]p−k. The U(k) symmetry means that the state αµ−1 |k; ij〉 for µ = 0, · · · , p and

1 ≤ i, j ≤ k corresponding to a gauge field Aµij(ξ
a on theDp-brane. The k2 states αµ−1 |k; ij〉

for each m = p + 1, · · · , D and 1 ≤ i, j ≤ k correspond to massless scalar fields Φm
ij (ξ

a)
describing the dynamics of the Dp-brane. Here ξa are the coordinates parametrising the
Dp-brane. They are the analogues of worldsheet coordinates τ and σ of a string.

Something special has happened here. We have selected k end-points that have identi-
cal θi. These k end-points lie on k D-branes and from this emerged matrices Φm

ij (ξ
a) for m

the index of the compactified dimensions and 1 ≤ i, j ≤ k that transform under the adjoint
representation of U(k). This suggests that as the compactification radius becomes small –
smaller that the typical length of a string – the theory is best described by (non-commuting)
matrix-valued fields. Just as the existence of the duality R −→ α′/R, this too illustrates
how string theory somehow implies that the structure of space-time itself is altered at very
small distances.

THE BORN-INFELD ACTION FOR THE UNCOMPACTIFIED STRING

We have just seen that gauge fields live on the worldvolume of a D-brane. What are
their dynamics and what kind of gauge theory do they give? Let us finally derive the
low-energy action that describes the dynamics of these D-branes.

We start with the coupling of a free open string to a constant background field strength
Fµν = ∂µAν − ∂νAµ in the uncompactified theory. We have seen that we can also view
this as a theory of open strings with end-points on a D-brane of dimension D, the entire
space-time. Later on we will derive the result for compactified dimensions and generic
D-branes using T -duality.

Our goal is to work out a tree-level scattering amplitude using perturbation theory. We
are thus interested in a disc diagram with insertions at the boundary, or via a conformal
transformation a unit circle with four insertions on the boundary. Let us, of course, not
forget the Chan-Paton factors at the end-points. This is shown in fig.8.10.
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Figure 8.10: An open string four point function with Chan-Paton factors at the end-points.

We will work on the unit disc using polar coordinates z = reiθ and will need the Green’s
function on the disc with Neumann boundary conditions, i.e. the solution to the PDE

∂∂̄f(z, z′) = δ(z − z′) with ∂rf(z, z′)
∣∣∣
r=1

= 0 [8.506]

The solution to this is

f(z, z′) =
1

2π

(
ln |z − z′|+ ln |z − z̄′−1|

)
[8.507]

as can be checked by direct calculation. We will need to evaluate this at the boundary of
the disk. On this boundary we have

z′ = z̄′−1 = eiθ and z̄′ = z′−1 = e−iθ [8.508]

and plugging this in [8.507] we find that

f(θ, θ′) =
1

π
ln |z − z′| = 1

2π
ln
(
z − z′

)
(z̄ − z̄′)

=
1

2π
ln
(
eiθ − eiθ′

)(
e−iθ − e−iθ′

)
=

1

2π
ln
(

2− ei(θ−θ′) − e−i(θ−θ′)
)

=
1

2π
ln
[
2− 2 cos

(
θ − θ′

)]
[8.509]

We can now use the mathematical formula

ln
(
1 + b2 − 2b cosx

)
= −2

∞∑
m=1

bm

m
cosmx for b ≤ 1 [8.510]

which can be found in Gradshtein and Rizhik, Tables of Integrals. Setting b = 1 we get

f(θ, θ′) = − 1

π

∞∑
n=1

1

n
cosn(θ − θ′) [8.511]

— 534—



Joe’s Book (version of November 20, 2020) Notes from Stany M. Schrans

We can also simply prove this. On the boundary we have from the second line of [8.509]

f(θ, θ′) =
1

2π
ln
(
eiθ − eiθ′

)(
e−iθ − e−iθ′

)
=

1

2π

[
ln
(
eiθ − eiθ′

)
+ ln

(
e−iθ − e−iθ′

)]
=

1

2π

[
ln eiθ + ln

(
1− eiθ′−θ

)
+ ln e−iθ + ln

(
1− e−iθ′−θ

)]
= − 1

2π

[ ∞∑
n=1

e+n(θ−θ′)

n
+
∞∑
n=1

e−n(θ−θ′)

n

]
= − 1

π

∞∑
n=1

cos
[
n(θ − θ′)

]
n

[8.512]

Later on we will also need the inverse of this function. By inverse we mean the function
f−1(θ, θ′) such that

∫
dθ f(θ, θ′)f−1(θ′, θ′′) = δ(θ − θ′′)− 1/2π. We claim that this is given

by

f−1(θ, θ′) = − 1

π

∞∑
n=1

n cosn(θ − θ′) [8.513]

and can check this by direct calculation. Indeed

∫ 2π

0
dθ f(θ, θ′)f−1(θ′, θ′′) =

1

π2

∫ 2π

0
dθ′

∞∑
m,n=1

m

n
cos[n(θ − θ′)] cos[n(θ′ − θ′′)]

=
1

π2

∞∑
m,n=1

m

n

∫ 2π

0
dθ′ (cosnθ cosnθ′ + sinnθ sinnθ′)(cosmθ′ cosmθ′′ + sinmθ′ sinmθ′′)

=
1

π2

∞∑
m,n=1

m

n

∫ 2π

0
dθ′
[

cosnθ(cosnθ′ cosmθ′ cosmθ′′ + cosnθ′ sinmθ′ sinmθ′′)

+ sinnθ(sinnθ′ cosmθ′ cosmθ′′ + sinnθ′ sinmθ′ sinmθ′′)
]

[8.514]

With the orthogonality relations∫ 2π

0
dθ′ cosmθ′ cosnθ′ =

∫ 2π

0
dθ′ sinmθ′ sinnθ′ πδm,n [8.515]

and ∫ 2π

0
dθ′ cosmθ′ sinnθ′ = 0 [8.516]
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we find∫ 2π

0
dθ f(θ, θ′)f−1(θ′, θ′′) =

1

π

∞∑
m,n=1

m

n

[
cosnθ(cosmθ′′ + 0) + sinnθ(0 + sinmθ′′)

]
δm,n

=
1

π

∞∑
m=1

(cosmθ cosmθ′′ + sinmθ sinmθ′′)

=
1

π

∞∑
m=1

cosm(θ − θ′′) [8.517]

Next, we use the Fourier decomposition relation of the delta function

1

π

∞∑
m=1

cosm(θ − θ′′) = δ(θ − θ′)− 1

2π
[8.518]

and so we find indeed that∫ 2π

0
dθ f(θ, θ′)f−1(θ′, θ′′) = δ(θ − θ′)− 1

2π
[8.519]

This is, of course to be viewed in terms of distributions. The −1/2π will then lead to a
divergence that we can absorb in the normalisation of the path integral and we can ignore
it without harming our derivation.

Let us now consider the bosonic string minimally coupled to a photon field. In the
conformal gauge this is

S[X,A] =
1

4πα′

∫
d2z ∂Xµ∂̄Xµ − i

∮
dθ ∂θAµ

∣∣∣
r=1

[8.520]

We wish to evaluate the Euclidean path integral

Z[F ] =
1

gs

∫
DXµe−S[X,A] [8.521]

Note that the contribution of the minimally coupled photon field can be seen to correspond
to the insertion of an open string vertex operator. As we integrate out the spacetime fields
Xµ the resulting partition function is a functional of the gauge field only, and because of
gauge invariance of the Wilson loop it must be a functional of the field strength Fµν .

We will compute this path integral using the background method. We expand the
spacetime coordinates into its disc zero modes and the fluctuations

Xµ = Xµ
0 + ξµ [8.522]
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For the external gauge field background we will chose the radial gauge

ξµAµ(X0 + ξ) = 0 and Aµ(X0) = 0 [8.523]

We will also assume that the vector potential is slowly varying. This implies that Fµν =
∂µAν − ∂νAµ is constant, i.e. ∂F = 0.

The path integral measure DXµ can be split in spacetime coordinates taking values in
the interior of the disc, paramatrised by z, z̄ with |z| < 1 and on the boundary of the disc
parametrised by θ, i.e.

DXµ =
∏
|z|<1

DXµ(z, z̄)
∏

boundary

Dξµ(θ) [8.524]

We thus have for the path integral

Z[F ] =
1

gs

∫ ∏
|z|<1
DXµ(z, z̄)

∏
boundary

Dξµ(θ)

× exp−
[

1

4πα′

∫
d2z ∂Xµ∂̄Xµ − i

∮
dθ ẊµAµ

∣∣∣
r=1

]
[8.525]

We can integrate this over all interior points ξ of the disc D and reduce this to a path
integral over the boundary ∂D of the disc. To do this, we introduce a new field η(θ) where
θ parametrises the boundary of the disc, i.e. 0 ≤ θ ≤ 2π. We insert in [8.525] the identity
as 1 =

∫
Dηµδ(D)(ξµ

∣∣
∂D
− ηµ). We then represent the delta function as a Gaussian path

integral over some auxiliary fields νµ(θ) and carry out the integrations, first over ξµ, then
over νµ. In detail, and writing o.c. for the contribution that already only depend on the
boundary and the purely bulk contributions, the kinetic term gives a contribution from the
boundary of the form

Z[F ] =

∫
Dξµ e−

1
4πα′

∫
dθ ∂ξµ∂̄ξµ

∫
Dηµδ(D)(ξµ − ηµ)× o.c.

=

∫
DξµDηµe−

1
4πα′

∫
dθ ∂ξµ∂̄ξµ 1

(2π)D

∫
Dηµ ei

∫
dθ νµ(ξµ−ηµ) × o.c.

=
1

(2π)D

∫
DηµDνµ

∫
Dξµ e

∫
dθ [− 1

4πα′ ∂ξ
µ∂̄ξµ+iνµ(ξµ−ηµ)] × o.c. [8.526]
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We now rescale ξ and η by
√

2πα′ and ignore constant pre-factors

Z[F ] ∝
∫
DηµDνµ

∫
Dξµ e−ξ

µ
(
− ∂∂̄

2

)
ξµ+i

√
2πα′νµ(ξµ−ηµ) × o.c.

∝
∫
DηµDνµ

(
π

det
(
−∂∂̄/2

))D
2

e−ν
µ 4πα′
∂∂̄

νµ−i
√

2πα′νµηµ × o.c.

∝
∫
Dηµ

(
π

det
(
−∂∂̄/2

))D
2
(

π

det
(
4πα′/∂∂̄

))D
2

e
− 2πα′ηµηµ

4πα′/∂∂̄ × o.c.

∝
∫
Dηµ e−ηµ

∂∂̄
2
ηµ × o.c. [8.527]

We have used
∫ +∞
−∞ e−ax

2+bxdx =
√
π/a eb

2/4a for the Gaussian integrations. For simplicity
we have not written the integration over the polar angle anymore. But this reminds us
that by ∂∂̄ in this expression we actually mean the inverse Green’s function with Neumann
boundary conditions [8.506] valued on the boundary of the disc. We thus conclude that
from the integration of the kinetic term we obtain a contribution of the form, renaming ηµ

by ξµ ∫
Dξµ e−

1
2
ξµf−1ξµ [8.528]

Let us now consider the boundary term with the gauge field. By the delta function we
can just replace the ξµ by ηµ, which we rescaled by

√
2πα′ and renamed ξµ. The upshot of

this is that because that contribution is quadratic in the original ξµ we get an extra factor
2πα′. We will include this by rescaling the field tensor as Fµν −→ 2πα′Fµν and will just
have to be careful not to forget this at the end of the calculation. We then find for this term

i

∫ 2π

0
dθ Fµνξ

µξ̇ν =
i

2

∫ 2π

0
dθ (∂µAν − ∂νAµ)ξµξ̇ν [8.529]

We interchange the dummy indices in the second term and perform a partial integration:

i

∫ 2π

0
dθ Fµνξ

µξ̇ν =
i

2

∫ 2π

0
dθ
(
∂µAνξ

µξ̇ν − ∂µAνξν ξ̇µ
)

=
i

2

∫ 2π

0
dθ
(
∂µAνξ

µξ̇ν + ∂µAν ξ̇
νξµ + ∂θ(∂µAν)ξνξµ

)
= i

∫ 2π

0
dθ ∂µAνξ

µξ̇ν + o(∂F ) [8.530]
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The last term vanishes because it is of the order ∂2A ∝ ∂F . On the other hand, using the
gauge condition Aµ(X0) = 0 we find

i

∮
dθ ẊµAµ(X0 + ξ) = i

∫ 2π

0
dθ ξ̇µ [Aµ(X0) + ξν∂νAµ(X0)] = i

∫ 2π

0
dθ ξ̇µξν∂νAµ(X0)

= i

∫ 2π

0
dθ ∂µAνξ

µξ̇ν + o(∂F ) [8.531]

so both expressions for the gauge field insertion are indeed the same.
Combining [8.528] and [8.531] gives us the path integral for the integration over the

boundary

Z[F ] ∝
∫
Dξµ exp

(
−1

2
ξµf−1ξµ +

i

2
Fµν

∫ 2π

0
dθ ξµξ̇ν

)
[8.532]

where we have used the fact that we are assuming that Fµν is constant.
Let us now look at the field tensor contribution to the boundary action. We can use

space-time Lorentz invariance to simplify this. Unfortunately an antisymmetric matrix Fµν
cannot be brought to a diagonal form by an SO(D), but it can be brought to a canonical
Jordan normal form. This consists of the smallest block diagonals and for an antisymmetric
matrix these are 2 × 2 blocks. We can thus write, using a Lorentz transformation, that, as
a matrix,

Fµν =


0 −f1 0 0
f1 0 0 0

. . .
0 0 0 −fD/2
0 0 fD/2 0

 [8.533]

We then have

ξµFµν ξ̇
ν =

(
ξ1 · · · ξD

)


0 −f1 0 0
f1 0 0 0

. . .
0 0 0 −fD/2
0 0 fD/2 0



ξ̇1

.

.

.

ξ̇D


= − ξ1ξ̇2f1 + ξ2f1ξ̇

1 − ξ3ξ̇4f2 + ξ4ξ̇5f2 + · · · − ξD−1ξ̇DfD/2 + ξD ξ̇D−1fD/2

=

D/2∑
k=1

(
−ξ2k−1ξ̇2k + ξ2kξ̇2k−1

)
fk [8.534]
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We conclude that, taking the path integral factorises into D/2 blocks of size 2 × 2 of the
form and using partial integration on the last term

Z[F ] ∝
D/2∏
k=1

∫
Dξ2k−1Dξ2ke−( 1

2
ξ2k−1f−1ξ2k−1+ 1

2
ξ2kf−1ξ2k+ifk ξ̇

2k−1ξ2k) [8.535]

We perform the integration over ξ2k and rename ξ2k−1 simply by ξ

Z[F ] ∝
D/2∏
k=1

∫
Dξ
√

2π

f−1
e
− 1

2
ξf−1ξ− f2

k ξ̇ξ̇

4f−1/2 ∝
D/2∏
k=1

∫
Dξ
√

2πfe−
1
2
ξf−1ξ− 1

2
f2
k ξ̇f ξ̇

∝
D/2∏
k=1

∫
Dξ
√

2πfe−
1
2
ξ(f−1+f2

k f̈)ξ [8.536]

In the last line we performed partial integration11 and defined f̈(θ, θ′) = ∂θ∂θ′f(θ, θ′). We
perform the final integration and get

Z[F ] ∝
D/2∏
k=1

√
2πf

√√√√ 2π

det
(
f−1 + f2

k f̈
) ∝ D/2∏

k=1

[
det (1 + f2

k f̈f)
]−1/2

[8.537]

In the last line we have kept only those factors that have a dependence on the gauge field,
as that is what interests us.

Let us now remind ourselves that we rescaled the field tensor by 2πα′. We thus have

Z[F ] = Z[0]

D/2∏
k=1

(det ∆k)
−1/2 with ∆k = 1 + (2πα′fk)

2f̈f [8.538]

To proceed we need to compute ff̈ . From [8.511] we have immediately that, recalling
that f̈ = ∂θ∂θ′f(θ, θ′),

ḟ =
1

π

∞∑
n=1

sinn(θ − θ′) and f̈ = − 1

π

∞∑
n=1

n cosn(θ − θ′) [8.539]

From [8.513] we see that f̈ = f−1 and therefore f̈f = f−1f = δ(θ − θ′)− 1
2π = δ̄(θ − θ′),

where we have used [8.519]. We therefore get the nice result that

∆k = 1 + (2πα′fk)
2 [8.540]

11Recall that by ξ̇f ξ̇ we actually mean
∫
dθ dθ′ ∂θξ(θ)f(θ, θ′)∂θ′ξ(θ

′).
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We are being slightly sloppy as we are again ignoring the −1/2π.
Let us now evaluate det ∆k = det

[
1 + (2πα′fk)

2
]
. To do this we take an orthonormal

basis on the boundary of the disc. The basis elements are Em = π−1/2 cosmθ and Fm =
π−1/2 sinmθ for m = 1, · · · ,∞. We have indeed

∫
EmEn =

∫
FmFn = δm,n and

∫
EmFn =

0 and we can expand a field on the disc boundary as

ξ(θ) =
∞∑
m=1

(amEm + bmFm) =
1√
π

∞∑
m=1

(am cosmθ + bm sinmθ) [8.541]

which is just a Fourier decomposition. In this basis ∆k, considered as an operator is diago-
nal, ∫

Em∆kEn =

∫
Fm∆kFn = ∆kδm,n and

∫
Fm∆kEn = 0 [8.542]

and so the determinant is just the product of the Eigenvalues, which are ∆k. We thus have

det ∆k =

∞∏
m=1

∆2
k [8.543]

the square appearing because the Eigenvalues appear not only for each m but also for all
E’s and all F ’s. Plugging this in [8.538] we find that

Z[F ] = Z[0]

D/2∏
k=1

(det ∆k)
−1/2 = Z[0]

D/2∏
k=1

∞∏
m=1

[1 + (2πα′fk)
2
]−1

[8.544]

The infinite product seems to give a divergence, but once we realise that this comes from
the determinant of an operator, we can regularise this. We choose ζ-regularisation to do
this. To see how this work consider the Gaussian path integral

∫
Dηe−cη2

on the boundary
of the disk. To make a link with our case, think of c as [1 + (2πα′fk)

2]−1. In our orthogonal
basis we have ∫

Dηe−cη2 ∝
∫ ∞∏

m=1

dam dbm e
−c(a2

m+b2m) ∝
∞∏
m=1

c−1 [8.545]

We can now write
∞∏
m=1

c−1 = eln
∏∞
m=1 c

−1
= e−

∑∞
m=1 ln c = e−ζ(0) ln c [8.546]

with the ζ(s) the Riemann ζ-function

ζ(s) =
∞∑
n=1

n−s for Re(s) > 1 [8.547]
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By analytic continuation ζ(0) = −1/2 and thus

∞∏
m=1

c−1 = e
1
2

ln c = c1/2 [8.548]

Using this regularisation procedure in [8.544] gives

Z[F ] = Z[0]

D/2∏
k=1

[1 + (2πα′fk)
2
]1/2

[8.549]

Our final task for the calculation of this partition function is to put this back in a manifestly
Lorentz invariance form. The infinite product is a product of Eigenvalues and has the
determinant of the corresponding operator, and thus becomes det(δµν + 2πα′Fµν). Indeed,
if we to that for the field tensor in the selected basis [8.533]

det
(
δµν + 2πα′Fµν

)
=


1 −2πα′f1 0 0

2πα′f1 1 0 0
. . .

0 0 1 −2πα′fD/2
0 0 2πα′fD/2 1


=

D/2∏
k=1

[
1 + (2πα′fk)

2
]

[8.550]

Adding in the normalisation constant that we ignored and recalling that we still have to
integrate over the zero modes we find for the tree level partition function of the uncom-
pactified open bosonic string, coupled to a U(1) gauge field

1

(4π2α′)D/2gs

∫
DXµ

0

[
det
(
δµν + 2πα′Fµν

)]1/2
[8.551]

This "open string effective action" is similar to the Born-Infeld action for electromagnetism.
It is a non-linear extension proposed to remove the electron’s self-energy in classical elec-
trodynamics.

Note that we evaluated the partition function without having to use perturbation the-
ory. Within the approximations made, i.e. constant field strength and radial gauge, the
result is hence exact. In particular, it is exact in α′. But this also means that this results
contains the contribution of all modes of the string, both massless and massive and is hence
a pure string result.
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THE BORN-INFELD ACTION FOR THE COMPACTIFIED STRING

We now extend the result for the uncompactified string to the compactified string. This
will be surprisingly easy. We note that, in the previous derivation of the Born-Infeld action,
nowhere did we need to assume that the a spacetime dimension was compactified or not.
So to see what changes when one or more spacetime dimensions are compactified, we can
just use the T -duality relations for these dimensions.

So we assume a Dp-brane, i.e. D − p dimensions are compactified. These D − p
dimensions have Dirichlet boundary conditions for open strings whose end-points sit on
p + 1-dimensional hyperplanes. We assume that the compactified dimension are so small
that we can neglect any derivatives along them, i.e. ∂mX = 0 for m = p + 1, · · · , D. The
remaining uncompactified worldvolume is thus described by Xa for a = 0, 1, · · · , p.

Consider now the Born-Infeld action for the uncompactified string [8.551]. We will
split δµν + 2πα′Fµν as follows

δµν + 2πα′Fµν =

(
δab + 2πα′Fab 2πα′Fma

2πα′Fam δmn + 2πα′Fmn

)

=

(
δab + 2πα′Fab −2πα′∂aAm

2πα′∂aAm δmn

)
[8.552]

where we have used the fact that ∂mX = 0 for m = p + 1, · · · , D. We now introduce a
(p+ 1)× (p+ 1) matrix N and a (p+ 1)× (D − p) matrix A with elements

Nab = ηab + 2πα′Fab Aam = 2πα′∂aAm [8.553]

We can thus write

δµν + 2πα′Fµν =

(
N −AT
A 1

)
[8.554]

with 1 the (D − p)× (D − p) unit matrix. We now use the matrix identity

det

(
N −AT
A M

)
= det

(
N +ATM−1A

)
= det

(
M +AN−1AT

)
[8.555]

Therefore, taking the first equality,

det
(
δµν + 2πα′Fµν

)
= det

(
N +AT1A

)
= det

(
ηab + 2πα′Fab + 2πα′∂aA

m∂bAm
)

[8.556]

For the compactified dimensions m = p+ 1, · · · , D we know that we can go to the T -dual
coordinates and can link the gauge field to the location of the Dp-brane by [8.492]

X ′m = −2πα′Am [8.557]
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We therefore find

det
(
δµν + 2πα′Fµν

)
= det

(
ηab + 2πα′Fab + ∂aX

′m∂bX
′m
)

[8.558]

Using reparametrisations of the worldvolume and of space-time we can chose that the p+1
dimensions of the hyperplane are aligned with (the first) p + 1 coordinates of spacetime.
The remaining D−p coordinates are therefore transverse to the D-brane . This means that
the actual p + 1 fluctuations of the D-brane ξa correspond to the spacetime coordinates
xa. We have assumed that there is no dependence on the compactified dimensions (∂m− 0
f0r m = p+ 1, · · · , D) and so these can be integrated out. The Born-Infeld [8.551] action
thus becomes, reverting to Minkowski space so that we need to include a minus sign for
the determinant to be positive

S = −Tp
gs

∫
dp+1ξ

√
−det(ηab + ∂aX ′m∂bX ′m+ 2πα′Fab) [8.559]

with

Tp =
1√
α′

1

(2π
√
α′)p

[8.560]

the tension of the Dp-brane. This action is known as the Dirac-Born-Infeld action.

Note that if there is no gauge field then the action reduces to

S[A = 0] = − Tp
gs

∫
dp+1ξ

√
−det(ηab + ∂aX ′m∂bX ′m)

= − Tp
gs

∫
dp+1ξ

√
−det(−ηµν∂aX ′µ∂bX ′ν) [8.561]

as ∂aXc = ∂aξ
c = δca. The combination −ηµν∂aX ′µ∂bX ′ν is the induced metric on the

worldvolume and its determinant is the infinitesimal volume element of the D-brane. As
such this is the natural generalisation of the action for a particle or as the Nambu-Goto
action for a string.

NON-FLAT BACKGROUNDS

So far we have considered the string to live in a flat background. One can easily
generalise the situation to curved spacetimes. We thus consider a worldsheet action (3.76).
In the conformal gauge

S =
1

4πα′

∫
d2σ

{[
(ηabGµν(X) + 2πα′εabBµν(X)

]
∂aX

µ∂bX
ν + α′RΦ(X)

}
[8.562]
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We have also rescaled the antisymmetric field Bµν for convenience. We will ignore the
dilaton contribution.

Let us first assume that Bµµ is constant. We have seen earlier that in this case this
contribution is just a boundary term∫

d2σ εabBµν∂aX
µ∂bX

ν =

∫ 2π

0
dθ

1

2
BµνX

νẊµ
∣∣∣
r=1

[8.563]

If we include the coupling to the gauge field and work in the radial gauge, i.e. we compare
with [8.532], then we see that it amounts to a shift of the field strength

Fµν −→ Fµν = 2πα′Fµν −Bµν [8.564]

This action is has the gauge invariance

Gµν −→Gµν + ∂µΛν + ∂νΛµ

Bµν −→Bµν + ∂µΛν − ∂νΛµ

Aµ −→Aµ +
1

2πα′
Λµ [8.565]

The gauge invariant field tensor is thus, in this case, Fµν and not Fµν .
We can then repeat the calculation of the disc partition function. Leaving out the details

that we will leave to the industrious reader, the outcome is the effective action

S = −Tp
∫
dp+1ξ e−Φ

√
−det(Gab +Bab + 2πα′Fab) [8.566]

where Gab and Bab are the ”pull-backs" of the space-time fields to the Dp-brane:

Gab(ξ) =Gµν
(
X(ξ)

)∂Xµ

∂ξa
∂Xν

∂ξb

Bab(ξ) =Bµν
(
X(ξ)

)∂Xµ

∂ξa
∂Xν

∂ξb
[8.567]

In particular Gab is the induced world-volume metric from the (curved) spacetime metric.
Expanding the spacetime metric around a flat background we find

Gab = ηab + ∂aX
µ∂bXµ + o

[
(∂x)4

]
[8.568]

and we recover [8.559]. We also see that the open string coupling constant gs comes from
the dilaton contribution gs = eΦ.
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8.116 p 271: Eq. (8.7.5) The Geometric Factor in the Action

We are considering that we have 25−p compactified dimensions and we take their T -dual.
We then have a p dimensional hyperplane. The coordinates are split as follows

X0 : spacetime time coordinate

X1, · · ·Xp : parametrise a hyperplane (Neumann boundary conditions)

[8.569]

Xp+1, · · · XD : compactified dimensions (Dirichlet boundary conditions) [8.570]

Let us visualise this in three dimension. We compactify one dimension and so the
endpoint of the open string live on a two-dimensional plane.

X3

X1

X2

Figure 8.11: Visualisation of a D-brane in three dimensions. The third spacetime dimension is
compactified, and so the endpoint of an open string is fixed on a (hyper)plane with X3 = cte. The
endpoints can move freely in the X1–X2plane.

The end-points of the string are free to move in the X1–X2 plane; in these dimensions
the end-points have Neumann boundary conditions. However we know that we can buils a
T -dual theory of this and the dual coordinates then have Dirichlet boundary conditions.12

12I am actually confused by this. The coordinate X2 is not compactified. We can treat this as the
limit of a compactified spacetime coordinate with R −→ ∞. The T -dual coordinate X ′2 than has
compactification radius R −→ 0. But do all our arguments about T -duality hold in this limit? I.e. is
an uncompactified dimension really equivalent to its T -dual dimension with zero compactification
radius?
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So we take the T -dual of the X2 coordinate. We have X ′2 = −2πα′A2 by (8.6.18).
Using the gauge condition A2 = X1F12 we find X ′2 = −2πα′X1F12.

We have a theory with a p dimensional hyperplane, a Dp-brane. But we have taken the
T -dual of one of the coordinates, X2 and as on page 269 of Joe’s book, this reduces the
Dp-brane to a D(p− 1)-brane.

So far so good, but how does (8.7.5) arise? In his Little Book of Strings [16] Joe refers
to Pythagoras. Yes, it looks like an application of Pythagoras, but where does it come
from? The original infinitesimal two-dimensional element dX1 dX2 gets collapsed into
a one-dimensional one. How does good-old Pythagoras come into play? This is a Greek
mystery to me.

8.117 p 271: Eq. (8.7.10) The Field Tensor Invariant under the Trans-
formations of the Gauge and the Antisymmetric Field

This was already discussed around [8.563].

8.118 p 272: Eq. (8.7.11) The Potential for Coinciding D-Branes

The field strength gives a contribution −1
4tr FµνF

µν to the effective action. As Fµν =
∂µAν − ∂νAµ + ig[Aµ, Aν ], this gives a term quartic in the Am of the form g2tr

(
[Am, An]×

[Am, An]
)
. Using (8.6.28) for the dual coordinates we find that this is a contribution to the

effective action of the form

S = · · ·+ (2πα′)4g2tr
(
[Xm, Xn]× [Xm, Xn]

)
+ · · · [8.571]

This has the form of a potential with a quartic term. Calling this term V it is clear that

∂2V

∂Xm∂Xn

∣∣∣∣∣
Xp=0

= 0 [8.572]

If we have n coinciding D-branes, this thus gives n2 massless fields. If we, moreover have
25− p dimensions that we dualised, then we have a total of (25− p)n2 massless fields.

8.119 p 273: Eq. (8.7.14)–(8.7.16) The D-Brane Tension Recursion
Relation

The relation (8.3.31) between the dilation field Φ of an uncompactified D-dimensional
theory and the dilaton field Φ′ of the same theory with one dimension compactified is

e−Φ =
√
α′R−1e−φ

′
[8.573]
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with R the compactification radius. We use this to rewrite (8.7.13)

Tpe
−Φ

p∏
i=1

(2πR) =Tp
√
α′R−1

p e−Φ′(2πRp)

p−1∏
i=1

(2πR) = 2π
√
α′Tpe

−Φ′
p−1∏
i=1

(2πR) [8.574]

We set this equal to the mass of a D(p− 1) torus wrapped around a (p− 1)- brane

2π
√
α′Tpe

−Φ′
p−1∏
i=1

(2πR) = Tp−1e
−Φ′

p−1∏
i=1

(2πR) [8.575]

from which it follows that

Tp−1 = 2π
√
α′Tp ⇒ Tp =

1

2π
√
α′
Tp−1 [8.576]

8.120 p 275: Eq. (8.7.17) The D-Brane Annulus Vacuum Amplitude, I

We need to consider the vacuum energy for a cylinder, but with D− p coordinates fixed on
a D-brane. We thus have only p+ 1 fluctuation fields. Eq. (7.4.1) is

ZC2 = iVD

∫ ∞
0

dt

2t
(8π2α′t)−D/2

∑
i∈H⊥0

e−2πt(hi−1) [8.577]

Let us briefly recall, from its derivation, where the different factors originate from. We are
calculating ZC2 = q−c/24Tr qL0 . For the matter sector this is [7.203]

ZX(t) = q−d/24Tr qα
′p2+

∑∞
n=1 n

∑∞
µ=0Nµn

= q−d/24Vd

∫
ddk

(2π)d
qα
′k2

∞∏
n=1

25∏
µ=0

∑
Nµn

qnNµn

= iVd(8π
2tα′)−d/2η(it)−d [8.578]

The ghost sector give a contribution [7.205]

Zg = η(it)2 [8.579]

Combining these and integrating over the modulus we then get [7.207]

ZC2 = in2V26

∫ ∞
0

dt

2t
(8π2tα′)−D/2η(it)−24 [8.580]

where we have also included the contribution n2 from the Chan-Paton factors.
We now adapt this to the case at hand:
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1. Replace D by p+ 1 as that is the number of degrees of freedom (the other ends are fixed on
the hyperplane)

2. The weights hi come from the L0 part in the trace. L0 is the Hamiltonian; it measures the
energy of the string. The open string now is stretched between two hyperplanes at distance
y and thus there is an extra contribution y2/4π2α′. Why exactly that is the contribution is
not clear to me.

3. There is no Chan-Paton factor per se, but a factor of two as explained in the book

All this means that we can write

A = iVp+1

∫ ∞
0

dt

t
(8π2tα′)−(p+1)/2e−2πt y2

4π2α′ η(it)−24 [8.581]

In order to derive the second line of (8.7.17), we follow the same procedure as for the
derivation of (7.4.3). We use (7.4.2), change variables t = π/s and use (7.4.4) to expand
around s = 0, i.e. around t =∞, to see that

η(it)−24 =
[
t−1/2η(i/t)

]−24
= t12η(iπ/s)−24 = t12

(
e2s + 24 + · · ·

)
= t12

(
e2π/t + 24 + · · ·

)
[8.582]

We therefore find that

A = iVp+1

∫ ∞
0

dt

t
(8π2tα′)−(p+1)/2e−

ty2

2πα′ t12
(
e2π/t + 24 + · · ·

)
=

iVp+1

(8π2α′)(p+1)/2

∫ ∞
0

dt t−1−(p+1)/2+12e−
ty2

2πα′
(
e2π/t + 24 + · · ·

)
=

iVp+1

(8π2α′)(p+1)/2

∫ ∞
0

dt t(21−p)/2e−
ty2

2πα′
(
e2π/t + 24 + · · ·

)
[8.583]

8.121 p 275: Eq. (8.7.17) The D-Brane Annulus Vacuum Amplitude, II

Introduce the variable u = ty2/2πα′ and consider the second term in the expansion
(8.7.17)

A =
24iVp+1

(8π2α′)(p+1)/2

∫ ∞
0

2πα′du

y2

(
2πα′u

y2

)(21−p)/2
e−u

=
24iVp+1

(8π2α′)(p+1)/2
(2πα′)(23−p)/2yp−23

∫ ∞
0

duu(23−p)/2−1e−u [8.584]

— 549—



Joe’s Book (version of November 20, 2020) Notes from Stany M. Schrans

Using the definition of the Gamma function:

A = 24iVp+1210−2pπ(21−3p)/2α′11−pyp−23Γ

(
23− p

2

)
= 24iVp+1210−2p−22+2pπ(21−3p)/2−22+2p(4π2α′)11−pyp−23Γ

(
23− p

2

)
= iVp+124× 2−12π(p−23)/2(4π2α′)11−p|y|p−23Γ

(
23− p

2

)
[8.585]

In the last line we have replaced y by |y| as it is an absolute number anyway in view of it
being the distance between the two D-branes. This the first line of (8.7.18). The second
line follows with the definition

G25−p(y) =
π(p−23)/2

4
Γ

(
23− p

2

)
|y|p−23 [8.586]

or, setting 25− p = d,

Gd(y) =
π(2−d)/2

4
Γ

(
d− 2

2

)
|y|2−d [8.587]

We’ll leave it as an exercise to the reader to show that Gd(y) is indeed the Green’s function
for the massless scalar field in d > 2 dimensions. One certainly immediately recognises the
correct y behaviour.

8.122 p 275: Eq. (8.7.19) The Space-Time Action

As it has been some time, let us recall how the field theory approach is obtained. We
consider the general non-linear sigma model on the worldsheet with action (3.7.6), i.e. of

Sσ =
1

4πα′

∫
M
d2σ
√
g
[(
gabGµν(X) + iεabBµν(X)

)
∂aX

µ∂bX
ν + α′RΦ(X)

]
[8.588]

Just to remind ourselves, gab is the (Euclidean) worldsheet metric, Gµν a symmetric tensor
that we can view as being the spacetime metric, Bµ is an antisymmetric spacetime field,
also known as the Kalb-Ramond field, and Φ is the dilation. Note that R here is the (two-
dimensional) worldsheet curvature. This Lagrangian is the general form of a theory of
interacting string. Indeed we saw that starting form the free string theory, and adding
all possible vertex operators, i.e. asymptotic string states, we were naturally lead to this
action.

We then required Weyl invariance of this theory after quantisation. This implied the
vanishing of the β functions of the theory, (3.7.14-15), which give string corrections to
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the equations of general relativity. We then showed that it was possible to derive the
vanishing of the β functions by an action principle from a field theory point of view. The
corresponding action to leading order in α′ was given by (3.7.20)

S =
1

2κ2
0

∫
dDX

√
−Ge−2Φ

[
γ +R− 1

12
HµνλH

µνλ + 4∂µΦ∂µΦ + o(α′)

]
[8.589]

with γ = −2(D − 26)/3α′. Note that γ = 0 for the critical string. Here R is the spacetime
curvature, Hµνλ is the field tensor of the antisymmetric Bµν field, defined in (3.7.8) and κ0

is an undetermined normalisation constant. Note that there is no reference to the string or
its worldsheet in this action. This is just a field theory of a coordinate X, hence the name
field theory approach.

This action is, however, not convenient because the dilation couples with everything
due to the e−Φ factor. We showed that it was convenient to make a field redefinition
G̃µν(x) = e2ω(x)Gµν(x) with ω = 2(Φ−Φ0)/(D− 2) and define Φ̃ = Φ−Φ0, with Φ0 being
the (constant) expectation value of Φ. The spacetime action then becomes

S =
1

2κ2

∫
dDX

√
−G̃

[
γe4Φ̃/(D−2) + R̃− 1

12
e−8Φ̃/(D−2)HµνλH̃

µνλ

− 4

D − 2
∂µΦ̃∂̃µΦ̃ + o(α′)

]
[8.590]

Here indices are raised with G̃µν , as denoted by the tilde on R̃ , H̃µνλ and on ∂̃µ. Often
G̃µν is referred to as the Einstein metric. Finally, κ = κ0e

Φ0 .
Setting D = 26 and ignoring the Kalb-Ramond field (why can we do that?), we imme-

diately recover (8.7.19).

8.123 p 275: Eq. (8.7.20) The D-Brane Action as a Function of the
Spacetime Fields

As we are ignoring the gauge fields, (8.7.2) becomes

Sp = −Tp
∫
dp+1ξ e−Φ [−detGab]

1/2 [8.591]

We wish to express this in terms of the tilde spacetime fields. We have, as Gab is a (p+ 1)×
(p+ 1) matrix

det G̃ab = det
(
e2ω detGab

)
= e2(p+1)ω detGab = e

4(p+1)(Φ0−Φ)
D−2 detGab

= e
(p+1)(Φ0−Φ)

6 detGab [8.592]
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Therefore

Sp = − Tp
∫
dp+1ξ e−Φ̃−Φ0e−

(p+1)(Φ0−Φ)
12

[
−det G̃ab

]1/2

= − Tpe−
p+13

12
Φ0

∫
dp+1ξ e

p−11
12

Φ̃
[
−det G̃ab

]1/2
[8.593]

This is (8.7.20) but with a different definition of τp.

8.124 p 276: Eq. (8.7.20) The D-Brane Action as a Function of the
Spacetime Fields

Including the gauge-fixing term the spacetime action becomes

S =
1

2κ2

∫
d26D

√
−G̃

[
R̃− 1

6

(
∇µΦ̃

)(
G̃µσ∇σΦ̃

)
− 1

2
ηµνfµfν

]
[8.594]

This should be an entirely straightforward calculation, which we will not bother doing
at this stage. For those of you impelled to do so by some higher force(s), recall that the
inverse Einstein metric is given by G̃µν = ηµν − hµν and that the dilaton is a spacetime
scalar and we can replace its covariant derivative by an ordinary derivative.

8.125 p 276: Eq. (8.7.23) The Propagator for the Graviton and the
Dilaton Field

Let us recall how we derive the propagator of a scalar field ϕ with Lagrangian 1
2(∂ϕ)2 +

1
2m

2ϕ2. Adding a source J , the path integrals is

Z[J ] =

∫
Dϕei

∫
ddd[− 1

2
ϕ(∂2−m2)ϕ+Jϕ] [8.595]

We can perform the Gaussian integral and up to a normalisation factor we find

Z[J ] = e−
i
2

∫
ddx

∫
ddy J(x)D(x−y)J(y) [8.596]

where D(x− y is the Green’s function, a.k.a. propagator and satisfies

−(∂2 +m2) = δ(d)(x− y) [8.597]

The use of the propagator becomes apparent in perturbation theory. E.g. if we add an inter-
action term LI [ϕ] to the Lagrangian, then we can write the path integral of the interacting
theory as

ZI [J ] = ei
∫
d4wLI [δ/iδJ(w)]e−

i
2

∫
ddx

∫
ddy J(x)D(x−y)J(y) [8.598]
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and thus once we know the propagator we can use it to work out the perturbative expan-
sion. This is, of course, the basis of the Feynman diagrams. To derive the form of the
propagator we write the delta function in its Fourier transform

δ(d)(x− y) =

∫
ddk

(2π)d
eik·x [8.599]

and one can check by direct computation that the propagator is then given by

D(x− y) =

∫
ddk

(2π)4

eik·(x−y)

k2 +m2 + iε
[8.600]

and in momentum space

D(k) =
1

k2 +m2
[8.601]

All this should be well-known to 99.9% of you, with the 0.1% being those who believed
that you can learn string theory without knowing any quantum field theory.

Let us now apply this to the case at hand. The dilaton is a spacetime scalar and has
kinetic term (−1/12κ2)∂µΦ̃∂µ̂Φ̃. The propagator in momentum space is hence

〈Φ̃(k)Φ̃(−k)〉 = −6iκ2

k2
[8.602]

The kinetic term for the graviton is

Lgrav = − 1

8κ2

(
∂µhνλ∂

µ̂hν̂λ̂ − 1

2
∂µh

ν̂
ν∂

µ̂hλ̂λ

)
= − 1

8κ2

(
−ηµρηνκηλτhνλ∂µ∂ρhκτ +

1

2
ηνληµρηκτhλν∂µ∂ρhτκ

)
= − 1

8κ2
hνλ

(
−ηµρηνκηλτ +

1

2
ηνληµρηκτ

)
∂µ∂ρhτκ

= − 1

8κ2
hνλ

(
−ηνκηλτ +

1

2
ηνληκτ

)
∂2hτκ

=
1

16κ2
hνλ

(
ηνκηλτ + ηντηλκ − ηνληκτ

)
∂2hτκ =

1

16κ2
hνλA

νλ,τκ∂2hτκ [8.603]

with

Aνλ,τκ = ηνκηλτ + ηντηλκ − ηνληκτ [8.604]

We now need the inverse of Aνλ,τκ. If we consider

D̃µν,σρ = ηµσηνρ + ηµρηνσ + αηµνησρ [8.605]
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It has the right symmetries and α can be determined. We have

D̃µν,σρA
σκ,ρτ = [ηµσηνρ + ηµρηνσ + αηµνησρ]× (ηστηκρ + ησρηκτ − ησκηρτ )

= δτµδ
κ
ν + ηµνη

κτ − δκµδτν + δκµδ
τ
ν + ηµνη

κτ − δτµδκν
+ αηµν(ηκτ + ηκτδσσ − ηκτ )

= [2 + α(1 +D − 1)] ηµνη
κτ = (2 + αD)ηµνη

κτ [8.606]

But this does not have the right form; it should have a δκµδ
τ
ν + δτµδ

κ
ν .

If we assume that there is a typo in the spacetime action (8.7.22) and that the second
term quadratic in the gravitons should come with a plus sign, then we find that

Aνλ,τκ = ηνκηλτ + ηντηλκ + ηνληκτ [8.607]

and

D̃µν,σρA
σκ,ρτ = [ηµσηνρ + ηµρηνσ + αηµνησρ]× (ηστηκρ + ησρηκτ + ησκηρτ )

= δτµδ
κ
ν + ηµνη

κτ + δκµδ
τ
ν + δκµδ

τ
ν + ηµνη

κτ + δτµδ
κ
ν

+ αηµν(ηκτ + ηκτδσσ + ηκτ )

= 2(δκµδ
τ
ν + δτµδ

κ
ν ) + [2 + α(1 +D + 1)] ηµνη

κτ

= 2(δκµδ
τ
ν + δτµδ

κ
ν ) + [2 + α(D + 2)]ηµνη

κτ [8.608]

If we choose α = −2/(D + 2) then we get

D̃µν,σρA
σκ,ρτ = 2(δκµδ

τ
ν + δτµδ

κ
ν ) [8.609]

And so if we define Dµν,σρ = 1
4D̃µν,σρ then

Dµν,σρA
σκ,ρτ =

1

2
(δκµδ

τ
ν + δτµδ

κ
ν ) [8.610]

and D is the inverse of A. We could therefore write the propagator as

〈hµν(k)hσρ(−k)〉 =
16iκ2

k2

1

4
(ηµσηνρ + ηµρηνσ + αηµνησρ) [8.611]

But unfortunately, this is not (8.7.23).

It seems like the action has the right symmetry structure for the graviton, and so has
the propagator, but still I cannot reproduce one from the other. Either there must be
some strange typo somewhere, or I am doing something wrong, The latter is the more
plausible explanation. In any case the form of the propagator is consistent with the rest
of the derivation, so I assume there is no error in that formula.
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8.126 p 276: Eq. (8.7.25) The Amplitude for a Propagating Graviton
and Dilaton

We are evaluating the propagation of a graviton and a dilaton between two D-branes. This
means that the D-brane is a source/sink for the graviton dilaton. We thus wish to evaluate
the path integral

Ã =

∫
DhDΦ̃eiSeiSp =

∫
DhDΦ̃eiSe−iτp

∫
dp+1ξ ( p−11

12
Φ̃− 1

2
haa) [8.612]

Here S is the spacetime action (87.7.22) and Sp is the D-brane action (8.7.24), both taken
around a flat spacetime. As usual we expand the exponential and, as we are looking at
the (lowest order) contribution for the propagation of a graviton and dilaton between the
D-branes, we only keep the terms quadratic in Φ̃ and the terms quadratic in h. This gives

Ã =

∫
DhDΦ̃eiS

(
−
τ2
p

2

)[(
p− 11

12

)2

Φ̃Φ̃ +
1

4
haahbb

]
+ · · ·

= −
τ2
p

2

[(
p− 11

12

)2

〈Φ̃Φ̃〉+
1

4
〈haahbb〉

]
+ · · · [8.613]

For D = 26 we have from (8.7.23)

〈Φ̃Φ̃〉 = − 6iκ2

k2
⊥

〈haahbb〉 = − 2iκ2

k2
⊥

(
ηabηab + ηabηab −

1

12
ηaaηbb

)
= − 2iκ2

k2
⊥

[
2(p+ 1)− 1

12
(p+ 1)2

]
[8.614]

We have use the fact that ηaa = p + 1 as a = 0, 1, · · · , p. Here k⊥ is the momentum
of the graviton/dilaton, i.e. the momentum perpendicular to the D-brane; it has p + 1
components. Using this we find that

Ã = −
τ2
p

2

[(
p− 11

12

)2(
−6iκ2

k2
⊥

)
+

1

4

{
−2iκ2

k2
⊥

[
2(p+ 1)− 1

12
(p+ 1)2

]}]
+ · · ·

=
iτ2
pκ

2

2k2
⊥

{
6

(
p− 11

12

)2

+
1

2

[
2(p+ 1)− 1

12
(p+ 1)2

]}

=
iτ2
pκ

2

2k2
⊥

(
p2

24
+

121

24
− 11p

12
+ p+ 1− p2

24
− p

12
− 1

24

)
=

3iτ2
pκ

2

k2
⊥

[8.615]
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We have been quite sloppy about this calculation and it is now time to make some cor-
rections. In [8.613] we forget the (double) integration over the worldvolume coordinates.
We then used the propagators in momentum space, whilst we needed them in coordinate
space. This correction leads to a delta function for the momentum conservation, which
takes care of one of the integrals. The other integral will give a volume factor Vp+1. More-
over the graviton and dilaton can propagate from one D-brane to the other or vice versa.
This gives a doubling of the contribution. Our final result is thus

A =
6iτ2

pκ
2

k2
⊥

Vp+1 [8.616]

8.127 p 276: Eq. (8.7.26) The Relation Between τp and κ

Before we can compare (8.7.18) with (8.7.15) we need to get the momentum represen-
tation of (8.7.18). The Fourier transform just gives the traditional k2, as can also be seen
from the fact that we are looking ate the inverse of ∇2 = ∂2, thus yielding a k−2. Compar-
ing the two results thus gives

iVp+1
24π

210
(4π2α′)11−p 1

k2
⊥

=
6iτ2

pκ
2

k2
⊥

Vp+1 [8.617]

or, cleaning up,

π

28
(4π2α′)11−p = τ2

pκ
2 ⇒ τ2

p =
π

256κ2
(4π2α′)11−p [8.618]

The recursion relation (8.7.16) is, using Tp = eΦ0τp

τp =
1

(4π2α′)1/2
τp−1 [8.619]

and (8.7.26) clearly satisfies this.

8.128 p 276: Eq. (8.7.27) The Gauge Field Action for the D25-Brane

The D25-brane has p = 1 and so the hyperplane has dimension p+ 1 = 26 and is the entire
spacetime. I.e. this is the standard open string theory with all dimensions having Neumann
boundary conditions. We now attache to each end-point n-values Chan-Paton factors. The
D25-brane action (8.7.12) is then

S25 = −T25

∫
d26X tr

{
e−Φ

[
−det

(
Gµν +Bµν + 2πα′Fµν

)]1/2
+ · · ·

}
[8.620]
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we can replace the indices a, b by µν as they now run over all dimensions anyway. In order
to find the quadratic terms in F we can set B = 0. We can’t set Gµν = 0 as this is the
spacetime metric necessary to raise and lower indices. We also use the dynamic dilaton
field φ̃ = φ− φ0. Then e−Φ = e−Φ̃−Φ0 . We also have that Tp = eΦ0τp. The Φ0 contribution
then cancels and we can ignore the Φ̃ contributions as these would give interactions with
the dilaton and nor contribute to the gauge field kinetic term. We thus need

S25 = −τ25

∫
d26X tr [−det(Gµν + fµν)]1/2 + · · · [8.621]

where we have defined fµν = 2πα′Fµν .
Now recall that, as it should, this action is spacetime parametrisation invariant. This is

obviously the case if we set fµν = 0, but as this has the same tensorial structure as Gµν , we
also have that

∫
d26X

√
−det(G+ f) is invariant. So, if there is a term quadratic in fµν it

must be of the form
√
−Gfµνfµν =

√
−GfµνGµσGνρfσρ. This means that the only thing

we really need to do is to find the coefficient in front of that term, i.e. find the α in

[−det(Gµν + fµν)]1/2 = α
√
−Gfµνfµν = α

√
−GfµνGµσGνρfσρ + · · · [8.622]

This in itself is messy, but fortunately we can focus on one special case. For example, let us
take four dimensions and let us check the coefficient of the quadratic term in f12f23. If that
coefficient is non-zero, it will be the same for all other (non-zero) combinations of indices
and hence also equal to α. In order to find this coefficient we simply calculate

α̃ =
∂2

∂f12∂f23
[−det(Gµν + fµν)]1/2

∣∣∣∣∣
fµν=0

[8.623]

This is as well a tedious calculation and best performed by Mathematica, see fig.8.12. The
results turns out to be

α̃ =
G14G34 −G13G44√

−G
[8.624]

In other words we have a term in the expansion of [−det(Gµν + fµν)]1/2 of the form

f12
G14G34 −G13G44√

−G
f23 [8.625]
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In[63]:= ClearAll [dim, M, G, F, Mat, GMat, IGMat, DM, DG, alphatilde , beta0, beta1 ];

dim = 4;

M[m_, n_] := G[m, n] + F[m, n]

Do[F[m, m] = 0, {m, dim}]

Do[F[n, m] = -F[m, n], {n, dim}, {m, n}]

Do[G[n, m] = G[m, n], {n, dim}, {m, n}]

Mat = {{M[1, 1], M[1, 2], M[1, 3], M[1, 4]}, {M[2, 1], M[2, 2], M[2, 3], M[2, 4]},

{M[3, 1], M[3, 2], M[3, 3], M[3, 4]}, {M[4, 1], M[4, 2], M[4, 3], M[4, 4]}};

GMat = {{G[1, 1], G[1, 2], G[1, 3], G[1, 4]}, {G[2, 1], G[2, 2], G[2, 3], G[2, 4]},

{G[3, 1], G[3, 2], G[3, 3], G[3, 4]}, {G[4, 1], G[4, 2], G[4, 3], G[4, 4]}};

IGMat = Inverse [GMat ];

DM = Expand [Det[Mat]];

DG = Expand [Det[GMat ]];

F[m_, n_, p_, q_] := D[D[Sqrt [-DM], F[m, n]], F[p, q]]

alphatilde = Simplify [F[1, 2, 2, 3]];

Do[F[m, n] = 0, {m, dim}, {n, dim}] ;

alphatilde = Simplify [test1 ];

Simplify [alphatilde - (G[1, 4] * G[3, 4] - G[1, 3] * G[4, 4]) / Sqrt [-DG]]

Out[78]= 0

In[79]:= beta0 = Simplify [IGMat [[1, 2]] * IGMat [[2, 3]] - IGMat [[1, 3]] * IGMat [[2, 2]]];

beta1 = Simplify [(G[1, 4] * G[3, 4] - G[1, 3] * G[4, 4]) / (-DG)];

beta0 - beta1

Out[81]= 0

Figure 8.12: Mathematica code for the D25-brane kinetic field strength term. alphatilde corre-
sponds to α̃ in [8.624]; beta0 is G12G23−G13G22 in [8.629] and beta1 is (G14G34−G13G44)/(−G)
in [8.629].

We now need to link this to a term in
√
−Gfµνfµν . We consider f12f

12 first. This is

f12f
12 = f12G

1µG2νfµν = f12G
12G23f23 + f12G

13G22f32 + · · ·
= f12(G12G23 −G13G22)f23 + · · · [8.626]

where we have only shown the term in f12f23. We have a similar contribution from f21f
21.

But there is also a contribution from f23f
23

f23f
23 = f23G

2µG3νfµν = f23G
21G32f12 + f23G

22G31f21 + · · ·
= f12(G12G23 −G13G22)f23 + · · · [8.627]
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and a contribution from f32f
32. We thus have Therefore we thus conclude the

α
√
−Gfµνfµν = 4α

√
−Gf12(G12G23 −G13G22)f23 [8.628]

Direct calculation, see fig.8.12, teaches us that

β = G12G23 −G13G22 =
G14G34 −G13G44

−G
[8.629]

Therefore we thus conclude the

α
√
−Gfµνfµν = 4α

√
−Gf12

G14G34 −G13G44

−G
f23

= 4αf12
G14G34 −G13G44√

−G
f23 [8.630]

Comparing [8.625] with [8.630] we find that 4α = 1 or hence α = 1/4, i.e.

[−det(Gµν + fµν)]1/2 =
1

4

√
−Gfµνfµν + · · · [8.631]

We will leave it as en exercise to the industrious reader to show the same results for space-
time dimensions higher than four.

Using this in [8.621] we therefore find that

S25 = −τ25

4

∫
d26X

√
−Gfµνfµν + · · · = −τ25

4

∫
d26X

√
−G(2πα′)2FµνF

µν + · · · [8.632]

which is what we set out to show (as usual the
√
−G is necessary for spacetime parametri-

sation invariant and is understood as part of the measure of the action).

8.129 p 276: Eq. (8.7.28) The Relation Between the Coupling Con-
stants

Let us first recall the different formula mentioned and what they mean. (6.5.14) Relates
the coupling constant for an open string tachyon g0 with that of an open string gauge boson
g′0

g′0 =
1√
2α′

g0 [8.633]

The effective spacetime action for the open string, up to first order in momenta, that re-
produces the open string amplitudes is given by (6.5.16)

S =
1

g′20

∫
d26x

(
−1

2
tr DµϕD

µϕ+
1

2α′
tr ϕ2 +

2

3
√

2α′
tr ϕ3 − 1

4
tr FµνF

µν

)
[8.634]
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In (6.6.18) we relate the closed string coupling constant gc to the gravitational constant κ

κ = 2πgc [8.635]

From [8.633] and [8.635] we find that

g2
0

gc
=

2α′g′20
κ/2π

=
4πα′g′20
κ

[8.636]

Now comparing the coupling constants between [8.634] with [8.632] we see that

1

g′20
= τ25(2πα′)2 =

√
π

16κ
(4π2α′)(11−p)/2(2πα′)2 [8.637]

where we have also used (8.7.26). Thus, setting p = 25,

g2
0

gc
=

4πα′

κ

16κ√
π

1

(4π2α′)−7(2πα′)2
= 22+4+14−2π1−1/2+14−2α′1+7−2

= 218π25/2α′6 [8.638]

Note that we did not need (6.6.15), the equivalent of (6.5.14) but for the closed string,
that relates the coupling constant for an closed string tachyon gc with that of an closed
string gauge boson g′c

g′c =
2

α′
gc [8.639]

8.130 p 277: Eq. (8.8.1) The Impact of the Worldsheet Parity on the
Worldsheet Coordinates

Recall that the worldsheet parity Ω inverts the orientation of the coordinate coordinate σ1,
i.e. i.o. running from 0 to 2π it now runs from 2π to zero. What moved to the right is now
moving to the left, and vice-versa. The worldsheet coordinates themselves don’t change.
Thus the action of Ω is simply

XM
L (z)←→ XM

R (z) for M = 1, · · · , D [8.640]

Note that we have XM
R (z) and not XR

M (z̄) as the definition of the coordinates don’t change.
On the non-dualised coordinates we have

ΩXµ(z, z̄) = Ω (Xµ
L(z) +Xµ

R(z)) = Xµ
R(z) +Xµ

L(z̄) = Xµ(z̄, z) [8.641]

On the dualised coordinates we get

ΩX ′m(z, z̄) = Ω (X ′mL (z)−X ′mR (z)) = X ′mR (z)−X ′mL (z̄) = −X ′m(z̄, z) [8.642]

The latter is the combination fo a worldsheet parity x ↔ z̄ and a spacetime reflection
X ↔ −X.
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8.131 p 277: Eq. (8.8.3) The Fields GMN and BMN of an Orientifold

We need to consider again the worldsheet action (3.7.6)

S =
1

4πα′

∫
d2σ
√
g
[(
gabGMN (X) + iεabBMN

)
∂aX

M∂bX
N + α′RΦ(X)

]
[8.643]

The orientifold is a parity operation on the worldsheet coordinates of the spacetime fields.
In addition, for the dualised coordinates, we also have a spacetime inversion. Consider
first the gabGMN (X)∂aX

M∂bX
N . In the gauge gab = δab we have

gabGµν(X)∂aX
µ∂bX

ν = Gµν(X)(∂1X
µ∂1X

ν + ∂2X
µ∂2X

ν) [8.644]

The worldsheet parity operator transforms ∂1 into −∂1 and X into X ′. Thus here Ω acts as

Ω gabGµν(X)∂aX
µ∂bX

ν =Gµν(X ′) [(−∂1X
µ)(−∂1X

ν) + ∂2X
µ∂2X

ν ]

= gabGµν(X ′)∂aX
µ∂bX

ν [8.645]

Requiring Ω = 1 thus implies

Gµν(X ′) = Gµν(X) [8.646]

If one of the spacetime coordinates is dualised we obtain

Ω gabGmν(X)∂aX
m∂bX

ν =Gµν(X ′)
[(
− ∂1(−Xm)

)
(−∂1X

ν) + ∂2(−Xm)∂2X
ν
]

= − gabGmν(X ′)∂aX
m∂bX

ν [8.647]

from which we deduce that

Gmν(X ′) = −Gmν(X) [8.648]

and similarly we find for two dualised spacetime coordinates that

Gmn(X ′) = −Gmn(X) [8.649]

Looking now at the antisymmetric tensor, we see that

εabBµν(X)∂aX
µ∂bX

ν = 2Bµν(X)∂1X
µ∂2X

ν [8.650]

Therefore

Ω εabBµν(X)∂aX
µ∂bX

ν = 2Bµν(X ′)(−∂1X
µ)∂2X

ν) = −2εabBµν(X ′)∂aX
µ∂bX

ν [8.651]

so that

Bµν(X ′) = −Bµν(X) [8.652]

Similarly we find, obviously, that

Bmν(X ′) = Bmν(X) [8.653]

and

Bmn(X ′) = −Bmn(X) [8.654]
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8.132 p 278: Fig. 8.6 The Torus and the Klein Bottle

In order to make sure we understand this figure, let us start from the simplest case, the
cylinder. We take a rectangle and draw arrows pointing in the same direction on opposite
sides. We then "sew" together the opposite sides so that the arrows point in the same
directions. The result is a cylinder, see fig.8.13. Our graphical representation is thus a
rectangle with on two opposite sides arrows pointing in the same direction

Figure 8.13: Representation of the cylinder. The two opposite sides are sewn together so that the
two arrows align. The result is a cylinder.

If the arrows on the two opposite sides of the rectangle now point in opposite directions
and we sew them together than we have to twist one side to achieve this. The result is the
Möbius strip, see fig.8.15.

Figure 8.14: Representation of the Möbius strip. The two opposite sides are sewn together so
that the two arrows align. This needs a twist of one side and the result is the Möbius strip

It should now be clear how we can represent the torus, viz. as a cylinder where also the
two remaining opposite ends with arrows in the same direction are identified. The Klein
bottle, finally is obtained from the cylinder with with the two remaining ends identified,
but after a twist, hence with arrows on that end pointing to opposite directions.
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torus Klein bottle

Figure 8.15: Representation of the torus and the Klein bottle. Both start from a cylinder with the
open ends identified. For the Klein bottle there is an extra twist.
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