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Introduction to these Notes

If you are anything like me, then you like to work out almost all the details when reading a physics
text book. I find that this is the only way that I can really understand fully what I am reading. Of
course, most text books cannot give all the calculation details, or they would be many times thicker
than they already are.

From experience I have found that I understand things best if I force myself to write out every-
thing in glorious detail. These Notes are a result of such an effort.

Joe Polchinski’s two volume set on String Theory has become an instant classic on the subject.
Like many other authors, Joe often only gives a brief sketch of a derivation - if at all, or he assumes
that the reader already has a certain knowledge of the material. That may not always be the case.
I set it up to myself to understand Joe’s book in depth and work out as many details as possible.
Other people have already published solutions to the exercises in the book, so I won’t bother doing
that, except when they are directly needed for an understanding of the main text. As an aside, it
is also when you work out many of the details that you realise how well written the book is. In
many cases you find sentences that seem innocuous, but that are, as you realise many pages later,
not innocuous at all.

These notes are organised along the chapters of Joe’s book. Per chapter the Notes are given per
page and usually per equation. References to equations in Joe’s book are given in round brackets,
(). References to equations in these Notes are given in square brackets, [].

I claim no originality whatsoever in these notes, and even less correctness. All errors, and I am
sure there are plenty of them, are entirely mine. Some open issues that I have not been able to
resolve are summarised at the beginning of the relevant chapters, and detailed in the main text. If
you want to help improve these Notes, either by correcting errors, changing, adding material, or
answering open questions please contact me on hepnotes@hotmail.com. The latest update of these
notes will also be available on my website, hepnotes.com.

But first and foremost, enjoy these Notes and enjoy Joe’s book!

Stany M. Schrans
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References Used

Obviously these notes are about Polchinski’s two volume book on string theory [1, 2].
There are some other textbooks that may, at times, be useful to consult. Of course we start
with the classic of Green, Schwarz and Witten, known as GSW [3, 4]. Zwiebach has written
an introduction on string theory for advanced undergraduates [5]. It proceeds slowly and
has a lot of details not often present in other textbooks. The book by Blumenhagen, Liist
an Theisen [6] is also a nice companion to consult as it often contains more details than
Polchinski. There are two more books on String Theory that I need to mention as they
tend to get a lot of attention. Becker, Becker & Schwarz [7] is geared towards more recent
developments in string theory. It does contain some introductory material overlapping with
Polchinski, but this is happening at a rather breakneck speed. If that book is at break-neck
speed than the book by Kiritsis [8] is at relativistic speed. Its scope and detail is so vast
that I consider it more an encyclopedia than a textbook; it covers so many topics that it
does not have the time to explain too many things.

It has been said by some that you can learn string theory without any (or at least with
very little) knowledge of quantum field theory. I strongly believe this is not true and a good
understanding of field theory and the Standard Model is important. For this, I refer to two
classics in the field: Peskin & Schroeder [9] is well worth a detailed study and Zee [10] is
recommended for those with less patience. As an alternative I can offer my own notes on
quantum field theory [11]; these are mostly based on Peskin & Schroeder, but with many
details worked out and several additional subjects from a variety of sources.

Similarly, a reasonable understanding of general relativity is, in my opinion, necessary
for a good understanding of string theory. For this my choices are Carroll’s [12] and Zee’s
[13] books.

Lastly it is useful to have some background on more specific mathematical topics. For
symmetry and group theory I recommend Zee once more [14]. For geometry and topology

S5



Joe’s Book (version of November 20, 2020) Notes from Stany M. Schrans

turn to Nakahara [15].

There are a number of articles and reviews that I have found useful as well. Polchinski
has written a condensed version of his first volume [16]. It may be a condensed version,
but it sometimes has explanations that clarify his Big Book. Tong’s Notes on string theory
[17] are very useful to read alongside Polchinski’s book. These notes are very much based
on the first half of Polchinski’s first volume, but often contain more details or approach
the subject from a slightly different angle. Ginsparg’s Notes [18] on conformal field theory
remain an absolute classic. It is also worth mentioning that there exists a solution manual
[19] for about half the problems in Polchinski’s book. I should also mention a couple
of articles that have been very useful in understanding some specific parts of Polchinski’s
books. The article by Liist and Skliros on handle operators [20], and in particular their
section 2, has been of great help to understand Weyl transformations on Riemann surfaces,
a topic discussed in chapter 3. The review article by Giveon, Porrati & Rabinovici on
target space duality [21] has helped me understand better toroidal compactification and
its duality group in chapter 8. For a better understanding of the Born-Infeld term in the
Lagrangian of a D-brane I have used the lectures of Szabo [22], and complemented this
with the original article of Fradkin and Tseytlin [23].

Finally I should mention the Physics Stack Exchange at physics.stackexchange.com
which is a great repository of questions and answers on physics and has active groups
on quantum field theory, general relativity and string theory.

All the above references reflect, of course, my personal choices only. There are a variety
of other sources that someone else may find better suited for her or his purpose.
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Chapter 1

A First Look at Strings

1.1 p 12: Eq. (1.2.15) The Variation of the Determinant of the Metric
Use
Indet M =tr InM [1.1]
to write
76y =8Iny = 6tr Iny = tr dlny = tr vy 18y = 7%, [1.2]

We have used the fact that (y~') , = 7%". So 6y = y7*?074. The second equation is
obtained by using 7*7;. = .. from which it follows that 67, + 76y, = 0.

1.2 p 15: Eq. (1.2.32) The Change in the Curvature under a Weyl
Rescaling

This is a formula that will come back several times, and it is quite rare to see it worked out
in detail, so it is useful to do this here. We wish to show that under a local Weyl rescaling
Gab = Gop = e2(9) g the Ricci scalar satisfies

(¢")'?R = ¢"?(R — 2V?w) [1.3]

We have gone to Euclidean space and called the worldsheet metric ¢ in stead of ~, just to
save us some typing. One way to show this to write the Ricci scalar out in terms of the
Riemann curvature, write that one out in terms of the connections and those in terms of
the metric. We then transform the metric, make sure we don’t get dizzy from all the terms,
indices, and different contractions and hope this all works out. The other way is to be
smart about it and ignore all terms we don’t need, focussing on only what we do need.
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Let us first recall some basic facts. The Ricci scalar is given by
R=g"Ra = 9" Ry
=g® (acrga - abrga + ngrga - ngrga> [1.4]

We have used the definition of the Riemann curvature

Rpeq = 0cLgy — 0al'gy + Te TG, — TG 1% [1.5]

e

The connection is given by

1
=3 9" (9yGed + OcGba — Dagne) [1.6]

When we replace the metric by ¢/, = e20(@) g we have ¢/ = ¢=2¢(9) 42 and the connec-
tion becomes

1
Iy = 59’“‘1 (06904 + OcGha — Oadhe)

1
= 56_2“96“1 [0 (€2 gea) + Oc (€* gha) — Oa (€™ gbe)]

1
= 59‘“1 (Ov9cd + Ocgbd — Bagbe) + 9% (9eadpw + Goalew — gpedaw)
= Th + A 1171

where

¢ = g (geaOpw + Gpadew — greOaw) [1.8]

Let us now think, before we blindly start calculating. The Ricci scalar contains connections
and their derivatives and these in turn contain derivatives of the Weyl factor w. The /g
on both sides just makes sure that the €2 is overall cancelled. So, R’ is an expression that
will contain terms without w’s and terms with 9,w, 9,wd,w or O,9,w. The terms without
any w obviously combine to give ¢g'/2R again, so it is the terms containing w’s that should
carry our attention.

Now R is a scalar under diffeomorphism, as all its indices are nicely contracted. There-
fore we should be able to write everything in terms of covariant derivatives of w. A mo-
ment’s thought reveals that there are only two possible combinations with at most a second
order derivative, viz. Vw - Vw and V2w. We should therefore be able to write

J'VPR = ¢'/? (R+ aVw - Vw + bV?w) [1.9]

for some a and b that may depend on the metric and its derivatives, but not on w. Let us
now think about how we can fix these coefficients. We will do this for a general dimension
D as we will need that formula later as well, and set D = 2 at the end.
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Let first fix the coefficient b. We can write
Viw = VoV = V0% = 9,0° + 140w = d*w + - - - [1.10]

where the dots are for terms that do not contain any second order derivatives. We can thus
just identify the part of R’ with a second order derivative and that should give us the value
of b. All the other terms then should fit in line, without us having to perform an actual
calculation. Writing out R’ in terms of the connections we find that

Rieq = 0c(Tgy + Af) — 0a(Tgy + A%) + (Tee + A%) (g + Afy) — (D + AG) (Do, + ALy)

[1.11]
Only the terms 0.AY, and ;A% have a second derivative of w. Therefore
R =g“"Ry, = "Rl = ¢ (acrgca — Oleg + -+ )
= e 2 (DAG, — DAE, +-- ) [1.12]
Now
9005, = g™ 0c [9°(gacOpw + GoeDatw — GhaOew)]
= g™ (850:0h + 0§ 0cOaw — 9 gabDcOew)
= ¢*0,.0pw + ¢*°0Opw — 059°0:0ew = (2 — D)62w [1.13]
and similarly
gababAga = gabab [gce (gceaaw + gaeacw - gacaew)]
= g% (090,0pw + 0gOpw — BuOpw) = DI*w [1.14]
Therefore
gll/QR/ — 62wgl/2R/ — eng1/2672w(2 _ D _ D82W) + . — —2(D _ 1)91/2282w + -
[1.15]
and we see that indeed b = —2(D — 1), and so for D = 2 we have indeed b = —2.
Let us next fix the coefficient a. Because w is a scalar, we can write
aVw - Vw = ad®*wd,w [1.16]

We thus need to identify any terms that have a d,wd,w in R’. These can only come from
the terms that have a product of two connections:

R = g (VT - TETS) + -
_ e—ngab (AS AL — AL NS ) + - [1.17]
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Now

A AL, = 9°(9ac0ew + gaeOew — geeOaw) g% (9 0u0 + paObw — gapdpw)
= 6°9°7 (94e 10ewOaw + el faOewpw — GdeGapOewd w
+ 9de G f0cw0aw + Gded faOcwOpw — JdeGapOcwOfw
— Geedf60awdaw — Geed£aOiwOhw + GdegapOdwdsw)
= 050qwOhw + 050qwOpw — 5§gab3dw8dw + OuwOpw + Ogwdpw — GapO wiew
— OqwOpw — OawOhw + Gap0wOew

= 2d0,whw — dgapO°wiew [1.18]
Similarly
lc)eAia = ng (gdbaew + GdeOpw — gbeadw)gef (gfcaaw + gfaacw - gacafw)
= QCdgef (gdbgfcaewaaw + gdbgfaaewacw - gdbgacaewafw
+ 9de9 1 OpwOaw + 9deGfaOpwOew — GdeJacOpwO pw
- gbegfcadwaaw - gbegfaadwacw + gbegacadwafw)
= OqwOhw + OqwOpw — GapO“WOew + 650awOpw + OuwOhw — OqwOpw
— OqwOpw — GapO wWOew + Ogwdpw
= (d 4+ 2)0qwipw — 2g4p0 woew [1.19]
Therefore

e_ngab(Age ba — ALASL) = 6_2‘*’gab [2d8aw8bw — dgapO0°wiew
— (D + 2)0qwipw + 2gab80w80w]
= e_2wg“b(D —2) (8aw6bw - gabc')cwacw)
=e (D -2)(1-D)dw - dw [1.20]

We thus find a = —(D — 1)(D — 2) and this vanishes for D = 2, setting a = 0 in this case.
We have thus shown that for general D we have

(@)'/*R = g"*[R—2(D — 1)V?w — (D — 2)(D — 1)dw - du] [1.21]
For D = 2 we have
(¢)'/°R = g'*(R - 2V’w) [1.22]
which is (1.2.32).
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1.3 p 15: Below Eq. (1.2.32) Invariance of x under Weyl Rescaling

We first go to Euclidean space so we don’t have to carry around minus signs. We wish to
show that

9u(v/gv®) = VgV a0 [1.23]

for an arbitrary four-vector v“. Start with the LHS

1
LHS = 0,(v/gv") = (0ay/9) v* + /§0av* = ﬁ\@gbca@ghcva + \/g0qv"
=9 <;gb68agbcv“ + c%v“) [1.24]
For the RHS we find

RHS = \/gV," = /g (8av“ + rgbvb)
1
=9 [&w“ + 5 (9"0ageb + 9" Oogea — 9" Ocgab) v?
1
= \/§ (aava + 2g(lcabgcavb> [1.25]

which is equal to the LHS.
Now the variation of x in (1.2.31) after a Weyl rescaling is, and going back to Minkowski
space,

1 1
ox = — [ drdo (—)Y?(—2V2w) = —— / drdo (—7)?V 4 (Vw)
47 M 2m M

= L drdo aa[(f'y)l/QV“w} [1.26]
2 M

and is indeed a total derivative.

1.4 p 16: The Variation of the Einstein-Hilbert Action
We wish to compute the variation of the Einstein-Hilbert action
SEH = /d20 (—7)1/2R [1.27]

under a change of metric. It is more convenient to consider a change 6¢®® than 6g,,. The
result should of course be equivalent. Using R = g’ R,;, we can write the variation as

0Sgn = (0Spu)1 + (0SEH)2 + (6SEH)3 [1.28]
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with
0Spu) = [ #a ()2 g5 R,
(6S1)2 = / @20 (=) (59™) Rap
(6Smm)s = / 2o R6(—)1/2 [1.29]

Let us start with the first one. We first wish to calculate the variation of the Riemann
curvature. We will first write it in terms of a variation of the connection 6I'}.. We find

6Rpeq = 0[0:G, + Tl — (c < d)]
= 0.6, + 0I'e. g, + I'e.dl'g, — (¢ <> d)
= ac(srgb + 5Fge zb + Fgeérilb - ad(srgc - 5F36 ib - (clle(srgb
= 00T, + OTE, T, — 0155y — Do — (94014, — Te,0TG, — TedThe + T5,0T5
= V6T, — V0T, [1.30]
In the fourth line we have added and subtracted —I'° ,6T'{. and we have made use of the fact

that the difference of two connections is a tensor, so that we can introduce the covariant
derivatives of the tensors. Therefore

SRypq = 6R% ;= Vool — V0Te, [1.31]
and
(6Sgm)1 = / @25 (—7)V/2 g (V,0T8, — V40T%,)

= / d*o (=) | Va(g"6Tg,) — Va(g"oTy,) [1.32]

Where we have used the fact that the metric tensor has covariant derivative zero: V,g" =
0. We can now use (—v)'/2V,v® = 9,((—v)"/? v®) to rewrite this as a total derivative, so
that we see that this variation is equal to the boundary at infinity and hence zero'. Thus
(6SEm)1 = 0.

1We are ignoring potential global effects.
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(6SEm)2 is already of the form dg® x something so no further work is necessary. It
remains to look at (6Sg)s .But here we can use (1.2.15):

1 1 ) 1 )
(=)' = =5 (=) 2y = =5 (=) X (1 9mdy™) = =5 (=) P o™ 11.33]

2
and thus
O R C 134
We conclude that
0SEy = /dzo (—fy)l/2 <Rab - ;fyabR> 5fyab [1.35]

and so by varying the metric we do get the equations of motion

1
Ry, = 5%61% [1.36]

1.5 p 16: Two-Dimensional Gravity has no Dynamics

It is very tedious to show that R, = %%bR in two dimensions. Joe’s book claims that it
follows from symmetry reasons, but it still requires detailed calculation. For example the
expression the Ricci scalar is given by

R = [29%2(83911 — 20102012 + 07922) + g12(—D2911(202912 + 01 922)
+ 0191102922 + 201912(202912 — O1922)) + g11(0291102922 — 2011202922 + O1959)
+ g22(1g11 (1922 — 202912) — 2g11(93911 — 20102912 + 07 g22) + Oagtr) |/

[2(9%2 - 911922)2 [1.37]
It is actually easiest to show this via Mathematica. The corresponding code is shown in

fig.1.1. It defines the connections, the Riemann curvature and Ricci scalar for an arbitrary
two-dimensional metric. The test is that ¢t[a,b] = 0 for a,b =1, 2.
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inf7211= Clear[G, dG, gu, g, dg, ddg, dgu, R, RR, m, mu, tt];
m = {{g11[X, Y1, g12[X, YI}, {g12[X, Y], 822[X, YI}};
mu = Inverse[m];
gla_, b1 := m[[a, b]
gula_, b_] := mu[[a, b]]
dg[l, a_, b_] := D[g[a, bj, x]
dgi2, a_, b_] := D[ga, bi, y]
dgu[l, a_, b_1 := D[gu[a, b], x]
dgu[2, a_, b_1 := D[gu[a, b], y]
ddg[i, 1, a_, b_] := D[D[g[a, b], XI, X]
ddg[i, 2, a_, b_] D[D[g[a, b], x1, yI
ddg[2, 1, a_, b_] D[D[g[a, b], y1, x]
ddgi2, 2, a_, b1 := DiD[g[a, b], yI, ¥I
Gla_, b_, c_] = (1/2) »+ Sum[gu[a, d](dg[b, c, d]+ dg[c, b, d]-dg[d, b, c]), {d, 2}]

dGle_, a_, b_, c_] := Simplify[(1/2) » Sum[dgu[e, a, d](dg[b, c, d]+ dg[c, b, d]-dg[d, b, c)
+ gula, d]« (ddg[e, b, c, d]+ ddg[e, c, b, d]-ddg[e, d, b, c)), {d, 2}1]

Rla_, b_, c_, d_] := Simplify[dG[c, a, d, b] - dG[d, a, c, b]

+Sum[G[a, c, €]« G[e, d, b] - G[a, d, e]*G[e, c, b], {e, 2}]]

R[a_, b_] := Simplify[Sum[R[c, a, c, b], {c, 2}]

RR = Simplify[Sum[ gu[a, b]« R[a, b], {a, 2}, {b, 2}1];

tt[a_, b_] := R[a, b] - (1/2)* g[a, b] + RR

inr7401= {Simplify[tt[1, 1y, Simplify[tti1, 213, Simplify[tt[2, 15, Simplify[tt[2, 2|}
out[740)= {0, 0, 0, O}

Figure 1.1: Mathematica code for showing that two-dimensional gravity has no dynamics

1.6 p 17: Below Eq. (1.3.7) Determining p

We start from the mass-shell condition —m? = p?> = —2p~p* + p'p’. Thus p'p’ + m? =
2p~pT. Use this in (1.3.6) to give
I~ pt
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1.7 p 18: Eq. (1.3.9) Invariance of fdo

We have ¢’ = ¢/(0,7) and 7’ = 7. Therefore

00’9’ , 9o’ do’ o' \?
77 = 0 90 T 95 9o 177 <8U) Yoo

d0’¢ fo'? v _or'or’ or' o', do’ do’
1= o o e = gr o 7t 20 ar e T g B o

oo’ AN
= Vor T2 o Tro + (&) Yoo

o’ Do’ N or' ot , or' 9o’ oo’ o', oo’ o’
10 = 5 g ed T Gr b 1T + 7 0o o + 7 9o lor + o7 9 o0

da’ do’ do’

= 90" " or 50 .

So

det Y =%Yoo Vrr — ’772—0

— 870-/ +280 4 870/ ’ /
30 ' " Br do o0

:80’2 po(0NPOO L (00\? (00Y?
80_ P)/O'U TT aT UU TU ao_ 87_ ,.YUO'
o’ 2 do’ ac'\? ds' ,
- 87 Vro — o ’Yaa - % EV‘FUVUO‘
/
= <g‘;> (Voo Yer —72) = ( ) det ' [1.40]

We thus find, using the fact that dr = d7’/ = 0,

fdo ="oe(— dety) ™/ ?do
o'\ 2 o'\ 2
- (aa) Voo [‘ (aa> det

1.8 p 18: Below Eq. (1.3.9) Fixing the Gauge

—-1/2

a—;f/do” = (—dety) "V 2do’ [1.41]

I feel this may need a bit more explanation. We have shown that fdo is an invariant under
reparametrisations of o with 7 kept fixed. So for every given T we can use this to define an
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invariant length di = fdo along the string. This is independent of the choice of o as long as
7 is fixed. So we can now select a specific worldsheet coordinate system. We don’t change
7 but we define o as being the proportional to the invariant length [fdo from one of the
endpoints of the open string?. The proportionality constant is determined by requiring that
at the other end-point o = ¢. In this coordinate system f is independent of 0. f = dl/do
and dl is an invariant length hence it is independent of o, but f can of course still depend
on,ie. f = f(r). We now use the Weyl invariance to rescale the metric so that v = —1.
Now f is invariant under a Weyl rescaling as well, as both 7,, and (—v)'/? transform in
the same way, and so their ratio is invariant as well. Because f is invariant, this means that
after the Weyl rescaling we still have 0, f = 0. But this means that 0 = 9, (50 (—7)~/?))
and thus 9,7,, = 0 as —y = 1.

Let’s recapitulate. We fix 7 by setting it equal to 2. We fix o by defining it to be
proportional to the invariant length. We fix v using a Weyl rescaling. Combining these, we
have shown that that we can satisfy d,7,, and so this is an acceptable gauge choice.

1.9 p 18: Eq. (1.3.10) Invariance of fdo

From —1 = v = Y1900 — 72, We get
Ny = JTe 2 [1.42]
It is easily checked that
-1
a b 1 c —b
<b C) S <_b a) 1.43]
In our case ac — b?> = v = —1. Thus
YT AT Yor o) gl 7y ol ¥
TT TO —1 oo —JITto oo TO
— - = [1.44]
<'YTU ’YUU> <'77'0' ’700'> K <_’7‘ra’ Yrr ) < Yro (1 - 772—0)/'70'0>

2For closed strings, there is no end-point, so we would have to chose a specific starting point on
the closed string, see (1.4.1).
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1.10 p 18: Eq. (1.3.11) The Lagrangian in the Light-Cone Gauge

It is important here that we talk about the Lagrangian and not the Lagrangian density. But
let us start with the latter

1 b
L=— m"}/a aaX”('?qu

1 o

= (XX~ 40X 0X T 4910, X 9, X"
T
1

=1 ,(— VO, X1T0, X =70, X0, X — 170, XT0. X — 1770, X0, X"
7[ye;

0 X0, XT =70, X 0, X — A0, X 0, XT — 4770, X 0, X
FATTO X, X+ 29770, X1, X + ’y””@aXi@UXi> [1.45]

We now use X = 27 = 7 so that 9, X" = 1 and 9,X " = 0 and use the explicit form of
the inverse metric

1 . . . . . .
£ — m( _ 2,YTT87_X7 _ 277080X7 _"_ ,YTTaTX’LaTX’L + 2,YTO'8TX180—X’L + ,.)/O'Uao_X’LaUXZ>
1 . . . .
- (2%05—97)(— 29000 X — Y0P X0 X 4 29,50- X0, X
4o/

bz - 772_0)80Xi80Xi> [1.46]

We now write X ~(7,0) =2~ (1) + Y~ (7,0) and go to the Lagrangian

¢
L= — / do (2’70087—1'_ Y T — 29,0 Bt — 29,00 Y
4o 0
D X0, X 4 29,00, X0, X+ AT (1 — yza)agxiagxi> [1.47]
By construction d,z~ = 0, but we also have since we have already established that in our

gauge choice v, is independent of o

¢ l
/ do rYO'UaTyi = ’70'0'87/ doY =0 [1.48]
0 0

as Y~ has by construction mean value zero. Therefore, we find (1.3.11)

1

4o

E:

l
/ do [%g(zaTx— — 0, X'0:X") — 2975 (0,Y ™ — 0, X'0,X")
0
+ Yoo (1 = 73-0)80Xi80Xi} [1.49]
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1.11 p 19: Eq. (1.3.13) The Open String Boundary Conditions

(1.2.28) is 97z#(7,0) = 0%2H(7,¢) = 0. Writing this with derivatives with indices down-
stairs we get 0%zF = ¢990, X" = ¢770, X" 4+ ¢°70, X" and so, inverting the metric
0= 70, X"+ ~v,0; X+ atoc =0and o = /.

1.12 p 22: Eq. (1.3.32) Regularising > n

This derivation is a delight to mathematicians.

> > d — d 1
_ —ean _ _ % —ean _ _ %
;n;ne daazoe dea 1 — ef@

d 1 o d 1 1
~ deaca— %(ca)? + 3i(ea)d + - ~ deacal - Jea+ tea)? + -+
d 1 1 1, 1 1, L5\°
=———|1-(1-zea+ - 1——ca+ - .
dsaea[ < 2ea—|—6(5a)>)+< 25(1—1—6(5@)) +
d ! L + ! + ! ! [1.50]
—_ - —ca P — _—— .
dea \ea 2 12 (ea)? 12
There is a rather entertaining “proof” of the fact that ) >, n = —1/12 that is due to
Ramanujan. First, let us call the sum S,i.e. S=1+2+3+4+---. Now we subtract from

this the sum 45 but not term by term, we subtract the terms 4.5 from each third term of S,
ie.

S=14+2+34+4+5+6+---
48 = -4 -8 —124-.-
S=8-45=1-243—-44+5—6+--- [1.51]

Now S is just the alternating series so S = 1/(1 + z)? at z = 1. So

S~M——%—§——Lf—ljs——i [1.52]
- 7141 4 12 ’

But, of course, even for physicists this is taking it a bit far.
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1.13 p 24: Eq. (1.3.43) The Regge Slope for Open Strings

We start by checking the Eigenvalue of S?? for the state (a2, +ia2,,)|0; k) for a given m:

1
S22, +ia, ) [0;k) = —i Z - (2,02 —a?,a2) (a2, +ia’,,) |0 k)

n=1
1 .
= =i (a?,,ad, — a2 a2) (a2, +ia? ) |0; k)
1
= —i— (a?,,0dia®,, —a’, a2 a?, )]0 k)
m
= (a2, +ia3,))]0;k) [1.53]

where we have used [af,, "] = Mm% 6,0 0. So this state has spin one. Consider now

]]

. 1
SB(a?, +ia®, )20 k) = —i Z - —ala2) (a2, +ia’,,)?(0; k)

n=1

O":r))n - ag—magn) (az—m + ’La?im)(a%m + lag—m) ‘Ov k>

al —ad ar) (a?,a2,, +ia?, o, +iad ol —ad, o) [0;k)

1
= —i—(ima?,,a*
m

- ma,ma,m — ozfma,mamozfm —imaZ o, — imo

3 2 3 2 2 2 . 3 3 . 3 )|0k‘>

( Ay 7m + ZO( m + Z‘C“fm&fm - a;ma?in") ’07 k>

2
2002, +ia>,)? |0;k:> [1.54]

Similarly we find
S22, +ia®, YWV |0;k) = N(a?,, +ia®,, )N |0; k) [1.55]

Any other state at level N will contain at least one less factor of o2, + ia?,, and as 523
only has non-zero Eigenvalue on that specific combination, it will give a spin lower than
N. Using the mass-shell condition (1.3.36) in D = 26, i.e. o/m? = N — 1 we thus find

SB<N=am?>+1 [1.56]

which is (1.3.43)
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1.14 p 29: Eq. (1.4.19) The Unoriented Strings

For the open string we have (1.3.22)

Xt = —T +1V2 Z L ex < mr;m) cos ? [1.57]
"2;6”

Under the transformation o — ¢ — o we the operator X" transforms as

Xt 5oxi0!
= Qa Ot nTiCT nwo
= Q0+ Q Q L 4iv2 Z ———exp | — cos [1.58]
Nt Y4 !/
n#0

On the other hand we have cosnmo /¢ — cosnn(¢ — 0)/¢ = (—1)" cosnmo /¢ and so we see
that

Qi = (1)l [1.59]

For the closed string we have (1.4.4)

Xi= ot +T+Z[ {% SYRCLILETA P P P(J)]}

n;é()
[1.60]
and so as
2nmi 1 [ 2nmi(o — 1
exp |- nm(z—km’) L exp nm(z cT) (1.61]
and
2nmi(o — 1 [ 2nmi |
exp nm(; cT) L exp |- nm(z%—w) [1.62]
we have
Qa0 =al
Qalo ™t =al, [1.63]

Joe has these expressions not only for the X?, but also for X° and X'. You cannot deduce
this in the light-cone gauge.
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Conformal Field Theory

2.1 p 33: Eq. (2.1.2) The Complex Coordinates
The inverse is
L1 1

o zi(z—l-i) , 02:Z(z—2)

2.2 p 33: Eq. (2.1.3) The Complex Derivatives

This isn’t really a definition, but follows from Leibniz:
0=20,=0.0'01 +0.0%0, = %(01 — i)
b= 0: = 0010, + 020205 — %(a1 +idy)

The inverse is

H=0+8 , 9=1i0-0)

2.3 p 33: Eq. (2.1.6) The Complex Metric

Just for the sake of it, we will drive it in two ways First,

1
ds? = (do)? + (do?)? = 1 (dz + dz)* — ~(dz — d2)* = dzdz

1
4
writing ds? = g..dzdz + g.>dzdZ + gs.dzZdz + gz>dzdz we find

9= (1(/)2 1(/)2>

[2.1]

[2.2]

[2.3]

[2.4]

[2.5]
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and its inverse

. (0 2
g = (2 0) [2.6]

The dots refer top the location of the indices.
The second way is to use the transformation rule of the metric:

do® Ha® oo\ 2 902\ 2 1\? 1\?

92z = gagab = ((f)z> g1l + (82) g22 = <2> + (22) =0
Ha® Ha® dol dot do? do?

92 = 5. 0z 9% = 95 0z I T 5s 9z 92

(G-

2.4 p 33: Eq. (2.1.7) The Jacobian

etc.

We have
_ J(z, z) 0z/0ct  0z/00*
2, _ _ ) 1,92 172
d°z = dzdz = |7@(01,02)’d0 do* = | (32/801 0%/ 90” |do*do
=| (_1Z i) |dalda2 = 2dotdo? [2.8]
Note also that
. 0 1/2 _ _1
g—det<1/2 0)— 1 [2.9]
and so
(—g)/? = % [2.10]

2.5 p 36: Eq. (2.1.23) The Equation of Motion as Operator Equation
6151 : X“(Zl, fl)XV(ZQ, 52) = 6151 X“(Zl, fl)XV(ZQ, 52) + C%77“” In |212|2

/
= w6 (2 — 22— 7)) + %n‘“’ X 2m6%(z — 22— 7))

=0 [2.11]
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2.6 p36: Eq. (2.1.24) 991n|z|?2 = 2762%(2, 2)

As per the text, this is obvious when z # 0. To show the normalisation, let us go back to o
coordinates and integrate over the worldsheet. The RHS is

1
RHS = /d2a 2%55(01)5(02) =7 [2.12]
where we have used the delta function convention from p xviii. The LHS is
2 1 . . - 2., 2
LHS = [ d 05(81—162)5(81+182)1n(0'1 +O'2)

1
== /dza (02 4 02) ln(a% + 0‘%)

4
1 20 20
:/dZO' (81 5 12+82 5 22>
4 o1 + o5 o1 + o3
1 1 doy — oad
:/d208a2c‘12:_% 01493 — 02y (2.13]
2 oy + 03 2 Jo o1 + o3

We have used the fact that we are in Euclidean space so that we don’t have to bother about
the location of the indices, and we have also used Stokes’ theorem in the last equation. Let
us now move to radial coordinates o1 = r cos@ and o9 = 7 sin 8 so that

o1doy — oadoy = 7 cos (sin Odr + 7 cos 0df) — 7 sin §(cos Odr — rsin 8df) = r?df  [2.14]

and we find where we have used the delta function convention from p xviii. The LHS is

2
LHS:lj{r;ie:lxy{dH:w [2.15]
2 c T 2 C

and so LHS = RHS, proving (2.1.24)

2.7 p 38: Eq. (2.2.4) A Taylor Expansion

The Taylor expansion in two variables is

o] 1 n n o
Aley) = Alanaw) + Y 25 () okog ™ Aleo. ) 216
n—1 k=0
In our case 0, = 0 and 8y5. We moreover have : 90X (z, %) - - -:= 0 as an operator equation

and so the only terms contributing for a given n are those with k¥ = 0 and & = n. This
immediately gives (2.2.4).

— 45—



Joe’s Book (version of November 20, 2020) Notes from Stany M. Schrans

2.8 p 39: Eq. (2.2.5) and (2.2.8) Subtractions and Contractions

Note that this is not without any humour. Subtractions have a positive sign —l—%o/ nHikd In |z
and contractions have a negative sign —Ja/n#i# In |z;|?

2.9 p 39: Below Eq. (2.2.6) Normal Ordered Products Satisfy the Equa-
tion of Motion

Let us first show it for three fields, after which we will argue it to be the case for any
number of fields. Consider 010, : X#1(z1, 21) X#2 (29, Z2) X3 (23, Z3) :. We first write out the
definition of normal ordering

8151 XM (Zl, El)XMZ (ZQ, ZQ)X“?’(Z:;, 53) = 8151 [Xltl (Zl, Zl)X'g(ZQ, Zg)Xg(Zg, 53)
/ ’

+ 577“1“2 In ]212|2 1 XH3 (23, 23): —|—%n“1“3 In |213\2 1 XH2 (29, 29):

Q

/

+ %77“2“3 In|293]? : X*1 (21, 21): ] [2.17]

We have kept the normal ordering symbols around the single fields as it will be convenient
for when we generalise to more fields. We can now perform the derivatives. Using (2.1.19)
acting on the first term gives us two contact terms of the form

—ﬂ'alnl“ui(SQ(Zh‘,Eli) :Xuj(Zj,Ej): [2.18]

where (i, j) is either (2, 3) or (3,2). These terms are cancelled by taking the derivatives of
the second and the third term and using (2.1.24), i.e. 901n|z|? = 276%(z, z). The derivative
of the last term vanishes by the operator equation of motion 99 : X*1 (21, z1) := 0.

We can now easily generalise this to n scalar fields

8151 XM (Zl, Zl)XHQ (22, 22) cee X“"(Zn, in): [2.19]

First we have the derivative on the not-normal order product. It will give n — 1 contact
terms. Then we look at the contractions, of which there are two types. Those involving
XM and one of the fields X# for : = 2,--- ,n will cancel with the contact terms. The
remaining contractions are between a X*i and a X" for i, j # 1 and ¢ # j. They result in
a term proportional to

D101 XM (z1,21) - XH (21, 2 1) XFH (2441, Zig1) -
XM (21, 2j-1) XM (241, Zjgn) - - XH (2, 20) [2.20]
But that is just a the same as our original expression but with n—2 fields i.o. n fields. We’ve

shown this to be zero for n = 1, 2, 3 and so it follows that this term is zero by recursion and
thus the n-point normal ordered product satisfy the equation of motion as well.
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2.10 p 39: Eq. (2.2.10) The Product of Normal Ordered Operators

(2.2.10) has a factor of 2 compared to (2.2.8) because in (2.2.8) both derivatives can act
on : F : and so we need to avoid the double-counting. In (2.2.10) each derivative can
specifically act on one and only one of the operators.

2.11 p 40: Eq. (2.2.11) Calculating an OPE

1
Let us denote by X#(z1)X"(z2) = —3a/n"" In|z12|* a contraction between two fields. We

then have
(0XPOX 1 (2) 0 XV X, (7)) = :0XM0X,(2)0' XV X, ()
1
+4 x OXM(2)0' XV (2') :0X,(2)0' X, : (2))

1 1
+2 x 0XHM(2)0' XY (2")0X,(2)0' X, (2))
=0X"0X,(2)0' X 0 X, (2)

- 4%&’7}‘”’5)8/ In|z — 2> :0X,(2)0'X,: ()

2
+ 2 (;aln‘“’a@/ In|z — z/|2> [2.21]
Now
1 1
/ 2 _af_ _
00 In |z — 2| 8( z—z’) CEwIE [2.22]
and n*n,, = él, = D, we get
” Dd/ /2 2/
LOX1OX,: (2) O XV Xy (2) ~ oo !,)4 CEIL 0XH(2)0' Xy (2)
/ / /
. Pa 2 20 5 0 XM X, () - ﬂ/ PXPY X, (7)) [2.23]

(z =2 (2—2") z—z

where ~ denotes up to regular terms and we have expanded : 9.X*(2)0'X,,: (') in a Taylor
series in the last line.
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2.12 p 41: Eq. (2.3.5) The Ward Identity

We use the fact that 9,(g"/?v%(c)) = g/?V,v%(c) as shown here

1
LHS = 0,(,/gv*) = (9ay/9) v + /g0 = ﬁggbcaagbcva + /90,0

1
- \/.a <2.gbcaagbcva + 8ava> [2.24]
For the RHS we find

RHS = \/gV," = /g (&w“ + rgbvb)

1
=g [&Iv“ +3 (9°“Ougeh + 9" OvGea — 9 OcGap) v°

1
=g <0av“ + 2g“cé?bgcav”> [2.25]

The second and last term of the connection cancel after interchanging the dummy indices
a and c. This is now equal to the LHS.
To derive (2.3.5) we start from (2.3.4), which implies

0= [ g2 (@ 0upto) =~ [ dlovu(s 5 (0)p(o)
=— / dlog'?V ,j%(0)p(0) [2.26]
2.13 p 42: Eq. (2.3.11) The OPE with the Conserved Current Deter-
mines the Transformation Law
For a holomorphic current (2.3.10) becomes
fc dz j(2)A(z0) = 2?”5,4(7,0) [2.27]

with C a contour counter-clockwise around zy. We already see that the transformation
rule of an operator \A(zy) under a symmetry is determined by its OPE of the corresponding
symmetry current, i.e. j(z).A(zp).

Now we have for a general function f(z)

Res,. f(2) = 17{ dz f(z) [2.28]
271 C
with C a contour counter-clockwise around zy. Therefore
. 1 ) 1 27 1
Res. 20j(2)A(z0) = 5 fc 42 j(2)Al0) = 5 0 A() = 0AG0)  [2.29)
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2.14 p 43: Eq. (2.3.14) Transformation of a Vertex Operator under a
Space-Time Translation

We have
. .tk X(0) . _ i . " n
G (2) 1R X O = —OXM: > Oj (k- X(0))

~ Oi/aml—z))l(”(O)kl, :i gn(k . X(O))n—l:
-

/

; . EE
~ é <—O;n“”81n \z|2> ki ek X(0). o 5 etk X(0) [2.30]

Let us now define V;(z) =:e?*X(?) :, what we will later see is a vertex operator. We can
then use (2.3.11) to find its transformation law under the space-time translation in the p
direction:

1
0*Vi(0) = ieRes, 07" (2)Vi(0) = ie— @ 7#(2)Vi(0)
2m Jo

i€ kH ickH
_ - 2.31
2mi Jo 22 Vi(0) = 2 Vi(0) L ]

2.15 p 43: Eq. (2.3.15) The Energy-Momentum Tensor

Let us first check that the action is indeed invariant under a world-sheet translation:

1
) _57 d?0 9°XH9, X, = d’0 20°X19,6 X
S Tro od 0a X, - 020 0, L
a Evb 2 a U
27ra 0 "X 0y (—ev 8bX ) = o d“c 0° X" 0,00 X
000, X 0, X,, =0 [2.32]
27ra

where in the last line we have used the equations of motion 9>X* = (. Recall that the
symmetry is only required the equations of motion are satisfied. Indeed the corresponding
Noether charged is only conserved on shell.

Let us now derive the Noether current. How do we do that? Suppose you have
a Lagrangian L[¢| of some fields ¢ that is invariant under a continuous transformation
o(z) — ¢'(z) = ¢(x) + aA¢. But as we can always add a total divergence to a Lagrangian
- it just gives a boundary term in the action, invariance means that under this transforma-
tion the Lagrangian is unchanged up to a potential total divergence. I.e. The Lagrangian
transforms as £ — £ + ad,J*, so aAL = a0, J".
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Now, consider the transformation of the Lagrangian for the change of its field:

oL oL
oc oc
= %aAd) + WﬁuaAqb
oL oL oc
~o (ai5,5%) +* 50 - (sg.)] e

The second term vanishes by the equations of motion. We now equate both forms of the
transformation of the Lagrangian

oL
H pr fr— —_—
ad,J aAL = a0, (8(8M¢)A¢> [2.34]
and we see that
oL
15) —A — j’”} =0 [2.35]
: [(aw) ¢)
I.e. the Noether current
oL
H = A - JH [2.36]
7 (a@m ¢>

is conserved, d,,j* = 0.

Let us work this out for the worldsheet translation éc* = ev® under which X* trans-
forms as a worldsheet scalar: 6 X* = —cv*0, X*. First we need to find how the Lagrangian
transforms and from there the corresponding 7. This is quite easy. The Lagrangian is also
a scalar under worldsheet transformation and so it must transform in a way similar to X*,
ie.

0L = —ev 0oL = —ev®0y(82L) = J¥ = —ev8 L [2.37]

We also have, using the Lagrangian

1

@y H
L= 0 X'9,X, [2.38]
that
oL oL 1 1
— [ b _ a Yy — anb W
50, 520 =5,xm A X" = gra? Xul-e0"0uX!) = 55" P X0 X" [239]



Joe’s Book (version of November 20, 2020) Notes from Stany M. Schrans

We therefore find

1
jb = —ﬁf‘f’l)aaquaaX’u — (—8’()&(52[,)
_ 2 (px,a.x0 — Lapaexra,x 2

= pOa i’ = 504 . [2.40]

2ma!

Bringing the index b down gives

) ev? 1
=5 (abXH&LX“ — 26ab86X“8CXH> [2.41]

which gives us the energy-momentum tensor j, o v°T,; with
1 1
Top = —— | 0, X,0pXH* — =0,40°XH0,X [2.42]
o H 9 12

which is (2.3.15b).

2.16 p43: Eq. (2.4.1) The Energy-Momentum Tensor is Traceless

Using the complex metric we have
gabTab = gzszz + 2922 zz + gﬁTzz [2.43]

The only non-vanishing components of the metric in complex coordinates are the off-
diagonal ones. Tracelessness thus implies T,z = 0.

2.17 p 43: Eq. (2.4.2) The Energy-Momentum Tensor Splits into a
Holomorphic and an Anti-holomorphic Part

Set b = z in the conservation equation 0 = 9*T,;, = ¢*°0.T,,. Because of the tracelessness
of the energy-momentum tensor the sum over « is only over z. As the metric is off-diagonal
the sum over c is then only over z and the conservation equation therefore becomes 97, =
0. The same of course holds for 975; = 0.

2.18 p 44: Eq. (2.4.6) The OPE with the Energy-Momentum Tensor

1 1
T(2)X"(0) = == :0X*0X, s (:)X"(0) = ——20X" (2) X*(0)0X, (2)
— _2 _LW 2 1 i
= 0/6< o, In |z| > 0X,(z) 23 X (0) [2.44]

In the last line we have Taylor expanded 0* X (z) and only kept the first term, as the higher
order corrections give terms in the OPE that are regular.
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2.19 p 44: Eq. (2.4.7) The Transformation of the Field X*

The Ward identity (2.3.11) tells us that the transformation of a field corresponding to the
conserved current 7'(z) is determined by the OPE of that current with that field. Thus

IXH(w) = icRes, i * (2)(XH(w) = is% iv(z)T(z)XH(w)

™ Jo
R P T "
= 2m,]{o . OXH*(w) = —ev(w)0XH(w) [2.45]

2.20 p 45: Fig 2.2. Examples of Conformal Transformations

It may be informative, or at least illustrative to give some examples of conformal transfor-
mations. The following are five pictures of how the contour lines of constant real part of z
transform under different conformal transformations.

fiz) =y z+6

—_—

\

f(z] = 1/(z+0.1)

Figure 2.1: Conformal transformation f(z) = 22,4/2+6 and 1/(z + 0.1). Contour lines for
Re(z) = ¢*®
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As an artistic aside, mapping such conformal transformations can actually give very pretty
pictures. Below are just two more examples

f(z] = (z"-z"3+z"2-z+1)/(z"+2"3+2"2+2+1)Exp[-2z]
/ / / S

[/

[/

\V/

)
7/
0
7

[ /‘ 1Y ,’f/,%\"\ A),L Ag —
& \V‘V yw’ }v v‘f 7

4
i

A\
,¢

\\ \\\ AN \\

/

f[z] = (z"-z"3+2/2-z+1)/(2"4+2"3+2"2+Z2+1)+Exp[-z+2"2-2"3]

] . . I LN 22 =284 22241 2?28
Figure 2.2: Conformal transformation f(z) = S aae fand S 5 e .
Contour lines for Re(z) = ¢*¢

2.21 p 46: Eq. (2.4.12) Conformal Transformation of an Operator, I

From the residues theorem (2.3.11) we have, expanding v(z) in a Taylor series,

5 A(z0) = ia% b i) A() = 15% b ()T (2)A(z0)

€ 2 (2= 20)" 2 A (2)
— __.%CZTak’U(Zo) —

_ +1
n=0 (Z Z())n

£ = l@kv(zo)A(“)(zg) L
2mi L k! (z — zg)nkt1

1
ey Ha%(zo)AW [2.46]
n=0

,N
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as the residue picks up the £k = n pole only. The same, of course, holds for the anti-
holomorphic part.

2.22 p 46: Eq. (2.4.14) Conformal Transformation of an Operator, II

We wish to determine the coefficients .A(™ (w) in the OPE

T(2)Aw) ~ 3 (““”S“’) [2.47]
n=0

—w n+1

for an operator that satisfies A’(z') = (~".A(z) under a conformal transformation 2’ = (z.
Let us first go to an infinitesimal rescaling ( = 1+ . Then 2’ = (1 4 )z = z + ev(z) for
v(z) = z. From (2.4.12), we have then that the only non-vanishing terms are

SA(z) = -2 %Gnv(z)A(") (2)
n=0

S <§!8ov(z).,4(0)(z) + f!alv(z)A(l)(z)>

= —e(2A9(2) + AN (2)) [2.48]
But we also have the transformation law
A(Z)=CMA(Z) = (1 +e) " A(z) = (1 — he) A(2) [2.49]
But we also have, to first oder in
A(Z)=A(z+ ez = A(2) + £20A'(2) = A(2) + £20A(z) [2.50]
Therefore
(1—he)A(z) = A'(2) + 204 [2.51]
and thus
SA(z) = A(2) — A(z) = —e20A(2) — he A(2) [2.52]
Comparing both results for §.A(z) we see that
AD () =0A(z)  and  AW(2) = hA(2) [2.53]

which shows (2.4.14).
Similarly, under a translation 2’ = z4+¢ = z+¢cv(z) for v(z) = 1, the only non-vanishing
term in (2.4.12) is

5A(z) = —e8%0(2) A0 (2) = —eAO)(2) [2.54]
Comparing this with § A(z) = —ev(2)0.A(z) = —ed.A(z) we recover
AQ(2) = 0.A(z) [2.55]

— 54—
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2.23 p 46: Eq. (2.4.16) Conformal Transformation of a Primary Field

This should now be straightforward. Take the infinitesimal transformation 2z’ = z + cv(z2).
We then have for a primary field, on the one hand

O'(Z) =0 (z+ev(z)) = O'(2) + ev(2)00' (2) = O'(2) + ev(2)00(z) [2.56]
and on the other hand

O'(2) = (92)"0(2) = [9(z + ev(2))] " O(2) = (1 + £0v(2)) "O(2)
= (1 — hedv(2))O(z) [2.57]

Equating both expressions for O'(z’) we get
50(z) = O'(2) — O(z) = —ev(2)00(2) — hedv(2)O(z) [2.58]
and so, because v(z) is an arbitrary holomorphic function, comparing with (2.4.12)
00 (z) =000 (z);  O0W(z)=h0O(z);  0"=D(z) =0 [2.59]
and this corresponds to (2.4.16).
2.24 p 46: Eq. (2.4.17) Conformal Transformation of Typical Opera-
tors

T(z)X*(w) is given in (2.4.6). From this we get

iz iz 1

T(2)0XH(w) = By <8X (w)) _ 9Xw) | 9(0X)(w) [2.60]

z—w (z —w)? z—w
i.e. 9X*is a (1,0) primary field. Taking one more derivative
OXH(w) — I(OXH)(w)
2y —
T(2)0°X*(w) = Oy [(z )2 w
H M 2K
_ 20XH(w) | 20X*(w) N 9(0°XH)(w) (2.61]

(z—w)? (2 —w)? z—w
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so this is a (2,0) operator, but it is not primary because it has a term in (z — w) 3. Finally

T(z) :e*Xw) .= _ é :0X10X,: (2) Z

n=0

- (k- X)) (w)

n!

. 5 [Z QZTH K OXH(2) XY (w) : (k- X)" L+ (w)
n=0 ’

0

T |
n:

n=0

‘n—1

1 77#’/0/ . > 4 . n— .
- [21@ (5t 1% o X @t X )

(z — w)

S 2 D OXH ()X ()0X () X7 () £ (k- X)" (w)]

it (725) (i) By 00

ik 1 ORX (2)eR X W) ol i, et X (W)

zZ—w 4(z —w)?
%}& etk X(w) . g ik X (w).,
~ (z —w)? z—w

[2.62]

In the last line we have Taylor expanded dX*(z)(k- X)" Yw). Thus, :’*X(*): is a primary

field with weight o/k? /4.

2.25 p 48: Eq. (2.4.23) Conformal Transformation of the Energy-

Momentum Tensor

The OPE of the energy-momentum tensor with itself is

D/2 n 2T (w) +8T(w)

T(2)T(w) ~ 1 5

(z —w) (z —w) z—w

Using (4.4.11) we immediately find from this that, writing

0 () (g
1T ~ Y

n=0
the only non-vanishing 7" (z) are

T (2)=D/2; T () =2T(z); TO(2) =9T(2)

[2.63]

[2.64]

[2.65]
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Using this in (2.4.12) we find
0T(z) = —¢ [;831)(2)T(3)(z) + %81v(z)T(1)(z) + %a%(z):rw) (z)]
=—¢ [g&gv(z) +20v(2)T(2) + ’U(z)aT(z)] [2.66]

This is (2.4.23), but for some reason Joe has put the ¢ in the v(z) here.
It may be instructive to calculate this as well directly from the contour integration.

ST (w) = ieQLm, ) ()T (T (w)
1 D/2 2T (w oT (w
= zsﬁ Cw z [(Z /w)4 + e (w;Z + z(w)] [2.67]
Using
1 f(Z) - L 2 (_1)7171 n—1 1
%i]{;(z—zo)”_%rijéf()(n—l)!a z— 29
SR S S B¢ €O DU SR Y
B (n—l)!2m’y€~ z—29 (n—l)!a f(z0) [2-68]
this gives
0T (w) = —¢ [g@gv(w) + 20v(w)T (w) + v(w)OT (w) [2.69]

which is, of course, the same transformation rule.

2.26 p 48: Eq. (2.4.27) The Schwarzian Derivative

Let us check the infinitesimal form with f(z) = 2’ = z + ev(z2):

(2,2} = 203202 — 3(9%2")? _ 2e930(1 + edv) — 3(e0%v)?
’ 2(02")? 2(1 + edv)?

=edv + 0(82) [2.70]

Moreover

(02)*T'(2) = (1 4 €dv)? [T'(2) + evdT'(2)]

=T'(2) + evdT () + 2e0vT(2) + o(e?) [2.71]
Therefore
T'(2) + evdT(2) + 2600WT(2) = T(2) — %5(")31) [2.72]

— 57—
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and thus we recover
5T(2) = T'(2) — T(2) = —%53% — 2e0vT(2) — evdT(2) [2.73]

We will leave it as an exercise that the Schwarzian derivative satisfies the correct composi-
tion rule. Doing it here, does not really add any value.

2.27 p 49: Eq. (2.5.2) The Linear Dilaton Central Charge

We just focus on the additional contribution to central charge. It comes from the contrac-
tion of the double derivatives

! AV / 6
2% 1 (A2 YE(()) — 292 [ QN 2\ _ > (__ Y
V,V,02 X" (2)02 X*(0) Vuvyazaw( S nz| ) : < (Zw)4)
60/V?/2
— (Z — w7)4 [2.74]

2.28 p 49: Eq. (2.5.3) The Linear Dilaton Transformation

We now have
T(2)XP(0) = <—;/8X”8Xy(z) + VV82X”) X*(0)

2 1
= = S0X"(2)X"(0)0X, (2) + V,0* X" (2)X*(0)

2 ! AUV ! NV
~_Z <_0”7 8lnz|2> 8X,(2) +V, (—0”7 82 1n\z|2>

o 2 2
e/2 9XH
G VQ/ L 9XH(0) [2.75]
z z
This gives
xrO =gxm,  xr) = vr/2 [2.76]
and thus
o/ VH
IXH(z) = —¢ <v(z)8X“(z) - Ov(z)> [2.77]

Here and in the remainder we will not explicitly write the normal ordering symbols. We
will always assume they are present, unless explicitly stated. Note the the OPE T'(z) X*(0)
does have a second order pole but the numerator is not of the form 2 X*(0), so under this
energy-momentum tensor it is not a primary field.
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2.29 p 50: Eq. (2.5.4) The bc Action is Conformally Invariant
Under a conformal transformation the fields b and ¢ transforms as
db = —e(vdb + \owb); dc = —e(vdc + (1 — X)Owvc) [2.78]
for a v = v(z). We therefore have
§(b0c) = (8b)dc + bdéc = —e [(vOb + AOvb)dc + bd(vdc + (1 — A)dvc)] [2.79]
Let us collect the terms independent of A, and ignoring —e:

vObAC + bd(vOe) + bO(Ove) = vIbIc + bvddc + bovdc
= v9bOc + bvddc — dbvde — bvdde = 0 [2.80]

by the fact that dv(z) = 0. Likewise for the terms in A we find
Ovbdc — bd(Ove) = dvbdc — b(0D)ve — bdvdc = 0 [2.81]

again using dv(z) = 0.

2.30 p 50: Eq. (2.5.11) The Ghost Energy-Momentum Tensor

Let us check that the ghost fields are primary fields with the correct weights. The ghost
energy-momentum tensor can be written as

T(z) = (1 — A\)0bc(z) — AbOc(z) [2.82]

Once more we don’t write the normal ordering symbols. Thus, using b(z)c(0) = ¢(2)b(0) ~
1/z,

T(2)b(0) = (1 — X\)Obc(2)b(0) — Abdc(2)b(0)
(1 —X)0b(2) n Ab(z)  Ab(0) . 0b(0)

N z 22 22 z [2.83]
where we have Taylor expanded b(z) in the last line. Similarly
T(2)c(0) = (1 — X\)9be(2)e(0) — Abde(z)c(0)
= —(1 = X)cob(z)c(0) + Adcb(z)c(0)
_ (1 —=XNe(z) N A0c(z) N (I —=X)c(0) n 0c(0) [2.84]

22 22 22 z

and so b(z) and ¢(z) are indeed primary fields with weights A and 1 — X respectively.

— 59—
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2.31 p51: Eq. (2.5.12) The Ghost Central Charge

We’ll just work out the central charge of the ghost energy-momentum tensor. I needs to

come from the double contractions in 7'(z)7°(0):

T(2)T(0) = [(1 — A\)dbe(z) — Abde(2)] [(1 — N)be(0) — Abdc(0)]
= (1 — \)?0bc(2)dbc(0) + A2bAc(2)bdc(0)
— A1 = X) [0bc(2)bOc(0) + bOe(z)0be(0)]

(1 = \)20b(2)e(0)m(2)DB(0) + A2b(2)9e(0)9e(2)b(0)
1 — [ I
- A1 =X [31)(2)86(0)0(2)()(0) +b(z C(O)@C(z)@b(@)} 4.
1 1 1 1
or(2) () (3) ()

“AL- ) [2(—23) () (5)(-5)]

(=2 = A7 +HAN1—-N) 66X+ 6A—1

- 24 z4

and so the central charge is given bu

c= 1207+ 120 -2 = -32A - 1)? +1

2.32 p 51: Eq. (2.5.14) The Ghost Charge Current

This is obviously a symmetry of the action:

§(bdc) = (6b)dc + b(ddc) = —icbdc + icbde = 0

[2.85]

[2.86]

[2.87]

This variation is zero and not a total divergence J,,J", so we have J* = 0 and the Noether

current [??] is given by

s oL > o 8_E _ N
J <5(8u¢)) A¢ JH = 9(00) Ac = iebc = j(z) be(z)

[2.88]
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2.33 p 51: Eq. (2.5.15) The Conformal Transformation of the Ghost
Charge, 1

T(2)7(0) = [(1 = A)9bc(z) — AbIc(z)] (—be(0))
1 1
— —(1-)) [ab(z)c(()) :e(2)b(0) : +¢(2)b(0) :9b(2)c(0) : +0b(2)c(0)e(2)E

()
~~
o
—~
N
~
S
—~
(=)
Nad
| IS

| <>c<o> (2)b(0) +aﬁ<>:b<z>c<o>:+b7>c<o>ac<z>b<o>]

]

~ (- +z@cb (0) N (%CZ(O) B 2121]
L [Dcb( 0) be(0 )tj(%c( ) izlz}
1-A —)\ — A)eb(0) — Abe(0

_( 23) L= (22) (0)

L (1= N)(@eb(0) — be(0) + N9ecb(0) ~ Obe(0))

1-2X  —be(0 O(—bc(0 1-2X  5(0 07(0
LI Sh(0) | Abe0) 1= 50) | 350) 2.801
z z z z z z

2.34 p 51: Eq. (2.5.16) The Conformal Transformation of the Ghost
Charge, 11

From the OPE T'(z)j(0) we read off
i@ =1-2; 70 =g 7O = 95 [2.90]
from which we readily find using (2.4.12)

6j(2) = —¢ %a% + jOv + vdj [2.91]

Joe’s book just has the ¢ included in the v.

2.35 p 51: Eq. (2.5.17) The Conformal Transformation of the Ghost
Charge, III

The finite form of the conformal transformation follows from a calculation identical to that
of (2.4.26)
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2.36 p 52: Eq. (2.5.24) The Central Charge of the 3~ System

We will not bother working this out as it should be straightforward by now. However we
will point out already here how the critical dimensions arise in a path integral quantisation
of the bosonic and the superstring.

For the bosonic string we have D fields X*, with central charge cx = D, and we then
have a bc ghost system with A = 2, i.e. a central charge c;. = —3(2\ — 1)2 +1 = —26.
Together the bosonic string has central charge

c=cx +cpe=D —26 [2.92]

and this central charge vanishes for D = 26.

For the superstring we add D fermions ¢ with central charge ¢, = D/2 and a 5y ghost
system with A = 3/2 and central charge cg, = 3(2A —1)? — 1 = 11. The total central charge
of the superstring is thus

D 3D
c:cX—l—cw—i—cbc—ch:D+5—26+11:7—15 [2.93]

and this central charge vanishes for D = 10.
Of course, all this will have to be explained later, including the fact why the central
charge needs to vanish. Spoiler: this is to keep the theory anomaly free.

2.37 p 53: Eq. (2.6.4) The Complex Coordinates

For the complex coordinates z = exp(ic? + ic') we see that 0* = —oco which corresponds
to worldsheet time at minus infinity corresponds to the point z = 0. The fact that this is a
single point, irrespective of the value of o' will be important later when the state-operator
correspondence is discussed. It basically means that every asymptotic state at 02 = —oo
can be mapped to the action of an operator at the origin of the complex plane.

2.38 p 53: Eq. (2.6.7) The Fourier Expansion

We can write (2.6.7.a) as

Tpw(w) =— > ™T, [2.94]

n=—oo

making manifest that it is just a Fourier expansion.
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2.39 p 54: Eq. (2.6.8) The Relation Between L,,, and T,,

First we write T}, in terms of w:

L )
SRR SRR 255
m=—oo m=—oo
We now use (2.6.9) to write 7, in terms of T}, and use dyz = Ope ¥ = —ije W = —jz

C

10000 (T~ £) = 7 () - )

oo
- _ 6—21'11) (_ Z eimme o ;4)

m=—00

_ i eilm+2)w (Tm n iém’o) [2.96]

m=—0o0

Comparing the two expressions for 7,z(z) gives

C
Ly, =Ty, + ﬂém,o [2.97]

2.40 p 54: Eq. (2.6.9) The Relation Between T, and T,

T.. and T, are related by a conformal transformation z = ¢~*, so we can use (2.4.26)

(002)* T2 (2) = Ty (w) — %{z,w} [2.98]
The Schwarzian derivative is, using 0,z = Ope~ ™ = —ie™" = —iz etc
202 20,2 — 3(022)%  2(iz)(—iz) —3(—2)? 2-3 1
Therefore
Tow(w) = (8u2)?Tea(2) + i [2.100]

2.41 p 54: Eq. (2.6.10) The Hamiltonian

We first wish to write Th9 in terms of 7'(w). By definition (2.3.15)
1 1
Tpr = —— |0, X" 00X, — S (D1 X1 Xy + RhX'0?X,)
o

= 2%, (01 X101 X, — D2 XHDsX ) [2.101]
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1

Now w = ¢! 4+ ic? and @ = 0! — io? and therefore

o1 :81w8+81w5:6+5
Oy = Oqwd + 82155 = ’L(@ — 5)

[2.102]
where 9 = 9, and 9 = 95 Thus
Ty = S [(0+9)X*(O+d)X, —i(0—0)XH"i(0 — 0)X,]
1 _ _
=50 (20X"9X, 4+ 20X10X,,)
= — (Tyw(w) + Tpe(0)) [2.103]

Let us focus on the 7,,,(w) part. The contribution from 7y (w) will then be straightfor-
ward. The integration of 0! between 0 and 27 corresponds in the z = ¢~* plane to a
contour integration around the origin, see fig. 2.3.b if that is not clear. But because of the
formula z = e~ that integration is clockwise, and we pick up an extra sign to bring it to
the standard counter-clockwise form. The measure also changes from do' = dw = idz/z.
So

21z 24

dz 9 c c
_ _22T,, 7}:L_7 2.1
me’z { FT(2) F gy = Lo =g [2.104]

He [T = [ S Tl = f 1 [09°Ter(2) + 5

Adding the Ty (w) part gives

c+c¢

H=1L Lo —
o+ Lo Y

[2.105]

2.42 p 55: Fig 2.3 The Contracted Contour Integration

Start from (a) in the figure below with the three (counter-clockwise) contours C7, Co and
Cs.

— 64—
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C1 C1—C3

03 Cy | Oy
zZ2

(a) (b) (c)

Figure 2.3: Deforming Contours. By deforming C3 and C, is follows that C; — C3 is equivalent
to a contour around z»

Flip C5 to clockwise and deform it over C5 as drawn in (b) to become —(Cj5. This
contour deformation does not cross any singularities so the result is the same before and
after deformation. Also deform C; as drawn in (b). Now consider the sum of C; and —Cjs.
On the top half the contours C; and —C’3 cancel one another and what we are left with is
a contour encircling the point z, as drawn in (c).

2.43 p 55: Eq. (2.6.14) Switching Between OPEs and Commutation
Relations

We start from (2.6.12) but change the indices of the charges to letters as this is less con-
fusing. It is the radial ordering of the contours that determines the ordering of the corre-
sponding operators. So Q,(C1)Qy(C2) — Qa(C3)Q(C2) means as operators on the Hilbert
space QuQb — 0pQu = [Qa, Qb] as (1 is the most outward contour, i.e. the largest time,
and Cj is the most inward contour, i.e. the smallest time. Now we also have

Qa(C1)Qb(C2) — Qa(C3)Qu(C2) = Qu(C2) [Qa(C1) — Qa(C5)]
= Qp(C2)Qu(C1 — C3) [2.106]

by the contour deformation of fig. 2.4. But, on the one hand the transformation of of an
operator is given by the commutation relation with the corresponding charge, 6Q = [Q, 4]
and on the other hand we have from (2.3.11) that §A(2) = 5= § dw j(w)A(z) with j(z)
the conserved current. Using a transformation under ), on an operator @), for a point on
(' and the definition of the charges (2.6.11) we get

211

6Qb{02}=[cza,@b}{oz}:7§ dz?yfc (i) (2.107]
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But the latter part just picks up the residue of the OPE j,(z1)jy(22) when z; — z5. Thus

d
0Qp{Cs} = 222 Resz, —2,7a(21)76(22) [2.108]
Cs T
and so we find
A A dzo . .
Qo Qi) = 572 Reseadalea)in(22) 121091
Co ™

Which is the relation that allows us to pass from OPEs to the commutation relations of
conserved charges.

2.44 p 56: Eq. (2.6.19) The Virasoro Algebra

Let us apply the link between the commutation relations of the conserved charges and the
OPE of the corresponding current Eq. (2.6.14) to derive one of the most important formula
of string theory, viz. the Virasoro Algebra satisfied by the L,,. Form the definition (2.6.6),
ie. Ly,=4¢ dez ™17 (2) and (2.6.14) we get, using repeatedly partial integration,

dz
[Lim, L] ?{2 Res,, 2, 2] +1T(zl)z2 +1T(22)

j{d@ Res,, ., 2 omt] {0/2 n 27 (22) n a71(«2*2)]

z
2 1 2 2192 2%2 212
d 1 1
7{'22 Res,, ., 220! [—83 — 2T(22)81— + 0T (z9)— }
212 212 zZ12
dz? C a3 m+1 n+1 m+1_n+1 m+1_n+1 i
9 Resz, -2, 81 4 + 20127 2y T T (20) + 27 2y T 0T (22) .
12

- % :12(m + Dm(m — 1)z 4 2(m + 1)2" T () — 822m+"+2T(Z2)}
- % :102 (m* —m)zg" ™"+ [2(m + 1) — (m+ 1+ 2)] Zer"HT(Zz)}
T TR ——

_ 1—02(m3 — )bmsno + (M — 1) L [2.110]
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2.45 p 56: Eq. (2.6.24) The Transformation of Primary Fields

Res, sz, 2T T (21) 2571 O (22)

de? m41_n+h—1 | MO(z2) | 00(22)
oo

Res,, ., 2 z
271 ! 271 2 2’%2 Z12

1
2 sy oy T RO (29), + DO(22)] —

271 219
_ f 4= m+1_n+h—1 m+1 _n+h—1 1
== [8121 AL O(2g) + 2L 60(@)} -
— @ [h(m+1)zm+n+h 10( ) (m+n+h)zm+n+h 10( )}
271
dZQ mtnth—
=¢5 [(h — 1)m — n] 22++h=10(2)
= [(h = 1)m = n] Omn [2.111]

2.46 p 56: Eq. (2.6.25) The Open String Boundary

As w = o' +io? the condition 0 < Rew < 7 is the same as o' € [0, 7]. Now

o a1 2 2_ ;1 2 2
w_ z(aer'):_eU ot _ o 1

z=—€ = —¢% coso! +ie” sino [2.112]

Now o! € [0, 7] clearly implies that Im z > 0. And vice-versa Im z > 0 is only possible for
ol € [0, 7](mod 27).

2.47 p 58: Eq. (2.7.2) The Single Valuedness of X*

af —af =4/ }1{8X“ +4/ ,fgié)w
2
1/ 7{ dz@X“ +dz6X“]
_, /2/1/ @22 [00X" — §OX*] =0 [2.113]
o 21 R

where we have used the divergence theorem (2.1.9).

We have

— 67—
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2.48 p 58: Eq. (2.7.3) The Space-Time Momentum

The Noether current for the space-time translation is given in (2.3.13). The conserved
charge of a current j° is obtained by integrating over the entire space. Here, for closed
strings, this is an integration over o' between 0 and 27 in z coordinates this is the same
as integrating over a circle in complex z plane. So the conserved charge p* correspond-
ing to the space-time translational invariance is just proportional to § dzj*. The anti-
holomorphic part adds a ¢ dzj* but with a minus sign because the contour has to be
switched to counter-clockwise. Thus, with j# = (i/a’)0X* and 7 = (i/a/)OXH

1 . .
Ph=o - pldzght —dzj)
1 i = 1 dz dz -
- £ XP—dz9xt) = — (b Poxr — § Poxm
57 dz o (dza dzo ) o <% 27r8 %2%8 )
1 ! 2 2
=\ %(a5+@5) =\ a6 =/ =46 [2.114]

2.49 p 58: Eq. (2.7.4) Integrating 0 X+

We write
[a! ol [o/ S ol o Ire% = ok
B— _ga ] — 20 M T B g ot — m
0XH = —i 7 i 5 Z s z2p i 2p Z TS| [2.115]
m=—o00 m=—o00
m#0 m#0
Integrating gives
o 1k
XH(z,2) = —1i Ep“lnz—i— Z —— + f(2) [2.116]
e —co m z
m#0
for any arbitrary function f(z). Similarly we have
o — lah -
XH(2,2) = —i\[ 5P Inz + > e A G [2.117]
m=—o0

Combining both expressions we find (2.7.4) where z* is just a constant.
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2.50 p 59: Eq. (2.7.7) Normal Ordering for L,

We have, first ignoring any normal ordering issues,

Lo = :74 dz 2T(z) = —%z&X“@X

2miz

f (s k) (5 5 )

O5m04n m
Z Zm-i—n—i—l - 5 Z Qo Cp—m

m,n=—oo m=—0o0
o o
I W 1 H
5(10&”0 + B Z Qo Oy + B Z a,,0um
m=1 m=1

o
o' ph + Z ol om + aX [2.118]

m=1

T4

The ¥ is a constant we add — possibly non- zero, but it will turn out to be zero — of
interchanging the creation and annihilation operators in Y -, afnc,—pm. On p 22 we saw
that in the light-cone gauge this amounted to the zero-point energies and was proportional
to Y >° , n which we regularised to —1/12. Here clearly the >° | n from the commutation
relations [ady,, o] = m 06, 1n, but we need a better treatment than what we have seen

before.

2.51 p59: Eq. (2.7.9) aX =0

First we have from (2.7.7)

1 (o]
Lo|0;0) = <40/p“ +) ot aum + aX> 10;0) = ™ |0;0) [2.119]

m=1

By the fact that p* |0;0) = 0 and o, |0;0) = 0 for m > 0. But by the Virasoro algebra
LO = [L1L_1 — L_1L1] and we have

L10;0) Z o 0 [0;0) Z o aum |0;0)

n=—oo n=—oo
-1
> aumad_,10;0) =0 [2.120]

n=—oo

— 69—
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by the fact, once more, that p* |0; 0) = am, [0;0) = 0 for m > 0. Similarly

_1]0;0) o Zalnawmo Zalnamom

n=—oo n=—oo

—1
> aunaty ,10;0) =0 [2.121]

n=—oo

Therefore Lo |0;0) = [L1L_1 — L_1L1]]0;0) = 0 and so also aX = 0.
Note that we have seen that |0;0) is invariant under {Lo, L1, L_;}. This means that
|0; 0) is invariant under the SL(2,R) subalgebra of the Virasoro algebra.

2.52 p 60: Eq. (2.7.11) The Creation-Annihilation Normal Ordering

For |z| > |2/|, i.e. the worldsheet time coordinate o2 of z is at a later time than that of 2/
we have

XMz, 2) XV (2, 2) = x#_ia/p#m|z|2+i\/? EOO’ 1 %4_%
2 2 m\zm zZm

m=—00

m#0

v ‘O/ V] /12 . o - 1 alT/L d;; 2.129

X |x —ng n]z\ +1 5 E E ZW+5W [ ]
n=-—o00
n#0

We want to bring all annihilation operators af and &J for k£ > 0 to the right of the creation
operators that have k¥ < 0. So we need to keep track of the non-vanishing commutation
relations in the products. Let us first look at = and p as they don’t commute. Their products
give

/

—i% (z#p” In|2')? + p"z¥ In|z|?) [2.123]

We have defined p as a lowering operator and z as a raising operator, so we need the
former on the right. The above product thus becomes, using [z#, p”]| = in*",

!
— i% (x“p” In \z’]Q + (z"p! —in"*) In ]z]Q)
! /

= — i% ((z"p” In|2'|* + 2"p" In|2[?) — %n“” In |z|? [2.124]

— 70—
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We can thus write

/ /
<x“ - i%p“ In ]z|2> <:13” - i%p” In |z'|2)

/ / /
=3 <x“ - i%p“ In z\2> <x” - i%p” In \z’]2> g — %77’“’ In |z|? [2.125]

The other part that has non-vanishing commutation relations are the sums. We can focus
on the "holomorphic" part o only as they commute with the &”. The latter can just be
added. Focussing on that part we find

-1 o) —1 o)

1 ok 1 ok 1ok 1ok

(Z man P )| 2 a2 [2.126]
m=—00 m=1 n=-—00 n=1

The only part of this that is not already in creation-annihilation normal ordering is the
combination of the sums )~ , and Z;i_oo. This can be written as

> 1 a ! i — 1
m=1 n=-—00 m=1n=
00 -1 o8] m
1 am 1 /7
=3 Y L z L (Z) (2.127]
m=1

There is a similar contribution for the anti-holomorphic part. We can now bring all pieces
together and find

v " 2 ey - dﬁﬂ
XH(z,2)X"(2',Z) = 3 In|z|*+4 5 Z ( Zm)
—
L m7#0
a = 1 /[a’ a¥
o= irmier ey 30 (5
n=—oo
L n#0
/ / 0 I\ m I\ m
_ v 2 _ it pv l = z
277 In |z| (z 2) n Zm[ > +<2)}
m=1
! 9 1 Z\™ Z\™
= s XH XY(, 7)) S| — = = 2.128
X C s Gyt S L(T) + (5) e
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Now, we can write for |z| > |2/
/ =/
Injz—2*=Inz <1— Z> Z<1— Z_>
z z
2 z/
=1In|z|> +In (1 — > +1In (1 — _> [2.129]
z z
Using In(1 — z) = — Yo% | 22 /n we get
o e} —
1 /2Z\"™ 1 /Z\"
1 ! 2 — 2 _ 7 - _ 7 - .
nlz— 2 =1In|z| Zm Zm . [2.130]
m=1 m=1
and thus we obtain
/
sXH(z, )XY (¢,2)e — =" 1n|z — 2/ [2.131]

XMz, 2) X (2, 7) =

which is (2.7.11).

2.53 p 60: a* from the Normal Ordering
XH(z,z)X"(2',Z) : it follows that

From s X*(z,z) X" (2, Z')s
o
> i—T( )——i-axﬂax : ( )——ioaX“aX 3(2) [2.132]
) e = L) =~ = pilz) =——s ue(z .
=—00
Thus, using (2.7.1)
2
- Lk — io ) CL, S a’lr{‘n = alu‘n )
Z Zk+2 - alo —t 2 Z Zm+1 Z Zn+10
k=—o00 m=—00 n=—00
1 & oamauno oamauk me
~3 E omint2 Z Z k12 [2.133]
m,n=—00 k_foo m=—00
Therefore
1 oo
Ly =3 > ok aums [2.134]
m=—o00
and in particular
1 oo
L= > ok me [2.135]
m=—00

which gives (2.7.7) with a® =
7o
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2.54 p61: Eq. (2.7.15) The Virasoro Generators for the Linear Dilaton
CFT

d d 1
Ly = f B mip(z) = f 2B pm2 <—,axuaxu + vanX”> [2.136]
(6

2miz 2miz

1 ]

The first part is just the same as for the standard X* CFT and gives Ly, = 5 > oo 80hQum—ns.

The second part gives
dz 00 e dz 1
V“%Zm',zz 8<Z 2) — zk“_\/»Z (k+1 Vak%%mzm k+1
:2\/;(m+1)v akt [2.137]

2.55 p 61: Eq. (2.7.17) The bc Ghost Commutators

Combining the two parts gives (2.7.15)

The ghost components are given by
d d
by, = ]{Z,szr)‘_lb(z) and Cm = —z_zm_/\c(z) [2.138]
27
Therefore

d
(b cn} = 7{ O R 08y 13y 2N b(20) 25 A e(22)

27
dZQ A— 1
= 74 ——Res pATl A ©
27 ATEl 2 21 — 22
dZQ m+4n—1
= —Z = 2.139
omi 2 'm~+n,0 [ 1

2.56 p 61: Eq. (2.7.18) The bc Vacuum States

Because {by,co} = 1 a state cannot be both annihilated by by and c¢y. Indeed, if there were
such a state, say |0) then it would satisfy by |0) = co |0) = 0 and hence also (byco+cobo) |0) =
0. But this is also {bg, ¢p} |0) = |0). This means that |0) = 0, i.e. there exists no such state.

So let us call ||) the state annihilated by b,, and ¢, for m > 0 and by by. Let us then
call ¢g |}) = |1). We then have ¢y |1) = coco |4) = 0 as ¢ = 0. Let us now act with by on [1).
What does it give us? Well by |1) = boco |[{) = (1 —cobo) |[{) = |{). All this gives the relations
(2.7.18).
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2.57 p 61: Eq. (2.7.19) The bc Virasoro Generators

Li= § 3o 17() = § 5211 - ke - 200

2w g’
— y{;l;zkﬂmgoobmcn [(1 -) (OanlH) zn+11—/\ — )\zml—i-/\ (827131_/\)]
= i bncn [=(1 = A)(m +A) + A(n + 1 = )] f %zkﬂ—m—k—n—w—l
= ) goo [A(m +n) —m]bycy %z’f—m—"—l
= i [A(m +n) — m] byncndmin—ko = i Ak —m] bck—m [2.140]

We now bring this into creation-annihilation normal ordering. This only is an issue for
k = 0 and thus introduces a constant times d;, ¢:

o0

L= > [M—m]ebmcr_ms + Op 008 [2.141]

m=—0o0

Thus for Ly we have

o) -1 o)
Lo= — Z MbyC—yyy, = — ! Z MbyC—m + Z mbmc_m]

m=—00 m=—00 m=1
e’} -1 e’}
= — Z MmbpCyy = — ! Z MmbmCm + Z m(—c_mbm + 1)
m=—00 m=—00 m=1
[e'S) [e%9)
= — Z mM3bymC_ms — Z m [2.142]
m=—00 m=1

We would be tempted to use the heuristic ) >, m = —1/12 here again, but this happens
not to be correct this time.

2.58 p 61: Eq. (2.7.21) The bc Normal Ordering Constant a8

On the one hand we have

n=—oo

Lol)) = (— Z ngbyc_ps + ag) 1) = a8 ||) [2.143]

— 74—
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and on the other hand we have 2Ly = [Ly, L_1]|. We first compute

Lall)= ) (=A—=n)buc 1 n|l)
_9 00
= — < Z ()\ + n)bncflfn + ()\ - 1)b7100 + Z()\ + n)bn01n) |\L>
n=-—oo n=0
= — ()\ — l)b_160 H> = —()\ — l)b_l ‘T> [2.144]

We have used the fact that ¢, ||) = 0 for m > 0, that b, |/) = 0 for n > 0 and that
bo [4) = |1). Continuing we find

o0

LiLall)= > (A—n)ebper_nz (—(A—1)b_1) [1)
-1 o]
=—A=1] > (A=n)bncrn+Aboc1 — > (A= n)er_nby | b1 1)
n=—00 n=1
= —(A=1)[0+ Aboc1b—1 + 0] 1) = —(A = 1)Abo(—b-1c1 + 1) [1)
= A =D |t) = -2 =11 [2.145]
We also have
Lilly= > (A—n)ebpcr_nt |{)
" -
= ( (A =n)buern— > (A n)cl_nbn> 1)
n=—00 n=1
_ [2.146]
We conclude that
208 ) = [L1, L] [{) = =A(A = 1) [) [2.147]
and thus
1
af = SA(L=)) [2.148]
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2.59 p 62: a® from Normal Ordering

We start by comparing : b(z)c(z’ :) and sb(z)c(2)s

3b;mCns
sb(2)c(2)s = Z Z perTes yo

Mm=—00 Nn=—00

0
- > 3b;mCns 8bmCns
- Z Z zm+’\z’”+1 A + Z Z ZmAN it 1-X

m=—00n=—00 Mm=—o00 n—1
0
S S SR o o T
B Zm+)\z/m+1 >\ LM mA1-)
M=—00 N=—00 m=0n=—o0
Obmcno omeno
+ Z Z ZmAA HimA1—A ++ Z Z SmAN ym+1-X [2.149]
m=—00n=1 m=0n=1

To bring this in creation-annihilation normal ordering, we only have to change the order
of the ghost operators for the second term

sb(2)e(2')s = - —Z Z zm+x e [2.150]

m=0n=-—00
Here - - - represent the first, third and fourth term. Thus

0o 0

o No Cn m + (5m+n 0)
b(z)e(z)e == Z JETES w7 b S

m=0n=—o0

N +Z Z zm+/\m/5:b+1 X Z Z Zm+TJ:Zﬁ?1 o [2150]

m=0n=—o0 m=0n=—oo
Therefore
S 1
2b(2)c(2)2 =b(z)e(2) = Y TS ES s b(z)e(2) ZA — Z ( >
m=0 m=0
B , 1 I N (Y
=bE)el) = Sy 7 = W) - (Z) — [2.152]

Now from (2.5.7) we have : b(z)c(z') := b(z)c(z') —1/(z — 2’) and thus

L b(2)e() =b(2)e(#)s + (f)H % _ 1

-z z—2Z

=sb(2)c(2)s + (Z/Z)—_ [2.153]

z—2z
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Note, en passant that

N1=X _ 1
tbe: (z) = Zl/iinz 1 b(2)e(2)) = zl’iglng(Z)C(Z/)g + zl/ig1z (Z/Zz)z’
1—A
=3sbcs -
ce(z) + .

From this we find

_ 2 Z/ 1-X Py Z/ 1-X
 Ob()e(s) = 20b()e( ) 4 B NEE) T (27 1

2(z —2') (z —2")2

and thus taking 2’ — z

(1— M)A

:0bc : (z) =30bes(z) — 5,2

Similarly we find

o (1=XN)(2-X)
:bOc : (z) =8bdcs(z) — RV R
Therefore

:T(z) :==(1—=AX):0bc:—\:boc:

1— 22\ (1—=X)(2- M)A

o o ( o o
= (1 —\)8dbcs(z) — 52 T Asbocs(z) +

AL=N[1T =)= (2=))]
222

222
A1 =N)
222

=T (z)s — =:¢T(2)s +

From this we immediately see that
e e}

Al —=A

L,, = Z (mA\ —n)sbpcm—ns + ( )

n=—0oo

and thus indeed a8 = ZA(1 — \).

2.60 p 62: Eq. (2.7.22) The Ghost Number Operator

. 1 2w L. 1 2m .
N& = — do*j(o) = — dwj(w)
0

2mi J, - 2mi
From (2.5.17) we have

2A—1%
2 Opz

(8wz)jz(z) = jw(w) +

[2.154]

[2.155]

[2.156]

[2.157]

[2.158]

[2.159]

[2.160]

[2.161]
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with z = e~ we have 0,z = —iz and 92 2 = —z so that
20 —1 — 220 —1
—i2j.(2) = ju(w) + o ju(w) = —izj(2) +i [2.162]
2 —iz 2
Using this and dw = idz/z we have
1 idz 220 —-1
Ne=_— ¢ Fi (s
omi zZ< )+ 5 )
1 220 —1
__ 1 s 2.1
2m'}[dz ( &)+ = ) [2-163]

We now use [2.154]

2)\—1 1—-XA 2\-1
2m]{dz ( be : > 27”7{(12 <bco + P )

[2.164]
Let us first quickly do the last two terms. They give
1 1 1
5 Ppdz—=—3 [2.165]
271 2z 2
The first terms gives
$bmCns . 8bmcne
27-” Z Z Zm+)\+n+1 A 27[‘Z Z Z zm++n+1
=—00N=—00 m=—00 n=—00
o0
= — Z Z 8bmCni0min0 = — Z D Cms
m=—0o0 N=—00 m=—oo
—1 e}
= — Z by Cms — 3bocos — Z D Cm?
m—=—0oQ
oo
= Z binC—m + cobo + Z Combm = Y (c-mbm —b-mem) +cobo  [2.166]
m=—00 m=1
Combining both contributions we find
= 1
= Z (C—mbm — b_mem) + cobo — = [2.167]

2

m=1

— 78—
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2.61 p 62: Eq. (2.7.23) The Ghost Number of the Ghost Fields

Let us first check [N8, b,,]:

- 1
(N8, by] = [;(c_nbn = bontn) + cobo — 5, b
= 3 [c—nbn, b i b_nCn, bin] + [cobo, bin]
n=1 n=1
Now
[cebn, bn] = cebrbm — bycebp, = —cpbmbn — bncebn = —{ce, b }on = —p4m,00n
and

[bécny bm] = bﬁcnbm - bmbfcn = bécnbm + bﬂbmcn = bé{cny bm} = 5m+n,0b€

Thus

o0

Ng b Z m n,Obn - 5m+n,0bfn) - 5m,0b0

n=1

[2.168]

[2.169]

[2.170]

[2.171]

Let us first take m > 0. In that case, only the first term survives as d,,1,0 has no solution

for m > 0 and n > 1 and also ,,~00 = 0. Thus [N®,b,,~0] = —by,. Similarly, for m < 0
only the second term survives and we find [N8, b,,,<9] = —by,. Finally for m = 0 only the
third term survives and we find [N, by] = —by. In summary we have

[Ng’ bm] = —bp, [2.172]

Consider next [N&, ¢, ]:

Nk

[Nga Cm] = [ (Cfnbn - bfncn) + cobo — 57 Cm]
n=1
= Z[C*nbnv Cm] — Z[bfncnv cm] + [cobo, e
n=1 n=1

Now

[Cfbnv Cm] = Cébncm - Cmcfbn = cfbncm + Cécmbn - Cé{bnv bm} = Om+4n,0C¢

and

[bécna Cm] = bycncm — cmbecn, = —bygepycn, — embec, = _{b£7 Cm}cn = _5€+m,06n

[2.173]

[2.174]

[2.175]
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Thus

[e.o]

[Nga Cm] = Z(5m+n,00—n + 5m—n,00n) + 5m,OCO [2.176]

n=1

Let us first take m > 0. In that case, only the second term survives as ,,,1,,0 has no solution
for m > 0 and n > 1 and also 6,,50,0 = 0. Thus [N®, ¢,,~0] = ¢, Similarly, for m < 0 only
the first term survives and we find [N8, ¢;,<o] = ¢,. Finally for m = 0 only the third term
survives and we find [N®&, ¢y] = —c¢p. In summary we have

[N®, ] = cm [2.177]

2.62 p 62: Eq. (2.7.24) The Ghost Number of the Vacuum

1

NE|J) = ( (Conbn — bnn) + coby — ;) =51 2.178]

n=1
and

NEIT) = (;@—nbn —b_ncy) + cobo — ;) 1) =co|d) — % 1)

=1t~ 5y =5 ) 12.179)

2.63 p 63: Eq. (2.8.1) From the Semi-Infinite Cylinder to the Unit Disk

Recall we that have w = o' + i02. We are considering the semi-infinite cylinder with

Imw = 02 < 0. The z coordinate is defined as z = e~™ = ¢=#'t°” 5o that constant
world-sheet time o2 corresponds to circles around the origin in the z-plane. Now 02 — oo
corresponds to z — 0 and ¢ = 0 corresponds to z = e, i.e. the unit circle. An initial
state defined at 0> = Imw — —oo thus corresponds to an operator acting on the origin of
the complex plane.



Joe’s Book (version of November 20, 2020) Notes from Stany M. Schrans

o2=Imw=0

02 =Imw — —oco \ J

|A)

Figure 2.4: Mapping the semi-infinite cylinder to the unit disk. The points Imw = 02 — —o0
correspond to the origin in the z-plane. The points Imw = 02 —= 0 correspond to the points on
the unit disk in the z-plane

2.64 p 63: The State-Operator Isomorphism in 2d-CFTs

Let us clarify a bit why this is special and how it differs from an ordinary QFT. In an
ordinary QFT we can of course obtain an asymptotic state by acting with an operator on
the vacuum of the theory, i.e. |®) = lim;,_, ®(0). In a 2d-CFT the inverse is also true
because the states evolve radially from the origin. Any state in the Hilbert space can be
evolved back with the Hamiltonian to the origin and that state can be created by the action
of an operator at the origin. Thus any state in the Hilbert space of a CFT corresponds to a
given operator as well. That is the isomorphism between states and operators in a 2d-CFT.

For a general QFT it is not true that we can evolve any state of the Hilbert space to a
single point. We can of course evolve it to ¢ — —oo, but there is still a (D — 1)-dimensional
hypersurface. So it is not clear where the operator acts exactly. In a QFT if two wave-
packets evolve back in time in opposite directions, they don’t end up in a single point, so
this becomes inherently non-local. In a CFT both those wave packets will end up in the
origin.

Another way to look at this is that in a CFT ¢t — —oo is exactly one point, the origin.
We can thus compute correlation functions between fields at that point and other fields. In
an ordinary QFT this is not possible.

Because of the isomorphism between states and operators in a CFT we can use either
approach to make calculations, depending on which was is easier.

2.65 p 63: Eq (2.8.2) The Unit Operator and the Ground State

I personally find that the subtlety of this argument is not very clear in Joe’s book, so it
is worthwhile repeating it here. We consider the unit operator 1. It has trivial OPE with
0XH(z),i.e. 0XH"(z)1 = 0X*(z) and the same for 0 X*. We know that the operator 1 cor-
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responds to a certain state in the Hilbert space because of the state-operator isomorphism.
Let us call that state |?) and work out what it is. Let us work out the action of a4, for m > 0
on that state. By the isomorphism we know that, using (2.7.2a),

LY = jq{ \/ ZMOXH (2 [2.180]

The contour is a circle around the origin within the unit disk. The unit operator 1 acts on
the origin as vertex operator. Within the contour 9 X* is holomorphic 9(0X*) = 0. Indeed,
as always 00 X* should be viewed as an operator equation within an expectation value

(00XH - ..) = contact terms [2.181]

where only non-zero terms come from possible contact terms. Review the discussion on
pages 35 and 36, leading to (2.1.20) if this is not clear. But as, by construction, the only
operator within the contour is the unit operator at the origin, there are no contact terms,
and so indeed 9(0X*) = 0 and 0X is holomorphic and thus has no divergences within the
contour?. In other words, we know that |?) satisfies

ab 17y =0 for m >0 [2.182]

But that is exactly the definition of the string ground state |0; 0), we thus have the equiva-
lence

1=0;0) [2.183]

2.66 p 64: Eq (2.8.4) The Isomorphism for General States

We can repeat the analysis of (2.8.2) when the charge on the contour is o/, with m > 0,
i.e. it corresponds to a creation operator. We still have that 9 X* is holomorphic as within
the contour, there is only the unit operator, acting at the origin. So we have from (2.7.2a)

2 [ 1
M — = = m 17
= 7{ 57 "OX"(2) [2.184]

IThis has confused me for a long time. There seems to be a contradiction with the fact that we
expand 0X* in a Laurent series X" (z) = —iy/o//2> >« /z™*! and the fact that in our
case at hand we find that 9X* is holomorphic and thus has no divergence and a Taylor expansion
would suffice. There is of course no contradiction, what we are showing is that 9X* is holomorphic
within the contour and so that in that region necessarily «*, = 0 for m > 0. All of this is, of course,
to be viewed as operator equations.
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Now 0X*(z) is holomorphic within the contour, so it doesn’t have a pole. But 2™ does
have a pole. In order to extract the simple pole we write

(_1)m71
(m—1)!

—m

2T = o1l [2.185]

and we perform a partial integration

=2 f o0
:\F(—l)f;mu()

> .
= —76’”X“ 2.186
o (= 1] (0) [ ]
This gives us the isomorphism
o, 10,0) = 3é'ﬁmX”(O) for  m>0 [2.187]
e o (m—1)!

2.67 p 64: Eq (2.8.6) The Isomorphism for General States with an
Operator Acting at the Origin, I

Consider for m > 0

2 dz 1
A == P —— : OXH : 2.1
ot A0) \/ — P 5 om 0 A(0) [2.188]
We now use (2..2.9)
T Fi:G:i=:FG:+ Z cross-contractions [2.189]

dz 1
tooA(0) =1/ = COXH -contracti
o, A(0) \/ o A0) : + E cross-contractions

277 zm
_ 1 A 0) : Z _ 1
=:a, A0): + cross-contractions [2.190]
We thus need to show that the cross-contractions don’t contribute. Let us consider such a

cross contraction. It would come from a factor ok X7 (0) with k > 0 in : A(0) :. So we write
: A(0) :=: 9*X¥(0).A(0) :. The cross-contraction therefore is proportional to

k! ~

1 .
OXH(2)* X" (0) : A(0) := —rr A0) [2.191]
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and so the contribution from this cross-contraction is proportional to

dz 1 1 ~ dz 1 ~

But with m > 0 and k£ > 0 this has at a double pole 1/2? or a higher pole. We cannot use
the partial integration trick? to extract a simple pole as : A(0) : does not depend on z. As
a result this integral is zero as we set out to show.

2.68 p 65: Eq (2.8.7) The Isomorphism for General States with an
Operator Acting at the Origin, II

We have for m > 0

ol Ay =at, s A0) 1 ]0) =: ot A(0) : |0)

[ 75 L OXH(2)A(0) £ [0) (2,193

The normal order product : 9.X*( : |0) : ensures that this factor has no singularities
as z — 0, and so we can apply exactly the same reasoning as for the derivation of (2.8.4).
We rewrite z~™, use partial integration and get (2.8.7).

2.69 p 65: Eq (2.8.10) The Ghost Operators Acting on the Ground
State

From (2.8.2) we know that the state |0) corresponds to the unit operator. We now have,
for N\ =2

dz i Az mi
= = = > .
b, |0) fzm b(z)1 7{%2 b(z)=0 for m+1>0 [2.194]
This is because (9---) = contact terms, but there is no operator in the contour and so
no contact terms. Therefore b(z) is holomorphic inside the contour and has therefore no
divergences. This is exactly the same argument we used for the holomorphicity of 0.X*(z)

in (2.8.2).
Likewise we have
dZ _92 dZ 2
— ¢ %= .m 1= ¢ 22 m —0 f —92> 2.1
cm |0) 5% c(2) 51 z(z)=0 for m >0 [2.195]

because ¢(z) is holomorphic inside the contour.

2We can in fact use it, but then we find something of the form §(dz/2)d™+* : A(0) : which is
zero because : A(0) : does not depend on z. This is, of course, just another way to say that the
integral vanishes.

— 84—
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2.70 p 65: Eq (2.8.11) The Ground State and the Ghost Ground State
It is easily checked that |0) = b_; ||) satisfies (2.8.10). Indeed, for m > —1
b |0) = byb_1|L) = —b_1bm |L) = 0 [2.196]

This follows from (2.7.18a), i.e. by, ||} = 0 for m > 0 and m = —1 it follows from b*; = 0.
Similarly for m > 2

cm |0) = emb_1 |}) = —b_1em [4) =0 [2.197]

from (2.7.18¢) i.e. ¢, [4) = 0 for m > 0.

2.71 p 65: The Ghost Number of the Ground State

N&|0) =N8b_y ||) = (Z (C—mbm — b_mem) + coby — ;) b_1 )

m=1

= (blcl - ;) b1 [}) = —b_1(=b1ca + 1) [{) — %b—l )
3 3
== 3ba 14y = -5 |0) [2.198]

We also have N8 |[|) = —1|]) from (2.7.24).
What operator does the ghost ground state ||) correspond to? We first note that

H,> =5 Clb_l H) =C ‘0> [2.199]
As |0) corresponds to the unit operator 1 we have

B dz | o B dz _; _
) = P c(z)1 = s c(z) = c(2) [2.200]
and we see that, under the state-operator isomorphism, the ghost number —1/2 state ||)
indeed corresponds to the ghost number 1 operator ¢(z).

2.72 p 65: Eq (2.8.16) The Complex Coordinates for the Open String

In w = o' + io? coordinates the open string 0! = Rew € [0,7] and 02 = Imw €] — o0, 0].
We map this using the conformal transformation z = —e~™ to the upper half unit disk.
Indeed the points sigma®? = —oco corresponds to the origin z = 0; the points 02 = 0
correspond to the unit circle z = —e~" with ¢! € [0,7]. For (¢!,02) = (0,0) we have
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z = —1, for (¢!,0%) = (7/2,0) we have z = i and for (¢!,0%) = (0,7) we have z = 1
and so the semi-infinite strip in the w-plane is mapped to the upper-half half-disk in the
z-plane.

lz] =1

c2=Imw— —c0 “----"

|A)

Figure 2.5: Mapping the semi-infinite strip to the upper-half unit disk. The points Imw = o2 —
—oo correspond to the origin in the z-plane. The points Imw = ¢? —= 0 correspond to the points
on the unit disk in the upper-half z-plane

An operator on the boundary in the z-plane has Im z = 0. From
7= —e W = _eoimiot — _o0” (cos ol —isin 01) [2.201]
we see that a point Im z = 0 corresponds to sino!' = 0 or hence ¢! = 0 or 7. A point on
the boundary of the upper-half unit disk thus corresponds to one of the end-points of the
open string.

2.73 p 66: Eq (2.8.17) The State-Operator Mapping: from Operator to
State

I developed a better understanding of the state-operator mapping from the path integral
approach by reading David Tong’s lectures on string theory and so I find it worthwhile to
summarise what he has to say about it here.

Let us start with ordinary quantum mechanics. A wavefunction ¢(z) = (¢|x) describes
the probability to find a particle at = at a given time®. To describe a propagation of a
particle that was initially at time 7; and position z; to a later time 74 and position x s, we
use the propagator

x(Tf)=xf )
G(xg,x;) = / Dz e [2.202]

(r3)=;

3The probability is of course |»(x)|2, but that is a petty detail in this discussion. We will also

ignore all normalisation factors in this discussion
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If our system starts in a state 1;(x;) at time 7; then it will evolve to v f(xs) at time 7
according to

x(Tp)=xyf )
Ibf(xf;Tf) = /da:i G(xf,a:i)wi(a:i;n) = /da:z/ Dxelswi(l‘i;’r@‘) [2.203]

(Ti)=w;
From that we learn that

1. The wavefunction )y at z; follows from the path integral restricting to paths that
have HJ(Tf) =Tf;

2. The path integral is weighted by the initial state ;(x;; 7;) and we also integrate over
all initial positions x;.

Let us now translate this to quantum field theory. The coordinates x are replaced by
the fields ¢ and so a wave function v(x) becomes a wavefunctional V[¢(o)]. Here o are
the coordinates on the semi-infinite cylinder describing a closed string. Starting with a
wavefunctional ¥;[¢;(o)] at time 7;, we can use [2.203] to write down how it will evolve

(rp)=dy
Do e W, (¢(0), 7] [2.204]
o(Ti)=0:

¥los(o). ) = [ Do |

where we have gone to Euclidean space for convenience. Let us now go from the semi-
infinite cylinder to the complex plane. States are defined on circles of constant radius, say
|z] = r and evolution happens via the dilatation operator Ly + L. Take an initial state
that is defined on r;. Eq [2.204] tells us to integrate over all field configurations with
boundaries ¢(7;) = ¢(r;) = ¢; and ¢(7¢) = ¢(ry) = ¢s. These are configurations on the
edges of an annulus with inner radius r; and outer radius r, see the figure below. We
also need to integrate over all boundary conditions at time 7;, i.e. over all D¢;. The state
VU t[ps(0), 7] with a given boundary condition ¢, at time 7, or equivalently radius ry, is
thus obtained by evolving all possible states at time 7;, or equivalently radius 7;, to time 7
and corresponding boundary condition. This is, of course, exactly how the path integral
approach in QM works. But it is worth repeating.

Figure 2.6: From Operator to State. Integration over an annulus between r; at 7; and r¢ at ¢

— 87—



Joe’s Book (version of November 20, 2020) Notes from Stany M. Schrans

We thus get

o(ry)=o5
U (p5(0), ] = / Dé; / Dé e S, [6(0), ] [2.205]
o(ri)=ai

Once again we see that the wavefunctional at radius r is given by a path integral weighted
by the wavefunctional at an "earlier" radius r; with boundary conditions ¢; and ¢; and that
being integrated over all possible initial field configurations ¢;.

Let us now consider the infinite past, i.e. 0> — —oo, or equivalently z = 0. Asr; = 0
we must now integrate over the entire disk with |z| < r, rather than over an annulus. The
weighting of the path integral is now changed by something acting at the point z = 0. That
is exactly what we mean by a local operator. This means that if we have a local operator
A(z) we can define a wave functional

o(r)=of
Walos;r] = / Do e 5191 A(0) [2.206]

We are integrating over all field configurations within the disc, including all fields at the
origin z = 0, which is analogous to integrating over the boundary of the inner circle [ D¢;.
A wavefunctional is nothing but the Schrodinger picture of a state, so this is the state-
operator isomorphism explained in terms of path integrals.

One may wonder why we use a path integral here, and not in the earlier derivation
of this isomorphism. But it only looks like we didn’t use the path integral in the previous
derivation. Indeed, in that derivation we always used operator equations (e.g. to argue
that X *#(z) was holomorphic within the contour). But operator equations are equations
valid in expectation values and expectation values can be calculated via a path integral.
We have gone full circle.

2.74 p 67: Eq (2.8.18) The State-Operator Mapping: from State to
Operator

Joe is very brief on this, so let’s explain it a little bit more slowly. As you will see it isn’t as
magical as it sounds. So we consider an annular region where z is between r and 1 as in
the figure below.
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I | o I r |
1 !

/
\ \‘_/‘j’b y

\\ //¢b
-

Figure 2.7: From State to Operator. Integration over an annulus between r and 1 with respective
boundary conditions ¢; and ¢

On the inner circle at radius » we have boundary conditions ¢;, on the outer circle
with radius 1 we have boundary conditions ¢,. Now note first that if we have a state on
the inner circle evolving over time this is described in quantum theory by e~ 't where H
is the Hamiltonian and ¢ is the parameter. For our worldsheet the Hamiltonian is given by
(2.6.10) i.e.

c+c
24

H=1Ly+ Lo+ [2.207]

and t = 02, As z = e = ¢7° =" we see that |z| = r = ¢°". The upshot of all of this is

that time evolution is described by r—%o—Lo where we have assumed that we are working
in the critical dimension, ¢ = ¢ = 0.
Let us now turn to Eq (2.8.18)
1061 D6 oSO Pl (2.208)

This is a path integral over the annulus from |z| = r with boundary conditions ¢; to |z| =1
with boundary conditions ¢, with the action contribution e~ weighted by a factor
rlotLoy[¢l]. We moreover integrate over all possible field configurations ¢} of the inner
circle. Now the path integral over the annulus [[D#;] [D¢ily; 104, exp(—S[¢i]) just takes

the operator it is acting on, viz. rotloWw[¢/] and brings it to the outer circle, where the
boundary condition is ¢;. But this evolution can also be described, as we have just seen,
by the evolution operator, »~“0~%o_ Thus the effect of the path integral can be written as
acting on the operator

y—Lo—Lo (MO”O\I/[@,]) — T[] [2.209]

We have evolved from the inner circle to the outer circle and so the wavefunctional is now
taken with the outer boundary conditions. We thus find that this expression gives us ¥[¢;],
i.e.

U[py) = / (D] D) g0 5,6~ T 00 0w [2.210]

— 89—
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If we now take the limit of » — 0, then the annulus becomes a disk. In this limit the path
integral over the inner circle [[D¢}] can be seen as the definition of some local operator at
z = 0. As we have seen the path integral with this local operator then results in the state
U [¢p] and this is how construct the operator when we are given a state.

2.75 p 67-68: The State-Operator Mapping for the Scalar Field X*:
The Ground State

I find it more useful for this case, to describe the entire example rather than to focus on
individual equations. We take a single free real scalar field X. The boundary condition
of X is given by determining the value of the field on the unit circle, which we write as a
Fourier expansion in the polar angle

Xp(0) = > Xpe [2.211]

n=—oo

Requiring the field to be real leads to X} = X_,. The boundary conditions is thus fully
determined by the X,, and so is the wavefunctional on the boundary V[ X;] = V[{ X, }].

Let us identify the state corresponding with the unit operator 1 with that given bound-
ary. By (2.8.17) this is given by

2ma

= /[DXZ]Xb exp <_27T10/ /d2z8X28XZ> [2.212]

Uq[X,) = / [DX]x, exp <— ! / d2z8Xi5Xi> 1

Note that ¢ is not and index here, it just means that it is the value of the field X in the
interior of the unit disk. X; should also not be confused with the X,,. This is a Gaussian
integral, but with unusual boundary conditions. We can turn this into a Gaussian integral
with standard boundary conditions by splitting the X; as follows

X=X+ X] [2.213]
where X is defined as
Xa=Xo+ > (2"Xn+2"X_,) [2.214]
n=1

with z = €. The reason split X; with this definition of X, is because (1) X satisfies
the equation of motion 00X, = 0 and (2) X! = 0 on the boundary. The former should be
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obvious and the latter is easily seen form rewriting [2.211] in terms of z:

—1 0o
Xp(0)= Y Xne™ + X+ > Xne™
n=1

n=—oo

0o . oo ‘
— § :X_nefan + X + ZXneme
n=1 n=1

o0
=Xo+ Y ("Xn+2"X_p) = Xq [2.215]
n=1
Thus
(Xi)b =Xa+ (le)b S Xg=Xa+ (X{)b = (X;)b =0 [2.216]

We can now write the action as

1 _
SIXi = 5y / P20( X + X)F(Xa + XI)

_ ! / d*z (0Xa0Xa + 0X[0X]) [2.217]

2ma/

The cross terms vanish by construction that X, satisfies the equation of motion, after
partial integration. Let us first work out

x x
/dQZangXC] = /d2z Z mz""1X,, ZnZ”_lX,n
m=1 n=1
o0

= Z mnXan/d2zzm_lz"_1 [2.218]

m,n=1

The integral is easily evaluated in polar coordinates. Recall that the measure is d?z =
2dxdy = 2rdrdf. Thus

27 1 \Am—1 \Nn—1
/d22 ymlzn—l :2/ d@/ rdr (rew) (7"6_’0)
0 0
2 1
=2 / em=m)9 4 / rt =l [2.219]
0 0

for m # n the 6§ integration vanishes, whilst for m = n it is just 2x. The r integration is just
1/(m + n). Thus

2T
m-+n

/ d?z 2" =6, 00 [2.220]
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and so
1 27
0Xq=— X X_no
Y-~ cl c = mglmn m— n0m+n
1 oo
= Z MmXmX —m [2.221]
o =
We can thus write [2.212] as
Uq[Xp] =e 5 / [DX!]x,—0 €xp <— 5o / d2zaX;an> [2.222]
where
1 oo
Ser=—; > mXpX m [2.223]
m=1

So we have rewritten the path integral in terms of the X/ coordinates that vanish on the
boundary of the unit disk. The impact of the boundary conditions now resides completely
in S, that we can take out of the path integral. The remaining path integral is just a
constant, independent of the boundary conditions, so we can write

1 o
Wy [X,] o exp (—O/ Z meX_m> [2.224]

Now, if we have acted correctly then this state corresponds to the ground state of the
theory, as the operator we started with was the unit operator. To check that it is indeed
the ground state we need to check that ¥;[Xj,] is annihilated by «,, for n > 0. Recall that
we are working in the Schrédinger picture so we need anmmutation relations [a,af] = 1
and when acting on wave functions v(z) they are represented by a = (iz + p)/v/2 and
al = (iz — p)/v/2 as one easily checks. Here p = i0, when acting on wavefunctions. We
now claim that in our case, in the Schrodinger picture we have

n X a0
(0% = - — _ — 1 —_—
" vV 20/ " 2 aXn

; n_y—iy 22 [2.225]
ap = — —X,, — 14/ ——— )
" vV 20/ " 2 aX—n
and that these satisfy the commutation relations

[, O] = M4m0 and [Qm, G ] =0 [2.226]
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when acting on wavefunctional ®[{ X} }]. This is easily checked. First we note that with
m # —n we immediately see that [a,,, o] = 0. This is because in that case 0X_,,/0X

0X_n/0X, = 0. So we need to check [a,, a_p,] = m:
m
—m|P = |- _
(- = -2 X = iy 5 i T2 X iy G 5 1RHL
m 0 0 0
_2[_X‘max_m+aXme_Xma IX X—] X))
m

0 0 0 0
_2{—)( max - T 1+ Xm aXm—XmaXm+1+XmaXm]fb[{Xk}]
=m®[{ X }] [2.227]

We will leave it as an exercise to the reader to show that [&,,, &) = Mbp4n,0 and (o, &) =
0. It now remains to show that W;[X}] is the ground state, i.e. that it satisfies

amU1[Xp] = @mP1[Xp] =0 for m >0 [2.228]

Let us work this out. Take m > 0

m o/ O 1 &
U Xy = | — X_, — i\ — - X, X_ 2.22
Qo 1[ b} ( o, m — 9 aXm) exXp ( o ;n n n) [ 9]

Focus on the second term:

| 1 & 1 &
—1 gexp _JZanX_n —a,;ném,nX—n

n=1
m 1 &
=—X_ —— X, X_ 2.230
Voo m EXp ( o ;n n N> [ 1

and this exactly cancels the first term. It should be obvious from this that we also have
amV1[Xp] = 0 for m > 0. So we can indeed identify

1 o
1 [Xp] = exp <_a’ > anX_n> = 10,0) [2.231]
n=1

as the ground state.

2.76 p 68: Eq (2.8.28) The State-Operator Mapping for the Scalar Field
X*#: The State for the Operator 9% X*

Let us now work out the state corresponding to the operator 9*X for a single real scalar
field. We start from (2.8.17), or in these notes [2.206]. Replicating what we had for the
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unit operator in [2.212] we have

\IlakX[Xb] = /[DXi]Xb exp <— 27:&’ /d228X18X1> ale(O) [2.232]

We again use the split [2.213]

X, =Xa+X] [2.233]
where X is defined in [2.234], i.e.
oo
Xa=Xo+ > (2"Xn+2"X_,) [2.234]
n=1

We urge the reader to review the derivation of the state for the unit operator if necessary.
The whole derivation is similar but for the extra operator 9*X; = %X, + 0*X/. Now, one
easily sees that

O*Xq(0) = 0" = kX, [2.235]

2=0

oo
X0+ Z(z”Xn + z”X_n)]

n=1

If this is not clear, just work out a few examples, 9X(0), 9?X(0), etc. We can now just
use [2.222] to write

1 _
Wi [ Xp) =€ / [DX/]x,~0 exp (—M / d%@X{@X{) O (Xa + X)(0)  [2.236]
with again
1 oo
S, = = Z mXmX —m [2.237]
m=1

Thus

1 _
Wi [ Xp) = k! X e /[DXZ{]XFO exp (— 5o /d228X£8X{>

_ 1 _
+ e~ / [DX]]x,—0 exp (_27ro/ / d%@X{&X{) ok X1(0) [2.238]
For some reason that escapes me, the second term will not contribute. What we can say is

that the path integral is independent of the boundary and hence proportional to the ground
state. We have

|08 X)) =W i ¢ [X] = k1 X0y 4 ST [2.239]
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We want to show that this is the first excited state o_j |0). Let us work this out in the
Schrédinger picture:

ik a0
a_p |0) = (Mxk— \/ = e >e p(—ZnXX )
ik 1
= - XX n
e (g )
Y 1 — 1 &
—1 gexp (—O/nz_:lanX_n> <_(ﬂ;an6_k’_n>
) I & ]2
=iky\/ =Xy exp —aznxnx_n = ik = Xk [2.240]
n=1

and so, if we assume that 5 = 0 we have

i 1 Jo , o
|0 X)) = k! XUy = k!% 5 Ok |0) = —i(k — 1)! o5 Ok |0) [2.241]
7
which is (2.8.28).
Because it isn’t clear to me a priori that we can set § = 0, let us show that a_j |0) ~

|0¥ X) in another way. Let us act on this state with the annihilation operator «, for n > 0.
On the one hand we know that

ana_k |0) = (a_gan + 0p—k) |0) = 5,k |0) [2.242]

Let us reproduce this from the path integral approach

27

an Vg x [ Xp] ~ / [DX)x, e ] 7{ dw w"dX (w) 9* X;(0) [2.243]

Let us not be confused here. As all of this is valid as operator equations, it needs to be
valid within a path integral weighted by the exponential of (minus) the action. So the
factor containing the exponential should not be inside the contour integral, and we should
not take its OPE with X (w). Now 90X (w) 8% X;(0) oc w=*~! as is easily checked. We thus
find

an Vo x [Xp] o /[DX]Xb _S[X]% —— "Rl

- / [DXi]x, e S % o wk - [2.244]

and this is zero unless k£ = n so that we recover indeed o, Vg x [Xp] o 65— W1[Xp]. This
thus also means that 8 = 0.
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2.77 p 70: Eq (2.9.3) The OPE of Three Operators
The OPE of the product of three operators
AZ(O)A](l)Ak(Z) [2.245]

Will have potential singularities as z — 0 and as z — 1 via their OPEs. These OPEs have
radius of convergence respectively |z|,1 and |1 — z| < z, see the figure

GJ

Figure 2.8: Radius of Convergence for the OPEs A4;(0).A4;(1)Ax(2)

We can perform the OPEs in two ways. First we can perform the .A;(1).A;(z) OPE and then
perform the OPE that result with .4;(0). This gives

Ai(0)Aj (1) Ag(2) = Ai(0) Y (1 = 2)Peha=ecly A1 = 2)
0
=D > (A=)l iRl G A (1 - 2)
¢ m

= Z(l — z)hm*hi*hi*h’“cgkc’fj m(l—2) [2.246]
lm

Or we can first perform the A;(0).A;(z) OPE and then perform the OPE that result with
Aj(1), giving
Ai(0)Aj (1) Ar(2) = A;(1) Y _ 2P A ()

4
= Z Zhe=hi=hi (1 _ z)hm*hi*h‘fcfkc}?} m(l—2) [2.247]
m

These two expressions need to be equal. As the A, are chosen to be a complete basis for
the local operators, this implies that

Z(l - z)hm_hi_hﬂ'_hkcﬁkcg = Z Zhe=hi=hi (1 _ z)h’m_hﬂ'_hecfkc}?} [2.248]
L L
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As an aside, we can of course repeat the same analysis for the product of four local
operators. In that case it is convenient to work with a four-point function defined as

G (%) = 22" (Ag (00) Ag (1) An (2) A (0)) [2.249]

Applying the same methodology i.e. requiring that the result via the s, ¢, and u channels
has to be the same gives a set of equations that are schematically of the form

k m
S ChmClpi >—<
p
Y4 n
[
k m
Zp C’rZZECmPk X p
Y4 n
]
k m

chgkcfpm X P

N\

Figure 2.9: Conformal Bootstrap Equations from Four-Point Functions)

These equations are known as the conformal bootstrap equations and can be used to derive
the conformal transformation properties of all the operators and this is tantamount to
solving the conformal field theory completely.

2.78 p 72: Eq (2.9.14) Non-Highest Weight States in Unitary CFTs
A non-highest weights states can by definition be obtained by the action of a combination

of L_,, withm > 0 on a highest weights state. Let us call that highest weight state |O) with
highest weight h. The non-highest weight state is then of the form L_;, L_y, --- L_g, |O).
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Note that some of the L_j, can be equal to one another. The weight of that state is then

LoL gy Lopy - Loy, |O) = (Log, Lo+ k1L, ) Lpy - - - L, |O)

kiL_jL_j, - Lk, +L_p,(L_gyLo+ koL_g,) - L_g,]|O)
(k1 + ko + - kn)L—le—kZ oL, +L_p L_py--- L—knLO] |O)
:(kl + ko + -"k‘n—i-ho)L_le_kQ oo Ly, |O> [2.250]

= |
= |

and so has weight hp + k1 + ko + - - - k,, which is positive and larger that ho as all the k;
are positive.

2.79 p 72: Eq (2.9.15) hp = 0 Operators

From (2.9.14) we have thatif ho =0then L_; - O = 0. But (2.9.7) tellsus that L_; - O =
00. and so 00 = 0.

2.80 p 73: The Normal Ordering Constants from the State-Operator
Mapping

For any theory we have for the state corresponding to the unit operator by definition
Ly|0) = 0. For the X* theory the state |0) is also the ground state. Now using (2.7.7)
we have

/2

oo
ap X
Ly = n E at L aun +a [2.251]

n=1

and so L |0) immediately implies X = 0.
For the be system we have |0) = b_1 ||). From L [0) = 0 and (2.7.19) we thus find

0= < Z n3b,c_ns + ag> b_1d)

n=—oo

—2 0o
= [ Z nbpc—p — (—=1)b_1c1 + 0+ ch,nbn +a8| b_q])
n=-—00 n=1

= (—erby + 14+ a®)b_q L) = (1+a®) 1) [2.252]

and so a® = 0.
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Chapter 3

The Polyakov Path Integral

Open Questions

I have a number of unanswered points for this chapter. They are briefly mentioned here and
more detail is given under the respective headings. Any help in resolving them can be sent to
hepnotes@hotmail.com and is more than welcome.

& (3.4.22) In expanding In Z[§ + h]/Z[4] to second order in h we are considering the term in (hT')?, but we are

ignoring the term in h2§25/§ 92\9:5. Why can we do that? It may be related to the fact that this term gives a
contact term (two delta functions) and that this does not contribute. But I am still confused why that would be

the case.

& (3.6.18) I have not found a (relatively) simple proof of the equation [V2X e X],. = (ia/~v/4)R[e?* X],.. 1
have provided a detailed, but certainly worthwhile, exposition on this subject of around 20 pages that ends with
very strong circumstantial evidence that is equation is correct. But any more direct proof is certainly welcome.

3.1 p 79: Fig 3.4 Open String Processes

The figure below shows the 3D views of the 2D slices of the open string processes shown
in fig 3.4.
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Figure 3.1: 3D view of open string processes

3.2 p 82: Eq (3.2.3b) The Weyl Invariance of the Euler Number

We wish to show that the Euler term

1 1
=— [ & R+ — dsk 3.1
X 47[' /]\/[ U\/§ * 27'(' /@M 5 [ ]

with k the geodesic curvature given by
k = 1%V t° [3.2]

is invariant under a Weyl rescaling. From (1.2.32) we know that under a Weyl rescaling

g., = €**(?) g, the Riemann curvature transforms, in Euclidean spacetime, as

VIR = /3(R—2V?w) = Vg(R — 2V0,w) [3.3]

We have used the fact that w is a scalar so the V,w = 0,w. From [1.7] we also know how
a connection transforms under a Weyl rescaling

T/ =T% + ¢ (geaOpw + gpaOew — GpeOaw)
=T, + 620w + 5 0w — ¥ YO [3.4]
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The tangent and normal vectors t* and n® are normalised, gq,t*t’ = F1 (with the minus
sign for timelike boundaries and the plus sign for spacelike boundaries). Therefore

F1 = g;bt/at,b — eth/at/b [3.5]
and similarly for n®. This can be satisfied if
e = 7w and n'% = e “n® [3.6]

From this we find that

b b

nl, = gl,n'® = eX e nd = e“n, [3.7]
The term with the geodesic curvature then becomes
K = 4tV t"° = "0} (9,t"° + T2.1)
= +e “t%“ny [8a(e_wtb) + (T8, + 689,00 + 620w — 'ybd'yaccf)dw)e_wtc}
= +t"npe v (—8awtb + 0, + cmtc + O,wt? + (5280wtc - 7bd'yac<9dwtc)
=e “(kF t“nb'ybd%cadwtc) =e “k¥F tatanbé?bw) [3.8]

where we have used that the tangent and normal vectors are orthonormal ¢t“n, = 0. Now,
if t*t, = —1 then we are to chose the upper sign, which is minus and so the second term
in the brackets gets a plus sign. If ¢, = +1 we need to take the lower sign and we once
again find a plus sign for the second term. Thus

K =e “(k+n%0uw) [3.9]
It remains to work out the transformation of ds. We have
ds”? = g(;bdx/“dx/b = 2 dzrdab = e*ds? [3.10]
and thus
ds' = e¥ds [3.11]

Bringing everything together we have
1 1
/ N d2 /R/ / d /k/
X T /M 7V 21 Jons

1 1
= /M d*o \/g(R — 2V?w) + o /8M e“dse™ (k + n“Oqw)

_ 1 2 1 1 2 a a
_47T/Md U\/§R+27T/8Md8k+2ﬂ'|: /Md o/ gV (%w—i—/aMdsn &M}
. [3.12]

where the term between brackets vanishes due to Stokes’ theorem

/d%\/gv%a:/ dsn®v, [3.13]
M oM
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3.3 p 83: Eq (3.2.7) String Coupling Constants

The figure below shows the appearance of a closed string handle on an open string and the
contributions of the Euler number to the open and closed string interactions.

b
83: e g,_-':e’

Figure 3.2: String coupling constants and handles

3.4 p 85: Eq (3.3.6) The Relations Between the Ricci Scalar and the
Riemann Tensor in 2D

Just as we showed for p16 that R,;, = %gabR using Mathematica, it is also convenient to
show that

1
Roped = §(gacgbd — Gadgbe) R [3.14]

using Mathematica. One just needs to be careful that R,,cq = gueRj,; Here our test
functions are tt[a, b, ¢, d] and we check that the sum of their absolute values is zero, which
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will of course ensure that they are all zero by themselves.

inf151:= Clear[G, dG, gu, g, dg, ddg, dgu, R, Rd, RR, m, mu, tt];
m = {gl1[X, Y1, g12[X, Y}, {g12[X, Y], 822[X, YI}};
821[x_, y1 := gl2[x, yI;
mu = Inverse[m];
gla_, b1 := m[[a, b]
gula_, b_] := mu[[a, b]]
dg[l, a_, b_] := D[g[a, b, x]
dgi2, a_, b] := Dig[a, b, y]
dgu[l, a_, b_1 := D[gu[a, b], x]
dgu[2, a_, b_1 := D[gu[a, b], y]
ddg[i, 1, a_, b_] D[D[g[a, b], xI, x]
ddg[i, 2, a_, b_] D[D[g[a, b], xI, Y]
ddg[2, 1, a_, b_] D[D[g[a, b], y1, xI
ddgi2, 2, a_, b_] := DIDig[a, b, y1, yI
Gla_, b_, c_] = (1/2) «+ Sum[gu[a, d](dg[b, c, d]+ dg[c, b, d]-dg[d, b, c]), {d, 2}]

dGle_, a_, b_, c_] := Simplify[(1/2) » Sum[dgu[e, a, d]«(dg[b, c, d]+ dg[c, b, d]-dg[d, b, c)
+ gula, d]«(ddg[e, b, c, d]+ ddg[e, c, b, d]-ddg[e, d, b, c)), {d, 2}1]
Rla_, b_, c_, d_] := Simplify[dG[c, a, d, b] - dG[d, a, c, b]
+Sum[G[a, c, €]« G[e, d, b] - G[a, d, e]*G[e, c, b], {e, 2}]]
R[a_, b_] := Simplify[Sum[R[c, a, c, b], {c, 2}
RR = Simplify[Sum[ gu[a, b]« R[a, b], {a, 2}, {b, 2}1];
ttla_, b_, c_, d] :=
Sum[g[a, e]* R[e, b, c, d], {e, 2}] -(1/2)* (g[a, c]* g[b, d] - g[a, d1+ g[b, c])* RR

in(1711:= Sum[ Simplify[Abs[tt[a, b, c, dl, {a, 2}, (b, 2}, {c, 2}, {d, 2}]

out[171]= O

Figure 3.3: Mathematica code for the relationship between R and R,pcq in 2D

3.5 p 85: Eq (3.3.8) The Residual Conformal Symmetry after Gauge
Fixing

We first consider a diffeomorphism 2z’ = f(z) with f(z) a holomorphic function. Under this
transformation we have

ds? = d7/dz' = mdzmczz = |0f(2)|*dzdz [3.15]
0z 0z
Next we also perform a Weyl transformation g/, = e~ 2w(2.2) 4., This gives

ds'"? = e~ 22 gg? = 6_2“}(”2’2)|8f(z)|2dzd2 = 6_2“(‘2’2)|8f(z)|2als2 [3.16]
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If we now chose w = In |0f(z)| we get
ds"? = exp [-21n|0f(2)|] |0f(2)|*ds® = ds* [3.17]

so that the combinations of a holomorphic diffeomorphism and a Weyl transformation
leaves the metric invariant.

3.6 p 87: Footnote 2 The Gauge Invariance of the Delta Function

The delta function §(g — ¢’) forces g/, to be equal to g, at every point on the worldsheet.

But the diffeomorphism (3.3.10) is invertible as we can as well express ¢ in terms of g¢. So

by definition if ¢/, (0’) = gas(c) then so is gfb(a’ )= ggb(a) and vice versa.

3.7 p 88: Eq (3.3.16) The Infinitesimal Transformation of the Metric
We need to work out

09ab(0) = Gup(0) — gan (o) [3.18]
for an infinitesimal version of (3.3.10), i.e. with ¢** = 1 + 2w and o/, = o, + do, First, we
see that

a a
0 = O = Oyb0" [3.19]
Thus, to first order,

09ab(0) = gap(0) — gan(0) = gap(0" — 60) — gap(0)
= gup(0") = 60°0egiy () — gap(0)
= (1 + 2w)(8; — 9ad0°) (6 — 0560)gea(0) — 65°Dcgav(0”) — gan(o)
= 6500 gcd — 640200  gea — 050500 gea + 203501 Gea — 50 OcGab — Jab
= 2W0ab — 0a60°goe — 560" gag — 60°0cgap [3.20]

We now use §o® = g%§oy:

59ab(0) =2wgab — 9a(9°60a)gbe — Op(9°'00¢) gad — 60 Ocgan
= 2wgab — 00960 agbc — 026049 goc — pg“*00cgad — 90400 cGad — 60 Ocgap
=2Wab + 6049 Oagbc — 0a00adf + 60:g“ Opgad — Op60 8 — 60°Dcgab
= 2wGap — 0ab0 — 0004 + 604G Dagie + 6069 Opgad — G100 40cgas
= 2w0ap — 0aday — Opdaq + 04g° (Dugbe + ObGac — OcGab) [3.21]
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Let us now work out V,do, + Vo, keeping in mind that because the indices are down-
stairs, the connection gets a minus sign

Vaboy + Voo, =000, — T'epdoe + Opdo, — Iy b0,
= 000y, + Opdoq — (0S4 5, )60,
= g0y + Odog — 2I'% 50,
= 0400 + 04004 — 5049 (Dagve + ObGac — Oclab) [3.22]

and we see that indeed
5gab(0) = 2wgab — Va(sdb - Vb(SUa [3.23]
If we now just fill in the definition of P; in (3.3.16) we get

dgab =20wgap — V00 gap — (Vadoy + Voo, — gapVe00°)
=20wgqap — Voo, — Vpdog, [3.24]

Which shows that the first and second line of (3.3.16) are equal.
Let us now show that P, takes vectors into traceless symmetric tensors. First, it is
obvious from the definition (3.3.17) that

(Pléa)ab = (Plég)ba [3.25]
Next, also the tracelessness is obvious
1
9" (P160) b = gab§(va50b + V004 — gapVedo©)
= %(QV(I(SUQ — 04V 00°) =0 [3.26]

But notice that the tracelessness is only valid in two dimensions.

3.8 p 88: Eq (3.3.18) The Faddeev-Popov Determinant

Even though the derivation is Joe’s book is detailed, let’s do it again, just for the sake of it.
From (3.3.11) we have that

Brble) = [ldswdsal (g - 5) [3.27]
We have a functional integration over the diffeomorphism parameters do, and over the
Weyl parameter dw. Recall that § is the fiducial metric and ¢¢ is the fiducial metric after

a gauge transformation. We are thus integrating over all possible gauge transformations,
fixing the gauge transformed metric to be the fiducial metric.
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Now ¢ — §¢ is simply the change from the fiducial metric to its gauge transformed. For
an infinitesimal transformation this is given by (3.3.16):

G—§* =—0G=—(20w—V-60)j+2P b0 [3.28]

Notice that everything has to be w.r.t. the fiducial metric, including V as it contains a
connection and hence depends on the fiducial metric as well. Notice also that this is to be
viewed as a two-component "tensor", i.e.

Gab — G5 = —0Gab = — (20w — V - 50)da + 2(P100) 0 [3.29]
That takes us to the first equation in (3.3.18)

Anp(9) = / [déw ddo) 6| — (20w — V - §0)§ + 2Py 0] [3.30]

Next, we rewrite the delta function in its integral representation, more exactly the delta
functional,

5[ - (25w — V- 60)§ + 2P1d0]

/dp exp{ /d pr 25w—V 50)9+2P150‘]} [3.31]

Here p is a two-component variable and p - X = p®X,;,. We now set p,, = 2734, and this
gives

5[ — (20w — V- 60)§ + 2P 60|
= /[dﬁ] exp 2m’/d o\§B.[— (20w -V - 50)g+2P160]} [3.32]
and therefore That takes us to the first equation in (3.3.18)
Api(g) = / [déw ddodf] exp {zm / d*s \/§B.[ — (20w —V - 60)g + 2P160—]} [3.33]
This is the second equation of (3.3.18). We can now perform the [ integration
/ [déw] exp <4m' / d20\/§5“bgab5w> = —6 <4w5“bgab> [3.34]
The delta function § (4ﬂ6“bgab) now forces 5 to be traceless and takes away one of the

three degrees of freedom. Calling the traceless § now 3’ and ignoring a normalisation
factor we have

Arp(g) = /[déadﬁ'] exp {2m'/d o\ipB - [( (V-60)g+ 2P150}} [3.35]
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but 8’ - § = %G, = 0 as ' is traceless. Thus
Arp(g) = /[ddadﬁ'} exp [4m’/d20 VB (P60) ap [3.36]
which is (3.3.18).

3.9 p 89: Eq (3.3.21) The Faddeev-Popov Action

We use (A.2.28) from the appendix. For z and y c-numbers and ¢ and y Grassmann

numbers we have
oS 0o ) 1 -1
/ dx/ dy 2™ — — — [/ dvp /dxe)‘wx] [3.37]
oo oo A

Using this in (3.3.18) gives

Api(g) = [ / [dbdc] exp <2 / o/ bab(f?lc)abﬂ_l [3.38]

The sign and normalisation is just a convention, so that we can write

1 _
App(g) = / [dbdc] exp <—27T / o4 bab(Plc)ab> [3.39]
Furthermore
. 1 /. . L .
bab(Plc)ab = bab§ (Vacb + Viep — gachC ) = babvacb [3.40]

where we have used the fact that b, is traceless, so that the last term vanishes, and sym-
metric so that the first two terms are identical.

3.10 p 89: Eq (3.3.24) The Faddeev-Popov Action in the Conformal
Gauge

From (3.3.21) we have in complex coordinates, where the metric is off-diagonal

1 a Al
Sg = 2— /d20 \/g (bzzvzcz + bzgvzcz> [3.41]
7r
Also
V3 = g#* Ve = g** (6502 + f‘;ac“) = g** <8gcz + 12,65 + f§202> [3.42]
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But, using the fact that the metric is off-diagonal in complex coordinates,

1 1 -
= §gza(azgz‘:a + 02920 — 0a922) = 5922 (02922 + 0292z — 029.2) =0 [3.43]
Similarly
z 1 za
I's; = 59 (0292 + 029za — 0agzz) =0 [3.44]

because with a = z we have g** = 0 and with a = z we have g5z = 0. Thus
V3% = g7 Vzc* = g77 0.7 [3.45]

This also proves the claim that in a conformal gauge the covariant z derivative of a tensor
with only covariant z indices reduces to the ordinary derivative. In the conformal gauge
we /¢ = e? and ¢g** = e~ so that

1 A
Sy =— [ d?0e® (be ?*Vic® + bsze 2V ,¢7
& o

1 2 z
:%/dZU (bZZVEC +b::V.c )
— Qi /d2(7 (bzzazcz + bﬁ@zcg) [3.46]

™

which is (3.3.24).

3.11 p 90-91: The Anomaly of a Global Scale Symmetry

This is a rather long detour on the anomaly of a global scale symmetry. It is taken almost
verbatim from my QFT notes. Some of the conventions may therefore be different. This is
a.o. the case of the signature which is mostly negative, as is pretty standard in QFT texts.

There is an important symmetry of the classical level that can become anomalous at
the quantum level. This is the scale invariance of massless field theories with dimension-
less couplings. In fact, it is not difficult to understand that these theories can have such
an anomaly. Indeed, these theories have no mass scales at all, but when we renormalise
the theory we introduce a renormalisation scale and we see that the theory becomes de-
pendent on that mass scale, e.g. via the running of the coupling constants. We can derive
this dependence on the renormalisation scale via the Callan-Symanzik equations and the
renormalisation equations. Here we will show how this dependence on a mass scale in the
quantum theory can be described via the anomaly of a classically conserved current, the
energy-momentum tensor.
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THE CLASSICAL ENERGY-MOMENTUM TENSOR

Before we discuss the anomalous breaking of scale invariance, we need a better under-
standing of the energy-momentum tensor. There are actually different ways to derive the
energy-momentum tensor.

The traditional way to derive the energy momentum tensor 7#" is from Noether’s the-
orem, where it is the current corresponding translation invariance z# — z* + a*. A La-
grangian invariant under this symmetry transforms as £ — £ + a”9,(d,/ L) and this leads

to the conserved current
oL

9(0u9)
This energy-momentum tensor is called the Canonical Energy-Momentum Tensor. This
construction does not guarantee that the energy-momentum tensor is symmetric. There
is in fact no reason for it to be symmetric, nor, as it so happens, gauge invariant, but it
turns out that we can always make it symmetric and gauge-invariant by adding a total
divergence to it. This total divergence does not affect the conserved charge, so the physics
remains the same. We define

T "¢ —nt'L [3.47]

M =TH + 7%,y [3.48]

for some ¥, that is antisymmetric between n and o. We the see that 9,0*" = 0,T"" +
0,0 L6 = 0, T and so ©M is conserved if T+ is conserved.

Let us now consider a scale transformation of the space-time coordinates x — Az for
some positive A\. We define the scalar field to transform as ¢(x) — A¢(Az), but we prefer
to write this in the more general form

p(z) — e P7p(e ) [3.49]

with D = 1 the mass dimension of the field. This definition allows us to generalise the
scaling transformation to fermions and to gauge fields. Theories that have no dimensionful
couplings will be invariant under such a transformation and we say that the theory has
scale invariance. The conserved current corresponding to this invariance is the so-called
dilatation current D¥*. The notation should not be confused with the covariant derivative!
The dilatation current is related to the symmetric energy-momentum tensor in a simple
way

DF = 0"z, [3.50]

Taking the divergence of the dilatation current we find
0,D" = (0,0" )z, + 0" 7y, = OF, [3.51]

We thus see that scale-invariance of the theory is equivalent to the tracelessness of the
energy-momentum tensor. Pay attention to the fact that we have not explicitly derived the
form of the dilatation current. It is in fact not straightforward to do so, but we can obtain
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this result from another method. If we couple the field theory to an gravitational field
g"¥(z) we can then define the energy-momentum tensor as the functional derivative of the
matter action w.r.t. the gravitational field

oW — léSM[¢]
VI G

where g = det g,,. This is a manifestly symmetric and gauge-invariant tensor. Under a
scale transformation x — e”x we can find the transformation of the gravitational field
by requiring the invariance of the line element ds* = g/, () da'"dz" = gy, (z)datdz”. We
find gLVe_Qde“da;” = gudatdz” or

[3.52]

Guv () — g:“,(:cl) = QQUg;w(x) [3.53]

How does the matter action transform under such a scale transformation? We can find
this using the chain rule. Consider an infinitesimal rescaling g,, — (1 + 20)g,,, or hence
d9uv = 20g,,,. We have

. (SSM 5g,uzz o (55]\/[

0Sm = Sghv da  dghv

29" = g""\/9 O = /90", [3.54]

and we see indeed that the action is invariant under scaling transformations provided the
energy-momentum tensor is traceless.
In QED the symmetric energy-momentum tensor is given by

1 1- -
O = —FMF, + 2 g" FP Foo & Sibi(Y! DY 4" DH)ep =" (i) —m)y [3.55]

One can check that this is gauge-invariant and that it leads to the classical expression for
the total energy

H= / 3 T = / 3 B(E2 + B?) 4+ 4T (=i - V 4+ 4"m)yp [3.56]

Note that these formulae are valid at the classical level in any dimensions d. Taking the
trace of the energy-momentum tensor we find

0, == FI" g+ J0LIEy + 3HED) = B — )

d—4 _ _
:TFMVFMV + (1 - d)d}quwD + quzz)z/]
d—4 . ., . - d—4. ., -
:TF Fu + (1 = d)ymy + dmapyp = TF Fl +mayy [3.57]
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We have used the equations of motion as the symmetry is only valid for on-shell particles.
We see that in four dimensions the energy-momentum tensor is traceless for a massless
theory, as we expect for a theory that has no dimensionful coupling.

THE ENERGY-MOMENTUM TENSOR AND THE SCALE ANOMALY

We know from the previous discussion on renormalisation that the scale invariance is bro-
ken at the quantum level and that this shows up a.o. in the running of the coupling constant

A(p, A). This is given by the renormalisation group equation

dlogio/]\fx(p’ A) = B(A)  with initial condition MM, \) =\ [3.58]

Let us translate this to our case at hand. We have 2’/ = e 7z, so p’ = e™p. A rescaling of
the momentum from a renormalisation scale M to a momentum p is thus a multiplication
by e*?. Thus logp/M is essentially log et® = o. Replacing \ by the coupling constant g we
find -
49 _ B [3.59]
do
To first order we can replace 3(g) by 5(¢) and as this is independent of & we can integrate
the differential equation immediately to get g = o3 + c*®. The initial conditions are that
g = g when there is no re-scaling, i.e. when o = 0. Therefore c'® = g. We thus find that

the coupling constant runs as follows

g— ¢ =g+0B8(9) [3.60]
Under such a rescaling the Lagrangian picks up a change

oL oL
0L =75 00=0Bg)5

3g [3.61]

All other changes are zero because at fixed coupling constant, i.e. at the classical level,
the Lagrangian is assumed to be scale invariant. As the change of the Lagrangian under a
scale transformation is, according to [3.51], equal to the total divergence of the dilatation
current, or equivalently to the trace of the energy-momentum tensor, we have
oL
0,DF =e#, = - 3.62
The trace of the energy-momentum tensor is thus proportional to the § function of the
theory. This is the general form of the trace anomaly.
Let us work this out for QED. The Lagrangian is

L1, A] = G0 — mo) — [ Fyu F™ — e Ay [3.63]
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Let us redefine the gauge field as eA* —» A¥. The Lagrangian then becomes

- 1 _
£[¢> A] = @Z)(Zﬁ - mO)@Z} - 4762F;WFMV - Q;ZJ’VMA;LT;ZJ [3.64]

The advantage of this redefinition is that the coupling e now only appears in the kinetic
term of the gauge field. We then immediately find

oL o

1
= = r,,F* 3.65
Oe Oe " L ]

1 4

and thus we find for the trace of the energy momentum tensor

e
oL, = i(eg)FWF‘“’ [3.66]

This derivation of the trace anomaly for QED was quite heuristic. We should be able to
recover the same result from perturbation theory and so we now evaluate the trace of the
energy-momentum tensor explicitly to one-loop order.

We are thus interested in calculating the expectation value (©",). Let us first think
about how we expect the result to be as it will guide us to the right answer. We will use the
background field method. The idea there is to split the gauge field in a fixed background
field A, and a fluctuating field A}, and integrate out the fluctuation field in the path integral
for the expectation value. From (3.66) we expect the lowest order result to be quadratic
in the background field and to be of the form

o) =c | g&%(—wgw — R Ay (K) [3.67]

with C some constant. In fact, working out the details, one would find C' = 3(e)/e? to be
in full agreement with (3.66).

As we will use dimensional regularisation for the divergent integrals, let us first remind
ourselves of the formula for the trace for an arbitrary dimension d, (3.57). For massless
fermions this is

4—d

O, = — — TP, + (1 d) iy [3.68]

What are the Feynman diagrams contributing to (©",) with two external background
fields? If we denote the insertion of the trace of the energy-momentum tensor in a Feyn-
man diagram by ¢ and an external background field by ~~~~~ then we can have the
insertion at three places (+ symmetric diagrams):

d il
vwvx@vvvw + vwvv@i)/\w + w@w@vww [3.69]
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It turns out that the contributions of the first two diagrams cancel. A simple way to under-
stand this is to look at the difference between the two diagrams. The second diagram has
the operator ©",, inserted in stead of a vertex. Because we need one gauge-field external to
that, it takes the gauge field form the covariant derivative, i.e. (1 —d) x i x (—iepy ) A,.
The two fermions become propagators and so this operator insertion contributes a factor
(1 — d)ey* to the diagram. Consider now the first diagram. The operator is now replaced
by an ordinary vertex (—iey*) , but we have an additional fermion propagator i/p and and
operator inserted at the end of that vertex. As we have already two gauge fields, the only
contribution from that operator now comes from the partial derivative (1 — d)yiy*9. In
momentum space the partial derivate brings down a factor ip, and so we have a factor
(—ie’y“)%(l —d) xixip=—(1—dey” [3.70]
contributing to the Feynman diagram. All other factors in the matrix elements of the first
two diagrams are identical, so that they are indeed equal and opposite and hence sum to
zero. The third diagram corresponds to two external fields emanating from the operator
so the lowest order contribution comes from the quadratic field strength term. This term
is actually zero in four dimensions, but we see that it combines with a fermion loop that
is divergent in four dimensions and so the product may be finite! This fermion loop is the
photon self-energy and we only need its divergent term by virtue of the fact that the self-
energy gets multiplied by the (4 — d) in front of the quadratic field strength in the inserted
operator. The one-loop photon self-energy is a standard calculation in any QED text book.
The details are e.g. available in my QFT Notes. The result is i (k%g"” — k*k"u)Il5(k?) with
—2a (!

2
Iy (k) vl ; dx z(1 — x)(g —log A(k?) 4 log4m — v + o(¢)) [3.71]

The divergent part is then simply
22 (1 2 e (1 1\ 2 e? 2
Oy(k?) ~ == — o) - & (2_2 _
()~ =2 ), YT T e (2 3>4—d 12724 —d

We can now write the amplitude for the third diagram. We have two external background
fields from the —(4 — d)/4 x F*F),. There is a factor of two for symmetry reasons so
that gives in momentum space —2 x (4 — d)/4 x A, (—k)(k*g"" — k"k) A (k). Next we
have a gauge field propagator —i/k? and then we have the self-energy (k¢ — kVk%) x
(—e%/127% x 2/(4 — d)). Bringing it together we find

My = [ oo (<21 a0 — 14,00 ) ()
et 2 L, ,
x (—zl2ﬂz4_d(k 50— kok ))

e? d*k kM ko ko kv
_ AR 2 pno v o
12W2/(2W)4A (=k)k <g % )((50 e )Ag(k) [3.73]
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Now PH = gi¥ — kFEY /Ek? is a projection operator, i.e.

kFET ko kY krEY KRR KPRREY

2 12 L2 (k2)2
EHEY
Therefore
M 262/ d'k AP (—k) (K2g" — k'E7) AY (k) [3.75]
71202 | (2m)d ‘
This is indeed of the form (3.76)
et =C / Ak (—k)(k2g" — kPEY)A, (k) [3.76]
iz (27T)4 ] v :

To find C let us recall that we absorbed the electric charge in the gauge field, so that

1
C =
1272

[3.77]
and we find that this agrees with (3.66) when we use the QED 3 function, 8 = 3/1272,
i.e.

Be) e’ 3 1

3 12720 T 1272

C= [3.78]

It is now straightforward to generalise this discussion to QCD. In a non-abelian gauge
theory the energy-momentum tensor is the obvious generalisation of (3.55) where we
replace the abelian field strength by the non-abelian one. In the massless case it becomes

1 1- _
O = P 4 1g" PP Fy - Si(y' DY + 4" DY) — gDy [3.79)

The trace is then the generalisation of (3.68) with m =0

o, =~ 1 lpawpa 4 (1 - ayjipy [3.80]

o 4 v
where the fermion contributions vanishes because of the equation of motion, but also does
not contribute to the one-loop result as in the case of QED. In an expectation value this
becomes the generalisation of (3.76)

(&) =C / (;i@Az(—k)(k?gw — k)AL (k) [3.81]
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with C = B(g)/g> and B(g) the QCD B function given by 3 = —bog3/(47)? and by =
(11 — 2np/3) for QCD.

Just as it is the case for the axial anomaly, we can find the trace anomaly using different
methods. The anomaly will then always occur as a certain “pathology” of the chosen reg-
ularisation scheme. For example, if one uses Pauli-Villars regularisation, which introduces
heavy fermions, we will find that the trace anomaly comes from the mass term M ®® from
the heavy fermions. The loop diagram with this term inserted will have a finite result as
we take M to infinity. It may seem at first sight that each regularisation scheme brings out
the trace anomaly in a different way, just as it happens for the axial anomaly, but at the
end the anomaly cannot be gotten rid of. It is an inherent part of those field theories and
the classical symmetries cannot all automatically be promoted to quantum symmetries.
One would need special cases of the theory, e.g. by combining certain fields, to ensure the
symmetry still exists at the quantum level.

3.12 p 92: Eq (3.4.6) Weyl Invariance of an Expectation Value

This is straightforward, but sometimes it is good to emphasise the straightforward. A Weyl
transformation has ¢/, (¢') = ¢**(?)g,,(c) and ¢’ = o. Thus under an infinitesimal Weyl
transformation

09ab(0) = gup(0) = gab(9) = gop(0”) = gap(0) = [1 4 2w(0)] gan(0) — gab(0)
=2w(0)gap(0) [3.82]

Therefore
1
ow (- )g= <—47T/d20\/§25wgabT“b--->

_ ;/d2a V0w (gapT - - ) [3.83]
s

3.13 p 92: Eq (3.4.8) The General Form of the Weyl Anomaly

Let us count some dimensions. The Polyakov action is

1

S=—-——
Y de%

/ d*0 \/99" 0, X 0 X , [3.84]
M

We need to make a difference between world-sheet dimensions, which we will denote by
[ ], and space-time dimensions which we will denote by [ |. Here o’ has unit of space-time
length squared, see page 11, i.e. [o/], but world-sheet dimension zero, [o/] = 0. The
metric had worldsheet dimension [g4;] = [¢?°] = 0. This follows e.g. from the line element
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ds® = gapdo®do® as [ds] = [do®] = 1 as they are both a (worldsheet) length. Thus from the
Polyakov action we have that [X#] = 0. This means that the energy-momentum tensor

1 1
Tab — _a <8aX‘u8bXM o 2gabacX,uach> [3.85]

has [T] = —2, as [0?] = —1. The Riemann curvature is of the form OI' + I'T" with IT" of the
form g%, g4.. Thus R has two derivatives and [R] = —2. From T = a1 R we thus find that
a1 is dimensionless.

Let us next consider other terms that could be added to 7. A term of the form ayR?
would have two more derivatives and so [az] = +2. If we would put in a high momentum
cut-off A in the theory then a; would scale as A~2 and so vanish as we take the cut-off to
infinity. The same reasoning is valid for higher order terms of R of for terms that include
(worldsheet invariant) combinations of 9*. They would all lead to coefficients a with a
positive dimension and so these coefficients would all vanish in a high momentum cut-off.

3.14 p 92: Eq (3.4.9) The General Form of the Weyl Anomaly in Com-
plex Coordinates, I

In the conformal gauge we have g,, = €2 this means that the only non-zero components
of the metric tensor in complex coordinates are

1 _
G2z = 562“’ and g7 =2e [3.86]
Therefore
g = 27 T.s = e~ T,5 [3.87]
and thus
5 e2w a
4e~ szg = alR = ng = TalR = ?gzgR [388]

3.15 p 92: Eq (3.4.10) The General Form of the Weyl Anomaly in Com-
plex Coordinates, II

Qg

zp__Gagz
VTzz—Qv(gzzR) 2

9.-VZR = %gzgaiR - %@R [3.89]

We have used that the covariant derivative of the metric is zero and that the curvature is a
scalar so that its covariant derivative is equal to its ordinary derivative.
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3.16 p93: Eq (3.4.11) The General Form of the Weyl Anomaly in Com-
plex Coordinates, III

The conservation equation in curved metric is (for b = z)
0=V =VT.,+ Vs [3.90]
In case you are wondering, as I did for a brief moment, why the conservation equation is in

terms of covariant derivatives and not ordinary derivatives, remember that the conserved
charge follows from Stokes’ theorem, which requires the covariant derivative.

3.17 p 93: Eq (3.4.12) The Actual Form of the Weyl Anomaly in Com-
plex Coordinates, I
Using (1.2.32) we find that
VIR =\/g(R—2Vw) [3.91]

For an infinitesimal Weyl transformation ¢/, (0’) = €*“g,,(0) = (1 + 26w)gap(c) we have
for the RHS of (3.4.11)

SwRHS = —%(‘LéWR [3.92]
now
SwR=R'(0) — R(0) = \/z(R —2V%w) - R
=e (R —2V%w) — R= (1 —26w)(R — 2V?*w) — R
= — 20wR — 2V?0w [3.93]
Therefore
SwRHS = —%az(—zfsz — 2V25w) [3.94]

We now expand this near a flat worldsheet, where we have R = 0 and V? = 2¢°*V_.V; =
40,03. This gives

SwRHS = —%@(—2 % 40,0:00) = da1 0296w [3.95]
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3.18 p 93: Eq (3.4.15) The Actual Form of the Weyl Anomaly in Com-
plex Coordinates, II

Combining (3.4.12) and (3.4.14) we find
20 ¢ vz _Cq2 __C zzg g2¢  Cqo 92
101020560 = V ( Gazaw) C070:020 = —£0:0%w [3.96]

and so

Cc

_ﬁ [3.97]

a] =

3.19 p 93: Eq (3.4.16a) The Ricci Scalar in the Conformal Gauge
The conformal gauge is

Gab = > 6ap [3.98]
Direct calculation gives the following values for the connections

Fh = - I%2 = F%2 = F%l = 01w

Iy =T% = -T% =T% = 0w [3.99]
The non-zero components of the Riemann curvature tensor are
Ryy = —Ryjp = Rijp = Riy = (07 + 03)w = 0400w [3.100]
and of the Ricci tensor
Ry1 = Rog = —0,0,w [3.101]
This then leads to the Ricci scalar

R=—2¢"29,0,w [3.102]

3.20 p 93: Eq (3.4.16b) The Laplacian in the Conformal Gauge
We know that in complex coordinates, see e.g. [3.96],

V2 = ¢V, V, = 2¢°*V. Vs = 2¢°%0.0 [3.103]
Thus

V? = g"9,0, = e 29,0, [3.104]
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3.21 p 93: Eq (3.4.17) The Weyl Variation of Z[g]

From (3.4.6) we have, where § denotes the conformal gauge, o, = €*“6ap,
. 1 o A
5WZ[g]:f§ d*o \/§owaiR- -

. </d2aezwf5w e 2, 0,w - - - >
T
@

d?0 0w 0yOaw Z|§] [3.105]

3.22 p93: Eq (3.4.18) Z[g] in the Conformal Gauge
It is easiest to check that (3.4.18) is a solution of (3.4.17):

w225 ) = bwZ[s. Je~ 2w | o dadaw
=20, ']67% J o dustuws gy, <—;1 / d*o 8awaaw>
7T

:Zk%dj<—? /¥am%%aw)
T

:“zW%J/fa%mmw [3.106]
T

We have used partial integration in the last line.

3.23 p 94: Eq (3.4.19) Z[g] for an Arbitrary Metric

Let us check that (3.4.19) reduces to (3.4.18) in the conformal gauge
Zlg) — Z5. exp{ / o / Lo’ 24 [2672)9,0,00(0)
g=e>¥§.
x G(o,0")e?() [—26_%(‘7/)8&8{#(0/)] }

=7[5 exp[ /d2 /d20’8 Ouw(o)G(o, J')@fl@;w(a')}

=Z[4. ] exp [%/dQU /dQU'w(J)aa&lG(a, J’)@fla;w(a/)} [3.107]
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where we have used partial integration in the last line. We now use (3.4.16b) and (3.4.20)
to rewrite

0.0,G(0,0") =e**V3G(0,0") = g 1252 (6 — o)

=e?e 5% (g — o) = 6%(0 — o) [3.108]
Thus
Zlgl| . =Z[5.]exp a /dQO' /d20'w(a)62(0 - a')@é@éw(a’)]
g=e2wy . _271'
=Z[0.] exp a dQJw(U)ﬁaﬁaw(a)]

| 27

=Z[4. ] exp —;—1 d2aaaw(o)aaw(a)} [3.109]
T

where we have, once more, used partial integration in the last line. Note also that (3.4.19)
is manifestly diffeomorphism invariant. Indeed R and G are scalar functions and the mea-
sure in the integrals is the diffeomorphism invariant measure d?c,/g.

3.24 p 94: Eq (3.4.21) The Second Way to Calculate the Variation of
Zg], 1

We first compute the Ricci scalar in the linear limit. If g,;, = d45 + hep then in complex
coordinates we need a linear deformation from g, = gz = 0 and g,z = 1/2. Thus

_ hzz % + hzf
A (% +h.z hzz > [3-110]
The inverse metric is
L —4hss 2(1 — 2h,z)
v = <2(1 ~2h.:)  —dhs. > (3111

This is easily checked by multiplying the two matrices with one another and showing that
they are equal to the identity matrix plus terms of second order in h. To calculate the
determinant ,/g we first revert to the ordinary worldsheet coordinates. We have
ds® = -2z dz + gz3dZ dZ + 2g,zdz dz
=h,.(do' +ido*)? + hzz(do' — ido?)? + (1 4 2h,z(do! + ido?)(do' — ido?)
= (1 + hao + hzz + 2h.2)dotdo! + (1 — h,. — hzs + 2h.z)do%do?
+ 2i(h,, — hzz)dotdo? [3.112]
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and therefore

gi11 = 1+ hzz + hzz + thi
g2 =1 — h.. — hzz + 2hz
g12 =i(hz2 — hzz) [3.113]

The determinant is therefore

g=(14h,y+ hzz+2h,z)(1 — hyy — hzz + 2h,z) + (hey — h22)2
=1+ 4h,z + o(h?) [3.114]

and
Vg =1+2h,:+o(h?) [3.115]

Messy calculations are best left to Mathematica. The calculation of R is rather messy; the
code is shown in fig. 3.24. The result of this Mathematica calculation is given in fig. 3.4.
Just focussing on the linear terms, the result is quite simple

R = 402h., + 40*hzz — 89.0:h.= + o(h?) [3.116]
As per Joe’s book we now focus on the terms with hzz only. This means that to first
order we can take \/g = 1 and R = 402hz5. Moreover the solution of (3.4.20) is something
we already know; it is given by (2.1.24), i.e. 901n |z|* = 276%(z, z). Using V2 = 200+ o(h)
we get
/ 1 12
G(o,0') = —1In|z — 72| [3.117]
47
We can now use all this in (3.4.19):
Zlg] = Z[d] exp/ —d?z / —d*2 x 1 x 40%hz5(2, 2) x —1n|z—z 2 x 1 x 40%hz:(2, 2)
= Z|[¢] exp d?z /sz’ O?hzz(2,2) In|z — 2/ [20% hzz (2, 7)) [3.118]
Using partial integration and g = § + h this gives

M / 2 / 2 11 2 A2 ;o
In 70 871’2 d“z | d° Z'hzz(z,2)050; (1n|z—z\ Yhzz(Z', ") [3.119]

Now 9%02In|z — 2/|* = —6/(z — 2/)* so that we find (3.4.21).

[5 + h 3CL1 / 2 / 2 1 ZZ (Z,, 2,)
1 = .
n———= 70 d“z | d°z (z — 2/ [3.120]
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In(2011= (+ 2D gravity: R linearised %)

Clearth, G, dG, gu, gl1, g22, gl2, g21, g, dg, ddg, dgu, R, RR, m, mu];
m = {{g11[x, Y1, g12[X, Y]}, {812[X, Y], 822[X, Y]}};

g11[x_, y1 := hz[x, y]

822[x_, y] := hbix, y]

gl2[x_, y1 := 1/2+ h[x, y]

g21[x_, y1 = g12[X, YI;

mu = {-4 hb[x, y1, 2-4hix, yI, {2-4hix, yl, -4 hz[x, y1};

gla_, b1 := m[(a, b

gula_, b_] := mu[[a, b]

dg[1, a_, b_] := D[g[a, b], x1

dgi2, a_, b_] := Digla, b, y]

dgu[l, a_, b_] := D[gu[a, b], x]

dgu[2, a_, b_] := D[gu[a, b], y]

ddg(1, 1, a_, b_] := D[D[g[a, b], x], X]

ddgi1, 2, a_, b1 := DID[g[a, b], x], Y]

ddg[2, 1, a_, b_] := D[DIg[a, b], y1, xI

ddg(2, 2, a_, b1 := DID[g[a, b], y1, Y]

Gla_, b_, c_] := (1/2) » Sum[gu[a, d]« (dg[b, c, d]+ dg[c, b, d]-dg[d, b, c), {d, 2}
dGle_, a_, b_, c_] := Simplify[(1/2) «+ Sum[dgu[e, a, d]=(dg[b, c, d]+ dg[c, b, d]-dg[d, b, c)
+ gula, d]«(ddg[e, b, c, d1+ ddg[e, c, b, d]-ddg[e, d, b, c), {d, 2}1

Rla_, b_, c_, d] := Simplify[dGc, a, d, b] - dG[d, a, c, b]

+Sum[G[a, c, €]« G[e, d, b] - G[a, d, e]«G[e, c, b], {e, 2}]

Rla_, b_] := Simplify[Sum[R[c, a, c, b], {c, 2}]]

RR = Expand[Sum[ gula, b]« R[a, b], {a, 2}, {b, 2}1;

In2251= RR

ou2251= -8 h®Bx, y1hz® Yix, y1+ 16 hix, y1h®Yix, y1hz©@Yix, y1-8hzix, y1hb® Vix, yhz®Yix, yj-
8 hbix, y1hz®Yx, vi? + 4hz@2(x, y]- 16 hix, y1hz®2x, y]+ 16 hix, yi* hz®2(x, y]-
16 hbix, y1hzix, y1hz®2[x, y1+16 h@Yx, y1h® O, yj-32 hix, y1h©@ Y, yyh®Ox, v+
16 hzix, y1hb® Ypx, y1hHOx ;) yi-32 hix, y1hzix, y1hb@Yix, y1h®Ox, v+
32 hix, y1? hzix, y1hb® Ypx, yihOx y1- 32 hbix, ylhzix, yi2 hb@Yix, y1h® O, v+
32 hix, y1hbix, y1hz@Yx, yyh®:9x, y1- 32 hix, y1? hbix, y1hz@Yx, y1h®Ox, yvi+
32 hbix, y1? hzix, y1hz®Yix, yh® O, yi+ 32 hix, y1hzix, y1h©@Yix, y1hbOx, yi-
32 hix, y1? hzix, y1h@Yx, yyhb®Ox, yi+ 32 hbix, ylhzix, y12 h@Yx, yhb®Ox, vy -
4hz®Vix, yrhbLOx, yi- 8 hix, y1hz®Yx, yhb®Ox, v+ 48 hix, y1? hz®Yx, y1hb®Ox, yi-
32 hix, yI® hz®Yx, y1hb®9x, y1- 16 hbix, y1hzix, y1hz®Yx, y1hb:9x, yi+
32 hix, ylhbix, ylhzix, y1hz®Yx, y1hbd:Ox, yj- 8 h O, yyhbE:Opx, v+
16 hix, y1hH O, y1hb®:O1x, y1- 8 hzix, y1hb9x, v + 16 hbix, y1 h®Yix, y1hzHOx, yi-
32 hix, y1hbix, y1h©@Yix, y1hz®:9x, yi+32 hix, yi2 hbix, y1h® Yix, yihzOx, yvj-
32 hbx, y1? hzix, y1h@Yx, y1hzG O, yi+4hb@Yx, y1hzB9x, v+
8hix, y1hb® Yx, yhzH O, yi-48 hix, yi> hb®@Yix, yihzH O, yi+
32 hix, y1® hb®Yx, y1hz®9x, yi+ 16 hbix, y1hzix, y1hb® Yix, y1hzLOx, yi-
32 hix, ylhbix, ylhzix, y1hb® Vi, y1hz:Ox, yj- 8 hbix, y1hb®Ox, yihz:Ox, yi -
8hsVx, yi+32 hix, y1h®Dx, y1- 32 hix, y12 h@Dx, v+ 32 hbix, ylhzix, y1hDx, yi+
4hb2:9x, y- 16 hix, y1hb@[x, y1+ 16 hix, y}> hb@9[x, y]- 16 hbix, y]hzix, y1hbZ:9[x, v

Figure 3.4: Mathematica code and result for R with a linearised metric
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3.25 p 94: Eq (3.4.22) The Second Way to Calculate the Variation of
Z[g], I

Let us do this "symbolically" as it will be a mess to track all indices. We can extract the
exact contribution, i.e. the contribution quadratic hz; in order to compare with (3.4.21) at
the appropriate times. From (3.3.22) we have

Z[6+ h) = / [dX db de]e X besth] [3.121]

Here S[X,b, ¢, d + h] is the sum of the matter and ghost actions. Now

0S[X, b, ¢, g]

S[X,b,¢,6 + h] = S[X,b,c,8] + h——
g

+ o(h?) [3.122]
g=9

But from (3.4.5) we know that §5/0g = (,/g/4m)T by definition of the energy-momentum.
From [3.115] we know that \/g = 1 + 2h_z + o(h?). As we are only interested in contribu-
tions that are second order in h;:, we can simply take ,/g = 1 for our purposes.

Thus

S[X,b,c, 6+ ] = S[X,b,c,0] + %T +o(h?) (3.123]
T
and so
Z[0+h] = /[dX dbdc]exp — <S[X, b,c, 0] + %T + o(h2)> [3.124]
T
From this we have
Z[0 + h] [[dX dbde)e~ (S bedl i Tro(h?))
ln = In
Z[9] Z[0]
_ oy, JldXdb dele= S0l [1 — (1/2)(hT/4m)? + - -+ ]
Z19]
1
~ln 1l ——— X —S[X,b,c,8] 272
n [ SAn 22 /[d dbdcle h
__ 1 —S[X,b,c,8] 1 22
= 204 23] /[ddedc]e h=T
L e
- 2(47r)2Z[5] <h T >5 [3.125]

Here ( )s means that the expectation value is taken with a Euclidean metric, g = . In
the second line, we have only written down explicitly the contribution quadratic in h; all
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the other contributions are in the dots. In the third line we have ignored all these other
contributions as they play no réle in what we wish to show. Let us now plug in the indices.
We wish to compare with (3.4.21) so need the contribution hz;. Now hT = h®T,, and as
h*?* ~ hzs we have

hT,, = ¢°2g*%hz:Ts. = 4hz=T.. + o(h?) [3.126]

Thus the contribution we are looking for is

Zo+h 1 1 1, o /
In [Z[E I (@) 22 <4/2d2zhzz(z,z)Tzz(z)4/2d2z hzz(2', 2 )Tzz(z)>

s
1
— 2 / 2 / 22 sz, 2)hes(2 2) (Ton(D)Tn (2)), [3.127]
where we have used 2d?z = d%o.
But assuming this is correct, we can now use the 7'(z)7'(z’) OPE
2 2T (7 T(Z
T(2)T(2) ~ </ ) | oT) [3.128]

(z—=2)%  (2=2)2  2-—2

The last two terms don’t contribute because (7'(z")) = (9T(z')) = 0 as in terms of cre-
ation and annihilation operators either |0) or (0| will be annihilated by one of the Virasoro
generators. We thus conclude that

Zo+h] 1 2, 2./ hzz(z,2)hzz(2', Z') .
N R A /d /d Gyt

L = L ! =/
1602/d22/d221 hzz(z, Z2)hzz(', 2') [3.129]
T

(z—2")4

where we have used the fact that
(e/2) = ¢ / [AX dbde]e=Sb3) = £ 715) [3.130]
and the Z[4] cancels the Z[4] in the denominator of the pre-factor.
Comparing this with (3.4.21) gives

3
e c s o e=-l2 [3.131]

which is again (3.4.15).
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All of this derivation seems ok, but there is one concern. The expansion of the action
[3.123] has a second order term in h, viz. (1/2)h?6%S/8g?|,—s. That term should have a
contribution in [3.124] and in the subsequent formulae. It isn’t clear to me why we can
ignore it.

3.26 p 95: Theories with a Quantum Anomaly

One may well wonder why there is so much emphasis that string theory needs to be
anomaly free, and have a zero / function, whilst that is not the case in QED and QCD.
Indeed in (massless) QED and QCD there is no dimensional scale, but the renormalisation
group introduces one and this cause a scale anomaly. Why is it no problem there?

The difference between string theory and QED/QCD is that in the former case the scale
invariance is local; it is a gauge redundancy and if there is an anomaly the result is that
the gauge symmetry is broken, with implications for e.g. unitarity. In QED/QCD the scale
invariance is global. If it is broken, it has no impact on unitarity. It only indicates that, even
if in the classical Lagrangian, there is no length scale, the quantum theory has an effective
length scale. This then is an indication that these theories are probably just effective field
theories of a more fundamental theory. String theory?

3.27 p 95: Eq (3.4.26) The Energy-Momentum Tensor of the Cosmo-
logical Term

The cosmological constant adds an additional term to the energy momentum tensor:

4 55 dr 0
o) = — — 0
\/gdgab(a) \/gégab(o)
4 1 _ dg(a’)
— 71) d20,/ 79 1/2 O_/
\/§ 2 ( )5gab(0)

b | d*d’\/g

27h

_ 20 [ 2ot 120" g (0! g (0" o — o)
V9
2mb ab ab

The extra factor in the trace becomes
9T (o) = 27bo = 4xb [3.133]
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3.28 p 96: Eq (3.4.27) The Most General Form dvw In Z[g] with Bound-
ary Terms

Let us identify all the contributions in (3.4.27). The term with a; is just the contribution
(3.4.8) that is linear in the Ricci scalar. The term with as is the contribution from a possible

cosmological constant. The terms with a3, a4 and a5 come from the boundary term in Euler
number contribution to the action, i.e. the second term in (3.2.3b)

To see this note that [3.9] and [3.11] imply that under a Weyl transformation kds trans-
forms as

kds — e “(k + n%0qw)e“ds = (k + n®Oqw)ds [3.135]

which explains the possible appearance of the a4 and the a5 term. The a3 term is just a
constant contribution, similar to a».

3.29 p 96: Eq (3.4.29) The Weyl Transformation of the Counterterms

Let us look at the transformation of the first term to start with:
1 1
ow (/ d*o bl\/§) = / d*oby~g ' *owg :/ d*obi 597299 6w gas
M M 2 M 2
1
= / A0 by =/99""20wgay = 2 / d?o by\/gow [3.136]
M 2 M
The first term in the boundary part of the counterterms transforms as

/ deS — bg(l + 5w)d3 = (SW </ b2d8> = / bg(swdS [3.137]
oM oM oM oM

where we have again used [3.11], i.e. ds — e“ds. The second term in the boundary part
of the counterterms transforms, using [3.135], as

/ bskds — b3(k + n*0,0w)ds [3.138]
oM oM
Hence
ow (/ b3kd$> = / b3nd,0wds [3.139]
oM oM
Bringing the three transformations together we find indeed (3.4.29).
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3.30 p 96: Eq (3.4.30) The Wess-Zumino Consistency Condition

From (3.4.27) with only the terms with a; and a4 we have, using the known transformation
of \/g, R and kds,

1 1
00100y Z[G] = 0, [—% / d?0 /g a; Réwy — — / ds a4k5w2}
1

=~ 5= d20 39 —1/2 gg“b25wlgaba1R6w2—/ d’o gai(— 2v? ow1 )dws
™
1
~ 5 ds agn®(0,0w1 )dwe
= — al/ d’c \/§R6w15w2—|—al/ d’o ga15w2V25w1
™ JMm ™ JM
a4 ds n*dwe 0, 0wy 0ws
S orm

= - — d20' fR5w15w2 - / d20' ga1(8 (5(,02)(6 (5&)1)
™

+ / d*c V*° [\/§a15w2(8 5w1)] — ;4/ ds n®dwe 0y 0w [3.140]
oM
In the last line we have used partial integration in the second term and the used the fact
that the covariant derivative of the metric is zero so that also V,,/g = 0 and also the fact
that dw; are scalars so that V,0w; = 9,0w;. We can now use Stokes theorem on the third
term and find

S0y 0y Z|G] = — % Mdza\/§R5w15w2 - % /JV [ %0 /G a1 (0"6ws)(Dadwr)

Qa1 —
M/ ds n*dwy 00w [3.141]
oM

™

The first two terms are symmetric in dw; and dws, the latter is not and requires 2a; = ay.

3.31 p97: Eq (3.4.31) The Central Charge is Constant

This follows immediately from the last line of [3.140] where we have used partial integra-
tion. If we replace a; by —C(o)/12 one would get an extra term

0*C(0o)

—2 [ do g(— =) duwa(Guden) [3.142]
M

™

where we have used the fact that C(o) is a scalar so that V?C(c) = 9°C(o). This addi-
tional term is not symmetric in dw; and dw, and so needs to vanish by the Wess-Zumino
consistency condition. This implies that 9*C(c) = 0.
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3.32 p 98: Fig 3.8 Scattering of Closed Strings

I had initially struggled with the representation of the representation of a scattering of
strings as a sphere with small holes, but it is actually trivial. In the hope of sparing the
same anguish for other people, let me explain why very slowly.

We consider a closed string as a semi-infinite cylinder. The cylinder worldsheet co-
ordinates are w = o! 4 ic?. The periodic boundary conditions for the closed string are
ol = o' + 27. We rename for convenience 0? = —2xt. The asymptotic in-state is just
obtained by taking ¢t — oc.

We now consider the conformal transformation

y— oW _ (ot tio?) _ —io' =27t [3.143]

We see that equal ¢ curves corresponds to circles of radius e~2™ in the complex plane. The
asymptotic state ¢ — oo corresponds to z = 0. At ¢t = 0 the circle is the unit circle, |z| = 1.
A closed string evolving from its asymptotic in-state to ¢ = 0 thus corresponds to point —
i.e. a circle of infinitesimal radius — evolving to a unit circle. This is the same discussion
we had around (2.8.1), see also fig. 2.4 of these notes. Pictorially we have

N
to

t1

Figure 3.5: Mapping the semi-infinite cylinder to the unit disk. Evolving from ¢ = co to t = 0 via
t1,t» and t5 corresponds to circles of increasing radius e~2 % in he complex plane.

Now there is no conformal transformation between fig 3.8a and fig 3.8b and that is what
caused my initial confusion. Topologically, both pictures are equivalent. The picture of
four cylinders interacting is nothing but a very stretched out sphere. The states at any time
correspond to circles on the surface of a sphere. At ¢t — oo these are just infinitesimal holes.
As t evolves these holes becomes circles of growing radius.
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Z. Z,
4
7/
z, [

Figure 3.6: Closed string scattering amplitude. The asymptotic states correspond to holes on a
sphere.

The process of four strings starting from asymptotic in-states and then interacting, thus
corresponds to a worldsheet of a sphere but with four holes corresponding to the insertion
of the four asymptotic in-states.

For open strings, almost the same applies word for word. The only difference is that
the conformal transformation from w to z has an extra minus sign, i.e.

z=—e W = gm0 [3.144]
As the open string has 0 < ¢! < 7 this then means that for a given 0> = —2nt this
corresponds to a semi-circle in the upper half plane. As per fig 3.9. a scattering of four open
strings can then be represented as a desk with small dents at the boundary, corresponding
to the asymptotic in-states.

3.33 p 100: Compact Connected Topologies

Let us, for convenience summarise the different compact connected 2D topologies, oriented
or unoriented. This is done in table 3.3. In that table "0o" stands for an oriented surface
and "u" for an unoriented surface. The first line, a surface without boundaries, holes or
cross-caps is just a sphere with g handles. The other surfaces are a sphere with extra holes
and cross-caps.
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boundaries | orientation | handles | holes | cross-caps
- o] g 0 0
v o] g h 0
- u g 0 c
v u g h c

Table 3.1: 2D compact connected surfaces with ¢ = # handles, h = # holes and ¢ = # cross-caps

Let us illustrate the effect of boundaries this with some examples when g = 0 in fig.
3.33. We will ignore cross-caps for now. When g = 0 then we simply have the sphere. With
one boundary, the surface is just the disk. Where is the hole, you may ask? Just perform
the conformal transformation z — 1/z. Thus z = e~*'+7° which for o2 between —oo and
0 describes the unit disk becomes 1/z = ¢io'=o* which becomes the full complex plane,
outside of the unit disk. In that representation, the unit disk is hole. Similarly when there
are two boundaries, then the surface is the annulus. With three boundaries, the surface
looks like a pair of pants.

SICIn

(0.4,0) (0,2.,0) (0,3.0)
DisK ANNULUS PANTS

Figure 3.7: 2D compact connected surfaces with (g, h,c) and g = # handles, h = # holes and
¢ = # cross-caps

Let us get back to the cross-cap. Around that point, which for convenience we take
to be at z = 0 we identify z with —1/z. In this case a point on a sphere with radius r is
identified with an antipodal point on a sphere with radius 1/r. This is explained in more
detail later in these notes, see fig. 6.5.

Let us illustrate this with two more examples. The first example has (g,b,¢) = (0,1,1). It
is an unoriented surface with no handles and one boundary. It is simply the Mobius strip.
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Figure 3.8: Mébius strip: unoriented surface with no handles and one boundary

The second example has (g, b, c) = (0,0, 2). It is an unoriented surface with two cross-
caps, no handles and no boundaries. It is the infamous Klein bottle.

0

Figure 3.9: Klein bottle: unoriented surface with two cross-caps, no handles and no boundaries

3.34 p 102: Eq (3.6.3) The Normalisation of the First Excited States

The coefficient g. is just the same string coupling constant as for the tachyon vertex opera-
tor. The coefficient 2/a’ comes from the state-operator mapping (2.8.7). Each holomorphic
and anti-holomorphic modes contributes a factor /2/a/.

3.35 p 102: Eq (3.6.4) The On-Shell Condition for the First Excited
States

The first excited stated are tensors of weight h = h = 1+ o/k?/4. By conformal invariance,
these weights have to be equa to one, and so this implies that m?> = —k% = 0 and we
recover the massless states.
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3.36 p 103: Eq (3.6.7) The Weyl Transformation of a Renormalised
Operator

This is just Leibniz:

%fd20d20'/A(U,O'/)5Xg(g) 5X,u(,$<0',)f

dw|[F]r =dwe

1
= 0w [Q/dQJdQU/A(U, a')
X 6% [ d?od?s’ A(
1

= 2/d20 d*o’ (bwA(o,0"))

5 5 L[ Pod*o’ Alo)
5XH(0) 6X,(0")
09" ) 5 5, ) gy F

) 0
5X1(0) 6X,,(0")

6 5
SXH (o) 6XM(U/)_F

[Fs + [OwFls [3.145]

3.37 p 103: Eq (3.6.8) The Weyl Transformation for the Tachyon Vertex
for the Polyakov String

with dwgep = 20wgqy we find, using (3.6.7)

ow Vo :2gc/d2ac5w\/§ [eik'X(U)}

T

r

:QQC/dZO_{;g—l/Qggab25wgab [eik-X(a)}r+\/§ [5weik'X(U)}

1 2 132 1 ron 0 0 ik-X (o)
+ 2\/§/d ad’c" dwA(o', o )5X/*(a’) 5K, (") {e L

:2gc/d2a{\/§25w [eik'X(U)]

r

+ ;\/g/dzojcﬂoﬂ 5WA(O',,O'”)(—I<:2)52(O' o 0'/)52(0 o U//) [eik.x(o)] }
; k2 .
= 2gc / d*03 /926w [ezk'X(”)} — 5 VadwA(o,0) {eth(o)}

2 .
= 2gc/d20\/§ (26w — %5wA(U, 0')) [elk'X(U)} [3.146]

T

We have also used the fact that swe*X = 0 as there is no metric component in that
expression.
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3.38 p 103: Eq (3.6.11) The Weyl Transformation of the Geodesic Dis-
tance, I

This formula is a simplified case of (3.6.16). We derive the latter formula in detail and
(3.6.11) will be derived along the way. We thus refer to that note for details. See in
particular [3.157].

3.39 p 105: Eq (3.6.15) The Weyl Transformation of the Geodesic Dis-
tance, II

This explanation is from the Physics StackExchange! and is from "Trimok". Credit to him
for working this out.

As is explained in the text, the diffeomorphism symmetry is not anomalous as we can
find a regularisation scheme that preserves that symmetry. We are thus only conserved
with the Weyl symmetry and can chose a metric in the conformal gauge g, = ¢?“6,; and
investigate if under a transformation w — w + dw the theory is anomalous.

Note that in the conformal gauge the connection becomes

ab = %QCd(aagbd + Ob9ad — OdGab)
= L ey 205,09 0 4 GuaOy — GapB)
=05 0uw + 0SOpw — dgp0°w [3.147]
and so
VaOhw = 9a0pw — T5,0iw = 9,0pw + o((0w)?) [3.148]

We will later argue that at very short separation we can ignore terms of second and higher
order in Jw for the Weyl transformations of the objects we are interested in, so that we can
freely interchange the covariant and the partial derivative when acting on 0,w.

At very short separation, the distance between two points on the world-sheet is given
in the conformal gauge by (3.6.9)

d?(0,0") ~ (o — ¢')?e>() [3.149]

We can make this more precise as

’

d(o,0') = / dz e*?) [3.150]

Thttps://physics.stackexchange.com/questions/73393/a-question-about-the-higher-order-weyl-
variation-for-the-geodesic-distance

—133—



Joe’s Book (version of November 20, 2020) Notes from Stany M. Schrans

where 2 is some parameter describing the geodesic between the two points on the world-
sheet. First we expand w(z) around o:

/

’ dz exp [(z — 0)%0qw + 1(,z —0)%z — ") 00w + o((z — 0)3)]

N _— w(o)
d(o,0") =€ / 5

g
/

=ev(0) / dz [1 + (2 — 0)%w + %(z —0)%z — ") 00w + q((@w)z)} [3.151]

Here q((&w)Q) denotes contributions that are quadratic in Jw or higher order. As already
mentioned, we will argue later that they don’t contribute that the Weyl transformation of
the objects we are investigating. We can easily integrate this. Use

/

g
/ dz =0 —o =10 -0
g

o! o'—o 1
/ dz (2 — 0) 0w = / dy y*Oqw = 5\0/ — 0| x (60— 0")"0w
o 0

/ /

/ dz (z —0)w(z — U)b(?aabw = / dy y*y° 8, Opw
o 0
= %’J, — 0| x (0! — )0 — 0)’0, 0w [3.152]
to find
d N _ w(o)) ! 1 na L, a(. .t b 2
(0,0") =e* o’ —o| x |1+ 5(0—0) Oqw + 6(0 —0)%(0" — 0)° 040w + o((0w)?)
_ ew(o-) ’0,/ _ O" e%(a—o”)“&;w—i—%(0"—0')’1(U’—U)baaabw+q((6w)2) [3.153]

In the last line, we have raised it again to an exponential. From this we find that

/

A(o,0') = % Ind?(o,0")
_ g/ In |:€2w(0) (O'/ B 0_)2 e(a—a’)aaaw-l—é(U’—U)a(U’—U)bﬁaabw+q((6w)2):|
/ / 1 na L, a( /! b 2
=d |w(o) +In(oc —0’) + 5(0 — ') 0qw + 6(0 —0)*(0" = 0)°0a0pw + q((0w)?)

=a [w(o) + %(0’ — ") 0w + é(a’ —0)% (0" — )20, 0w + Q((8w)2)] [3.154]

Here §((0w)?) also includes any possible contributions that don’t depend on w, viz In(o — o).
We now have a concern as A(o, 0’) should be symmetric for the interchange of o with ¢,
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but the above expression is manifestly not. This is easily remedied by making it symmetric,
giving

A(O', a") =a % (w(a) +w(0—’)) + i(o_/ _ o_)a (6aw(0) _ 8;(4}(0',))
+ 11*2(0’ —0)o’ — g)b (8a8bw(a) + (9;5{,w(0’)) + 51(((%))2)] [3.155]

We can now this equation to calculate the Weyl transformation of A(o,¢’) and its deriva-
tives. First we have

SwA(o,0') =d [; (dw(o) + dw(a”)) + oo — 0',):|

= o [6w(o) + o(o — 0')] [3.156]

Note that the w dependent terms in g((0w)?) are of the order o((¢’ — ¢)?). Thus in the
limit o/ — o we have

SwA(o, o)

= a’éw(a) [3.157]

o'—o

which is (3.6.11). Next we have from [3.155], expanding ¢’ around o
DudwA(o,0') =d’ Baaéw(a) + i(@aw(a) — Ohw(d’)) +o(c’ — o)

= %o/@aéw(a) +o(0’ — o) [3.158]
which is when ¢/ — o

0a0wA(o, ) = %a’@aéw(a) [3.159]

o' —o
i.e. (3.6.15a).
Let us now go back to [3.155] and calculate

Aow Ao, 0") = of %8{)5w(0') + i (Oy0(0) — Delo”)) — i(a’ — )89 Alow(o’)

+ —(0" = 0)* (0a0p0w(0) + 0,0,0w(0”)) + o((o" — 0)2)] [3.160]

| =

From this we have

1 1 1
0a0y0w Ao, 0") =d [48a0b5w(a) + 10{18{75@)(0') - 6(8a8b5w(a) + 8,0p0w(c")) + o(o’ — O‘)]
1
=a/ lﬁ&lﬁbéw(a) + oo’ — o) [3.161]
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and in the limit o/ — o this is

040w Ao, o) = %a'@aﬁbéw(a) [3.162]

ol—o

Replacing the partial derivative by a covariant derivative, see [3.148] we get

1
0a0y0w Ao, 0’) = éalvaabéw(a) [3.163]

o'—o
which is (3.6.15b) with v = —3/2.
Let us go back to [3.155] and calculate

1 / / 1 / C
— Z(aaéw(a) — d,dw(a’)) + 100" = 0)0ubcbw(0)

O0ubw Ao, 0’) =0y [;&Z&U(U)
- é(a' — 0)%(040c0w(0) + 8,0L0w(a”’)) + o((0” — 0)2)]
|1 1 1
=« iaaabéw(a) — Z&I@b&w(a) — Z&I@béw(o’)

+ = (8a0pbw(0) + 0,0y0w(c”)) + o(c" — 0)]

=

= éa’@a&,éw(a) +o(0’ —0) [3.164]

Taking ¢’ — o and using the fact that we can freely replace the covariant derivative with
the partial derivative in this case again, we find

0uOpow Ao, 0’) = %O/Vaﬁb&u(o) [3.165]

o'—o

which is (3.6.15¢) with v = —2/3.

We have claimed that we can ignore terms quadratic (and higher) in d,w and in terms
that don’t depend on w. The latter we can trivially ignore as we are concerned with the
Weyl variation of A and so terms that don’t depend on w don’t change under a Weyl
transformation. To argue that we can ignore the terms quadratic in d,w requires a bit more
thinking. Every such term necessarily contains something like (0! — 0)%(0’ — 0)?0,w0yw.
Now if we take one derivative, then we are left with a ¢’ — o factor and that vanishes
when ¢’ — o. If we take two derivatives, the only term that does not automatically vanish
when ¢/ — o is when the two derivatives act on (¢/ — 0)(o’ — o)°. We are then left with
something of the form d,wdyw. But we can always select an inertial frame, i.e. one with
w = c' so that 0,w = 0 and this term does not contribute as well. As our results have all
been expressed in a covariant form (we wrote them in terms of V,0,w and not in terms
of 9,0,w), the result obtained in an inertial frame, is valid in any other frame. This shows
that we were indeed justified in ignoring terms in quadratic and higher order of 0,w.
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3.40 p 105: Eq (3.6.16) The Weyl Transformation for the Massless Ver-
tex Operator for the Polyakov String

This is a subtle and long calculation, so fasten you seatbelts. There were some points

that were obscure to me and I posted them on the Physics Stack Exchange. This time my

gratitude goes to "Wakabaloola" for helping clarifying these issues. At the end of the day

it is always gratifying to see how all the details of a calculation conspire to give the final

result. This was, if I am permitted a personal note, particularly the case for this calculation.
Some preliminaries first. Under an infinitesimal Weyl transformation

OW Yab = 20wWlab [3.166]
we also have
Swg® = —20wg® [3.167]
and
w9 = ég_l/Qéwg = %g‘lﬂgg“béwgab = %g_l/Qgg“bQ(Swgab = /926w [3.168]
This implies that
Sw(v/99?) = dw(v9)g® + Vadwg® = /520wg® — 2\/gdwg® = 0 [3.169]

The antisymmetric tensor % also transforms non-trivially under a Weyl transformation.
Indeed, from ,/g€'? = 1 we have

(w9 + /g(dwe?) =0 = dwe'? = —20we'? [3.170]
and thus more generally
Swe™ = —20we™® [3.171]
But we will only need the relation
Sw(v/ge™) = 0 [3.172]
From (1.2.32) we also know that \/¢'R' = VIR — 2V?26w) so that

dw(v/gR) = —2/gV?0w [3.173]
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After all these preliminaries, let us now work out Weyl transformation of (3.6.14),
using the above and also (3.6.7)

T

swii = & / dza{ (0w (/5g™ s + 18w (VGE™ )y ) [0aX70, X7 X

+ o/ ¢ow (VIR) {eikz.X(a)L

1 0 ) 4

ab - _ab 2 2 v ik-X(o

+/9(g% s + i€ aW)Q/d o'd U”&wA(a',o”)éXA(O_/) 5% (07 {aaX“abX eth-X( )L

+ \/Zyo/qﬁR1 /dza’dQU"é A(a’ a”) 0 0 [eik'X(U)} [3.174]
2 WET T TS XA () 6 XA (o) ' ‘

Recall that dywe*X(?) = 59, X1, X"e* X(@) = 0, as there is no metric dependence in
these operators. We have just seen that the first line vanishes and so can write

T

owVi = % /d2a{ — 2a’¢\/§(v25w) {eik’X(”)}

1 ab - _ab 2 192 1 ron J " v ik-X (o)
+ 2\/§(g Suu + i€ aw)/d o'd*o"owA(o’, o )5X’\(a’) 5% (o) [(%X hX"e )
+ 1\/§a/¢R/d20'd20”5WA(U' ) 0 0 [eik'X(U)} [3.175]

2 T I8XAM o) X\ (0") r

Let us for convenience work out the different lines separately.
We start with the first line

J = - 2gc¢/d20\/§(v25w) [eik'X(U)L = —Qgc¢>/d20\/§(va8“5w) [eik'X(U)}
—29.0 / d%\/g{va (aa(sw [ei’f~X<0>L) 996wV, [eik.X(o)]r}
= —2gc¢/d208a (\/gaa(;w [eik.X(o)L> +290¢/d20\/§8a5wva [eik‘-X(o')]

— 12000 / B0\ /G0 wV, [e“‘*X“f)} [3.176]

T

r

r

where we have used J,(,/gv*) = /gV.v® and V,,/g = 0. We can now replace the
covariant derivative by a partial derivative as it acts on a scalar and partial integrate the
other derivative

Ji = — 29.6 / 06" (\/gaa [ei’“'X@’)L)

= — 2gc¢/d206w\/§va3a [eik'X(U)] [3.177]

r
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We now have

Ve0,e™ X =V (ikF0, X, )™ X
= ik"(V20,X ) e X 4 (ikF9,X ) (ik" VX, )e X
=ikMV2 X, eF N — kY0, X,0° X, eF X [3.178]

We have freely replaced 0, by V, and vice-versa when they are acting on worldsheet
scalars. Therefore, using (3.6.18),

[Vo0ue™X| =ikt [ VX, RN ] — bk | 0,00 X, e

r r

=1kP x (_iogkuR [eik-X(a)L> — kMR {aaXuaaXVeik-X]r

CYI

= Ek:?R kX (@) ppgy gab [&LX#(%XVe““'X} [3.179]

and thus

/ - -
Ji = —gCSQqub/dQJ VgowR ek X(@) | 4 2gck"’“k”¢/d2a Vg 0w g™ [aaXuabX,,eik'X]

r

Je 2 20/ 2 ik-X (o) ab nwiY ik-X
=% |a a\/§(5w{ — KR [e } g (AkME ) [aaxﬂabxye } [3.180]

Before we tackle the second, more difficult, line of [3.175], let us do the easier third
line

_ 8 2 32 132 I /i 4 o ik-X (o)
J3 = 2¢/d od“o'd“c"\/gROwA(c', o )6X)‘(U’) NCa) [e }

:g20¢/d20'd20'/d20'”\/§R5WA(0'/,U//)(—kQ)(SQ(O'—0'/)(52(0'—0'//) |:6ik-X(0'):|

r

Tr

_— %W / &0\ /gRSwA(0, o) [eik'X(")} _ _%gbkz / &0\ /gRa/ 6w [ei’“'“”)]

r r

= % d2a\/§5w(—a/k2¢R) {eik'X(U)} [3.181]

T

Finally, the second line of [3.175], is

To = 2900/ /dza\/g(gabsw + éeabaw,).jg [3.182]

with
J
dXAMa') 6 X (a")

j2 _ / dQO'/d2O'”(SWA(O'/, O_//) 8aXuabXVeik-X(0'):| [3183]

r
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Let us first consider the contribution where the functional derivatives both act on the ex-
ponential This gives

Tun= [ @' P55 = 0)) (0" — ) [0, X9, XX

r

— — K2wA(0,0) |0, X70, X" X ()|

T

= — d'k?w(0) [&zX“@bX”eik’X <">] [3.184]

T

where we have used (3.6.11). Thus we have a contribution

J2a = — gzck:Q/dQJ\/ﬁéw(g“bsW +ieay,) [&X“&,X”eihx(”)}

r

= g;/d2a\/§6w (gab(—kzs,w) + ieab(—k2aw)) [&lX“abX”eik'X(”)} [3.185]

T

Next, take the case where only one of the functional derivatives acts on the exponential.
There are four possible combinations

oy = / RN a"){ 310,6%(0" — 0)ik 6% (0" — o) [ab Xvez'k-xm}
+ 350,0%(0" — )ik0%(0" — ) [0, X1 )]
+ nAMa@&Q(UII o U)ik‘)\(SQ(UI - J) |:8bXV€ik.X(0)}

+ 02 (0" — 0)ik6% (0! — o) {(%X“eik'x(g)} } [3.186]
We can already perform one of the integrations:

ij = i/dQUléwA(a’,a){k“aa52(0’ e [3 XVeikX(o ]
+ k”8b52(a’ — 0’) [6 Xﬂelk X(o) :| }
+i/d20”5WA(a, J”){k“@ 520" — o { 9, XV el X ()

)
+ kY 9y02(0" — o) [8 XHeikX( ] } [3.187]
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Change the integration variable from ¢” to ¢’ and use the symmetry A(o,0’) = A(c’, o)

Jop = 2%, /dQJdQJ’\/g(gabsW +ieay,,) x 2i6wA(0’, o)

X [kz“@a(SQ(a' —0) [&,X”eik'X(”)} + K 0y0°% (0’ — o) [&X“eik'X(”)L}

T
14 )
B E’C /d2ad20/\/§(9absuv +iea,, ) SwA (o', o)

X [k“@aég(al —0) [&,X”eik'X(")} ) + K 0y0°% (0’ — o) [&LX“eik'X(U)L} [3.188]

We can now perform another partial integration to free up the last delta function. However,
it is convenient to first use the chain rule for derivatives of delta functions? in order to
change the 9, into a 9/,:

0462 (0" — o) = =0.6%(0’ — o) [3.189]

We perform the chain rule on the derivative of the delta function and partially integrate.

2To see that this is correct, evaluate I = [ da dy f(2)g(y)d.0(z — y) in two ways. First
b=~ [ dedy P @)g@d(e—y) =~ [ do (@g(o)
Alternatively
I = — /dm dy f(z)g(y)0yd(z —y) = /dw dy f(2)g' (y)o(z —y) = /dw f(x)g'(x)
Now
-h= [ d[f(@)g(x) + £ (@)g(@)] = [ do 5 [1@)gla)] =0

which shows that 0,6(z — y) = —0,0(z — y)
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The 9’a and 9’b now only act on dwA(¢’, o). Two minus signs give a plus and so
_ % 2 32 _/ ab - _ab
Jop = o d“od®o’\/g(g" s + i€ au,)
x {a;aWA(a’, o)kR6* (0! — o) [abxveik'x@}
+ AowA(o, o)k 6% (0] — o) [aaxuei’f-X(U)] }
_ e

o d2‘7\/§(9ab5uv + ieabaw)

X {8{1(5\]\/A(0‘/, o)

B |9 XX ()]

o'=0c r

+ 0y 0wA(d’, o)

kY [&LX“eik'X(U)L } [3.190]

o'=0

Use (3.6.15a), which is, by symmetry, equally valid if we replace 9, by 9/,

) .
j2b = i/c / dQU\/.a(gabsp,y + Z€abCLMV)

«

X {;alﬁaéwk“ [&,X”eik'X(U)} + %a/({)adwk” [aaXueihX(o)} }
- % / o /g(g" s + icay)

x { Dudukt | X" €M X 9wk [0, X0 )] } [3.191]
Yet another partial integration gives

Jop = — % d205w{3a [\/ﬁ(gabsuu + ieabauu)k“ [abX”e"k'X(")} ]

+ O

V(g% +ie®a,,) k" {&LX peikX WL] } [3.192]

We use 0,(,/gv*) = /9 Vv and the fact that the covariant derivative of g, /9 and eab
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is zero:

Top = — % d%&,.;\/g{va

(9%, + 1€a,, )K" [&;X”eik'x(”)] ]

+ V

(g“bsw + ieabau,,)k‘” [aaX“eik'X(”)} r] }

= — % /d205w\/§{(gabsw + ieabaw)k"va [abX”eik'X(“)}

T

+ (gabsuu + ie“baw)kl’vb [&X“eik'x(a)] } [3.193]

Let us now focus on

To = (g™ s + i€ )k V, |9, XX )]

T

= (g“bswﬂ‘e“baw)kﬂ{[vaabxyeik’x(“)] + [abX”z'kAvaXAe“*X@U [3.194]

r

We replace 0, by V,, in the first term and V, by 0, in the second term. This is allowed as
they both act on worldsheet scalars.

_— (g“bsw + ie“bam,)k‘“ { [VaVbX”eik'X(")} i + [GbX”ikAﬁaX)‘eik'X(")} r} [3.195]

Because V,V;, = V;,V, when acting on scalars® the % part vanishes with the first term.
Thus, also changing dummy variables for the second term,

Ia — Suuku [VZX”eik'X(U)} 4 (gabS#A + ieabaip\)ik“k)\ [aquaaX,ueik-X(o)]

T

Ny
= —%stk”k” [eik'X(U)} + (gabsw\ + ie“bau,\)ikukA {&X”E)QX“GM'X(U)} [3.196]

T

Similarly

s 1
Ia:—%RkuﬂkV [eZk’X(")} + (g% + i€an, )ik, k> [abXVaaXﬂe“f‘X@} [3.197]

r r

3

VuViS = VuVaS = 8,055 — 7,05 — 0,025 +T5,0.8 = 0

C — C
asI'g, =T1%,.
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and therefore

Jop = g;/dQU(Fw\/g{o/R (—;swk“k”> {eik'X(”)}

(g +ie) (surk B + sy kil ) [9,X7 0, X0 X )] } [3.198]

Let us now consider the case where both functional derivatives act on the 9, X*0, X*.
This gives

ch d2 d2 /d2 //f(gabsuy + ieabaw)&;\/A(a’, O'I/)

2a’
[6“8 532(0" — o)V 8,82 (0" — o) + 80y62 (0 — )M D,02 (" U)} [ei”(“)}
[3.199]

We interchange integration variables ¢’ and ¢” in the second term between brackets and
use A(d’,0"”) = A(d”,0")

ch _ JC / d20'd2 ld2 /,f(gabsuu + ie“baw,)(swA(o*’, O_//)

X M 0,0% (0" — 0)0y6% (0" — o) {eik'X(U)] [3.200]

r

We use a,,n" = 0 and the chain rule for derivatives of the delta function, then perform
our first partial integration

Toe = 25 /d20d20/d2 ’/ﬁg“bsl’jéwA(a’,a”)(?ﬁQ( )a 52( 0’) [eik-X(a):|

r

= — O;/dzadza’dQU”\/ggaszagcswA(U’,0”)0;52(0/ —0)6%(0" — o) [eik'X(J)}

T

= — Zj/d2ad2a'\/§gabsﬁ8b5wA(0/70)8;52(0/ —0) [eik'X(”)L

[3.201]
We follow with the second partial integration
Toe =2 / N NG N G
dQU\/gg“bs//jaéﬁbéwA(al,a) s {eik'X(o)]r [3.202]
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We now use (3.6.15b) and then partially integrate two more times
_9e [ 2 abpl ik-X (o) 9e [ 2 abp [ ik-X (o)
Joc o /d o\/99 5u60‘ VaOpow [e ]r 5 d G@b(SwVa{\/Z]g Shy [e L}
— % [ 3259 dw+/g ab ghixy {eik'x(”)} = —i-& d*o6wd {\f abghixy {eik'x(o)} }
=-% h0w+/99" sV =+% b iv99" 8, Va )
=+ Je dQU(SwfV { abgiyy [eik'X(U)} }
- 6 g b g nYa .
= 4+ ge /ngéwﬁgabsﬁvbva [eik'X(U)] [3.203]

6 r

use [3.179] and the fact that gV, V, [e*X(?)] = v, [¢’*X] , remember scalars!
Je a/ ik- X (o a v k-
Joe = 5 /d205w\/§s§{6k2R [e kX ( )L —kukyg b [%X“&,X e kXL }
_ e / d%aw\/g{a’}z <1k23§> [eik'X@L +gab (—;kukys§> [aaXMabX”eik'X]r}

2 18
[3.204]

We can now bring all the contributions together. They are of the form
bwhi =% / @0 /g 0{ (95 + i) |0 X"0,X1eH X 1o/ R |HX)
[3.205]

The contributions form the different parts to s, a and f are summarised in the table below.

Spw Auw f
jl 4k,uku¢ - *%k2¢
«72(1 _k2s,uz/ _k2a,uz/ -
N k')‘kluS)\,, + k)\kHSy)\ k)‘k#am, + k)‘k#ay)\ 7%]{1“]{3115#1,
jZC _%Sﬁkuku - 1718k2$§
g - - —k*¢

Table 3.2: Weyl transformation of the massless vertex operator; contributions to [3.205]

Thus
1
Suv = — k28 + K ks ay + K ks — gsﬁkﬂky + 4k, k¢
au = — k2a, + K kan, + BN ua,n
= — kQaW + k”\kuaw\ — k’\kua,,)\

1 1
f=— gk% — gk“k”sw + ﬁk%ﬁ [3.206]
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We need to compare this with Polchinski’s (3.6.17), with v = —2/3, i.e.

1
S = — k28, + K kusay + K ks, — gsﬁkuky + 4k ko
AW/ = — ]{3204“/ + k'/\k’,u,ap)\ - kkkﬂal’k
5 1., 1o,
F=— §k2¢ — ShK s + 1—81<:25A [3.207]

Lo and behold! These are identical!

3.41 p 105: Eq (3.6.18) Linking VZX* with k*R

This is actually a highly non-trivial equation. I haven’t found a simple derivation of it, but
I will show in a very roundabout way that it is correct. For this I use a derivation provided
by “Wakabaloola” on the Physics Stack Exchange, for which I am extremely grateful. As a
return gesture, the least I can do is to refer to one of his papers

D. Luest and D. Skliros, Handle Operators in String Theory, arXiv:1912.0155 [hep-th]

which we will denote by [LS] here. The building blocks of most of what follows comes
from their section 2. Any errors in my explanation are, of course, solely due to me. It is
also worth mentioning that the basis of this work is Polchinski’s earlier work published in
NBP307 (1988) 61-92.

Because of the length of the calculation, it is useful to summarise what we are going to
do. Our first goal is to find transition functions of conformal and Weyl transformations. We
will first introduce the concept of holomorphic normal coordinates. These are coordinates
in a patch around a point o7 of the manifold that are chosen to be “as flat as possible",
implying that the connections at that point vanish. This suggests that we introduce the
concept of Weyl normal ordering, which is similar to Polchinki’s conformal normal ordering
but where both points z; and z, are taken at the same base point. We will then derive the
transition function for a change of base points from o; to ¢}. This will be achieved in
[3.236]. We will then proceed to use this result to work out how a change of coordinates,
this time keeping the base point fixed, impacts a local, Weyl normal ordered, operator. L.e
we will derive and expression for the derivative of such an operator. This result is achieved
in[3.247] and shows that we cannot just bring in the derivative into the normal ordering
as there is an additional contribution that depends on the Ricci scalar and its covariant
derivatives. As an illustration of this we will show that the formula [3.260] is valid

Soa ik-X aik-X . ik ik-X
VQSV X“e (0'1)82 :8VQXMV (& (01)82 - 4 R(ol)ge (0’1)82 [3.208]
where the $---3, denote Weyl normal ordering. This shows how the Ricci scalar can
appear in expressions with normal ordering and derivatives.
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Next we turn to the case of interest, which is the case of Weyl transformations and
derive the transition function for such a transformation. This is given in [3.271]. It is then
an easy step to determine how a local operator transforms under a Weyl transformation.
This is given in [3.274]. We then derive expression for the propagator and its derivatives
in this new scheme. This allows us to focus on requiring Weyl invariance of the vertex
operators, giving us a set of equations that lead to the same mass-shell conditions (3.6.22).
This then establishes the validity for (3.6.18).

The appendix to this chapter contains a brief introduction to complex structures where
we will also derive some results needed in this section. There is a lot of work to be done,
so let’s get cracking!

HOLOMORPHIC NORMAL COORDINATES AND WEYL NORMAL ORDERING

We have the usual complex coordinates z and z on the Riemann surface M under consid-
eration. But let us be very precise. We have a chart on our manifold in which we define
holomorphic and anti-holomorphic coordinates, z and z. We define the complex coordi-
nates in such a way that at a given point o7 these complex coordinates vanish. Restricting
ourselves to the holomorphic side, as the anti-holomorphic is similar, we denote this set
of coordinates by z,, (¢), meaning the holomorphic coordinates based on a a chart around
the point o7 where these coordinates vanish, i.e. where

25,(01) =0 [3.209]

We now define holomorphic normal coordinates as follows. In that local patch around o;
go to the conformal gauge g,, = €04, = p(0)dap.* We know that in the conformal gauge
the metric and the Ricci scalar are given by

ds® = (2015 2oy ) A2, dZ gy

R= —4p(24,,%5,) 10 Oz, n p(25, 5 Zoy) [3.210]

Zoq

Here we have used the fact that ¢ = p and that 0,0, = 48%,16561. Note that we are
explicitly mentioning that these are holomorphic coordinates around the point o1, because
soon we will turn our attention to the question what happens in a point nearby ;. We
now chose the z,, (o) in such a way that at o = o , i.e. where the patch is based and only
at that point, the metric is as flat as possible. i.e.

=1

o=01

P(Zol s Zo)

=0 forn>1 [3.211]

o=01

ag[,lp(szlvszl)

4That it is always possible to chose such a conformal gauge is explained in the appendix to this
chapter, see in particular, the discussion around [3.444].
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so that all holomorphic derivatives of p vanish at o;. Mixed derivatives (holomorphic plus
anti-holomorphic) need nor vanish as we cannot generally make the Ricci scalar zero by
a choice of coordinates. Holomorphic coordinates satisfying these conditions are called
holomorphic normal coordinates,” a term that has been coined by the authors of [LS],
which I find very appropriate and hope will stick.

We now define Weyl Normal Ordering by (2.2.7), using d?z = 2d%c

[3.212]

1 1) )
OF9 = ~ | P dP A
oo e <8/ ade (21’22)5)(“(21,51)5Xu(22352)]:)

z1=201 (01)
29=201 (02)

I.e. for an operator based at o; we take the subtractions at the points z,, (01) and z,, (02).
Note that the whole toolkit of CFT can be applied, e.g. the mode expansion of the field
X* is given by

0o aglzal) (0_1)

i0., X(0)= ) ——— [3.213]
W 701 (0)

This is heavy on notation, but it emphasises that this is taken in the patch around ¢; and

that the modes depend on that patch and the base point. The same, of course applies for

the expansion of the energy-momentum tensor in the Virasoro generators.

THE TRANSITION FUNCTION OF A HOLOMORPHIC COORDINATE

Let us now consider a point nearby oy, say o} = o1+d0; and construct a set of holomorphic
coordinates z,, around that point. Recall again that by construction z, (07) = 0. If o1 and
o} are close enough that the two holomorphic charts based on them overlap, then the
transition function between the two is, by definition of a complex manifold, holomorphic:

Zai (U) = fa’lal (201 (U))
=24,(0) + 024, (0) [3.214]

This defines ¢z, (o), which is a holomorphic function as well, since f5/,, is holomorphic.
Our first task will be to determine an equation for this transition function. This is not a
straightforward thing to do and we will only achieve this in [3.236].

S>The fact that we can chose such a set if coordinates that are as flat as possible is not trivial. For
a discussion on how to go from a general coordinate system to a holomorphic normal coordinates
see the appendix to this chapter and in particular [3.468] which gives an explicit formula for the
required transition function from a set of coordinates in the conformal gauge to a set of holomorphic
normal coordinates.
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The above holomorphic transformation induces a change in metric at a generic point o
that lives in the overlap of the two patches of the form

0lnp(o) =V,, 024,(0)+ V3, 625 (0) [3.215]

Zoy 201
This transformation is derived in the appendix, see [3.452]. Let us now take the (n — 1)th
derivative of this, with n > 2 and evaluate this at the point o = o1. We use the fact that in

the conformal gauge the only non-vanishing connections are

I (o) = 22 ()”) _ 0., Inplo)
(o) = az;’;('z()@ = 0:, Inp(o) [3.216]
We find
Oz, 0np(0)| =0t (Vay, 0201(0) + V2, 020 (0)) | _
=gt [azol 520, (0) + Doy I p(0)020, (0) + Oz, 70, ()

+0-,, In p(0)0%,, (a)]

o=01

= [5301 80, (0) + O 10 p(0)0%0, (0) + Dy, I p(0) O 620, (0)

+ 8?0—118201 0Zg,(0) + 8?0—118201 Inp(0)dz,, (o) + 3501 In p(a)a?g—lldégl (U)}

o=01

_ [a;;l 5200 (0) + (027105, 1n p(0)) 6%, (o)} [3.217]

o=01

In the last line we have used the fact that we are working in holomorphic normal coordi-
nates such that 07 Inp(zo,, %o,)

= 0 for n > 1 and that ¢z, is holomorphic so that

o=01

9%, 0z, = 0 as well. Note that, as we have mentioned earlier, the mixed derivative term
8;‘;118501 In p(o) is not necessarily zero, on the contrary [3.210] links it to the Ricci scalar
R. Indeed, note that

8;‘;12 [p*16201 0z, In ,0(01)] = 8;‘;118501 In p(o) [3.218]

o=01

o=01

1

This is easily seen that noting that the derivatives 8;"‘0_12 on the p~" are zero when taken in

o1 by the normal holomorphicity condition. We are then just left with a p~! which at the
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point o1 is equal to one by the same condition. We can thus write

_ n 1 e _
820115 In p(0) = 8201 025, (01) — Zézgl (01)8%12 [ —4p 18201 8201 In p(al)]

o=01
1
= 8;‘01 024, (01) — 15201 (01)8;‘0_12}3(01)
1
= 8201 024, (01) — 15%1 (01)V§;2R(01) [3.219]

We have here, immediately written the fact that all these quantities are taken at the point
o1 and in the last line we can replace the ordinary derivatives by the covariant derivatives
because as the only non-zero connection I';, (o) = 0., In p(o) vanishes at ;.

Requiring that both at o; and at ¢} we have holomorphic normal coordinates implies
that 62;11 In p(o1) vanishes and so [3.219] implies that

1
0z, 07g, (01) = Z52(,1(al)V’;;l?]%(c;l) [3.220]

Multiply both sides by (2o, (o))" /n! and sum from n = 2 to infinity

> 1 . 1 >~ 4 N
nz:;n!(zm(ff)) azal(SZOj (Ul) = 1520—1 (0‘1)712232n!(zo,1 (O’)) vzgl2R(Ul) [3.221]

We can rewrite the LHS as
00 1 "
LHS = Z I (8?01 625,(01)) (20, (0))" = 625, (1) = (02,020, (01)) 20, (0) [3.222]
n=0

The sum is just a Taylor expansion. To recognise it, recall that
o 1 . .
flz) = Z:O 9" f(a)(z —a) [3.223]

and Taylor expand dz,, (o) around z,, (01). We thus have x = z,, (¢) and a = z,, (01), with
f = 0. It follows that + — a = z4,(0) — 24,(01). Now recall from [3.209] that the base
point is chosen so that z,, (1) = 0, albeit it that dz,, (¢1) = 0 and its derivatives need not
be zero. We thus have x — a = x = z,,(0) and so

o0

1 n
020, (0) =Y ~ (02 020, (01)) (20, (0)) [3.224]
n=0
We therefore have
1 1 n
020, (0) — 025, (01) — (02,020, (01)) 20, (0) = 10701 (01) > — (20,(0))" V22 R(0n)
n=2

[3.225]
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or, equivalently

. V1R(0)

8201(0) = 5200 (00) + (0, 2, (1)) 2 (0) + 0%, (00) Y- 2 "
n=1

R0y U))
[3.226]

where we have changed the summation index n — n+1. Let us see what we have achieved
so far. We have found an expression for dz,, (o) as a power series in z,, (o) with coefficients
that depend only on the base point ¢1. In detail

025, (0) = Z an(01) (20, (0))" [3.227]
n=0

with

ap =024, (01)
a1 = 0;, 020, (01)
. 0Zg, (Jl)VQU_lQR(Ul)
" 4(n+1)!
We know add z,, (o) to both sides. On the left hand side we get z,, (0) + 025, (), which
by [3.214] is exactly z,/(c). On the RHS this means that the coefficient a; changes to

140,,, 025, (01). Now, to first order in the change § we can rewrite this as epartialzq, 020, (1)
We can also multiply ag and a,, for n > 2 with this exponential as these coefficients are
already of the order §z,, (1) and so the difference would just be a second order correction.
The upshot of this is that we can write

forn>2 [3.228]

2y (0) = %1% TN "G (61) (20, ()" [3.229]

n=0
with

(~10 = 5201 (0'1)

ap =1
824, (01)V2E2R(o
gy = ooV Rl [3.230]
4(n+1)!
or explicitly

P o 1 _ s v?(:lR(o-l) n+1

2oy (0) = %0121 ) N 520 (01) + 20, (0) + 10701 (01) nz::l W(% (o)™
[3.231]
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Let us now go back to [3.264] and evaluate it at ;. Since p(o1) = 1 by the definition
of holomorphic normal coordinates we have Inp(c;) = 0. We furthermore have that all
connections vanish at oy, see [3.216]. Therefore

024,020, (01) + 0z, 625, (01) =0 [3.232]

For a general complex number w = x + iy we have w + w = 2z = 2Re w, thus the above
equation says that

Re [0, 625, (01)] =0 [3.233]
This means that we can write

0

Zoq

024,(01) =Re [(‘3%1 0zg, (01)] +iIm [8%1 624, (01)]
=ilm [8., 024, (01)] [3.234]

and [3.235] becomes

o] n—1
iIm (0,,. 0204 (O 1. vza R(Ul) n+1
Zo.i(O') = e [ o1 1( 1)] 5201(01)—1—2@(0)—1—45201(01);M(zgl(a))
[3.235]

The exponential pre-factor is now just a phase factor. We will shove this phase factor under
the rug, together with the one that determines the transition functions from coordinates in
the conformal gauge to holomorphic normal coordinates, see [3.467] in the appendix to
this chapter or for more details [LS].

Our final result is then

1 > VI IR(oy) 1
201(0) = 020, (1) + 20, () + 7025, (1) nzl W (20,(0)) [3.236]

This is the holomorphic transition function between two charts with nearby base points o
and o¢’. It is holomorphic in ¢, any any point in the overlap of the two charts, but due to
the appearance of §z,, (01) it is not holomorphic in the base points ¢; and o}.

THE DERIVATIVE OF A NORMAL ORDERED OPERATOR

Using the result [3.236] and the chain rule we can now work out the derivative w.r.t. the
base point o4 for a given point o

0 _ 0z4,(0) 0 0Zy, (0) 0

= 3.237
Voo (o) |0~ 9291 (00) |0 020 (@) T D291 (1) |0 0701 (0) 13:237]

— 152—



Joe’s Book (version of November 20, 2020) Notes from Stany M. Schrans

What does this mean? 0z, (0)/024,(01) is just the how z,, (o) varies when we vary the the
base point. We can read this off from [3.236]. It is just

azo'l (U) . lim 2ot (U) — %oy (U)
025, (01) 620, (31)—0 024, (01)
_ oo VI 'R(o1) n+1
. 6Z01(01) + %6201(01)271 1 W(zﬂl(o-)) -
= lim
025, (01)—0 5201 (0'1)
=1 [3.238]

But we have also a non-vanishing term for the complex conjugate of [3.236]

0%y, (0) lim Zot (0) = Zo.(0)
8201 (01) 0254 (01)—0 5201 (01)

V2 1R(o1)

5 e’} Zo n+1
0% (o) + 1020, (00) T2y — P (Fou ()"
= lim
025, (01)—0 (52’01 (01)
< V2 IR(o ) n
=+ Z n1+ ol (Zoy (o))" [3.239]
and thus
) X, VE,, R(o1) ) ni1 0
o — 3.240
024, (01) lo 82’01 ; (n+1)! z 17 ) 0Zy, (0) [3.240]
In this expression we recognise the Virasoro generatos
(70y) _ N n+1 0 #(zoy) (s n+1 0
Ly = —(25,(0)) 2. (0) and Ly = —(25,(0)) 520, (0) [3.241]

We have explicitly added the superscript (*1) to remind ourselves that these are the Vira-
soro generators for the patch around the base point o;. We can thus write

_0
8Zg1 (O’l)

Z 1 o0 VTL IR (Z )
S L Ly 242
-1 4Z n+1 13.:242]

This is an expression to the derivative w.r.t. to the variation base point keeping the point
o fixed, i.e. Wrt. 025,(01) = (247 (0) = 2, (0))|,_,, - This is a so-called passive variation
where we move the frame of reference o, to o} and keep the coordinate o fixed. We can
obtain the active variation of changing the coordinate but keeping the base point fixed
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simply by introducing a minus sign. We thus have that the derivative w.r.t. coordinate for
a fixed base point is

o) n—1
ey, L Vi, Blo1) s, )
0o, 150+ 13 T

n=1

[3.243]

From here on we are working with a fixed base-point o and so it is superfluous to keep
on reminding ourselves that the coordinates z are taking with base point o;. The above
equation thus becomes

VIR
0. = L1+~ Z nHUl " [3.244]

Let us now see what the corresponding derivative 0, does when acting on a local op-
erator that is Weyl normal ordered and is inserted at the base point o1 with holomorphic
normal coordinates z, viz an operator $.4(01)$,. We have

9:3A(01)8,

1~ V2 'R(o0) = |,
L—l+4nz:(n+1)! Ln o) (Ul) [3.245]

We can evaluate L_13.4(01)$, via the OPE of the energy-momentum tensor with the oper-
ator S.A(01)2.

L 12 A(0))2, = f{ ;l—er(z)A(w) = 20, A(01)2. (3.246]

and so we just pick up the residue of the simple pole of the simple pole of the OPE which
is, as we have seen before by translation invariance 30..4(01)3,.

We have now achieved our end result for this part. We know how to take the derivative
of a normal ordered local operator:

1 V2 R(0y) -
828A(01)8z == 882A(01)8z -+ Z nZ:l (’rL—i—l()‘l)LngA(o—l)gz [3247]

The key point here, and it is worth emphasising it, is that one cannot just take a derivative
in a normal ordered product. There is an additional contribution that depends on the anti-
holomorphic part of the theory. Note also that these results are very general. They are
valid for an arbitrary background and CFT with total central charge zero. These results are
also valid off-shell.

AN EXPLICIT EXAMPLE
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After all this hard work, let us consider a specific example. We wish to compute
TH(01) = Va2 VEXFe*X(5)9, [3.248]

As at the end of the last section, we have not written all the necessary indices, but we are
working with holomorphic normal coordinates at base point ;. This means that covariant
derivatives V, = V,, are equal to ordinary derivatives and and p(o;) = 1 with all its
derivatives at o; being zero. Replacing the covariant derivative by ordinary derivatives,
going to complex coordinates, and using our formula [3.247] for the derivative of a normal
ordered operator, we find

TH(o1) =40,20: X e* X (01)2,

o) w ik- X o) 1 . vg_lR(Ul) T 10 wik- X o)
— 420, <85X e (01)) et D o Lads s X e N (0n)2. [3.249)
— (n+1)!
We now use the OPE to compute
- ‘ d . .
Ln80:X"e® X (5))2, = 7§ %(w — 2T (0)20: X e X (0)2, [3.250]
C

Let us consider first what we need before we start blindly calculating. Because n > 1
we need a pole in the OPE T'(w)d; X*e**X(z) of order three or higher to have a non-
zero contribution. Here we have not written the normal ordering symbols as these are
understood in OPEs. We will also focus further on the holomorphic twin of this expressions,
and put conjugates at the end. We thus need the third and higher order poles of

T(w)dXHeh X (2) = — iﬁX”aXy(w)aX“eik'X(z) [3.251]

The highest order pole we get is when we contract one of the X" (w) with the 0 X*(z)
and the other 0.X"(w) with an X7(z) from the exponential. Using

1
Xt (w) X" (z) = — ia/ In|w — z|?

1 1
o v — _ =
OXH(w) X" (z) 5%
1 1
o v I S
OXH(w)0X" (z) 5% w22 [3.252]
we see that the highest order pole is a third order pole and is given by
, 1 1 m 1 ,ik° ;
w ik X - - | P Nva ik-X
T(w)oX e™*(z) o [2( 50 (w—z)2> ( 50 w—z)e (z)] +
ikt 1 ik X
_ _ 5 (w - Z)3e (Z) + ... [3.253]
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Thus
4 dw 1kHo/ 1
L.2H. XH ik-X o e AN+l ik X
novz € (JI)QZ Cz 27TZ (w Z) 2 (w _ Z)3 (Z) +

i/ kH dw ik X

T2 on.1 7{32 2mi(w — z)e (2)
o ket A

- ZO‘Q 816X (2) [3.254]

We see that the result is the same for the conjugate twin and therefore

" — V2R ok
T(o1) =420, (0: XN (1) ) 8, + Y (n+1(;1) <—w‘2 5n,1ekX(z))
n=1 )

ikt

— 420, (82X”eik'x(01)) 2. = Rz N (), [3.255]

In the last line we have once more added the bells and whistles of the normal ordering.
Consider now the first term. From [3.246] we have

4882 (BEX”eik'X(Ul)> 82 :4L_1885XM6“€‘X(0—1>8Z [3256]
We now need
. d A
L 10. X"k X () = 7{ I w0~ 2) T ()0 XHE X () (3.257]
C, T

The only non-vanishing contribution comes from the single pole in the OPE T'(w)9; X *e'* X (2),
which is easily computed as we know that ¢’*'X is a primary field, and hence so is 9; X *e?* ¥ (2)
as T'(w)0s X*(z) has no singular parts in the contour. We can thus write down immediately

0: X10,e* X (w)
C, w—z

L_10: X" X (2) = = 99:X19,eF X (2)g, [3.258]
where we have added the bells and whistles of normal ordering again at the end. This is
actually nothing but a complicated and rigorous way to explain that bring the 0, through
the 9 X* in a normal ordering, i.e. that 9; X* is anti-holomorphic.

Recall that we are using holomorphic normal coordinates so that we can replace the
ordinary derivatives by covariant ones. Thus

429, (8;X“e““'x (01)> 9, =490: X186 X (2)2, = OV, XIVeR X ()9, [3.259]
We thus find our final result for T (oq):

1o/ kP
4

Va2Vexret X (g)g, =9V, XHV% kX (01)2, + R(01)2e*X(01)2,  [3.260]
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Where we have introduce a parameter v that is equal to —1 in our case.
WEYL TRANSFORMATIONS IN WEYL NORMAL ORDERING

Let us consider a patch with base point o1 holomorphic normal coordinates zo; (o). We
now wish to perform an infinitesimal but general holomorphic change of coordinates

26,(0) = Wy (0) = 25, (0) + 026, (0) = 26, (0) + Z en (20, (0 [3.261]

Note that 0z, (0) has a different meaning than in [3.214]. Here it is a change of co-
ordinates with a fixed base point o;, whereas previously it denoted the impact on the
coordinate of a change of base point o to o}.

As we are working in holomorphic normal coordinates, the following relations are
valid, see [3.210] and [3.211]

ds® = p(2o,, Zo, )20, dZqy, with 8?01p(zal,201) = On,0 [3.262]
=01
Our aim is to find out how vertex operators transform under Weyl transformations — re-
member that we have a regularisation scheme, either Pauli-Villars or dimensional regular-
isation, that is manifestly diffeomorphism invariant and so the survival of the Weyl invari-
ance in the quantum theory is what should concern us — so let us find the coefficient ¢,, for
a Weyl transformation.
Consider, therefore, the Weyl transformation

ds® — d§* = 65¢(01)p(zgl, Zoy )d 25, dZ g, [3.263]

In order to satisfy the nitpickers amongst us, let us point out that by d¢(c;) we actually
mean 0¢(zo, (0), Zs, (0)). From [3.264] we have that, using In p = §¢

0p(o) = Vg, 020, (o) + Vi, 020, (o) [3.264]

Because both z,, and w,, are chosen to be holomorphic normal coordinates we have
2,(01) = wg, (1) = 0 and hence also §z,,(01) = 0. But recall that the derivatives of
024, (o) taken at sic are not necessarily zero.

In order to compute dz,, (o) we perform the same trick as before: we take the (n —1)th
derivative of 6z,, (o) evaluated at ooy, multiply it by (2o, (a))n /n! and sum from n = 2 to
infinity

Z i, 9,70 (201 (0 Z aggll(vzc,l 025y + Vz,, 52(,1)(0) (26, ()" [3.265]

o=01
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We now use [3.216] for the non-vanishing connections and the RHS becomes

RHS = Z 002y 02, + (02, I p)0z, + Dy, 07, + (D, 10 9)0%0, ) (0| (204 ()"
=01
= ni; ~ (32,1 02g, + (0%, Inp)dzoy + (9s,, In p)agjllazm
+(9210z,, In p)dzs, + (05, In ,0)(92;15201) ()| (201 (0))"
=01
= Z ol 9;,, 020, (0 )| (201 ()" [3.266]
=01

Indeed, all but one term survives due to the choice of holomorphic normal coordinates
and the fact that §z,, is anti-holomorphic. We complete the sum and extract the Taylor
expansion to find

Z ol zol 5¢( ZU1 Z ol 201 0z, (0 (zUl (U))n — 02¢,(01) — (8250'1 020, (‘71))Z01 (o)
n=2 o=01 O=01
= (5201 (o) — (azgl 825,(01)) 20, (0) [3.267]
where we have also used 0z, (01) = 0. We thus have
024, (0) = (azg 024, (01) zgl )+ Z 3201 (z(71 (g))" [3.268]

We add z,, (o) to both sides and use the fact that 0z,, () + 24, (0) = w,, (o) to find

o0

+1
Wo, (0) = [1 4 02,, 020, (01)] 20, (0) + Z — 1 i 9z, 0¢(0) (20, ()"
n= 1 o=01
> 1
= eazal 0201 (01) 201 + Z n+ 1 | 201 (J) (Z<71 (0))n+ ] [3.269]
n= 1 o=01

The last equation is correct to first order in d¢ and thus also §z. The argument of the
exponential can be written as

024,020, (1) =Re D2y, 020, (o1) +iIm 02y, 020, (01)

1 .
=3 [8%1 025, (01) + Oz, 0%, (o1)] +iIm 0z,, 020, (01)

= %&Z)(Ul) +41m 9, 625, (01) [3.270]
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In the last line we have used [3.264] and the fact that at ¢ = o the connections vanish.
The imaginary part just gives a phase, which we can, just as before, ignore. We thus find
our final result, the transition function for a holomorphic change of coordinates z,, —
We, (24, ), with fixed base point, corresponding to a Weyl transformation

oo
1
wg, (0) = €209 +Z +1 10z,,00(0)
n:l

(20 (a))"“] [3.271]

o=01

We can thus write for a Weyl transformation

20, (0) = Wo, (0) = 26, (0) + Z en (20, (0 [3.272]
with
€0 =0
1
g1 = §5¢)

1
e =AU 0 06(0)

forn>2 [3.273]

o=01

From standard CFT we know that local operator transforms under a general conformal
transformation as

8«4(1”‘71)(01)81001 _ 8-/4(201)(01)8201 . Z (gnLglel) 4 énf/;zﬂ)) 8-/4(201)(‘71)8201 [3.274]
n=0

As we have the ¢, from [3.273] and we can evaluate L;Z”l)gA(z"l)(Ul)ngl by contour
operation of the OPE, we thus have an explicit expression of how a local operator changes
under a Weyl transformation.

WEYL TRANSFORMATIONS OF THE PROPAGATOR

We are now in a position to really start working on showing that Weyl invariance of the
operator V; requires the conditions (3.6.16). First we need to work out the Weyl transfor-
mations of the propagator A(o’, o) and derivatives thereof in our scheme. We have

/

Ao o) = % In ‘zal(al) - zal(a)’2 [3.275]
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As per our scheme, the geodesic distance is taken with fixed base point. We wish to find
the change of this under a Weyl transformation, i.e.

o %
5WA(U,7O-) = ? In ’wﬁl (U,) — Woy (0)‘2 o 5 In |Z‘71 (OJ) — %oy (U)‘Q

/ 2

=%
2

Woy (OJ) — Woy (U)
Zoq (UI) — Zoq (0)

[3.276]

We have worked out an expression for w,, under a Weyl transformation in [3.271] which
we write to first order as

We, (0) = <1 + %&b(cl ) 2o, (0) + Z I oz, 6¢(01) (20, ((J))nJrl [3.277]

We have written d¢(oq) but it is, of course, understood that we first take the appropriate
number of derivatives of d¢(o) and only afterwards take o = o;. Therefore

Wo, <U;) — o, (0) _ [zm (0") = 2o, (a)} 1{ (1 + ;&b(al)) [zal(o’) — Zoy (0)]

R0 (U ) — R0y (U)

+Z T <al>{<zﬁ<o'>>"“—<z01<o>>”“}}

= o (20, (@)™ = (01 (0)"""
— 14+ 5<;5 (1) + nz:l . 1 , 9%, 0¢(o1) 2o, (07) = 20, (0)

[3.278]

Let us now look at the fraction in the sum. In the end we will be interested in the limit
o' = o0 = 0. First we have

3 ; — k n k n
}}11)111! pr— xhrgny + 1)y [3.279]

We will thus end up with n(z,, (0))", which we will take at ¢ = o1 and hence this vanishes.
Therefore at o’ =0 = 04

n Weq (0”) — Wgy (0) —In <1 + ;5¢(0-1)> — %5¢(0’1) [3.280]

Zo1 (0/) — %oy (U)
We have a similar contribution of the conjugate part and thus

O/

= X2 x SH0(on) [3.281]

o'=0=01 2

SwA(d', o)
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This deserves its standalone formula

/
SwiA(o, ) - %M(al) [3.282]
o/'=0=01
Recalling that our §¢ is equal to the 26w of Joe, we recover (3.6.11).
Let us now work out 9,.dwA(c’,0) in our scheme. As we will see, this has become
pretty easy in this scheme. Using [3.276] and [3.278] we have

1+ %5¢(0'1) + ngl Z(Zzl—l—il)' Z (ZU1 (0/))16(201 (o_))n—k

k=0

/
SwA(o' o) = % In

o * 07 dp(o1) & , o
~ 2 [;5¢(01) T Z M Z (201(0 ))k(zal(ff)) F + c.c.

n=1 k=0

[3.283]

where c.c. stands for complex conjugate. We now need to take the 2’ = z,, (¢/) derivative
of this and then put ¢/ = o = o7. There is only one term in the expression that then
remains, it is the term with £ = 1 and n = 1 and this gives

"' 10,, 0
8. 0wA(o’, o)) . {‘”qﬁ(al)] [3.284]
o'=0=01 2 2
Again, this deserves a standalone formula
Oé/
0. 0wA (!, 7)) = Z&Z&b(al) [3.285]
o'=0=01

This is (3.6.15a) with again §¢ = 26w
Let us do one more derivative: 9,/0:0wA(o’,0). This is pretty simple from [3.283].
There are no mixed 2’ and z terms so that expression vanishes

0.10:0wA (0, 0)) =0 [3.286]

o/'=0=01

which is (3.6.15b) for v = —1.
WEYL TRANSFORMATIONS OF THE VERTEX OPERATOR V;

We can now calculate the Weyl Variation of the operator V; in the new renormalisation
scheme. Recall that we already did this for using the renormalisation in Joe’s book. But
in order to do that we had to assume (3.6.18) was valid. In our new renormalisation
scheme we can calculate this Weyl variation, without having to assume (3.6.18). As we
have already done most of the calculation, we will not repeat everything. The reader is
referred to the derivation of (3.6.16) on p105 for all details.
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We can immediately go to [3.175]

owVr = % /d20{ — 20/ $\/g(V?ow) {eik'x(")]

w

1 b . _ab 2 132 I ron 0 0 ik-X (o)
- a 5 a 5 A ’ aXM X Vel o
+ 2\/§(g S + 1€V ay, )/d o d?o"owA(o o )(5X>‘(O'/) 5% (07 [8 hX"e N
+ 1\/§a'g5R/d2a’d20"5wA(a’ ) 0 0 [eik'X(")} [3.287]
2 T I8XAa!) 6 X\ (0") w
We are denoting the renormalisation based on Weyl normal ordering by [- - - |,. We are tak-

ing into account that due to the fact that we are using a different renormalisation scheme,
we have assumed a different ¢. Once more we take the three lines separately. The first line
gives [3.177]

T = —29.0 / d2dw\/g V0, [ei”(“)} [3.288]
We know that we need to be very careful now with derivatives and Weyl normal ordering.
Let us first check 9, [e**(?)] . Eq [3.247] tells us how to bring a derivative in a Weyl
normal ordered product

0. [#x] = [peex)] 433 VERO [onxio 13.269)

Let us first check the second term. We have

~ , dw ,
ik-X (o) _ . \n+l ik-X(z)
L, [e ] 72 2m_(w 2)"T T (w)e

w

= d—w,(w—z

)n+1
c, 2mi

[3.290]

(a/k2/4)eik~X(z) N azeik-X(z)
(z —w)? z—w

The first term of the OPE gives a (2 — w)"~! and the second a (2 — w)". For n > 1 neither
of these contributions give a pole and so

i [e“f'X(‘ﬂ —0  forn>1 [3.291]

w

and therefore

9, [eik’x(”)} = [&Zeik'x(")} [3.292]

w w
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The same holds, of course, for its complex conjugate and hence
Ve, [eik-X(a):| v [aaeik-X(o')]

= ik, V" | Vo XX [3.293]

w

=V ik 0, XX ()|

w w

But now comes the fruit of all our hard work, because we already calculated this in [3.260]

ve [vaeik’f(")} — ik, [aaxuaaxvei“@} LR o) [ei’f'X] [3.294]

w w w

We thus find

~ . o VP .
Ji= — 299 / dodw/Gik, {zk [0, xrgex kX)) 4 1 " o) ] ]

w4
& / 2o \/§5w{ (vo'k20R) ]

+ <4I<:Mk:,,¢~>) [aaX“a“X ”e“‘*X)}W } [3.295]

Note that this is exactly the same result as in our previous calculation, [3.180] if we set
v = —2/3 and ¢ = ¢ as per Joe’s book.

The third line is identical to the previous result, as there are no derivatives to mess it
up:

J3 = g2c/d20\/§5w( — o/qugR) [eik'X] [3.296]

w

Let us finally focus our attention to the second line. If both functional derivatives act
on the exponential we have no derivatives to worry about and we can, once more, just take
over the result from our previous calculation, [3.185]

Joa = ‘% / d*o/g6w (9" (—k*s) + €™ (=K ayu)) [8aX 1O X" et X [3.297]

W

If one functional derivative acts on the exponential and the other on 9.X, then the previous
calculation is valid up to the point where we will apply derivatives on the Weyl normal
ordered local operators. This means that we can just take over up to [3.193]

w

TJop = — % d205w\/§{(gabsw +i€%a,, )K"V, [(%X”eik'x}

(0" sy + €, )BT | Da XX | } [3.298]
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We will consider the symmetric and antisymmetric part separately
Ty = =5 [ d*adw {suhve [vaxveik'x}w + 8, K7V [vaX“eik'X]w} [3.299]

We can again use [3.260] and the symmetry of s,

Tap = — 1gc / d*o0wN/g8 k" { [VGX”V%““‘X} + m’zk”R {eik-X}w}

+ mZkVR [e““'X ] W} [3.300]

w

= - igc/dQUﬁdwswk“ {ik)\ [8aXVaaX/\eik~X]

w

Note that we can simplify the first contribution as, ignoring pre-factors,

Sk |0uX7 09X RX] = s itk [0,X7 0P XN |

- %gab (srk b+ sk [G:X“(?bX”eik'X]w [3.301]

We thus find for the symmetric part

Top = % /d2g\/§5w{a’R (%swk‘“k”) [eikpX}

w

g (sak sk ) [0,X0 00 X | } [3.302]
Let us now focus on the antisymmetric part
Ty = = ¢ s /gic"au (K, [0,X" e Y| 4179, |9, x5 X] L [3.303)

The only non-vanishing component of ¢*” is ¢** and so we have
Tp = — % d2‘75W\/§i622aW{kz“Vz [82Xu6¢k.x]

We can again just take over [3.260], without a factor of four. Note that the second term in
[3.260] will bring down an extra factor of k* resulting in a combination a,, k*k" which is
zero by antisymmetry of a,,. So we get

Tap = % /d205w\/§iez‘zaw{k”

:g;/dzaéw\/giezza,w{k” -(%X”ik,\azX/\eik'X]

RV, [GZX“eik'X ] N } [3.304]

w

agxyazei’f'X] R [@X“@geik'x} N }

w

- e [aZX%k:AagXAeik'X} N }

w

=% / oo /gie a, (K X ka0, XX 4k [0,X0ik, xRN

w

& / Podw/gie™ (sak hy + sk k) |0,X100 X7 ek X | [3.305]
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Adding the symmetric and antisymmetric part we find

T

Jop = QQC/dZan\/g{O/R <%ka“k”> [eik-X(g)}

This is the same result [3.198] as in our previous calculation, if we set again v = —2/3
there.

Let us finally focus on the term where both functional derivatives act on the 9, X#9, X".
Once again, we can follow the calculation from the past as long as we don’t mess around
with derivatives of operators. This means we can go straight to [3.202]

Toe = % / &0 \/59"s0L 0w Ao, 0)

[eik'x (0)} [3.307]

o'=0 r

But the only non-vanishing metric components are g** and we have shown in [??] that
0,0:0wA (0, 0)) = 0 and so in Weyl normal ordering we simply have

o/'=0c=01

Joc =0 [3.308]

Bringing the results together, we find We can now bring all the contributions together.
They are of the form

owVi = % /d20 \/§5W{(gabsw + ieaba;w) [%X“E)aX”eik'X(g)] ] +d'Rf [eik'x(ﬂ)} r }
[3.309]

The contributions form the different parts to s, a and f are summarised in the table below.

Spw A f
«.71 4kuku¢ - ’VkQ?b
j2a _kQSuV _k2auu -
Tap kAkMS)\l, + k)‘k#sw\ k)‘k#a)\,, + k/\k#a,»\ %k“k”sw
Jac - - -
J3 - - —k*¢

Table 3.3: Weyl transformation of the massless vertex operator; contributions to [3.205]
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Thus

Sy = — k28 + EMeusay + K ks, + 4k k¢

A = — k2a, + kkuan, + BN ya,n
= — Kau, + K kua, — K ka,n
f=(y— k% + %k“k”sw [3.310]

Requiring Weyl invariance of the vertex operator V) requires thats,, = a,, = f = 0. We
can now go through the same reasoning as for (3.6.22), which we briefly repeat here. First
we take an n satisfying n> = 0 and k - n = 1. Also n*s,,, = n*a,, = 0. Start by requiring
Swntnu = 0. This means

0= — kzsu,,n“n” + k¥ spont'n” + k kY spontn” + 4kukyn“n”d~> = 4(]3 [3.311]
so that
b=0 [3.312]
Now require s,,,n* = 0. This gives
0= — kzsm,n“ + ky kY spont + kukY spont = (k- n)k¥s,,, [3.313]
so that
ks, =0 [3.314]

Similarly, requiring A, n* = 0 leads to

0= — k2auyn“ + k kY ayon” — ky kY aynt

= (k- n)kay, [3.315]
so that
kta,, =0 [3.316]
Finally, requiring s, = 0 gives
0= — k%8 + kuk“ s + kuk“ s, = —k*s, [3.317]
and so also

=0 [3.318]
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Note that s, = 0 just means that there would be no symmetric part. We now see that
a,,, = 0 is also satisfied and so is f = 0. We have exactly the same on-shell conditions as
from the renormalisation scheme in Joe’s book.

We are now, finally, in a position to argue (3.6.18). And it is now pretty simple. Using
a the Weyl normal ordering renormalisation scheme we have found the above mass-shell
conditions as in Joe’s book. Going back through the calculation of the on-shell conditions
in Joe’s book we see that these can only be satisfied if (3.6.18) is valid. As physical results
should be independent of the renormalisation scheme and mass-shell conditions certainly
are physical results, this shows that (3.6.18) is indeed valid.

3.42 p 106: Eq (3.6.20) The Independent Parameters of the Massless
Vertex Operator, I

Let us first consider the change in a,,, . This change will only impact 4,,,:

Ay = Ay — K2(Cuky — kuGo) + ko kN Cukor — kuCn) — kb Gk — kG
= Ay — K*Cuky + K2k, + K2Cuky — (k- Okyknu — K2kuCy + (k- Okuky
= A [3.319]

and so
OwVi(spvs apw + Cuky — kuCuy @) = 0w Vi(suw, apw, @) [3.320]
Similarly, we find
Sy = S = K (Eub + kubntt) + kN Eukn + k) + Bk Ekor + ko)
~ SRk 20k €) = Shuk, 20k 8

=S — K¢k — B2 ku&ou + K2k & + kuky (k- €) + K kyay, + kuky (k- €)
— 2k, ky (k- &) = S, [3.321]

We also have

5 ,( 1 Loy 1,2
FoF = 32 (<5009 = PR 6k, + Ri) + 1H200 -9

5 2 1
—F S 2L Kk = F 3.322
+ [9 5+ 9} (k-€) [3.322]
and so
1
5WV1(5,uV + fukl/ + kp,fl/u Ay, ¢ — gk : f) =owW1 (Sp,lju Ay, ¢) [3.323]
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3.43 p 106: Eq (3.6.21) The Independent Parameters of the Massless
Vertex Operator, II

Let us chose our axes so that k = (1,1,0,---,0). It satisfies k2 = 0 as it should. n is then
necessarily of the form n = (—%, %, ) in order to satisfy k- n = 1. Now n? = 0 implies
2 = 0 and so 7 = 0. We can thus always chose

k=(1,1,0,---,0)

11
n=(=5,5:0,0) [3.324]

Let us now start from a general s, we allow a transformation (3.6.20a) but require that
the transformed field satisfies (3.6.61), i.e.

0 =n"(su + Euky + kL&)
=ntsu + (n- O +¢& [3.325]

Let us write this out explicitly. For v = 0, 1 we have
1 1
0= 5(—800 + s10) + 5(50 +&1) + &o
1 1
0= 5(—801 + s11) + 5(50 +&)+& [3.326]

This is easily solved for &, and &;:

1
§o = 3 (3s00 — 3510 — S01 + S11)
1
& = g (—800 + s10 + 3s01 — 3811) [3.327]
The other equations are, forv =2,--- ,D — 1
1
0= 5(*501/ + 511/) + fl/ [3.328]
which is solved by
1
& = 5 (s00 = 510) [3.329]

In other words, given an s,,,, we can always transform it to a new form that satisfies n*s,,, =
0 and still has the same Weyl transformation. A similar argument holds obviously for a,, .
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3.44 p 106: Eq (3.6.22) The Independent Parameters of the Massless
Vertex Operator, 111

Start by requiring S, n#n"u = 0. This means

0= — kQSWn”n” + k kY suntn” + k kY sy ntn? — (1 + v)kukysontn” + 4k, k,ntn" ¢

= [~(1+7)s8 + 4] kukonn” = [=(1 +7)sg + 4] (k- n)* = —(1+7)s + 49 [3.330]

so that

Now require S,,,n* = 0. This gives

0= — k?sunt + kb spun® + kuk® spunt — (14 7)kuky sSnt + 4k, ky,n*¢
= (k- n)k sy [3.332]

so that
ks, = 0 [3.333]
Similarly, requiring A, n* = 0 leads to

0= — k‘QaWn“ + k kY apon — ku k% ayont
= (k- n)k"ay, [3.334]

so that
kfa, =0 [3.335]
Finally, requiring S, = 0 gives

0= — ks + kuk“ s + kuk“s00 — (1+7)kuky s + 4k, k¢
= — ks, [3.336]

and so also
K2 =0 [3.337]

Note that s, = 0 just means that there would be no symmetric part. We now see that
A, = 01is also satisfied and so is F' = 0.
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3.45 p 108: Eq (3.7.5) The Graviton from the Background Field

Expand the exponential of (3.7.2) using (3.7.3) to linear order

dncd /dza \/§9ab(77m/ + XW(X))(%X“&,X”]

exp[—S,] = exp [—

- /d20 ﬁg“bnu,,@aX“abX”]

= exp [—

1
. [1 drd / @0 /99" X (X)0a X Op X" + - ] [3.338]
If we now set
X (X) = —dmgee™ X s, [3.339]

then we find
exp[—S,] = exp[—S)] [1 + % /d20' VI 98, (X)X O XV e X 4. ] [3.340]

with S, the Polyakov action. Using the formula for the massless closed string vertex oper-
ator

exp[—S,] = exp[—Sp] [1 + Vi(spw, ap = 0,6 = 0; X) + - - ] [3.341]
and so the linear term in G, (X) gives an interaction that comes from the insertion of a

vertex for a symmetric 2-tensor, i.e. a graviton, with spacetime momentum k*.

3.46 p 109: Eq (3.7.7) The Spacetime Gauge Invariance of the Anti-
symmetric Tensor

We have, renaming dummy indices and using the antisymmetry of €
(0,6, — 0,€,) 0 X XY = 2¢"°0,,6,0, X" 0p X" [3.342]

Using partial integration
/dQO' O'eabaugyaaXuabe = /d2{0’ Oq [\/EeabayfyX‘L@bX”] — 0O, [\/E Eabaufyaqu} X“}
- / &0 {aa [ﬁ eabaugy)(ﬂabx"] /o eabaugyaaabX”X“}
= / d*c 9, [ﬁe“baﬂgyX“abX”} [3.343]
We have used the fact that by definition \/ge'?> = 1 so that 9,(\/ge®®) = 0 and that

€9,0bX" = 0 by symmetry. We thus see that under such a transformation S, is indeed a
total derivative.
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3.47 p 109: Eq (3.7.7) The Spacetime Gauge Invariance of the Three-
Tensor H,, .

6Hw,u1/ — 8&)(8#51/ - 81/5#) + 6#(6115(» - awgu) + au(awg,u - 6,u£w>
= &uaufzx - awauf,u + a,uaufw - a,uawgu + auawgu - aua,ugw
=0 [3.344]

3.48 p 110: The Most General Classical Action Invariant under a Rigid
Weyl Transformation

The point is that adding additional derivatives can only come in pairs J,X*0, X" com-
bined with a worldsheet metric ¢?°, otherwise we can’t have a worldsheet diffeomor-
phism invariant action. If we have n = 2k such derivatives then the action is of the

form [ d2cr\/§galb1 ...g%b ... where we have only written the terms that change un-
der a Weyl transformation. But under g,, — €2¥, with w constant, then this changes
into e?=2k)w [ @25, /ggaibi ... g%k ... We can thus only have invariance under rigid Weyl

transformations if we have n = 2k = 2 derivatives.

3.49 p 110: Eq (3.7.11) The Linear Approximation of the Non-linear
Sigma Model

Using the definition of the Polyakov action and the Vertex operator V;, one find to linear
order

Sp=8,— Vi =

yr— / 20 /G §10a X" 0p X"

B % /dQJ V9 [(gabsl“’ +ie%au,)0a X" Op X e X + o/<bReik.X]

1 , .
/dza \/§{ [gab (77,“, — 47rgcsm,elk'x> + e (—47rgca,we’k'X> }

4o/

X a X XY + 'R (—47rgc¢eik'x) ] [3.345]

Comparing this with the no nonlinear sigma model, we indeed find to linear order,
G,Lw (X) =Nuv — 47rgcslu,ueik.X
B, (X)=— 47Tgcaweik'x

B(X) = — dmgepettX [3.346]
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3.50 p 111: Eq (3.7.13) The B Functions to First Order

Recall first that all these equations are valid as operator equations, so we can use (3.4.6)

1
Sl ) = - /d20\/§5w(a)<T§(J) . [3.347]
We split the S, again in the Polyakov and vertex part. The Weyl transformation of the

Polyakov part is simply the Weyl anomaly (3.4.15)

. ¢ D —26
(T)e=—h=—"3 R [3.348]

The Weyl variation of the vertex part is given by (3.6.16)
owhh =% / @0 /5 60(0){ (9 Sy + i€ ) |0 X9 XX 4 o/ PR X))
1
- / 20 \/G6w(0)(T,)%(0) [3.349]

with S,,, A, and F given by (3.6.17). We have written it is the form of (3.4.6) in the
understanding that this is valid as an operator equation. We can thus write

(To)g :(—QW)%{(gabSW + ieabAw,) aaXuaqueik.X(o)} + O/FR [eik-X(o)} } [3.350]

We thus have, combining both parts

. . D — 26
TS = — gem(g™S, + i€ A, ) 0u X HO XV R X — guma/ F R X — —5 R 13.351]

We have dropped the renormalisation symbols for convenience. Let us write this in the
form (3.7.12)

1 : 1
To = —— B0, g0, X 0, X" — — B €9, X 9, X" — =f*R [3.352]
2a 2a 2

a 1%

Let us break this down in parts top avoid long formula. We start with the last term

D —26
12

1 ,
—iﬁq)R = —gcﬂa'FReZk'X — R [3.353]

Using (3.6.17c¢) for F' and taking from here on v = 0 we find

D — 26
6

) D — 26
= 2g.ma/ ¢ QX 4 — = [3.354]

BT = 2gema (—k?p)e™ ™ + c
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Note that here 9% and later 9, denote derivatives w.r.t. the spacetime field X* and not the
worldsheet coordinate o®. We now use the definition of the dilaton field ®(X) in (3.7.11c)

1 D — 26
B =2¢g.m/ (— 82¢) +
4mge
D — 26 !
= %a% [3.355]
Consider now the second term
—% fyeabaaX“abX” = — gCTrieabAW(?aX“ﬁbX”eik'X [3.356]
(6%

Using A,,, from (3.6.16b) we find
fye“baaX“abX” = 2o/gc776ab(—k2aw, + k kY ap, — kukwaw)ﬁaX”ﬁbX”eik'X
= 2a'gc7rea68aX“3bX”(aW82 — 0u,0,0% + awa#aW)eik'X [3.357]
We use the expression for B,,,(X) in (3.7.11b)

1
B0, X X" =20 g.me™® 0, X' 0p X" <— I ) (0°Byw — 0,0% By, + 0,0°Byy)

" e
/
= - %e“baaX“ﬁbX” (0°Byy — 0,0 By + 0,0° B, [3.358]
from which we get
/
B o 2 w
= = 5 (0°Bu = 0,0° B + 0,0°Buu)
/
- %aw Hop [3.359]

where we have used the definition of the field strength (3.7.8). Finally we take the first
term

1 .
—Twﬁfygabaamabxy = — g™, 0, X Oy XV kX [3.360]
Using the definition of S, in (3.6.17b), setting v = 0 and ignoring the g?°0,X"0,X" we
have
BG, =20/ gem(—k? s + bk Speo + kuk® s — Kk s + Ak, ¢)e™
=20/ 9o (8, 0% — 8,w0,0% — 5,,0,0% + 20,0, — 460,,0, )e'F X

20/ il ad w w
= — 47:; (0*Xuw — 000X o — 00 X + 0,0y X — 40,0, P)
/
- %(azxﬂ” — 0v0"Xpw — Op0” Xow + 00 X5) + 20/0,0,P) [3.361]

where we have used (3.7.11) and the fact that G, = 7, + X to that order.
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3.51 p 111: Eq (3.7.14) The 3 Functions with two Spacetime Deriva-
tives

We will not derive all these equations in detail. But let us remember that it was already
argued before that the string action leads to spacetime general coordinate symmetry. We
should thus not be surprised that if we add higher order terms, (part of) these will organise
themselves in spacetime covariant derivatives. What we will do is two things and both are
related to 35,

The first thing is just point out that if we would work out the spacetime Ricci tensor
R, to first order in G\, = 7., + X One indeed recovers the relevant part of (3.7.13a).
This is a straightforward calculation which we now sketch. We expand the spacetime field
G v = Nuw + Xuw, use it to raise and lower indices and work to linear order. We then have
G" = 1, — X The spacetime connection is then given by

1 1
]‘-‘Zl/ = 590)\(8“9)\” + 81/9/\;1 - aAg;w) = 5(3;0(5 + aVXZ - 30)(#1/) [3.362]
The spacetime curvature tensor is

R}, =0,I\, —O\I,, + T, TN — T4 TV,

1
= 5(8081»(!; - a)\auxg - aaaMX)\y + 8)\8NXG'V) [3.363]
and the spacetime Ricci tensor is
1
R, = Rﬁu,\ = 5(3;@/)(‘,\‘ - 5,\3VXZ - 8“3“)()\,/ + 3A5“X;w) [3.364]

We see form this that o/ R,,,, gives exactly the x dependent part in (3.7.13a)

The second part is more involved. We will show how the H? term appears in BEV.
This is actually the subject of exercise 3.11 and is quite instructive to show here. This
solution is taken from Matthew Headrick who has published the solutions to about half of
the exercises of Polchinki’s book in arXiv:0812.4408 [hep-th].

We start by a simplification. Since our interest is in the H? term we might as well take
G to be constant, ® to vanish and B,,, to be linear in X. This means that we can write
By, = by, X¢ for some constant b,,,. The antisymmetric part of the non-linear sigma
model action then becomes

SA = / 20 /G i€y X© 0 X O XY [3.365]

At the end of this section, we will argue that it is only this linear contribution that we need
to be concerned about in checking the Weyl invariance. Let us now consider this, partially
integrate and use the fact that 9,(,/ge*) = 0,

VIEP XM, XV 9y XY =0 (e\/g XHDu XV 0y X*) — XDy (¢"0/g X O X*) [3.366]
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The first term vanishes as it is a boundary term and in the second term we use 9, (e®,/g) =
0 and the fact that the 9,0, X% vanishes when contracted with ¢?*. We do the same trick
again

e\ /g XPO XV OpXY = — €\ /g XV 0, X Oy XY = +¢™\ /g 0p X" 0y X' XY [3.367]
We can therefore write
1
SA = / d?o gie“bbwwg(X‘”aaX“&)X” + XFO, XV XY 4+ XV 9, X“Op X M)
1
= /dQO' gieabg(bww + Do + buwp) X0, XM 0 X" [3.368]

In the linear approximation, the field strength is then given by

Hepw =00 (bou X ) + 04(bgpwX?) + 0y (bowp X7)
= o0, + bovwdy, + bowudy = bupw + buvw + buwp [3.369]

Therefore

1
SA = / d’c gie“bgﬂwx%)ax#abxy [3.370]
In this approximation the non-linear sigma model becomes

Sy = / d*o \/g <ngabaaX“abX” + ;e“waWXwaaX“f?bX”) [3.371]

Now go to the conformal gauge and use complex coordinates. Remember that
VI 90, X XY =4(0XHDXY + DXHOX")
Ve X XY = — 4i(0XHIXY — OXHIX") [3.372]

plus d?z = 2d?c and we can write the action as S, = Sy+; with

1 _
So =G [ d*20X"0X"

2ma!

1 _
S =——Hyu / d*z XUoX'9X" [3.373]
6ma’

Sy is the the action for the free theory and S; is the action for the interaction, which we

will treat as a perturbation. We can expand the expectation value of some operator O(X)
in the path integral formalism as

(O(X)) = /[dX] O(X )¢50 :/[dx] O(X)e=S <1—Si+253+~->

= (0(X))o — SIO(X))o + 5(S2O(X))s [3.374
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where (---)o denotes the expectation value taken in the free theory. We have already
calculated the Weyl variation of the first two terms. The Weyl variation of the first term
leads to the Weyl anomaly term proportional to D — 26, whilst the Weyl variation of the
second term gives a term linear in H,,,,, precisely the term that we find in fy in (3.7.13b).
It is the Weyl variation of the third term, that is quadratic in H, that interests us and
in particular the part proportional to [ d?z (0X*0X"---)o as that is the part that will
contribute to Bf,,. Focussing on this term

1 2
<67T0/> Hw“,,Hw/M/V//dQZdQZ/

: XY(2,2)0XM(2)0X"(2) 1 : XY (2, 2 XM (NI XV () - - >0 [3.375]

We have written out the normal product signs explicitly and also notice that X is neither
holomorphic nor antiholomorphic, but depends on z and z. To calculate the Weyl variation
of this, we will only need the singular parts of the OPE. Indeed the nonsingular parts
becomes zero after the integration. In working out the OPE we need to identify the singular
term with in the numerator a 9X0X as that is the structure we are looking for. Hence we
need to perform two cross-contractions. To calculate how many such terms there are,
let us first identify how many possibilities there are to keep one uncontracted factor in
each normal order product. This is clearly 3 x 3 = 9. We then have two contractions to
make between twice two factors and this can be done in two ways. In total there are thus
9 x 2 = 18 possible terms.

Let us work out one such term. The contraction we need to use is from the free theory,
ie.

o 9
XM(z,2) X" (¢, 2) = _EGW In|z — 2| [3.376]

consider the case where we contract X“(z, z) with &' X*'(2') and X" (z) with X*'(2/, 7'):
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This term gives

1 y 1/ 1)
§<S7,2 >(()) ( > kuun/“/y//dQZdQZl

6o’

|—|,_|—| o
x X¥(2,2)0' X (') X" (2)X @/z@<:&x#@ﬁyXW(yy-u>0

1/ 1\? - o )
=5 (6770/) kuunWu'/d zd*? <—2G“’” d'In|z — 2|

o vw' 9 12 . I A A A
x<—2G Gmk—z|><6X(@8X @)>0

1
= Hw;uwa w V/GM'LL Guw /d2Z d2z/

29872 2 —

1 / 1 S
_ W v 2, 72,/ . I3 XV (Z) ...
= 298772H wt M/V//d zd°z | e <.8X ()0 X" (Z) - >0

z—z
1

A 2 2
= — 298777-2H#)\MHV w d Zd Z/

1 = _
m <: aX“(Z)a/XU(Z/) R >0 [3377]
In the last line we have renamed indices and used the symmetry of H,,,. It so happens
that the 17 other terms give the same contribution. Therefore

1 2 1 Aw 2, 72 3 vV(z
§<SZ t '>O = _@HMAWHV d°zd“z ,m< 8X” )0’X (Z/) Lo >0 [3.378]

This integral is logarithmically divergent at z = z’. The expectation value has no other
singularities as it is normal ordered. We can thus also expand 2’ around z in the expectation
value and find

1

1 2
Bt 0= " g

- 1
Aw 2 . V(iz) . 2
H\H, d*z (: 0X"(2)0X" (2) : -~~>O/d 4 P [3.379]

We need to regularise the last integral in such a way that it remains diffeomorphism invari-
ant (as we don’t want to introduce an anomaly in that symmetry!). The diffeomorphism
invariant distance at short distance is given by (3.6.9), i.e d(z,2') = |z — 2’ ]e”(z). We can
thus introduce a diffeomorphism invariant cut-off in the integral at |z — 2’| = ee~“. In polar
coordinates the last integral then becomes

2 o)
/dzzflz/ rdr/ d9_27r/ dr
’Z - Z/’2 ge—w T

= — 2w lnee™ ¥ + terms independent of w
= — 27wlne 4 27w + terms independent of w [3.380]
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We need the Weyl variation of the expectation value, i.e. the transformation under a change
w — w + éw. Thus

1

1672

= — 8% /,L)\wHV)‘w d2Z 5&)(2) <: 8X:U'(Z)5XV(2) . >

HooH | dPz (: OXH(2)0XV(2) -+ ), X 2mow(z)

L, 2
5W§<Sz‘"'>0: 0

0 [3.381]

Rewriting this in a worldsheet covariant way and taking into account that an expectation
value in the free theory will only differ by higher order terms to an expectation in the full
theory, we can write

5w%<5i2 )0 = = m%HWH,,M A0 /G 0w(0)g™ (: B X XY - ---)
= - % / d* \fgw(o) (T ) [3.382]
with
Tl = é e, [3.383]

According to the definition (3.7.12) this gives a contribution to BED of the form

O[/

8%, = — ZHWH,,M [3.384]
Adding to this result the fact that the we already showed how the spacetime Ricci scalar
appears and that we can replace the partial derivatives by covariant derivatives, we recover

(3.7.14a).

In the above derivation we assumed that B, was linear in X. Let us discuss what
happens if we drop this requirement. Clearly a constant term will not impact the discussion
as this reverts us back to the original antisymmetric part of the vertex operator. Recall what
happened with our linear term. We basically had to work out an OPE of the symbolic form
(X0X0X)(X0X0X). In order to be left with a product 9X9X we need the contractions

—1 M

X0X 0XX. This gives us a 27 'z7! = |z|72 = 72 which led to the integral [ dr/r giving
us the logarithmic divergence we regularised.

Let us now assume that B, depends on 0X. Note that this is now a worldsheet
derivative. We start with just one 9X. We then have to take two contractions between
(0X0X0X)(0X0X0X). But if we are to be left with a product 9X9X, this means that
we need to take two contractions between 0X9X and 0X0X. Clearly one of them needs

1 =
to be 0X0X which vanishes. If B, contains a mixture of 0™X 0"X we have the same
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issue. Leaving out a 9XJX from the product (0™X 0"X0X0X)(0"X 0" X0X0X) leaves
a different number of X and X on both sides to be contracted, and so we are necessarily
left with a contraction that vanishes. Thus, terms of the form 9™ X 9" X do not contribute
and cannot cause an anomaly.

Let us now assume that B, is of the (n + 1)-th order in X. We then need to have

contractions between (X" *19X0X)(X"T10X0X). Leaving out a product 9X9X we are
1 1 1
left with one contraction X9X, one contraction 90X X and n contractions X X, thus an

integral of the form

n 2 In"t1 2

1 In
a2z — (In|z?)" =2 / dr 1 —opx 2T
/ Z|z|2(n|z’) L Tt 1) lees

T _ 2 n+1 .
= _ [ln (66 "J) } + terms independent of w
n+1
2n+1
= — T (Ine —w
n+1

)”+1 + terms independent of w [3.385]

This will result in a contribution to the Weyl variation of the form
2”+17T(1n5 — w)25w ~ 2" LS In™ & [3.386]

In the last equation we have pushed the curvature to infinity, by setting w = 0. We see
that we recover the previous, linear, result if we set n = 0, as we should. The upshot of all
this is that that if n > 1, i.e. if we have more than one factor of X, then the possible Weyl
anomaly terms comes coupled with the divergence and can be removed a the counterterm.
We will leave it as an exercise to the reader to show that a general term of the form
Xk(9m X )km (9" X )kn can similarly be removed by a counterterm, unless it is only linear in
X.

3.52 p 113: Eq (3.7.19) The B Function for the Linear Dilaton Model
Setting G = N, B = 0and ® =V, X*, (3.7.14c) becomes

D -2
B = G 6 _ 0+ o'V, OV D +0 [3.387]

As @ is a scalar field w.r.t. spacetime we have V,® = 0, = V,, and thus we have

D—2
B = G 6 o + 'V, V# [3.388]

Requiring the g function to vanish give (3.7.19).
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3.53 p 114: Eq (3.7.20) The Effective Spacetime Action

We do this in separate steps, starting with the variation of the dilaton field

_ L D —20 2(D — 26) i JUDN n
5¢S—2ﬁ%/d x(5q>{\/ Ge 2| = S0 4 R S HunHP + 40,90"0 |

1

- H
2/4;(2)

PY: 43@8%}

_ 2(D — 26) 1
D 20, — e Sl o
d x{e (—26®)V/ G[ s TR

+V-G e‘2¢88#<b8“6¢>}
_ L D —2P 2(D — 26) i (2N L
=57 /d x{ 2e G| - =5 + R— S Hun "™ + 40,00 2]

- 80" [V=G e 29,0 }5@

1 2(D — 26 1
== /d% e 2/ -G | - (30/) +R- EHMHW + 40,04 ®
0
+4(=G) V(" =G)0,® + 4( — 20"D) D, + 4010, D | 5
1 2(D —2 1
=—— /de e 2%/ -G | — (7,6) + R~ - Hy \H" —49,0"®
K 3 12

+2G" "Gl 0,® + 4auaﬂq>] 5P

1 D —9% D-26 o o A
= — 2/{30/ /d X e —G 26@{ — 4[ 6 —+ « 3N<I>a“‘1> — 53#8“(13 — ﬂHHV)\HHV
/ ! o . ﬁ/ LU
+a R+ 22/0"0,® 4HWAH
1
— - / APz e 22— 25<1>( —48% + ﬁcjﬂ) [3.389]
0

In the last line we have replaced the ordinary derivative by the covariant derivative, used
the fact that the spacetime metric is covariantly constant, V,G*” = 0 and used the defini-
tion in (3.7.14).
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Let us now consider

1 B 2(D — 26) 1
opS =—- [ dPxdpl V= 2@[—7 R— —H, \H" 1 40 @8#@}
B 2/1%/ € B{\/iGe 3a/ + 12 UV + i
1 1 1
=== dPx \/je_m’ <—HWJ>\5BHHV>\> =— dPx \/je‘M’H“’”\éBaﬂBM
2K 6 4,{0
1
=2 [ Pz, (\/Ie—?‘bHW) 5By
0
1 1
- @ dDCL' \/je_2(b< + iG”UGMGWHW)‘ - 26M(I)H‘ul/)\ + aMH‘uV)‘> 6BV>\
0
1 D 29 o vo LU / LU o (02N
=~ g | e VGe (= FC" 7 0uGuoH"™ + /0, QH — Z0,H" ) 6B,
1
= 2w / a7z V=G e *3,5,6B,» [3.390]
0

Here also, we have replaced the ordinary derivative by the covariant derivative, used the
fact that the spacetime metric is covariantly constant, V,G*” = 0 and used the definition
in (3.7.14).

Finally we consider

_L D —2® 2(D — 26) i UV m
5GS_2Kg/d $5g{\/ Ge 2| S+ R S HunHP 440,90 o]

[3.391]

Recall that we already worked out the variation of the Einstein-Hilbert action, see [1.35]
1
5a / dPr V-G R = / dPrV-G <R,w - 2GWR> SGH [3.392]

But we need to be careful as we have an extra factor e~2®. Just as for [1.35] we split the
calculation

4
o / APz /=G e PGP Ry, =Y dal, [3.393]
a=1

with
Sli = / dPz (6aV—-G) e **G" Ry, = / de%\/ZGW(SGWe—Q‘DGPURM

1
= / dPx —Ge_n’bG“”R]éGW [3.394]
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Next,
Salo = / APz /=G (6ge **)G" R, = 0 [3.395]
Third,
oals = / P2V —G e **(56G" )R, = / dPr /=G e **(—~G"* G 5G o) Ry
- / P/ =Ge ™| — R |0G,u, [3.396]

Finally, and this is where the change occurs compared to the Einstein-Hilbert action

Saly = / dPr v/ ~G e **G"5q R, = [3.397]
We already calculated the variation of the Ricci tensor in [1.31] §R,,, = 5Rﬁpy = Vp(SFZ,,—
V., 6T%,. Thus
Scly = / A"z /=G e **GM(V ,06T%, — V., 66T%,)
= / dPz e ** [V=G V,(G"6cT0,) — V=GV, (G" 5T )]
= / dPz e ?*[0,(vV -G G"5a1%,) — 9,(V—G G"5a1%,)] [3.398]

In the case of the Einstein-Hilbert action, i.e. ® = 0, this is a total derivative and vanishes.
This times this is not the case as we get a contribution from the dilaton field upon partial
integration

Scly =2 / APz e**V =G G [0,9661Y,, — 0,061 [3.399]
Unfortunately, this time we need to work out the variations of the connections

1
66T 0 = 665G" (9uGon + Gy — 95Giu)
1
= [ — GG 5G e (0, Cay + 0y Gy — 05G )

+ GP(8,0G gy + 0y 0Gay — 050Gu) [3.400]

Recall that by covariance we can, to that order, replace all partial derivatives by covariant
derivatives. This means that we can ignore the first line. We then split the calculation in
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Selag =2 / 4P 2~ G G By G (0,0Cion + DG oy — 000C)
= - / AP V=G GG [0, (¢7270,8) 6Gioy + 0, (€720, D) 6Giy
— 0, (¢72°9,®) 0G|
_ / 4P /=G GG (20, (¢70,8) 6Gig — D (¢ 270, 2) 0G|
= — / APz V=G 9y (72%0,0) (2G7VGP* — G* GP7)5G [3.401]
The second part is
Sl = —2 / 4P 20~ G G 3,2 LGP (Ou8G ap + p3Ciop — Do)
- / AP V=G GG [0, (€72%0,8) 6G g + 0, (¢7270,8) 6Giy
— 0, (¢7270,8) 0G|
= / dPz V=G G" G0, (e 2*0,) 6G o
= / APz v/ ~G 0y (72%0,2) GF*GP75G [3.402]
Therefore
Sl = / APz V=G 9y (e72%0,0) (—2G7VGP* + GM' G + GM GP7)6G
= / APz V=G 0, (e72%0,®) 2(G* G — GV GP")5G
= / AP/ —G e *®(—20,90,® + 9,0,8) 2(G" G — GV G"")5G,

= / AP V/—G e 7P (—40,80° DG + 40FBI” D + 20,0° PG — 2010 ®)5G
[3.403]

Adding the four pieces together we find
1
5c / APz /=G e *G" R, = / APz —Ge™2® <§G“”R — R

— 40, D07 DG + 40" DI D + 20,07 DG — 200" D)6Gy,  [3.404]
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As expected this gives back the Einstein equations when we have a constant ®, but we see
that the dilaton field gives a correction that includes its derivative only.

There is another thing that we need to be careful about as well. Any indices upstairs
have been raised via the spacetime “metric” G*” so they also carry a metric dependence.
For example

S HunH" = Hyn 06 (GH GYP G Hy ) = 3H,un G G¥P Hy pe G
= — 3H,,zG" G"" Hy e G G16Gr,
= —3H"H", G, = —3H""H",,6G . [3.405]

Similarly
060, P0"® =6cG" 0,90, = -G'G"0,90,P0G )0 = —0"'PO"PIG 1, [3.406]
So we have

2(D—26) 1
3o/ 12

0

+V=G(- R+ %G’“’R — 40, D DG + 49" DD D + 20,07 DG — 201"
1 [ v 14
+{HIOHY,, — 10" 00" ) 5GW}

L[ aPev=Ge® { %G‘“’(FGW [ -

B 2(D — 26) 1
- 2&%

e — Ty + 4agq>a“<1>]

+(-R"+ %G‘“’R — 40,D0°DGH + 20,07 DG — 200" P + iH“p"H”pg)éGW}

1 /
= - /dD:c V—Ge?* [O/R‘“’ + 20/ 01OV D — & greo v -
2K§a/ 4 P
1 ! 2(D — 26
-G (/G R+ 40'0,0° S Hpor H (3) ~ 409,007 |
[3.407]
We can rewrite the term between brackets as
1
B = O — G (RO — 4B7) [3.408]
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Indeed

/ 1 /
B = o/ R + 20/ VIVID = THITHYy — SG (o R4 20/ VR0 — S HY Hyy

2(D — 26 /
- (3) +20/ V20 — 40/ V, BV + %H)‘WH)\W)
/ 1 /
= /R 422/ = CHIWHY,, — G (0 R+ 40/VP0 — S HY Hy
2(D — 26
= (3) - 4a'V,0V"9) [3.400]

and we see that if we replace the covariant derivatives by partial derivatives we do indeed
find the expression between brackets in [3.407].

3.54 p 114: Eq (3.7.23) The Ricci Scalar after a Weyl Transformation

I expect most of you are expecting yet another long and tedious calculation. But if that is
the case then you have a short memory. Indeed we have used this formula many times for
the specific case of two dimensions, but when we originally derived it in chapter one we
did so for general dimensions D, see [1.21]. Happy and light-footed we move on to the
next challenge.

3.55 p 114: Eq (3.7.25) The Space Time Action with Einstein Metric

Let us first work out the pre-factor in (3.7.20). We have

Gy = e G, = e M0 D/D-2G  — A¥/(D-2q [3.410]
implying that
V=G = ¢2P?/(D-2)\/_¢ [3.411]
so that
[ Ge2® — 2Dq>/ (D-2)./_ 2(Po+P) 2@064&’/(D72) /_é [3.412]
We will absorb the e~2%0 into the . Let us now do term by term in (3.7.20)
:3:'1 dD.’L' \/7 —2 |:_2(D — 26):|
2&0 3a/
D,/ —26) (A% /(D-2)
d _ [3.413]
2/@2 3o/
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Next, consider the term with the curvature. Using (3.7.23)

Ty = 2% dPzvV-Ge *R
ko
- 2% APy ¢~ 20048/(D=2)/_ [ 2R+ 2(D — 1)V2w + (D — 2)(D — 1)dw - &u]
ko
L[ 4D =280 48/(D-2) /— [ —43/(D-2) fp _ 4(D — 1)V2<f> n 4(D — )8<I> 3(1)}
2&0 D -2 D —
1 D 5 ) D 4&/(D-2) D—-1_y D-1_ z
= — 4 —— Vo 4+ —0P-09 .
22 d”x G{R—l— e D—QV +D—28 0 [3.414]
We need one more step. We write
0% - 9% =G"0,80,0 = 1P (P-DG 9, 59,d = e 42/ P25d . H [3.415]
Thus
T, Pz~ [R +4 2) (~e'*/ PV + 06 - 5@)] [3.416]

Next, the term with the antisymmetric field strength
1 1
Ts =5 / dPxv/—-Ge <—12 WGWG”UGMHPM>
1

2]{(} dee 2<I>064<1>/ (D-2),/ (_2 " )\67124)/( )éupéuaé)\lilﬁ[paﬁ>

1

=53 APz ~G [—me—SQ/(D—Q)HWHm} [3.417]

Finally, the term with the dilaton field

T, = 2% P2/ —G e 4G 5,50, D
_ 21 (P e 220 A/(D=2) /G 4 ~A%/(D-2) Gy §9,F
i
1
= 55 [ "0 V=G 108 58] [3.418]

Adding the four contributions we find

4
1 D = 2(D — 26) 4% /(D-2 H 1 _sé/(p—2 7
ZTGZW/d X —G[—Te /( )+R_Ee / )HMV/\HPUH
a=1
D—-1 g ~ = x= = =z
n 4(19—2) <_e4¢/<D—2>v2q> + 0 aq>) + 405 - aﬂ [3.419]
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We seem to be close but not exactly equal to (3.725). What saves us, as usual, is a partial
integration. Indeed

x_ /dD VG /(D272 /dD:z:e 2D8/(D-2) /=G A/ (D-2)y i
- / w2, (V=Gord) = - / w0, (e727) V=G "D
= / Pz e (<20,0) V-G o' = 2 / APz e 222D%/(D-2\/_ G, 50"
=2 [P VGO DG b =2 [P0 /-G e EODG, b

=2 [ dP2 V-G 9,00 [3.420]

Note that we had to go back and forth between GG and G more than once in this last
derivation. This means that we can write the last few terms of [3.419] as

/dD —G4[ ( )+1}a<i>-5<i>

4
D
2/{2 d-x G[ D3 }8@ L [3.421]

Therefore [3.419] becomes, finally,

212 3a/

! 26) 13/(p_2) . =
Z‘Za—— dPzx v/ — { 764¢/(D 2+ R
a=1

A sy

~ 4 ~ o~
12 HV}\HPUH - maq) - 0P [3.422]

which is exactly (3.7.25).

3.56 Appendix: Almost Complex Structures, Holomorphic Normal Co-
ordinates, Beltrami Equations and all that Stuff

In this appendix we develop the basics of complex structures and the associated transfor-

mation rules. This is almost completely taken over from [LS]. We refer the reader for more
details to that text, in particular section 2. In fact, we will only select those parts we need.
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As a change, most of the calculations in this appendix are elementary algebra or analysis
and will not be shown in detail. Once again, all errors are solely due to me.

ALMOST COMPLEX STRUCTURES

We are all familiar with defining complex coordinates z = x + iy and z = x — iy on a patch
of a two dimensional manifold ¥. These complex coordinates satisfy 0z = 0z = 0 and are
thus holomorphic and anti-holomorphic coordinates respectively. It turns out to be useful
to write this in a different way. Introduce

0 1
I = (_1 0) [3.423]

This matrix satisfies IabIbc = —6¢, in matrix language I? = —1, reminding us of i = —1.
We can now write the holomorphicity condition 9z = 0 as

(aa n i[a”&,) o) =0 [3.424]

Let us make three remarks at this point

1. Given a solution z(o) that satisfies the holomorphicity condition [3.424] we can
easily construct another solution f(o). Write f(o) = u(o) + iv(o) with v and v
real are require f to satisfy the holomorphicity condition. This leads to the Cauchy-
Riemann equations

Ou(o) = Orv(o) and Oou(o) = —01v(o) [3.425]

Conversely, any solution of the Cauchy-Riemann equations leads to a holomorphic
function.

2. Our original definition of the complex variable z = o' 4-io? is chosen so that if o = 0
then also z = 0. We could as put the base point point of the holomorphic coordinate
system at any other point o; on the patch of the manifold and define the complex
coordinates via

2oy (0) = 2(0) — 2(01) [3.426]

The index ,, refers to the fact that the base point is now at o;. Obviously, it follows
from this definition that

25,(01) =0 [3.427]

When we write 0, d, or 0z, We will always mean differentiation w.r.t. z,,, unless it
is clear from the context or it is explicitly mentioned that it is not the case. Note that
this does not necessarily imply that derivatives of z,, (o) taken at ¢ = o, are zero.
Le. in general 9"z, (a){azg1 # 0 forn > 1.
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3. We can view I,,* as mapping tangent vectors into tangent vectors. Indeed let v, be a
tangent vector, i.e. v € T(X), then I,%v, = w, € T(X). Recall that a derivative 9, is
an element of the tangent space 7'(3) and the exterior derivative do“ is an element
of the dual tangent space 7%(X). The relevance of this remark will become clear
later.

It is natural to generalise the above concept and define a generic almost complex struc-
ture J as a local function on the manifold .J () that satisfies®

J V¢ = —6¢ [3.428]

Indeed, by performing a coordinate reparametrisation ¢ — ¢’(o) the transformed com-
ponents would become local anyway, I,> — I,°(c). We can then define holomorphic
coordinates w w.r.t. the almost complex structure J as satisfying

(aa n z‘Jabab) w(o) =0 [3.429]

Because J,” needs to transform covariantly for the above equation to be well-defined, we
are automatically led to define a vector-valued differential one form

J=do®J,%(0)d, [3.430]

We will denote the exterior derivative on ¥ by d = do®d,. The differential equation [3.429]
then takes the index-free form’

(d+iJ) (w) =0 [3.431]

%When does an almost complex structure loose its predicate “almost"? This is the case when we
can find an atlas such that the almost complex structure is constant on all coordinate patches. We
can then define complex coordinates with holomorphic transition functions. The almost complex
structure is then integrable and promoted to a complex structure and the manifold is called a
complex manifold. A necessary and sufficient condition for the integrability of an almost complex
structure is the vanishing of the so-called Nijenhuis tensor.

’Because d? = 0 this implies dJ = 0, which with the decoration of full indices, and contracting
with another J becomes

J4 = J,°0. % — T, 0T, — J, %00, ¢ 4 J, 0y, =0
J4, is the Nijenhuis tensor mentioned in footnote 6 and its can be shown that its vanishing is a
necessary and sufficient condition for the almost complex structure to be integrable and hence to
be promoted to a complex structure.
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METRICS AND RIEMANNIAN MANIFOLDS

Let us now endow the manifold ¥ with complex structure® .J with a metric
g7 = gap(0)do®do” [3.432]

The index ; is there to remind us of the almost complex structure. A complex manifold
with a metric is called a Riemannian manifold. Here we have assumed that we have first
given ¥ a complex structure J and then constructed a metric g; on 3. But we might as
well work the other way around. First we define a metric g on ¥ and then we define a
complex structure J. It is actually easy to construct a complex structure from a metric

T, = g2 gace® [3.433]

Elementary algebra shows that J2 = —1 as it should. Note, en passant, that the complex
structure is invariant under Weyl rescalings g., — €2 gap-

BELTRAMI EQUATION

In terms of the complex coordinates z = o' + io? one can rewrite the metric g as
1 , 1 ) 5 1 _
g1 =7 (911 — g22 — 2ig12) d=° + 1 (911 — g2o + 2ig12) dZ° + 3 (911 + g22) dzdz  [3.434]

It is convenient to write the metric as
gy = pldz + p2dz|? [3.435]

As we are working in Euclidean space ds? > 0 so that p is real and positive. With p.*
complex we have three components defining the metric, the same number as g,;. Straight-
forward algebra leads to

) _
gir =p (14 |p "+ ps® + p,%)
) )
go2 =p (L+ |ps" " — pz" — %)
g12 = —ip(ps" —p,°) [3.436]

where y1,7 = (u;*)". We can invert these relations to find®

1
P :Z (tI‘ gab+2\/§)

b = g11 — go2 + 2ig12
‘ tr gap + 2\/§

8From here on we will often use complex structure when we mean almost complex structure.
This will not cause any confusion.

°There is actually another solution where p = i (tr Gab — 2\/5) but that root gives a non-
orientation preserving coordinate transformation. We are only interested in orientation preserving
transformations, i.e. those transformations with positive Jacobians.

[3.437]
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From now on, we will often simply write
W=z and = [3.438]
One can easily show that
0< |yl <1 [3.439]

(the non-orientation preserving ones have |u| > 1). Note that the 4 = 0 bound means
gy =p \dz]Q and thus a conformally flat metric. It is also straightforward to work out the
almost complex structure in terms of p and u. From [3.433] one finds

1 i(p — i) 1+Iul2+u+ﬁ>
J = _ . _ [3.440]
L—[uf? <—1— WP +p+n —i(p—p)
If we substitute this expression for J in the differential equation [3.429] one finds
(0 — pd)w(o) =0 [3.441]

If we remember that 1 and J have a nonlinear relationship, then one could be surprised
by the simplicity of this equation. It then also deserves its own name, the Beltrami equa-
tion. In analogy with the introduction of J as a differential form, we can also introduce a
differential form

w=dz >0, [3.442]

which is called the Beltrami differential. The u = p,* and i = u;* are its components in
the z-coordinate system.

The coordinates z and z are holomorphic vs the complex structure I and the coordi-
nates w and w are holomorphic vs the complex structure .J. Note that z is not holomorphic
vs the complex structure .J, unless 4 = 0 and we have a conformally flat metric. Like-
wise, w is not holomorphic vs I if ;1 # 0. The Beltrami equation can be viewed as relating
holomorphic coordinate systems z and w corresponding to different complex structures.

Using the chain rule and the Beltrami equation we find

dw = Owdz + Owdz = dw(dz + pdz) [3.443]
Using this in [3.435] we find
g7 = gapdo®do® = p(z, Z) |0w|2dwdd = po(w, ) dwdd [3.444]

Note that since coordinate transformations are by definitions invertible, we can write z and
z as a function of w and w which leads to po(w,w) = p(z,z) |Ow|~2. This means that it is
always possible to go locally to a coordinate system that is conformally flat.
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THE TRANSFORMATION OF p UNDER A CONFORMAL TRANSFORMATION

Let us now check how p transforms under a conformal transformation. We will be a bit
cavalier and not mention some of the subtleties, but we refer to [LS] for more details. We
will derive it from requiring invariance of the line element g = ds?> = p(z, z)dzdz under
an infinitesimal conformal transformation z — w(z) = z 4 dz. This calculation will be
performed in detail.

ds?

(w, w)dwdw

(z+ 02,2+ 02)(dz + ddz)(dz + diz)

= [p(z,2) + 0:p(2,2)0z + Ozp(2, 2)0Z] X [dzdZ + ddzdZ + dzdiZ]

= pdzdZ + pddzdZ + pdzddzZ + 0,pdzdzdz + OzpdzZdzdz

= pdzdz + p(0,0zdz + 0502dZz)dz + pdz(0,0zZdz + 0:02dZ) + (0,pdz + 0zpdZ)dzdz

= pdzdZz + (8,62 + 0:6% + p~10,pdz 4 p L 0:pd2)dzdz + pd,0z(dz)* 4 pds62(dz)?
[3.445]

p
p

We now recall that the only non-vanishing connections in the conformal gauge are given
by, see [3.216]

I'?,(0) = 0. 1np(o) and I'Z(0) = 0:1np(0) [3.446]
This means that

V.02 =0,02+T1%,02=0,0240.Inpdz = .02+ p 10.poz
VE(SE = 85(52 + F%dé = 85(52 + 65 III,O(SZ = 8552 + p_lﬁgp 0z

V.0zZ =0,0%
Vg(SZ = 8552 [3447]
Therefore
ds® = pdzdz + p (V.62 + V:02)dzdz + pV.62(dz)* + pVz62(dz)? [3.448]

Let us now compare this with dg:
g =6 [pdzdz + g..(d2)* + gzz(d2)?] [3.449]

Whilst in the conformal gauge g.. = gz = 0 the change of coordinates may result in
off-diagonal components of the metric. We can thus write

6g = 6pdzdz + 8g..(dz)? + 6gs2(dz)* [3.450]
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Comparing with [3.448] we find

dp =p(V;0z+ V30z)
597;2 vaz52
(5g55 :va(SZ [3451]

which we can rewrite as

0lnp=V,0z4 Vzz
p_légzz =V,0z
p_l (Sggg :Vg(;z [3452]

THE EXISTENCE OF HOLOMORPHIC NORMAL COORDINATES

We wish to show that if we have a coordinate system w that is in the conformal gauge, i.e.
ds® = po(w, w)dwdw [3.453]

then we can always perform a conformal transformation
w, w — ((w), (W) [3.454]

such that the ¢ coordinates are holomorphic normal coordinates, i.e. that at a given point
p we have the relations

xXp(GO| =0¢p(C.0)| = 0no [3.455]

We first consider n > 1 and will show that this is possible by explicit construction of {(w)
and ¢(w). Our starting point is [3.444] which we write as

In po(w, @) = p(¢, ) + n [Dy ¢ (w)|? [3.456]
We take the 0 derivative of both sides
i I po(w, w) = 9 n p(¢, ¢) + I In D¢ (w) [ [3.457]

The first term on the RHS vanishes when evaluated at p. Indeed, let us start with n = 1
and use the chain rule

9w In (¢, ¢) = 8w(Oc In p(¢, C) + 0Oz In p(¢, ) [3.458]
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When evaluated at p the first term vanishes because of the holomorphic normal coordinates
and the last term vanishes because ( is a conformal transformations and thus 93 ((w) = 0.
Thus 9y, In p(¢, C)\p = 0. Next

0% In (¢, €) = D [0COc I p(¢, Q)]
=03,69¢ I p(C, €) + 0 CZ I p(¢, ) [3.459]

We have not written out ,,¢ terms as these are zero as explained above. Evaluated at p we
see that this vanishes as well. We also see that this holds for higher derivatives as we will,
in every term be left with a factor 8? In p(¢,¢) for 1 > k > n. Thus we have indeed shown

that 97 In p((, E)‘p = 0. We thus have

O In po(w, w) = 9}y [InwC(w) + In 0z (w)] = 07 In By (w) [3.460]

evaluated at p. We will drop the cumbersome }p but it will be understood that in the sequel
this is to be assumed. If we can now use this relation to express the 9]¢ as functions of p
then we can use these to build a Taylor series that determines ((w) in a neighbourhood of
p such that the holomorphic normal condition is satisfied.

The way to do this is by using the Faa di Bruno’s formula. This is just a fancy way to
write an expression for 07 f (g(z)). It is given by

a2 f(9(x)) =D fPg(2)) Bui (g (2), 9" (@), -+, g" ) (2)) [3.461]
k=1

Here B, x(z1,22,+ ,T,_j4+1) are the so-called Bell polynomials'®. Let us work out the

10The Bell polynomials are defined as

_ n! T1\J1 [0\ T2 Tn—k+1 Inot
Bua(on iz, tapen) = 30— () (2) 7 ()

Jilgal gkt

n—k+1

where the sum is taken over all j,’s subject to the conditions ), je = k and that also
?—k *1¢j, = n There is no need for us to go into a detailed analysis of Bell polynomials. For

those interested, check the Wikipedia pages. For our purposes we only need to know that the

equation
n

Tn = Z(_)k+1(kj - 1)!Bn,k(ylv s 7yn—k+1)
k=1

can be inverted as
Yn = Bn(l'l, e axn)
with

n
Bn(fﬂl,‘ o ;:Cn) = ZBn,k(xla' o ;Zn—k—i-l)
k=1
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first few cases of 07} In 0,,¢(w)

2 2
8w lnaw((w) = gwg = Bll <gw§>

) R\ 8¢ 92¢ B¢ 92¢ B¢
8w lnawg(w) = — <8w<_> + ﬂ = —Byo (M, M) + Boy (M’ M) [3.462]

and so on. In general we have

n 52( 33( an—k+2c
O I BuC(w) = S () (k — 1)1B, 4 < WS OuC O >
k:zl O0wC’ 0w OwC
_ 92¢ 9a¢ 2418
_Bn <8w<78w<-7"'78w<> [3463]

With B,, the complete Bell polynomial, see footnote. As per the footnote we can thus invert
this relationship to write

O (p) =) B (0w In po, -, O In po) 9wl (p) [3.464]

At a point p’ close to p we can thus use a Taylor expansion

Q) = 3~ (wplol) — wp(p) D2 p)
n=0
=) — (wp(®) = wp(p)) Ba-1(9uwlnpo,--- , 00 I po) B (p) [3.465]

0

3
Il

where we have simplified the notation, writing 9;,¢, (p) for (8} (p')/dw,(p')?) p®
We have now imposed all the conditions with n > 1 for the holomorphic normal co-
ordinates, but we still need to impose the n = 0 condition, p‘p = 1. From [3.444] i.e.

the so-called complete Bell polynomials. Let us give the explicit form of some of the first Bell
polynomials, B, (1, , Tn—k+t1)

By =z

) _ .2
By =x3; By = Ty

. _ . _ .3
B3; =x3; B3z =3w179; D33z =x]

. _ 2 - _ 2, . _ .4
By =x4; By = 3.%2 + 4dx1x3; By = 6x1w2, By = iy

Bs1 =x5; Bso = 10xox3 + 511204; Bz = 15m1x§ + 103:?3:3; Bsy = 101‘:1)’372; Bss = x‘ll
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p(w, ) [0,¢|72 = po(¢, ), taken at p we see that this determines |9,,¢| and hence 9,,¢ only
up to a phase:

Dl = €0 (| [3.466]

and thus

duwC(p) = €0uClp = P \/po(p) [3.467]

where we can take the square root of py because it is real and positive. It turns out that
this phase is in general not globally defined. There are ways to circumvent this, but this is
beyond the scope of what we need. See [LS] for more details.

To summarise, given a set of coordinates around a point p in the conformal gauge
po(w, w)dwdw we can always find a conformal transformation ((w), {(w) such that at the
point p the new coordinate is “as flat as possible,” i.e. is a holomorphic normal coordinate
satisfying Bzfp(( ,0) \p = d,,,0. At a point p’ close to p this conformal transformation is given

by

o

; 1

"N _ ia(p) . n \n+1

') = P/ po(p) Z:% B (@e o+ 0 I po)uy(p) [3.468]
where the phase factor is undetermined, B, are the complete Bell polynomials and we
have used the fact that at the base point w,(p) = 0. Note that, by construction ¢, (p) as well

as wy(p) vanishes.
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Chapter 4

The String Spectrum

4.1 p 122: Eq (4.1.8) Spurious States, I

We have for any physical state |v)

o0

) = @130 % b = 3 [0 1] b = 3128 1] b = 0
k=1 k=1

k=1

4.2 p 122: Eq (4.1.9) Spurious States, 11
Let |¢)) be physical and |x) be null. Then for n > 1

L (19) + 1) = Ly [9) + L' [x) = 0

We also have that for any other physical state |¢)

(@l +x) = (8lY) + (8Ix) = (9|v)

[4.1]

[4.2]

[4.3]

4.3 p 123: Eq (4.1.11) The Physical Hilbert Space, I: the Tachyon State

Recall (2.7.25) and (2.7.27) for the open string.

o0
Lo = o/p2 + Z Q_p Oy
n=1
1
L, == Z D On—nOin form # 0

n=—oo

ag =V2ap

[4.4]
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Here and in the remainder of this chapter we will not write the reference ™ to the matter
sector and the spacetime indices when they just blur the notation. Consider the tachyon
state |0; k). We have for m > 1

L, 10; k) :% +§ D Qm—n Qi |05 k)
1 — I ¢
= (2 nz_:oo D Qp—n Ot a0 +2nz_:1 DO —nQin 1) |0; k)
1 — 1 &
= (2 nz_:oo nm—p + Q00 + 5 T; am_nan) 0;k) =0 [4.5]

This is the case because we will always have a «y, |0; k) with £ > 1 and this is zero. For
m = 0 we have

Lo |0; k) = <o/p2 +)° a—nan> 0;k) = o'k? |0; k) [4.6]
n=1

Requiring (Lo + A) |0; k) = 0 thus implies that A = —a’k?, or as —k? = m? we have

[4.7]

4.4 p 123: Eq (4.1.16) The L, Condition for the Level One State

n=1

(Lo+A)e-a_1|0;k) = (a’p2 + Z oy + A) e-a_10;k)

= (o/p2 + o a1 + A) eya? | |0 k)
=(a'k?* + A)e-a_1|0;k) + o je,n" |0; k)
= (k> + A+ 1De-a_1|0;k) [4.8]

Requiring this to be zero gives o’'k? + A + 1 = 0 or, with —k? = m?

5

1+ A
m? = % [4.9]
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4.5 p 123: Eq (4.1.17) The L,,>, Condition for the Level One State

For m > 1 we have

1
Lype-a_1|0;k) = B Z D Qp—nQn ¢ € a1 |0; k)
n=-—00
1 —1 o]
=5 ( Z :am,nan:—l—:amaoz—i—Z:am,nan :) e-a_1|0;k)
n=—oo n=1
1 -1 o0
=5 ( Z QpQn—n + 0o, + Z am_nan> e-a_1|0;k) [4.10]
n=—oo n=1

Because with m > 1and n < —1, m — n > 2, all the a,,,_,, of the first infinite sum just
commute through the o_; and annihilate |0; k). In the second infinite sum, all terms except
am—10q annihilate |0; k). We are thus left with

1
Lype-a_1|0;k) = 3 (o + m—1a1) €-a—1|0; k) [4.11]
The term with «,, 17 only gives a non-zero result if m = 1. Indeed for m = 2 we have
Aoy e,a? 1 [05k) = afe,d)0;k) =0 [4.12]

and for m > 3 the «,,,—1 just commutes to the right to annihilate |0; k) directly. So the only
non-trivial condition is

1
Lie-a_1]0;k) == (o1 + apar) e a1 |0;k) = afjauie,a” 0 k)

2
=age,0,e, |05k) = euap |0;k) = e, V2a/pH [0; k) = V2a/e, k! 05 k)
=V2d/ (e k)|0;k) [4.13]

Requiring this to be zero implies that e.k = 0.

4.6 p 124: Eq (4.1.18) The Spurious Level One State

We have
—1 9 - 2 el . —1—ntin . 5 = 2 ov—_1 —109 ;
=o' V2d/p, [0 k) = V2, | |0; k) = V2a'k - a1 |05 K) [4.14]

Joe’s book has taken o/ = 2. If |[¢) is any physical state then we have (| L_; |[0; k) = 0 as
Ly |¢p) = 0. Therefore L_; |0; k) is spurious.
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Note that L_; |0; k) is not necessarily physical. This is easy to see using the Virasoro
algebra:

LinL_1]0;k) = (L_le + (m+1) Ly + 1—C2(m3 - m)ém_Lo) 10; k) [4.15]
For m > 2 this is automatically zero, because Ly |0; k) = 0 for £ > 0. For m = 1 we have

LiL 1 |0:k) = <2L0 + 132(13 - 1)) 10; k) = 2Lo |0: k) = 2/k2|0; k) [4.16]

where we have used [4.6].

4.7 p 124: Eq (4.1.18) The Level One States for Different Values of A

The value of A clearly refers to that of the level one states (4.1.16), i.e.
1+A

—k*=m® = — [4.17]

(6%
The three cases are
e A > —1The level one state have positive mass and the spurious state has L1 L_1 |0; k) #

0 and is not a physical state. The Hilbert space has no extra null states and hence
D — 1 degrees of freedom.

e A = —1 The level one states are massless and the spurious state is physical and hence
massless. Because a null state is equivalent to another physical state, we loose the
extra null state in the Hilbert space and are left with D —2 degrees of freedom, in line
with a massless particle. Moreover, if we change the polarisation vector e# — e+ k*
then the condition e - k is also satisfied as k? = 0. This is indicative of the spacetime

gauge symmetry.

e A < —1 The level one states are tachyons. We still have D — 1 degrees of freedom,
but one has negative norm and so violates unitarity.

4.8 p 124: Eq (4.1.18) The Level Two States
A generic level two state is of the form
|E,e; k) = (B oy + eua,) |05 k) [4.18]

Let us check the conditions for this to be a physical state. For m > 3 we have

0 00
1
Ly, |E7 €] k> = 5 ( Z agaa m—n T Oé[f(la m—1 1 agao— m—2 + Z (0% m—nag>

n=—o00 n=3

X (Bwa o + e aty) |05 k) [4.19]
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The infinite sums are zero and so we are left with
Ly, |E, e;k) = (0 ag m—1 + 0505 m—2)(E ot o” ) + e aty) |0; k) [4.20]
But as m > 3, if we commute the annihilation operators to the right we will always have a

aq |0; k) left and hence this is also zero.
We thus have to check Lo, L and Lg. We start with

—1 00
1
Ly |E,e;k) = 3 ( Z ApQg o pn +aias2+afas 1+ a3a00 + Z Qg 2nai)

n=—oo n=3

X (Bwa o’y + e aty) |0; k)
1
=3 (2afas 2+ afas 1) (B o + e s) |05 k) [4.21]
Now
afag 20t 10”110, k) =afa 0¥ jas2]05k) =0
afay 205 10; k) = af26% 0; k) = 2v2a/k* |0; k)
afag 100”1 10;k) =af (ayag1 + 05)a” [0; k)
=afat jas 1071105 k) + o 105 k)
=705 10; k) + /" [0; k) = 20" 05 k)
afay 105 10; k) =0 [4.22]
Therefore
1
Ly |E,eik) =5 (4\/204%#6“ + Qn“”EW) 10; k) [4.23]

Setting this to zero gives the condition
2V2d'k-e+ B =0 [4.24]

Next, we consider L

_92 00
1
Li|E,e;k) = 5 < Z afei1—n+a’jas2+agas1 +alas o0+ o020+ Z foys 1_nag>
n=—00 n=3
X (Bwa o’ +euaty)|0; k)

= (a7 002+ afag 1) (Bt a” ) + e aty) (05 k) [4.25]
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Now
a? ap 20 0”1 |0;k) =0
a? 1oy 20" 5 |0; k) =268 105 k) = 2", 10; k)
afag 1”1”1105 k) =af (o jas 1+ 0)a” 1 |0; k)
= (agal 05 + aga”y) |0 k)
=V2a/ (k"o | + k'a” ) |0; k)
afag 10”5 |0;k) =0 [4.26]
Therefore

Ly |E e;k) = \/@Ew,(k”o/il + kra ) + 2eMo/_LI] |0; k)
=2(V2/kPE,y, + e,)a” 1 [0 k) [4.27]
Setting this to zero implies that
V20 kP E, + e, =0 [4.28]

Finally, we consider Ly,

o0
Lo |E,e; k) = (a’p2 +Y 0%, ) (Ewa’ a? ) +e,0"y) [0; k)

n=1
= (O/p2 + Oécilao 1+ aiQQ()’ 2)(E,u1/aﬁlalil + 6,u05l12) ‘O, k') [4.29]
Now
aZ aq 10 0" |05k) =a (o jas 1+ %)Y [0; k)
=(aZ102,05 + a%0”,0%) [0; k)
a? a5 10", |0; k) =0 = 2" 0¥, (05 k)
a0, 20" ¥ |0;k) =0
aZy0, 205 10, k) = 26Ea,|0; k) = 20", |0; k) [4.30]
Therefore

Lo |E, e;k) =o' k* (B ot 0”1 + e aty) |0, k) + 2E,,0" 10”1 |0;k) + 2e,0" 5 |0; k)
= (d'k* + 2)(E ot 0"y +e,at,) |0 k) [4.31]

Setting (Lo + A) |E, e; k) = 0 gives

k2 4+24+A=0 [4.32]
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or
24+ A 1
== [4.33]
where we set A = —1.
Summarising, F,,,, and e, need to satisfy the equations
0=2v2dk - e—l—El’j [4.34]
0=V2dk"E,, + e, [4.35]

The second equation determines e in terms of E. The first equation then sets an additional
condition on E. To see this specifically let us go to the rest frame of this state, which is
possible as this state has non-zero mass. In the rest frame we have

1
k=(—,0,---,0 .36
(7520 0) [4.36]
and this satisfies m? = —k? = 1/a/ as it should. From [4.35] we then find
1
—\/20/\/7150” te,=0 = e,=V2Ey, [4.37]

Plugging this in [4.34] gives

1
0= — 2\/204/?60 + Bl = —2V2v2Ey — Eoo + Eii [4.38]
a

where i runs over the spacelike indices only. Thus the condition on E becomes
Eii = 5Eoo [4.39]

Let us count the degrees of freedom. E is a symmetric D x D matrix so has D(D +1)/2
entries. The vector e has D entries, but is fully determined by E. There is one more
condition [4.34], so we have a total of %D(D-F 1) —1 degrees of freedom. Recall that in the

lightcone quantisation the physical states were the symmetric tensor eijozila{ 1105 k) and

the vector E;a’ , |0; k) withi = 2,--- , D—1, i.e. these are in the SO(D —2) representation.
This gives a total number of degrees of freedom

1 1 1

§(D -2)(D-1)+(D-2)= §(D —-2)(D+1)= §D(D -1)—-1 [4.40]

which corresponds to the traceless symmetric representation of SO(D — 1). This is fewer
degrees of freedom than we have found so far by

%D(D 1)1 (;D(D Sy 1> _D [4.41]
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So if everything fits together, we expect that there are D null states at level two in the OCQ
approach.

To find the null states, let us first identify the spurious states at level two. Which
states at level two are automatically orthogonal to all physical states? A moment’s thought
reveals that the level two spurious states are formed from linear combinations of L? ; |0; k),
L_510;k) and L_10",0;k), as these three combinations are orthogonal to all physical
states. But, writing only the non vanishing terms explicitly

1
L% )0sk) = L—1§(' cFragae—1 i+ a% a0 1) [05k) = V2K L1071 |0; k)  [4.42]

and so L%, |0; k) is not an independent state. The most general spurious level two state is
thus a combination

|G, Hy k) =(GuL_10" | + HL_5)|0; k) [4.43]

We have D + 1 such spurious states. Let us first write this state in terms of the modes only.
Here and in the sequel we will only write those terms of the L; that contribute. We have

L_1a"|0;k) =(a%9001 + aZ s 00" 1 |05 k) = ("5 + V2d'kea? jap—1) |0; k)

L_5|0;k) = (aggago + %a‘ilag _1> |0; k)
= (@kga‘iz + %ofilag _1> 0; k) [4.44]
So
|Gy, H; k) = [ (@G{Hky} + ;Hn,“,) oo+ (Gu + @Hku) a‘izl |0; k) [4.45]

Let us check the conditions under which such spurious states are physical. Any L; with
k > 3 automatically annihilates |G, H; k). For L, we have

1
Lo, 105 k) = <a8aa 2+ 504‘17()(0 1> !y |05 k) = 220/ kM |0; k)

1 1
Lyo 10”1 |0:k) = Safag10”10”, |0 k) = Sa7 (0 + oo 1)a” [0: k)

> >
1
=5 (afaZ; +afa”,57)0; k) = 0™ |0; k) [4.46]

and thus

1
Lo |Gy Hi k) = [77“” <\/2a’G{uk,,} + 2H77W> + 2v20k" (G + V20 HE, ) ] 10; &)

1
= (3\/20/G k4 5 DH + 4a/Hk22> 10; k) [4.47]
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Using the mass shell condition k2 = —1/a’ for level two states this gives the condition
D
3V2'G -k + (2—4)H=O [4.48]

Next we consider the action of L; on |G/, H; k). First we compute
Loty [0;k) = (aZ1aq 2 + 0fag 1) oy |05 k) = 20 |0; k)
Lia" ¥ 10 k) = (ailag 2+ g, 1) a1 105k)
=«

St ap 1+ 0M)a” |0 k) = V2! (KV ot | + kFa” ) |05 k) [4.49]

and thus
1
Ly|G,, H; k) = | V2! (kYo" | + kFa” ) (VQO/G{MI%} + 2H77W)
+2(Gy + V2o HE, ) o/jl] 10; &)
— (20/Gk? +20/G - bk + V20 Hhy + 2G,, + 2V20 H,, ) ot 0; )
- (2(0/k2 +1)Gy +20/G - ki, + 3\/20/H/<:“) ot | (05 k) [4.50]
Using the mass shell condition k2 = —1/a’ for level two states this gives the condition
(V2o/G - k + 3H)k" = 0 [4.51]

We leave it as an exercise to the reader to show in a similar way that (Lo +1) |G, H; k) =0
is automatically satisfied.
Let us summarise this result. The spurious state

|GuaH§ k> =

1
(v 2a’G{#k:l,} + 2H77w/> o/ilo/il + (Gu + \/2a’Hk‘u> a“2] |0; k) [4.52]

is a null state if G, and H satisfy the conditions

0=3V22/G -k + (12) - 4) H [4.53]
0=(V2d/G -k + 3H)k" [4.54]

In order to count the number of null states, let us go back to the rest frame. In that frame
kO =1/d/, k' = 0 and thus G- k = Go/V«'. Eq [4.54] is satisfied for all 4, giving D — 1 null
states. Eqs [4.53] and [4.54] then become
D
0=3v2G + <2 —4) H

0=v2Gy k+3H [4.55]
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which would seem to give a value for Gy and H given two more null states, bringing the
total to D + 1, whereas we only need D null states! But these equations are degenerate

when
0 = det <3\/‘§ 12?;4):9[—\@(12)—4):\/5(13—1;) [4.56]

Thus when D = 26 these equations are not independent and only give one extra null state.
We conclude that in D = 26 we indeed have D null states and thus indeed $D(D + 1) —
1-D = %D(D — 1) physical states at level two, which is the same result as in the lightcone
gauge.

4.9 p 126: Eq (4.2.6) The BRST Invariance of the Quantum Action

As mentioned in the text, S; is automatically invariant. For S, we have
0pS2 =0 — iBAF*(¢)] = —i[(5pBa)F*(¢) + Ba(5sF*(9))]
= — i[04+ Ba(—iec®3aF*(¢))] = —eBac®oF*(¢) [4.57]
For S5 we have

0pS2 = 0p [bac®0aF ()] = (0Bba)c*0aF () + ba(6Bc™)0aFH(9) + bac™ (56 F(9))

— eBAcY5,FA () + ba <;e g‘vcﬁc'Y) SaFA(¢) + bac™ (—iecf}ég&aFA(gZ))) [4.58]

We can rewrite the second term, using [d3, 0] = f§‘75a, as
—%ebAcﬂcv 806aFA(g) = — %ebAcﬁcV[aﬁ, 5] FA(¢) = —iebac? V556, FA(¢)
=iebac P850, FA (o) [4.59]
which exactly cancels the third term. We thus have

0B (S1 + Sy + 83) = 0 — eBAcY 0, FA(¢) + €BAc“0oF(¢) =0 [4.60]

4.10 p 127: Ghost Number Conservation

This should be obvious, but let’s nevertheless make sure it is correct. Clearly g4(51)

g#(S2) = 0 as gx(¢) = g4(B) = 0. Finally g4(S3) = gx(b) + gu(c) = =1 +1 = 0.
Moreover we easily see that the BRST transformation preserves the ghost number:

g4 (089) = gx(€) + g (c) + gu(¢) = =1+ 1 =0 = gx(¢)

g4 (0BBa) =0 = g4(B)
g4 (0Bba) = g4 (€) + g4(B) = =1+ 0= —1=gx(b)
g (0Bc™) =gu(€) +2g4(c) = —14+2 =1 = g4(c) [4.61]
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4.11 P 127: Eq 4.2.7) (5B(bAFA) = ’ie(Sz + 53)
We have

Sp(baF?) = (6pba)FA + ba(6pF?) = €eBAFA + by = eBAFA + ba(—iec®6o F4)
—ie(—iBAFA + bac®0,F*) = ie(Sy + S3) [4.62]

which is what we needed to show.

4.12 p 127: Eq (4.2.8) A Change in the Gauge-Fixing Condition
We have
ced(fli) =€ ({f10) prsr — {fli)p)

—¢ ( /[dcf) dB db dc] e SOl +iBA(FA+FA) ~bac®da (FA+FA)
_ /[d¢ dB db dC] 6—51[¢]+iBAFA—bAc“6aFA>
—c ( / [dé dB dbdc] e PHBAT=bac™0al Y (1 4By FA — hoc¥6,6F )
_ /[d¢ dB db dC] 6—Sl[¢]+iBAFA—bAca6aFA>
—e / [dp dB dbdc] e 5275 (iBASF4 — bac®6,0F™*) [4.63]
Now dpbs = eB4 so that we can write the first term between brackets as iB40F4 =
i(6Bbs)0FA. We also have dp¢p = —iec®0,¢ which implies, using Leibniz, dgdF(¢) =

—iec®0,0F (¢) and so we can write the second term between brackets as iba (650 F(¢)).
Therefore

€d (fi) = / [dp dB dbdc] e 52755 [i(0pba)d F4 + iba (65 F(9))]
—i / [d¢ dB dbdc] e 175275355 (b 46 F )
=i (f|0B(ba0F) i) = —e (f| {Qp, bad FA} i) [4.64]

In the last line we have used oA = ie{Qp, A} where Qp is the conserved charge corre-
sponding to the BRST symmetry.
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4.13 p 128: Eq (4.2.13) The BRST Charge is Nilpotent

Let us check this for the different fields

Do) =65 (—ie1c6ad) = —ie1(85) ¢*)0ad — ic1c® (85 6a0)
A o
= — 161562f570ﬂ075a¢ — j€1c (—26205655a¢)
1
= ielegcﬁcvfg‘wcsaqb + 61620a6655(5a¢

1
= 561620607 [05,04]0 + elegcacﬂégcsagb

= 616265675557¢ + 61626a0ﬁ55(5a¢
= — 616200‘06555a¢ + 61620a0ﬁ655a¢ =0

It is obvious that 5](32)6](31)3 4 = 0 and that 5](32)6](31)13 4 = 0. Finally

5D co :59%61 f ey = 361 3 [(53(:/3)& + cﬁ(éBcv)}
1
:261f§l,y< €2fB Occe + ¢ 62]w g 6)
1 B 5 e a o €
RGE (f,gyf — [§, Ll )
1
= - j6e (fﬁvf At — fo‘ﬁffec”c‘scE)
fﬁ o o

1
= - §€1€2f6~,

We can now rewrite the part with the structure constants and ghosts as

1
T e = S (f, e o+ [ AT 4 [ 150 )

1, ., N
_g(fﬁvféﬁe + f55 /2 + f8e 1, Blece’ =0

by the Jacobi identity satisfied by the structure constants.
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4.14 p 129: Eq (4.2.20) The Structure Constants for the BRST Trans-
formation of the Point Particle

(071, 0y | XH(T) =07y 07y, XH(T) — 07y 0y XH(T)
=0p [-0(T — 12)0; XH(7)] — b7y [—0(7 — 11) 07 X*(7)]
= — (1 — 12) 00, XH (1) + 6(7 — 71) 00, XH(T)
= = 6(1 = 12)0r [-0(7 — 71)0- XH(7)] + 6(7 — 71)07 [-6(7 — 72)0- X*(7)]
=0(1 — 1)0,0(T — 1), X (1) + 0(1 — 12)0(T — 71)02 X (1)
— (1 —11)0:0(1 — 1) 0 XH (1) + d(7 — 1) (T — 7'2)8$X“(T)
= —[0(7 = 11)0:0(T — ) — 6(T — 12)0:0(T — 11)] O- XH(7T) [4.68]
Now using (4.2.21) and (4.2.19), i.e. 6, X*(7) = —d(7 — 73)0- X*(7), we have

/dTg IR0 XH(T) = /d7'3 [0(73 — T1)07,0(73 — T2) — 8(73 — T2)Ory 0 (73 — T1)] g XH(T)

= /dT3 [ — (13 — 71)07,0(T3 — T2)0 (T — 73) 0 X (T)
+ (13 — 12)0r,0(3 — T1)0(T — Tg)@TX“(T)]
= —[0(T = 11)0:0(T — T2) — O(T — 72)0:0(T — 11)] O XH(T) [4.69]
which proves (4.2.20).
4.15 p 129: Eq (4.2.22) The BRST Transformation for the Point Particle
Using (4.2.6) and (4.2.19) we find

pXH(T) = — ie/dTlc(Tl)cSTlX“(r) = @'g/dTlc(Tl)g(T —11)0-XH(7)
= iec(T)0; X" (1) = iec X" [4.70]

Similarly,
Se(r) = / dric(r1)5s, e(r) = ie / drie(r), [5(r — m)e(7)]
/dnc 1) [0-0(T — 11)e(T) 4+ 6(T — 11)0re(7))]
/dﬁc 1) [0 8(r — T)e(r) + 6(r — 11)re(r)
/d 5(r — m)e(r) + e(m)3(r — m1)dre(r)]

=ie[0-c(T)e(T) + c(1)0re(T)] = i€d,(ce) [4.71]
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Obviously ég B = 0 and dgb = eB. So we are left with dgc:

ope(r) = ;E/dTQ drs f1,.c(m2)c(T3)

1

=+ G/dTQ drs [0(T — 12)0:0(T — 13) — 6(T — 73)0-0(T — T2)] c(72)c(T3)

2
=+ %e / dr3 0:0(T — 73)c(T)c(73) — /dT2 Or0(r — 72)0(72)0(7)]
— %e / drs 07,0 (T — 73)(T)c(73) — /d7‘2 Ory0(T — 7'2)0(7'2)0(7')]
= + %6 _/ d7'3 5(7' - 7'3)6(7—)8736(7-3) N /dT2 5(7— - 7-2)87_26(7'2)6(7—)]
S %6 [e(T)Dre(T) — Bre(T)e(T)] = dece [4.72]

4.16 p 129: Eq (4.2.23) The BRST Action for the Point Particle

The classical action for the point particle is given by (1.2.5). In Euclidean space this be-
comes

S| = /dT (;e_lX“X#nL ;em2> [4.73]
For the gauge choice e(7) = 1, i.e. F(1) = 1 — e(7), the gauge fixing term is simply (4.2.4)
Sy = —i/dTB = e(r)] = i/dTB(e 1) (4.74]
The Faddeev-Popov determinant gives
S3 = /dT b(T) /d7‘1 c(11)dr (1 —e(1)) = —/dT dry b(T)c(11)07e(T)

= /dT dry b(7)c(m)0-[0(T — 11)e(T)] = — / dr dry 0:b(7)c(m)d(T — 11)e(T)

= — /dT e(1)0:b(1)e(1) = — / dr ebe [4.75]
which is (4.2.23), when taking into account the correction on Joe’s errata page.
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4.17 p 130: Eq (4.2.25) The BRST Transformation of the Gauge Fixed
Action for the Point Particle

The equation of motion for the e field in the non-gauge fixed action is

1 o 1 .
—5672X‘LLXM + §m2 + 1B — ebc [4.76]
Solving for B and fixing the gauge e = 1 gives
' 1. . 1,
B =1 _§X“XM —+ im — bC [477]
and thus (4.2.22d) becomes
[4.78]

1. . 1 .
Spb = i€ <—2X“XM +gm® - bc>

Let us now check that (4.2.25) is indeed a symmetry of the gauge fixed action. The classical
part of the action will be invariant as the BRST symmetry is just a gauge symmetry with a

gauge parameter iec. We thus need to calculate

o / dr (—be) = / dr (5, b + 0, 5b)

1. . 1 )
= /dT [iec@TcﬁTb + cOrie <—2X“X“ + §m2 — bc>}

- / drie (cch+ XV X, + che + cbe) =0 [4.79]

as the X* equations of motion is X* = 0 and as also ¢ = 0.
Let us also check the nilpotency of the BRST transformation. We only need to check

the nilpotency on the b ghost as all other transformations are unchanged

5@ Wb =6Die, <—;XMX“ + %mz - z;c>
—ier [~ X"0-(05) X,)) — (0:0; )e — b6 ]
=i |:—XMaT(i€2X#) — 1e90; (—;X“Xu + %mQ — bc> c— i)i@Cé]
=€1€9 <X“X“ — X“X“ — bee — béce — bcc’) =0 [4.80]
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4.18 p 130: Eq (4.2.26) The Canonical Commutation Relations for the
Point Particle

Let us be extra careful regarding Euclidean vs Minkowski. The gauge-fixed action in Eu-
clidean time 7 is (4.2.24)

f 1o, 1,
i
We first rotate to Minkowski time, 7 = it, and hence 9, = —i9;. The Euclidean action then
becomes
itf 1 1 5
SE = / idt [—QGtX“f)tXM + §m + i@tbc] [4.82]
it;

The exponential of the path integral becomes

ity 1. . 1 . ity 1. p 1 .
e_SE _ 6_ fiti idt [—Eth‘ BtX,L+§m2+z8tbc] _ el it dt [Eth“thH—EmQ—Zatbc] [483]

With Minkowski signature this needs to be e**™ so the Minkowski action is

ity 1 1
Sy = dt [QOtX“&Xu - §m2 — i04be [4.84]

it;
We have used partial integration in the last term. The conjugate momenta are now

tAp

c is not a dynamic variable so its conjugate momentum is zero. We can impose the general
CCRs [z,p|+ =1
[X'u>py} = i’r/wj = [p#7 XV] = —Z'UW
{b,—icy=—i =  {bec}=1 [4.86]
In order to find the BRST charge Qg we follow the Noether procedure, see [2.36].
Recall how it works. We first work out that the Lagrangian transforms into a total derivative

AL = 0,J". The Noether current is then given by j* = (0£/0(9,¢))A¢ — T*. We work
with the Minkowski Lagrangian

1 1
Ly = 50 X0 X, — §m2 — i0;be [4.87]
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In Minkowski time the BRST transformations are
opXH =ecoy XH
opb =ie (;atX#atXu + %mZ + i8tbc)
Opc = ecOic [4.88]

We thus find

(SBﬁM = ékX“&t (GCatXu) — z@t |:7,€ <;6tX“6tXH + %mQ + u?tbc)] C — i&tbecatc

=€ (01O X" 0 X, + cOXM O X, + 0, XFO? X e + 107 bee + i0ybdyec + i0bedye)
= e@t (c@tX“&XH) [489]

We thus have J = c0; X"0;X,, and the BRST Noether current is

OLw .. Ol
T = 5axm B T gam Bt 7

1 1
=0y XHecO; X" — icie <28tX“8tX“ + §m2 + i@tbc> —ecO X'O X,
1 1 5 .
=€ | —cO X" X, — §CatXM8tXu - §cm — icOibe + cO X" 01 X,

1 1 1
= —e€c <28tX“8tXM + 2cm2> = —ec§(p2 + m2) [4.90]

We can define the BRST Noether current as, keeping in mind that the overall sign is irrele-
vant,

. C
jB = 5(172 +m?) [4.91]

We can rewrite this in therms of the Hamiltonian H = ), ¢;p; — £, which is
H = 0,X10,X, + 0b(—ic) — 50X10X, + sm? + idybe
= %@X“@XM + %mz = %(p2 +m?) [4.92]
We thus conclude that the BRST operator is given by

QB =cH [4.93]
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4.19 p131: Eq (4.3.1) The BRST Transformation for the Bosonic String

The BRST transformations for the bosonic string can be easily obtained from those of the
point particle as the actions are so similar. The transformation for X* follows directly from
the worldsheet diffeomorphism setting the gauge parameter equal to iec. The transforma-
tion for ¢ follows a similar pattern. The transformation for b comes from éogb = e¢B and
replacing B by its value from the equation of motion of the metric. To be specific we have
opb(z) = éBb,, = edpB,,. We obtain the value of B, from the equation of motion for g,,.
The action is now S = Sy, + Sg + Sg ¢ with Sy, and S, the matter and ghost action and

]

Sef. = / d?0 /g (—iB™F,;) = 0 / d*0 \/g B (845 — gap) [4.94]

7

the gauge fixing action. The normalisation of F; is just a convention. Note that there is
a sign difference in the gauge fixing term compared to Joe’s book. Now the equation of
motion from varying the worldsheet metric is

0=

)
—S, 1. [4.95]

0 _ \/§ ab ab
(Stn 48 + Sg.) = 4 (T +T7) + 5

6gab
We have
7

0gapSe.f. = Ogg, [477 /dZU \/gBab(fsab - gab):|
_ L 2 1 cd ab . _ nab
- An /d g \/§ <29 5.9ch (5ab gab) B 5gab>

) 1

= /dQU Va <29abBCd(5cd — ed) — Bab) dGab [4.96]

We now fix the gauge so that the first term between brackets is zero and have

i = ! 26’ B (o’ 5ng(OJ) _ i 2 1 pedy INsashbg2
dgap(0) - 4m 4o’ B¥) Sgan(0) +47T d”o" B€(0")6:040%(0" — o)
— L ab
RRRTEAY [4.97]

We thus get for the g,;, equation of motion

1 i
0= — Tab Tab 7Bab 08
4W(X+g)+47r [4.98]
or
BY =i(T¢ + T3 [4.99]
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and
ogb = ie(Tx + T,) [4.100]
Note that the variation of c is
opc = iecOc [4.101]
and similar for the anti-holomorphic part. See Joe’s errata page for an explanation on this.
4.20 p 131: Nilpotency of the BRST Transformation for the Bosonic
String

First we consider the action of 63 on X*:

s xm =iey 5 (cOXH + cDXH)
=€y [i€2c0cOXH + ciead(cOX? + OXM) + i€2600XH + Ciead(cOX! + cOXH)]
=e163 [—cOCOXH + cO(cOXH + COXM) — c0COX" + cD(cOX! + cOXH)]
= 6162( — cDCOX™ + cOcOXH + ccd?> X + cOGOXH + ccIXH
— E0G0XH + E0cOXH + 00X M + E0c0XH + ee0* X M)
=c162( — cOcOXH 4 cOcOX" +0+ 0+ 0 — ccOX* + 0+ 0 + cdcd X" + 0)
=0 [4.102]

Next, consider

5](32)5](31)6 = i616](32)cac = i€1 (ieacOcOc + cieacde)

=e1€62(c0cdc + ccde) = 0 [4.103]
Finally we consider
536 0b —ie 6P (Tx +T,) [4.104]

We work out the BRST transformations of the two energy-momentum tensors separately

opTx =0 (—L@X“&X& = —%8X“8(C8Xu +¢0X,,)
= — %((%8X“8Xu + c0X0*X) [4.105]
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where we have used the equations of motion 9¢ = 99X, = 0. For the ghost energy
momentum tensor we find, using (2.5.11) with A = 2

0Ty = dB(—0bc — 2b0c)
= —ied(Tx + T,)c — ObiecOc — 2ie(Tx + Ty)Oc — 2bied(cOc)
= %ax%ﬂxﬂc — ie(—0%be — AbOc — 20bdc — 2b0°c)c — dbiecdc
+ QL:F?@XE?X(% — 2ie(—dbc — 2b0c)dc — 2biedcdc — 2biecd*c
«

=€ ((3/8X“62Xuc + 30bdce + 200 ce — Obdce + %BX@X@C — 20b0cc — 2b8206>

= ZLf (0XH 9 X e+ 0X9Xc) [4.106]
(6]
We thus see that
53 6W0b —ie 6P (T +T,)

2i€g

o o

=ie [ _ 22 (0c0XH"0X,, + c0X0*X) + —= (0X"0*X,,c + XX c) ]

=0 [4.107]

We have thus indeed shown that 63 = 0 up to the equations of motion.

4.21 p 131: Eq (4.3.3) The BRST Current for the Bosonic String

We will not derive the expression of the BRST current for the bosonic string from Noether’s
theorem. Those with an inclination for tedious calculations are invited to do so. Rather,
we will show that the current (4.3.3) generates the correct BRST transformations of the
field. We will also show that (1) the BRST current is a spin three primary field if the central
charge of the matter sector is 26 and (2) how nilpotency follows from the OPE of the BRST
current with itself. To do this, we first need the relevant OPES of the BRST current with
the fields.

4.22 p 132: Eq (4.3.4) OPEs with the BRST Current
We start with the OPE of the BRST current with the X* field

i (2) X (w) = ch(z)—i-bc@c(z)—i—g@Qc(z) XA ()

m
= T () X () = CiX_E;") 4.108]

— 216—



Joe’s Book (version of November 20, 2020) Notes from Stany M. Schrans

In order to find the BRST transformation of X* we can use the usual contour integration

, dz . , dz cOXH(w) .
IpXH(w) =ie %ew 2Trj]g,(z)X (w) = ie ?iw S — iecOXH(w) [4.109]

which is (4.3.1a).
We then consider

JB(2)b(w) = {ch(z) + bcoe(z) + 3820(2)} b(w)

= T™(2)e(2)b(w) — bde(2)e(2)b(w) + be(2)de(2)b(w) + 62'_)|b(w)

_ T™(z)  bde(z)  be(z) n 3
z—w z—w (z2—w)? (z—w)?
T™(w)  bdc(w)  be(w) + (2 — w)d(be)(w) N 3
z—w  z—w (z —w)? (z —w)3
3 —bc(w T™ — Qbc — 2b0c)(w
(z_w)3+(z_(w))2+( — ) (w)
3 Jw) (" +T9)(w)

T (z—w)3 * (z —w)? * z—w [4.110]

where we have used the definition of the ghost current (2.5.14), j9 = —bc and of the ghost
energy momentum tensor 79 = —dbc — 2bdc. The BRST transformation of b follows from
the contour integration

opb(w) :iejgc ;Lj_jB( )b(w) = ie?é ;L; [(z —3w)3 + (jéi_(li;))? + (Tmz+—Ti)(w)
(T (w) + T (w)) [4.111]

which is (4.3.1b).
Next we consider

JjB(2)c(w) = [ch(z) + bede(z) + 2820(27)} c(w)

1
=b(2)c(w)cdc(z) = cde(w) [4.112]
z—w
the BRST transformation of ¢ is then given by
i dz iy dz cOc(w)
ope(w) —zejgw %jB(z)c(w) = i€ jiw o —w iecOc(w) [4.113]

which is (4.3.1c¢).
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There are, of course, similar relations for jg and we thus conclude that these currents
indeed generate the BRST transformations.
Finally, consider a general primary matter field O™

JB(2)0™(w) = |[cT™(2) + bede(z) + 2820(,2)} O™ (w)

O — [h(’)m(w) a@m(w)]

(z —w)? z—w
_ heO (w)  hocO™(w) 4+ c0O™(w) (4.114]
(z —w)? Z—w
For completeness, we work out the BRST transformation of such a field
meoN dz . e dz hocO™(w) 4+ c0O0™ (w)
opO™ (w) —267{1” %]B(Z)O (w) = ie jiw 5 T w
=1ehdcO™ (w) + c00™ (w) [4.115]
4.23 p 132: Eq (4.3.6) The Anticommutator {Qg, b,, }
We use (2.6.15) for Grassmann fields
{Q,b(z)} = Resy —2j(21)b(z) [4.116]
Extracting the mode by, = § 4= 2™*1p(z) we find
dz m+1 .
{Q,bn,} = o Res,,—.7(21)b(2)
_ dz Smtl 3 79(2) (T™ +19)(z)
B jé i Resz1 - (21 — 2)3 + (21 — 2)2 - 27—z
dz i1
= mrHT™ + TY L+ LY 11
o @ T e) = L 4+ 1, [4.117]

Let me make two simple remarks. First the reader shall not be confused by the superscript
™ denoting the matter field and the subscript ,, being a Laurent index. Second, and last,
note that Qp is the conserved charge of the BRST current. Because the BRST current is a
dimension one field its Laurent expansion is jg, = § %zm jB(2) and so @ = jpo. The
anticommutator of b with any other mode of the the BRST current will include contribu-
tions form the higher order poles of the OPE as well. See the derivation of the Virasoro
operator [2.110] if that is not clear.
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4.24 p 132: Eq (4.3.7) The Mode Expansion of the BRST Operator

We focus on the holomorphic part as the anti-holomorphic part is similar. We need to work
out Qp = ¢ dz jp(z) with jp = cT's + bcdcs + %820 in terms of the underlying modes. We
have here included explicitly the (creation-annihilation) normal ordering symbols as they
will be needed in the mode expansions. Let us do the three terms separately. We don’t
write the ™ for the matter sector as it w1ll be understood and use the standard Laurent

expansion for w dimension h field: 0" =3~ ol / 2tk
1) _ .o Lo,
Qp’ = f{d’z Z *om—1 jnt2° [4.118]

Because the ¢,, and L,, commute there is no normal ordering ambiguity and we can drop
the normal ordering signs and find

00 oo
Z % m+n+1 = Z caném'i‘”aO - Z CnL—n [4.119]
m,n=—o00 z m,n=—00 n=—00

For the second term we find

@) . be c¢m —(n—1e,
QB - %dz Z Z€+2 om—1 on

£mn=—o00

[e.e]

sbyCmCns
S Y e fa e 4120

lmmn=—o0

There is a potential normal ordering ambiguity when b and ¢ don’t anti-commute, i.e. when
¢+ m =0or ¢+ n=0. Ignoring this for the moment we find

o0 [e.o]

QY = - > (= Dbemenbismin=— Y, (n—1)emenb_mn [4.121]

{mmn=—o0 m,n=—00

We have moved the b_,,_,, to the right. This is fine, because moving it to the right will only
add contributions of the form ¢y which we will include in the normal ordering constant that
we will determine in a different way. We also note that Zmn CmCnb_m_n = 0 by symmetry
considerations. We can also antisymmetrize the expression and get

() ()
g) — Z mcmcnb—m—n = Z m 5 ngcmcnb_m_ng [4.122]

m,n=—00 m,n=—00
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where we have reintroduced the creation-annihilation normal ordering symbols as the dif-
ference will be in the normal ordering constant ¢y. Finally, the last term %620 gives

o0

3 3 3 _
Qp’ = 2jédz Z n(n — l)ﬁ =3 Z n(n —1)c,0n0 =0 [4.123]

n=—oo n=—oo

As expected, it doesn’t contribute to the BRST charge as it is a total derivative. We conclude
that the BRST charge is given by

[e.e]

o0
m-—n
QB = Z en L™, + Z Tgcmcnb,m,ng + agcy + c.c. [4.124]

n=—oo m,n=—00

where ap is the normal ordering constant and c.c. stands for the anti-holomorphic part.
We have reintroduced the superscript " to denote the matter fields and could add creation
annihilation normal ordering symbols in the first sum, but it wouldn’t make a difference as
¢n and L] commute.

4.25 p 132: Eq (4.3.7) The BRST Normal Ordering Constant

We have
{Q,bo} = > {eal™ b0} + > 5 3mCnb_m-n3, bo} +an{co,bo}  [4.125]
n=—oo m,n=—o0
Split the calculation in three. First,
o
Pr= Y L"6.0=Lg [4.126]
n=—oo
Next
1 00 -1
Py = 3 Z Z (m —n){—scpemb_m—ns,bo} + m{scmcob_ms, bo}
m=—00 Ln=—0o0
[e.e]
+ Z(m —n){—8¢mb_m—ncns, bo} [4.127]
n=1
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We work this out in three parts as well, P, = %(Pga + Py, + Po.) with

-1

Py, = — Z Z m —n){ecnemb_m—ns, bo} + Z n{scncob_ns, bo}
m—=—o0 N=—0o0 n=—oo

o0

-y Z m — n){2CnCmb_m-_n3,bo}

m=1n=—oo
-1

= Z Z m — n){cnemb_m—n,bo} + Z n{cncob_n,bo}

m=—00 N=—00 n=—oo

+ Z Z m — n){cpb_m—nCm, bo} [4.128]

m=1n=—oo

We now use the fact that for four Grassmann numbers f1,-- - , f4 we have

{fifafs, fa} = frfolfs, fa} — filfe, fad fs + {f1, fa} o fs [4.129]

which can be easily seen by working out both sides. This gives

-1

Py = — _Z _Z (m — n)(_cn(sm,obfmfn + 5n,OCmb7mfn) + Z n(—cpb_pn + 0n,0€0b—n
1
+ Z Z —n)(epb—m—nOm,0 + On0b—m—ncm) = — Z nepb_n [4.130]
m=1n=—00 n=-—00

as neither m nor n can be zero in any of the sums. Next, we have

-1 00
Py= > mfscmcobms bo} + Y m{scmcob_ms, bo}

m=—o00 m=1
-1 00
= Z m{emcob—m,bo} — Z m{b_mcoCm,bo}
m=—o0 m=1
-1 9]
= Z m<_cmb—m + 5m,060b—m) - Z (b—mcoém,o - b—mcm)
m=—00 m=1
= Z MCmb_m + Z mb_mcm [4.131]
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The last part of P, is

P = Z i m —n){ecmb_m—ncns, bo} + Zn{ cob_ncns,bo} — Z Z — n){8cmb_m—ncns, bo}
m=—oo n=1 m=1n=1
= Z Z —n){emb_m—nCn,bo} — Zn{b nCoCn, b} + Z Z — n){b_m—nCmCn,bo}
m=—oon=1 m=1n=1

= Z Z —-n Cmb—mén,() + 5m,0b—ncn) - i n(b—nc()(sn,o - b—ncn)
n=1

4 Z Z — 1) (b—mCmOn,o — b—nOm 0Cn)

= + Z nb_,cn, [4.132]

Collecting the different contributions we have

—1 —1 o] o
Py :% (— Z nepb_p — Z NCmb—_m + Z nb_mcm + Z nb_ncn>

n=-—00 m=—o00 m=1 n=1
-1 00 00
= — Z nepb_p + Z nb_mcm = Z nb_pcps = — Z ngbpc_ns [4.133]
n=—00 m=1 n=—00 n=—00

We now use the mode expansion of the ghost energy momentum tensor (2.7.21) with A\ = 2
Li=— > mnabpc_pz—1 [4.134]

Therefore
P,=Li+1 [4.135]
Finally, we have immediately P; = ag. Thus
{QB,bo} =P+ P+ P3 =L+ Li+1+ag [4.136]
As this needs to be L{* + L{ we find indeed that

ag = —1 [4.137]
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4.26 p 132: Eq (4.3.10) The jp(z)js(w) OPE and the Nilpotency of the
BRST Charge

We have
in(2)js(w) = (ch + bede + 3820) (2) (ch + bede + 28%) (w)
=cT™(2)cT™ (w) + T (2)bcdc(w) + bedc(z)cT™ (w) + bede(z)bede(w)
+ bcac(z)ga%(w) + SOQC(z)bcac(w) [4.138]
We split this calculation in six

1
i =™ (2)cT™ (w) = e(2)e(w)T™(2)T™ (w)
cm/2 27T (w oT™(w
=c(2)c(w) [(z —/w)4 + G _(3)2) + p; —(w)]

= [c(w) + (2 — w)dec(w) + %(z —w)?0%c(w) + é(z —w)3Pc(w)| e(w)
[ cm /2 27 (w) N GTm(w)]

w)

(

et e T e
_ _ (c™/2)0cc(w) n (™ /4)0%ce(w) n (™ /12)d3ce(w) + 20ccT™(w) [4.139]
z—w)? (z —w)? Z—w '
jjo =T (2)bcde(w) = ﬂ (2)cOc(w) = (ZZ)_C(?E(IU)
_ ‘%ngli) [4.140]
i = bede(z)eT™ () = b(2)e(w)ede(z) T (w) = LA
— 8CET_miiw) [4.141]
jja =bcde(z)bcde(w)
1
=b(z)c(w) [@(w)@c(z’)ao(w) — Oc(2)b(w)c(2)dc(w)]
1
+ b(2)dc(w) | — éTﬂ‘)(w)ﬁc(z)c(w) + 8&(7)ll)(w)c(z)c(w)]
1 0c(z)0c(w) — e(z)dc(w) 1 oc(z)e(w)  e(z)e(w)
Cz—w z—w + (z—w)2}+(z—w)2[ z—w (z —w)?
_c(z)e(w) | e(2)0c(w) — e(z)c(w) | Oc(z)0c(w)
(- w)? (z —w)3 (z —w)? [4.142]
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Combining the denominators

Next

Finally

. —O0cc(w) + cOc(w) — Oec(w) N —10%cc(w) — & ce(w)
= (z—w)? (=~ w)?
—§03cc(w) + 30%cOc(w) — 13 cc(w) + 9 cc(w)
z—w
_ —3dcc(w)  —30%cc(w) N —203cc(w) + 30%cOc(w)
(z —w)3 (z —w)? z—w

+

2¢0c(z)
(z —w)?
_ —20cc(w) | 2c0c(w) N Ocd?c(w) + cd3c(w)

C (z—w)d (2 —w)? z—w

_ —20cc(w)  —20%cc(w) N —0?cOc(w) — D3cc(w)
 (z—w)3 (z —w)? z—w

2. 3, s
s = bc@c(z)iﬁ c(w) = b(z)0%c(w)cde(z) =

_ 20c(w)e
(z —w)?

%jj6 = 0%c(2)bcdc(w) = 82@)(10)080(10) =

Let us now bring everything together. We start with the numerator of (z — w) ™3

Next

Finally

o((z — w)_3) = (c"/2)0cc(w) — 30cc(w) — 32866(11}) - %2806(10)

- (¢™ — 18)0cc(w)
2(z —w)3

o((z — w)_2) = (™ /4)D?ce(w) — SGQCc(w) - 228200(11})

(™ — 18)9%cc(w)
” 4(z —w)?

o((z —w)™1) =(c"/12)*cc(w) + 20ccT™ (w) — decT™ (w) — DecT™ (w)
— %8306(10) + %02006(10) + g(—82680(w) — PBec(w))

(™ — 26)D3cc(w)
12(z — w)
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We conclude that

(™ —18)0cc(w) (™ —18)0%cc(w) (™ — 26)d3cc(w)

2(z —w)3 4(z —w)? 12(z — w) [4.149]

JB(2)jB(w) =

Let us conclude by showing explicitly that this leads a nilpotent charge. We have Q3 =
%{QB, Q@p} and we can compute the anti-commutator from a contour integral

(Q0.Qu} = § 52 Res.,rjne1)in(z2)

_ f dzy &2 b ) [(c";— 18)0cc(z2) n (™ —18)0%cc(22) N (™ — 26)D3cc(22)

2mi (21 — 22)3 4(z1 — 29)? 12(z1 — 22)
- (Cm - 26) dZQ 3
= G 27”,8 cc(z2) [4.150]
To work this out, first note that d3¢(z) = — Y, (m — 1)m(m + 1)c¢;,2~™ 2 and thus
3 0 (m® —m)icpems
c0’c(z) = — Z g [4.151]
m,n=—o00
Therefore
dzsy (m3 —m)scpems
{@p, 08} = — jq{ Ii ontmtl
m,n=—00
M —26) &
= —(12) Z (m3 — M)8C_mCms [4.152]
m=—oo

The normal ordering causes this to be zero on physical states, as it should because physical
states are annihilated by the BRST charge. But the operator is only nilpotent if ¢™ = 26.

4.27 p 133: Eq (4.3.11) The BRST Current as a Primary Field

Recalling that T = T™ + T9 and jg = ¢T™(w) + $T9(w) 4 y0*c we have

7)) = (") 4 T2(:) (T(w) + 3eT7(w) 490 )

. 1 1 1
=c(w)T™(2)T™(w) + T™(w)T9(2)c(w) + ic(w)Tg(z)Tg(w)
1 1 1
+ §T9 (w)T9(2)c(w) +yT9(2)0%c(w) [4.153]
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We have replaced momentarily the factor 3/2 by a parameter . As per our Standard
Operating Procedure we split this calculation in five

T, zc(w)llm(—zﬂLm(w) _ cMe(w) 2cT™(w)  cOT™(w)

2(z—w)t  (z—w)? z—w
—cT™(w Mde(w
Tjp =T"(w)T9(z)c(w) = (zzi u(1)2) TZ ? EU ) [4.154]

We take the third and fourth term together. Indeed we need to be careful here because
c¢T9(w) is a composite operator and so the normal inside this operator is important. So
it is easiest to compute these OPEs from the basic underlying fields, i.e. using 79(z) =
(cOb + 20cb)(z) and $cT9(w) = bede(w)

Tiy + Tj, = Tg(z)%ch(w) — (b + 20cb) ()bede(w) [4.155]
Let us first work out the terms with double contractions
Tianz = — H2)B(w)Ob(=)e(w)c(w) + Hz)w >ab<z> cw)e(w)
—, ]
—20¢(2)b(w)b(2)c(w)de(w) + 28c(z)b(w)b(z) c(w)e(w)
dc(w) —2c(w) 20c(w) —2c(w) —4e(w) 30c(w)

= z—w)3?  (z—w)?! (z—w)d (z—w)4 T G-w) + (z —w)? [4.156]

The terms with only one contraction are

Tyt = — €(2)D(w)b()cde(w) — Bb(=)e(w)e(2)bc(w) + Bb(2)e(w)c(2)be(w)

— 208 b(w)b(2)ede(w) — 2b(2)e(w)De(2)bde(w) + 2b(2)De(w)de(z)be(w)

_ —Ob(2)ede(w) | c(2)bde(w) | —2e(2)be(w)
2 3

z—w (z —w) (z —w)
2b(z)coc(w —20c(z)b0c(w 20c(z)be(w
(Ie0ely) | 20(I0ele) , 20l
_ —2cbe(w) | (cbOc — 20cbe + 2bcde + 20cbe)(w)
C (z—w) (z —w)?

(=0bcde + dcbde — 8*be + 20bcdc — dcbdce + 20%che) (w)

zZ—w
_ _ 2
_ bOoce(w) n (0bOcc + bO~cc)(w) (4.157]
(z —w)? z—w
Therefore
. —4c(w) 30c(w)  —bOcc(w)  —(0bOce + bd*cc)(w)
TJ34 = (Z — w)4 + (2: — U])3 + (Z — w)2 Y —w [4.158]
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Finally

1
© ATy 2 — 92 —c(w) dc(w)
T =7 T9(:)0Pe(w) = 20 |~ 4 24
B —2c¢(w) —0c(w) Oc(w) 0?c(w)
=% {(z—w)3 * (z — w)? * (z — w)? * z—w
0 —2¢(w) n 0?c(w)
(z—w)?  z—w
_ —6yc(w)  —2y0c(w)  +y0%c(w) O3 c(w)
C(z—w)t T (z—w)3 (z —w)? z—w [4.159]
Let us look at the orders of (z — w) one by one
VI lm_ _ _cm—8—127
o((z—w)™) = |:26 4 67} c=——p0—c
o((z — w)_3) =(3—2v)0c [4.160]
Also
o((z —w)™?) =2eT™ — T™ — bdcc + y%c = T™ + %CTQ +~0% = jg
o((z —w)™1) =cOT™ + T™dc + 9b + cOc + bed*c + v0%¢c
=0 <ch + %ch + 7830> =0JJB [4.161]
We come to our final result
(=8 —12y)e(w) | (3-20)0e(w) | s Djs
T(z)js(w) = 50 —w)i TG e T eE T Tie 4167

We know that nilpotency requires ¢™ = 26. It the follows that choosing v = 3/2 ensures
not only that the (z — w)~* cancels but also the (z — w) ™3 term, so that jp is a dimension
one primary field, i.e. a conformal tensor:

. Y
T(z)jp(w) = e iBw)Q + 4 sz [4.163]

4.28 p 133: Eq (4.3.15) The Algebra Satisfied by the Constraints

The fact that the G* satisfy the constraint algebra is by their definition as it is the algebra
of the residual symmetry. Let us therefore check that the GY satisfy this algebra

(G9, G = — g1y, v e bie, N ow] [4.164]
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We now use the identity for four Grassmann numbers

[f1f2, f3fa] = il fe, fatfa — fifs{fe, fat + {fr, fs} fafa — fs{fr, fa} fo [4.165]
which is easily checked. Keeping only the non-vanishing terms
G, G9) = — girayv (OR " bar — 537V bre) = —gTLa ke bar + g9 7ne b
= (—91L97k + 91k 95L)c brr = (97K 9Lt + 911971 )e by
= — 9L 9tyc b = igry(—igit e bar) = igly G [4.166]
We have used the fact that g/, is antisymmetric in its lower indices and also that it satisfies

the Jacobi identity.

4.29 133: Eq (4.3.16) The Nilpotency of the General BRST Charge
p q p y g
We have
{QB,Qp} ={/GT + %chi, G+ 1cfag}
={JlGm, Gy + = {chm TG} + = {chf;, G} + i{cIG‘},c‘]GZ}
[4.167]

As per our standard operating procedure we split this calculation in four parts. To do this
we need the identity

{f1b1, faba} = fi[b1, falba + f1f2[b1, b2] + {f1, fa}b2b1 + fa[ba, f1]b1 [4.168]

We will also need

[Gg,cM] = — igf][c‘]bK, CM] = figf{JcJ{bK, cM} = figf]c‘](s%

- _ ig%cj [4.169]

Thus we find, keeping only the non-zero (anti)-commutators

qar = (/G G} = T [Gp, G = ighsd o G [4.170]

2qay ={c'GT",c’GY} = ¢’ [G? a7 = ¢ (—igyc™)GT
= —ighcd KGT = —igh I GR [4.171]

2q93 = {c'G1, ¢’ G} = ![GY. T1GY = ! (—igficc™ )G
= —ig? IKI EGT = —igh I G [4.172]
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We see that qq; + qq, + qq; = 0. So it remains to show that the fourth contribution is zero

4qq, ={c'GY,c’G%} = 1G9, ¢71GY + ! 7 [GY,GY) + ¢ [GY, ) GY
=cl(—ig]xc)G% + ' cTighy GY + ¢ (—igh ™) GY
—z(gIKc cIG§+gIJc cJGg +ghge cJGg
= g7 g bar + giyc’ ¢ giln e ou + gl e e gineNb

K JI.M L K I.J L K J.I L
=grjcc QKLC bm +91J0 c gKLC by + gryec QKLC bm

M

—gUg%L(c el + ¢ )cLbM = gUgKLc by =0 [4.173]

Where this vanishes by the Jacobi identity.

4.30 p 134: Eq (4.3.17) The Hermitian Conjugate of the Ghost Modes

One could argue that it is trivial. But sometimes it is good to check the trivial things in
order to be sure that we don’t miss any details. It is certainly easy to work out that the
definitions (4.3.17) are sufficient conditions for the BRST operator to be Hermitian. But
let us also show that it is a necessary condition. Let us focus on the holomorphic modes,
the reasoning for the anti-holomorphic modes is the same.

We already know that Lin =L_,, SO

QE = ZCIZLT_H Z — N)8CmCnb_pm— noT — cg
n

= ZCT_ n+ = Z — N)8CmCnb_m— noT — cg [4.174]
n

From the first term we deduce that cT_n = ¢, and Hermiticity of the BRST charge is implies
Hermiticity of

Q= Z(m — n)8CmCnb_m—ns [4.175]
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Let us work this out in detail

i i (m—n)+ i m+ i i(m Z n+0-— Zn

m=—00 N=—00 m=—00 m=—oon=1 n=—0oo

[e'¢) -1
Jrz Z ( m-—-n +Zm+zz Ocmcnbfmfn8

m=1n=—o0 m=1n=1
-1

Z Z m — n)emCnb_m—n + Z MCmCob_m Z Z m — n)emb_m—ncn

m=—o00 m=—oon=1

m=—00 N=—00

+ g NCpCob_m—n g nb_m—_nCoCn + g g —TL Cnbfm nCm
n=-—00 m=1n=-—o0

[4.176]

— Z mb_,CoCm + Z Z — N)b_m—nCmCn

m=1n=1
From this we find, using ¢,,t = c_,

—1
Z Z m—n) bT_m nConCm + Z mbT_mcoc_ Z Z m—n)c_py _m nCem
m=—o0 m=—ocon=1

m=—00 N=—00
o0

—1
+ Z an_m_ncoc_ ch_ncob men T Z Z m—n)c_m T_m_nc_n
n=—oo m=1n=—oo

[4.177]

— i mC_mC()b + Z Z —N)C_nCom bT—mfn
m=1

m=1n=1

Changing the indices m — —m and n — —n gives

o o
ZZ —m +n) m+ncncm Zmchocm Z Z m—l—ncnlﬁncm

m=1n=1 m=1n=—oo

— Z nberncocn + Z ncncobern + Z Z —m+n)cp, InJrncn

n=-—oo m=—oon=1

+ Z mcmcob]L + Z Z m‘i‘ncncmbjwrn

m=—0o0 N=—00

[4.178]

m=—o0
Keeping in mind that the ghost modes create different states in the Hilbert space, we can
equate the different powers of ¢,,c,, between Qp and Qpt. One then sees that this indeed
implies that necessarily b}, = b_,, for n € Z.
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4.31 p 134: Eq (4.3.18) The Ghost Insertions for the Inner Product of
the Ground States

Recall that because of the anti-commutator {by,co} = 1 the ghost ground state is degen-
erate, i.e. we have two ground states ||) and |1). Their relations are shown in the figure

below
1 \
Co < > bo 0
1) /

Figure 4.1: The degenerate ghost vacuum

Note that |0; k) actually means |0; k) & |/]) where the first part is the ground state of the
matter part and the latter the ground state of the ghost part. For the closed string

(i (0; k| Goco |0; k))* = —i (0; k| ¢} &l |05 k) = —i (0; k| codo |05 k) = i (0; k| Goco |0; k) [4.179]

justifying the need for the 7 in that inner product.

4.32 p 134: Qg takes H into itself

To see that [()p, Lo| vanishes, recall that the BRST current is a primary dimension one field
in the critical dimension, see (4.3.11) and that the BRST charge is the zero mode of the
BRST current, see the text below [4.117]. From (2.6.24) it then follows immediately that

(@B, Lo] = 0. )
Now assume |¢)) € H, then

bo@s |¥) = ({bo, @B} — @Bbo) [¥) = Lo |[¥) =0
LoQg |¢) = ([Lo, @8] — QBL0) [¥) =0 [4.180]

and therefore if |¢/) € H then we also have Qg [¢)) € #

4.33 p 134: The Need for a New Inner Product on H

A level N state with a ghost zero mode |N; k; ¢) = ¢ |N; k) has inner product

(N;k,c|N";K';c) = (N; K| cgco IN; k) = (N;k|coco |[N; k) =0 [4.181]
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and similarly for |N; k;b) = by |N; k). Also the states in # satisfy the mass-shell condition
(4.3.20), i.e. Lo|y) = o/ (p? + m?) ) = 0, hence not all k* are independent as they have
to satisfy the mass shell condition. This means that in §25(k — k') there will be one delta
function that is automatically satisfies and give a (0). By defining a new inner product
without the ghost zero modes and X° one takes away the problems so have a good inner
product. It seems obvious to me that the BRST charge remains Hermitian with this new
inner product.

4.34 p 135: Eq (4.3.23) The Level Zero Mass Shell Condition
The level zero state |0; k) has no ghosts or matter excitations. Therefore N,, = N, =

N, = 0 and thus the mass shell condition (4.3.22) implies that o/ (—k?) = o/m? = —1 or
hence —k? = —1/cd/.

4.35 p 135: Eq (4.3.24) The Level Zero Physical State Condition

Using the expansion of the BRST charge in modes (4.3.7) we have

o
Qg |0; k) Z en L™, —i— - Z (m — n)scmenb_m—ns —co| |0; k) [4.182]
n=-—o0o m,n:—oo

The first term, for n # 0, always has either ¢, or Ly with & > 1 which annihilates |0; k). The
n = 0 term gives coLg' |0; k) with L§" given by (2.7.7), or at least the equivalent relation
for the open string,

oo
L =a/p? + Z al oyn [4.183]

n=1
Thus co L7 |0; k) = o'k?co |0; k) = cq |0; k). This cancels with the third term. In the second
term all the terms that have m # 0 and m # 0 clearly annihilate |0; £) due to the normal
ordering. The m = n = 0 term has a ¢ that is zero by itself. So what remains is terms with
either m or n equal to zero, but not both. These are of the form Z;’o:_oo’n £0 n3CoCnb_ns

but by normal ordering there is always an annihilation operator to the right so these terms
also annihilate |0; k). We thus find that indeed Qg |0; k) = 0.

4.36 p 135: Eq (4.3.25) The Level One Mass Shell Condition

The state |¢);) has one mode o |, b_; or c_; and thus (4.3.22) gives

(k) =am?=1-1=0 =k2=0 [4.184]
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4.37 p 135: Eq (4.3.26) The Level One Negative Norm States

The norm of the state is

(Y1][v1) = (" - e+ By + ") (0; k[|0; k) [4.185]

We can take a orthogonal basis for the e, where the v’th element of ¢, is given by 4;,. We
then have ey = (1,0, ,0) and thus (eg)? = —1. All tho the ¢; have (e;)? + 1. That is one
negative norm state and 25 positive norm states. For the ghost excitations, let us take a
basis for which the corresponding state has 5*~ real. We then have g*y = (6*v)x = —yx [,
the extra sign because of the Grassmann character. Thus 5*y and 7 * 5 have opposite signs;
one of them is necessarily positive norm, and the other one negative norm. We thus have
indeed 26 positive norm states and two negative norm states.

4.38 p 135: Eq (4.3.27) The Level One Physical State Condition

The physical state condition is

oo o0

1
QB Y1) = Z cnl_p + 3 Z (m — n)8cmenb_m—ns — co
n=—oo m,n=—o0

x (e + Bb_1 +yc_1) |0s k) [4.186]

We split this in three

oo
qir = Z enli_pn (euo/il + Bb_1 + 76—1) 0; k) [4.187]
n=-—oo
We use

[Lk, o] = —naj,, [4.188]

a relation that is easily checked by working out some examples, and find

oo
qi = Z (Cne,ua/in_l - BL—n(sn—l,O) ’07k>
n=—oo
oo
= > eucnd”, 1 |0;k) — BL_1|0; k) [4.189]
n=—oo
We have used the fact that [c,, 80_1] = —f3{cn,b—_1} as 5 is a Grassmann number. The
ghost mode ¢,, requires n < 0 and the matter mode requires —n — 1 < 0, or equivalently
n > —1. Combined, only the n = 0 and n = —1 terms are not zero and we have
qi = (eucoa‘il + euc,lag‘ — BL_1)10; k) [4.190]
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Now, oy |0; k) = v2a/k#* |0; k) and L_; |0; k) = o a0 [0; k) = vV2a'k,0f | |0; k). Thus

q1 = [e#cooz‘_tl + \/To/(k; -ec_1 — Bk - 04—1)} 10; k) [4.191]
Next
1 o0
qo = 3 Z (m — n)8Cmenb_m—ns (eua’il + Bb_q + ’yc_l) 10; k) [4.192]

Acting on the first part e, |0; k) the ghost mode commute with the o/, and annihilate
|0; k), just as they did for the level zero state.

For the second term, it is easiest to work out examples of s¢,,,cpb_m_n3b_1 for different
values of m and n. This is how it goes. We first only consider the the combinations where
n > m:

1. For m = n we have 3¢,,¢,nb_2,,8b_1. Irrespective whether m is positive, negative or zero, we
will the normal ordering will always keep the two ¢,,’s together and hence this is zero.

2. For m = —3 we get the series
8-+ +c_3c_9bs + c_gc_1by + c_3cobs + c_3c1by + c_3¢9b1 + - - - 3b_1

Clearly normal ordering ensures each term vanishes.

3. For m = —2 we get the series
8-+ c_ac_1b3 + c_acoby + c_ac1by + c_ac2bg + -+ 8b_1

Clearly normal ordering ensures each term vanishes here as well.

4. For m = —1 we get the series
8---+c_1cob1 +c_1c1bg + c_1cob_1 + - -3b_4

After normal ordering, each term vanishes. Note that this time we need to use by |0; k) = 0.

5. For m = 0 we get the series
8-+ +coerb_1 + coeob_o + - -8b_4

Here we should be concerned about the first term only. It gives b_jcoc1b_1 |0; k) = b_1¢¢ |0; k).

6. For m > 1 we have a ¢, or higher and so all terms are zero again.

In conclusion, the only non-vanishing contribution is (m,n) = (0, 1) and of course also its
opposite (m,n) = (1,0). Thus the second term becomes

1
5 (—86061b718b71 + 86160b718b,1) |0; k> = —b_1c9c1b_1 ’O; k?> = —b_1¢g |0; k> [4.193]

For the third term we need both m and n to be smaller than one or they end up in
the right of the normal ordering, anti-commute through the ¢_; and annihilate |0; k). If
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(m,n) = (0,0) we have a ¢2 = 0. For (m,n) = (0,—1) we have scoc_1b13c_1 |0;k) =
—c_1cobic—1 |0; k) = —c_1¢9 |0; k). All the other combinations of m and n annihilate |0; k)
because we will have a b, with k > 2. Thus the only contribution from the third term is

1
5 (—Sc_lcgblgc_l + 8000_1b186_1) ‘0; k:) = —C_1C()blc_1 ’0; k> = —C_1Cp |0; k> [4.194]

Bringing the three terms together we find
qe = (ﬁb_lco + "}/C_lc(]) ‘0; k) [4.195]
Finally

q3 = — co (epay + Bb_1 4+ yc_1) |0; k)
= (—eucoa | — Bb_1co — ye_1¢9) |0; k) [4.196]

We can now bring q1, g2 and q3 together and find
Qs Y1) = |epcoa | + V2a! (k- ec_y — Bk - a_1) + Bb_1co + ve—1¢o
—eycoaly — Bb_1co — ’yc_lco] |0; k)
=Vv2d(k-ec_1 — Bk-a_1)|0;k) [4.197]

We thus conclude that the state [¢)1) = (e o | 4+ Bb_1 4+ vc_1) |0; k) is annihilated by the
BRST charge provided that

V2! (k-ec—1 — Bk-a_1)]0;k) =0 [4.198]

and this implies indeed the physical state conditions & - ¢ = 8 = 0. In other words, level
one physical states are of the form

(euoﬂi1 + yc,l) |0;k) with k-e=0 [4.199]

Let us now consider the norm of these states. The state c_; |0; k) as follows from
(4.3.26) by setting e, = S = 0. The find the norm of the other states, let us gos to a
basis where the momentum is k2 = (1,1,0,---,0). This satisfies 2 = 0 as it should for
level one state which are massless. We now need 25 linearly independent vectors e that
satisfy k- e = 0, the 25 coming from the original 26 minus one condition. These are clearly
(1,1,0,---,0) = k and (0,0,1,0,--- ,0) up to (0,---,0,1). The former has norm zero and
the 24 latter have positive norm. The level one physical state thus indeed has 24 positive
norm states and two zero norm states. The zero norm states are created by ¢_; and by
e-a_1=k-a_q.
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4.39 p 139: Eq (4.4.7) The Commutation Relations of the Light-Cone

Oscillators
(0] = [0 + ok af — al] = 7 (o, 0] ~ ah,,al])
= % (m77005m+n,0 - m77115m+n,0) = —MOm4n,0
0 08] = 3o, + al 0 k] = 7 ([af, 3] + (o, o)
= % (m77005m+n,0 + m77115m+n,0) =0 [4.200]

4.40 p 139: Eq (4.4.10) The Splitting of the BRST Operator

The (open string) BRST operator is

oo o0

1
Qp = Z (an)fn + an[fn) + 3 Z (m — n)8cmenb_m—ns — co [4.201]
n=—o0o m,n=—o0
Now
1 [o.¢]
X ° °
Lm = 5 Z Oa/;nfna# no
n=-—00
1 00 d—1
=5 Z <8a%_na28 + 8a71n_noz}L8 + Z Sa%_na#) [4.202]
n=-—00 J=2
and
o 0 1 1 1 + 1y - L
Wy nQp + Ay Op = — i(am—n + am—n)(an + an) + i(am—n -« —n)(an - an)
1 _ _ _ _
= 5 [ - O‘jr_z—naz - a;;—nan - am—naz = Oy Oy
+ a’r—;—na:{ - a;’ir_z—na; - a;%—na: + O‘;z—na;}
= — g, — Qg [4.203]
Hence
1 00 d—1
L% =5 Z (—Sa:,b_nagg —sa,, .ot + 80‘7Jn—n047{3> [4.204]
n=—00 J=2
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and
[e) 1 0o d—1
QB = Z [2 Z (—cngoﬁnkagg — cnga:nikagg + Z cngaJnkai?)) + anI_(n
n=—oo k=—0c0 J=2
1 o
+ 5 Z (m —n)scmenb_m—ns — co [4.205]
m,n=—o0

Let us now look at this. Any terms that have no light-cone oscillators will commute with
N'® and be part of Q. All terms of the form a}taf,i for ¢, m # 0 also commute with N'¢,
as follows from counting the excitations and fall into Q. Terms of the form a7 ag for £-0
can be written as v/2o/ k:jFozj[ and have and belong to @ for o, and to Q_; for o} . Finally,

terms that contain afaf = 20/k*kT belong again to Qg

4.41 p 139: Eq (4.4.11) The Ghost Number of the BRST Operator

As ¢, has ghost number one and b,,, has ghost number minus one — see (2.723), it is clear
that Qp has ghost number one, and also each individual Q);.

4.42 p 139: Eq (4.4.13) The Simplified BRST Operator Q,

To identify Q1 we need to find all terms in [4.205] that contain one and only one .
These can only come from the first two terms and if k = 0 or k = —n and n # 0 . Thus
1 o
Q1= — 5 Z (cngaa'oz:ng + cnga:naarg) [4.206]
Y0
As we can replace aJ by v2a/kt we can also drop the normal ordering sign and find
Q1= —V2/kT > cna’, [4.207]
Y0

4.43 p 140: Eq (4.4.13) The Operator S

S={Qu.R}=- > > {o ,cmal, b} [4.208]

VA0 mA0
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We use the identity [4.168]

{f1b1, faba} = fi[b1, falba + f1f2[b1, b2] + {f1, fa}b2b1 + falba, f1]b1 [4.209]

S={Q1,R} = — i i (cmbn[a:m, at 1+ {cm, bn}afnaim>

m=—00 =—00

m#0 m#0
= Z Z ( — ncmb 5m+n + 6m+na na,m)
=—00 =—00
m;ﬁO m#0
oo
— Z ( — memb_p, — af{zoz:m)
m=—00
m70
—1 00
= Z ( — memb_m — a;a:m) + Z ( —memb_m — afna:m)
m=—00 m=1
o0
= Z (mc,mbm —at, an —menbom — a:;a:m>
m=1
(o]
= Z (mc_mbm —at an —m{cm, bom} +mb_pmen — [t a”,] — a:moz;)
m=1
[o.¢]
= Z (mc_mbm — afmof —m+ mb_pCm +m — a_ma;)
m=1
[o.¢]
= Z (mc_mbm +mb_pmem — o, a0 — a:ma;g) [4.210]

4.44 p 140: The Cohomology of Q;

We repeat the arguments here more slowly. That always helps me. First we show the (),
and S commute.

[@1,5 Z Z [ mCms NC_nbp +1b_pcy — o 0p —a”, af [4.211]
Mz !
We use
1. faf3] ={f1, fa} f3 — fol f1, f3} [4.212]
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and
[bl, bzbg] = [bl, bg]bg + by [bl, bg] [4.213]

to obtain

[Q1,S] x Z Z ( —naZ,,Cc—n{cm,bn} +na”,, {cm, b_n}ecy
m=—oo n=1
m##0

— 0z ot oy — enaglaZ,, o)

o0 oo
= 3 > (- PO w0 + MO0 + MmO 0005 — N0 o)

m=—oon=1
m7#0

oo o0
= Z Z (ma:mcm +ma_,, cm — mepa_,, — mcmoz;,,) =0 [4.214]
m=—oon=1
m7#0
We are looking for states satisfying @1 [¢)) = 0, i.e. for states with zero Eigenvalue
under ;. As 1 and S commute we can diagonalise them simultaneously, so S [¢)) = s |[¢)
for some Eigenvalue s. Consider first the case that s # 0. Then

) =s7'S ) = s7H{Qu, R} [¥) = sTH Q1R+ RQ1) [¥) = s ' Q1R 1)) [4.215]

Thus |¢) = Q1 |x) for some |x) and is thus a @); exact state. This means that states with
s # 0 cannot be physical states as physical states are closed but not exact. So we can
restrict ourselves to states with zero Eigenvalue under S, i.e. s = 0. Now look at the
explicit form of S

[o¢]
S = Z <nc,nbn 4+ nb_pc, — afna; — a:na:> [4.216]
n=1

We see that S is a number operator for counting the ghosts and the light-cone oscillators.
Indeed it annihilates every b—n excitation and replaces them by a c_,, excitation, it anni-
hilates every c—n excitations and replaces them by a b_,, excitation Similarly it annihilates
every light-cone oscillator excitation ajfm and replaces it by its opposite light-cone excita-
tion a,,. Requiring that S has Eigenvalue zero thus means that the state ) cannot have
any ghost or light-cone excitations, i.e. no b,c, X° or X! excitations. The corresponding
space is exactly the Hilbert space 7 of the transverse excitations. Are there any Q; exact
states in H{? Any such state |¢) can by definition be written as |¢) = Q1 |x) for some |y)
in H1, i.e.

6) = VIt 3 aZem ) [4217]
—
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But for |¢) to be non-zero and have only transverse oscillations, |¢) needs to have a b and
a o excitations and hence |y) ¢ H*. In other words there are no exact states in %+ and
thus the cohomology of Q; is -+

Let us also repeat the second argument given in Joe’s book that s = 0 states, i.e.
transverse states are (J; invariant. As s = 0 states have no ghost excitations they are built
from transverse oscillator excitations acting in the ground states |0; k). This ground states
includes the ghost ground state ||) that has ghost number —1/2, see (2.7.24). Now as
s = 0 we have 15 |¢) = 0 and because @); and S commute this implies that SQ; [¢)) = 0.
But @; has ghost number one as it contains just one ¢ and so @; |¢) has ghost number
—1/2 + 1 = +1/2. Furthermore S acting on a ghost number +1/2 state has non-zero
Eigenvalues. Indeed we just argued that if s = 0 then the ghost number is necessarily
—1/2. If the Eigenvalue under S of Q1 |¢) is not zero, then there exists an S~—!. Therefore
S=18Q1 [v) = Q1 1)) = 0. So an s = 0 state is indeed Q; closed.

4.45 p 140: The Cohomology of Qg

Here as well we just repeat the arguments of Joe’s book, albeit at a more pedestrian speed.
We consider the operator

U={QB,R} -5={Q1+Qo+Q1,R}—S={Q_1+Qo, R} [4.218]

Now R ~ Y~ a, by, so acting on a state it lowers the light-cone number by one, due to the
ot . By definition Q leaves the light-cone number unchanged and @ _; lowers it by one
as well. Therefore U lowers the light-cone number by one or two.

If we then write out S as a matrix in a basis, where each basis vector has a given light-
cone number, then S maps a state with light-cone number / into a state with light-cone
number ¢ and so S is represented by a diagonal matrix. U maps a state with light-cone
number /¢ into a state with light-cone number ¢ — 1 and a state with light-cone number
¢ — 2. In other words U is represented by a lower triangular matrix, in fact by a strictly
triangular matrix. Thus the matrix M = S + U consists of a triangular matrix S and a
strictly lower triangular matrix U. In this case, Ker(S+ U) C Ker(.S). now consider a state
[to) € Ker(S), i.e. S |¢p) = 0. Construct now a state

W) =(1- 570+ 570U - ST USTUSTU 4 ) [d) [4.219]
Act with S + U on this:
(S +U) ) = (S —U4US U -US WS U+USWUSUST U - -
+U-USWU+USUSU-USUSUSU +-- ) v)

=Sio) =0 [4.220]
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So for every element in Ker(S) we can write down an element in Ker(S + U) and thus we
in fact that Ker(S) and Ker(S + U) are isomorphic.

We can now repeat the same argument we used for deducing the cohomology of Q.
We first note that S + U and Qg commute. Indeed

S+ U,QB] =[{@B, R},QB] = [@BR + RQB, Ux]
=QpRQp + RQE — Q3R — QpRQp =0 [4.221]

by nilpotendcy of Q. We can thus diagonalise Q@ and S + U together, Qg |¢/) = 0 and
(S+U) |v) =t]y). Consider first the case where ¢ # 0. Then

) =t S+ U)[v) =t {Qs, R} [¢) =t " (QeR+ RQB) [¢) =t 'QaR[¢) [4.222]

and so |¢) is exact and the cohomology of )p is non-zero only when the Eigenvalue of
S + U is zero. The cohomology of Q) is thus the same as the kernel of S + U. We saw
that the Kernel of S + U is isomorphic to the kernel of S and that in turn is the same as the
cohomology of Q1, i,e,

coh(Qp) = Ker(S + U) = Ker(S + U) = coh(Q1) [4.223]

The cohomology of @ 5 is thus isomorphic to the cohomology of Q1.

If we can also show the the inner product on the cohomology of Qg is positive definite,
then we know that it is identical to the cohomology of @); and thus consists of only the
transverse oscillator excitations. All states in the cohomology of g are necessarily of the
form (4.4.19) as we have just argued. To show that this is the case we start by working out
the light-cone number of

—S'\v+stusT'v-s'usTtusTtu + - -- [4.224]

S had light-cone number zero. R has light-cone number minus one and U = {Qo+Q_1, R}
thus has terms with light-cone number minus one and minus two. I.e. U has only terms
with strictly negative light-cone numbers. Thus all the terms of the above sum have strictly
negative light-cone numbers. Now, in order to calculate the norm of the state |¢)) = (1 —
STIU+S71USTIU —+---) |1o) we would have to use commutation relations between S—!
and U to obtain c-numbers. But in order to have a non-vanishing commutation relations of
[A, B] we need A and B to have opposite light-cone numbers.! But the only terms in the
expansion of (i||1)') that have opposite light-cone numbers are the ones with light-cone
number zero, i.e. the first term in the expansion of |¢). In other words (¢||¢)") = (vo][%),
which is positive as the kernel of S has positive definite inner product.

INote that (o;h)t = o, so Hermitian conjugation does not change the light-cone number.
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4.46 p 141: Eq (4.4.23) The BRST Operator Acting a a Hilbert Space

State
o 1 o
Qs v, ]) = n:Z_OO en L™, + 5 . ,;_Oo(m — n)8CmCnb_m—ns — co| |V, ) [4.225]

The contribution from the cubic term vanishes as follows form the breakdown of m and n:

m n 3CmCnb_m_ns
] — 0, _1] ] - o0, _1} +Cmcnb—m—n ~ 0
" 0 —Cncob_m, ~ 0
" [1,00] —Cmb_m—nCn  ~ 0
0 | — o0, —1] —CnCob_n ~ 0
" 0 +copcobg ~ 0
" [1,00] +b_ncocn ~ 0
[1,00] ] — o0, —1] +enbomncm ~0
" 0 Ccob_mem ~ 0
" [1,00] +b_m—nCmCn  ~ 0

We also have ¢, |1, ) = 0 for n > 1 and are thus left with

Qply,d) = (Z cnLy' — Co) [, ) =) en(Ly = dno) [, 1) [4.226]

n=1 n=0
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Chapter 5

The String S-Matrix

Open Questions

I have a number of unanswered points for this chapter. They are briefly mentioned here and
more detail is given under the respective headings. Any help in resolving them can be sent to
hepnotes@hotmail.com and is more than welcome.

& (5.4.4) At the end of deriving the Weyl invariance of the b ghost insertion in scattering amplitudes, Joe writes
that "The b equation of motion comes from 0.5/dc = 0, so there will be source terms at the c insertions; this is
precisely what is needed to account for the effect of the coordinate transformations on the fixed vertex operators".
I don’t understand this, let alone how you can show this.

5.1 p 147: Eq (5.1.9-11) The Torus as a Parallelogram

The argument from section 3.3. is as follows. Recall that under a Weyl transformation
Gap — €299 g, the Ricci scalar transforms as follows

VIR = /g(R - 2Vw) [5.1]

By solving the equation V3w = %R we can thus, at least locally, go to a frame that has

zero Ricci scalar. As discussed in (3.3.6) and in these notes [3.14], in two dimensions the
Riemann curvature is related to the Ricci scalar by Rgpe.q = %(gacgbd — Jadgve)R. A zero
Ricci scalar thus implies that locally we have a flat manifold, hence a metric d,;. In general
the coordinate system corresponding to this new metric will not have the same periodicity
conditions (o', 0?%) = (0!,0?) + 27(m,n). This is similar as for the point particle, where
the new tetrad €/(7) may not have the same periodicity as the original one. Just as the
circle for the point particle may be “stretched” to ¢, for the torus the periodicity may now

be “stretched” in the two directions of the torus

0% 2 g%+ 2r(mu’ + nv®) [5.2]
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for two vectors i = (u!,u?) and ¥(v1, v2). We can always perform a rotation and scaling of

the coordinate system such that « lies along the x-axis and has length one. The metric will
then remain the ¢,, and we have the periodicity

ol 2ol 4 27rm + 2t ; o2 2 o2 + 2o [5.3]

We now define the complex coordinate w = o' + i02. The periodicity means

w=c'4i0? = o' + 2rm + 2ot + i(0? + 2mnv?)

=w+2mm + 27m(v1 + iv2) =w+ 2mm + 2mnT [5.4]

with 7 = o! 4 w2, This is the approach where we keep the metric unchanged ds? =
dwdw but where the periodicity condition changes, w = w + 27m + 27wn7. This approach
corresponds to setting e = 1 and 7 € [0, /] for the point particle.

The alternative approach, corresponding to keeping 7 € [0, 1] and setting e = ¢ for the
point particle, is to change the metric. This is achieved by going to another coordinate
system,

w =o' + 02 [5.5]
The metric is then
ds® = dwdw = (do' + 7do?)(do! + 7do?) = |do* + Tdo?|? [5.6]

The metric is clearly invariant under 7 — 7. Moreover it is of the form

B 1 %(T—F T)
gab - (;(T + 7—_) |7_’2 [57]

which for 7 real gives det g = 0, so this is not an acceptable value of 7. We can thus already
restrict our attention to Im 7 > 0.

5.2 p 148: Eq (5.1.12) The Transformations S and T

A torus is characterised by a complex parameter 7. This can be represented by a parallel-
ogram in the complex plane with edges 0,1,7 and 1 + 7, see fig. 5.1 and opposite sides
identified.

— 244—



Joe’s Book (version of November 20, 2020) Notes from Stany M. Schrans

Im w

0! 1 Rew 0! 1 Rew 0! 1 Rew

‘T:T—)T-l—]_ X:T—)T/(T-i—l)‘

Figure 5.1: Modular transformations of the torus

It should be clear that the two additional figures give an equivalent choice of torus. The
first transformed torus corresponds clearly to a modulus 7 + 1, hence a transformation
T : 7 — 7+ 1. We see that it leaves the periodicity condition unchanged:

T :w+2rm+2nnT — w+ 2rm + 2mn(T + 1) = w + 27 (m + n) + 2n7 [5.8]

This gives a reciprocity relation w = +27wm’ + 2xn/7 with (m’,n’) = (m + n,n) and thus
(m,n) replaced by (m — n,n).

The second transformed torus corresponds to a transformation X : 7 — 7/(1 + 7).
Under the periodicity we have

1
Xt w+ 2mm + 2007 — w + 20m + 2mn—— = ——— (14 7)w+ 2mm(1 + 7) + 27nT]
1+7 1471
1
We thus have the periodicity
w' 2w+ 2rm + 27(m +n)T [5.10]

where we have rescaled the complex coordinate w’ = (1 + 7)w. This thus corresponds with
replacing (m,n) by (m,n —m).
It is convenient to use another combination than X. We have

—1 —1
TXT ' =T'X(r—1)=T"" (———— ) =7 (==
1+7-1 T
T—1 1
= 1= [5.11]

So, rather than X, we consider the transformation S : 7 — —1/7. Note that we have the
convenient relations

S2=1 ; (ST)*=1 [5.12]
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5.3 p 148: Eq (5.1.13) PSL(2,Z) Group

We can represent a general transformation (5.1.13) as a 2 x 2 matrix

, ar+b a b
= 5.13
T ct +d = (c d> [ ]
We then have
/11
T''7r—=7+1 = T—(O 1>

1 0 -1
S.T—>—; = S <1 O) [5.14]

Composition of transformations is then given by matrix multiplication, e.g.

1 (0 -1 0 =1\ (1 1\ _ [0 -1
s =stra == (0 Nesr= (O D (D=0 )
The condition that a transformation Y has ad — bc means that det(Y) = 1. Composition
of two transformations then automatically preserves this as det(YY”') = det(Y) det(Y”).
These transformations form a group, the projective special linear 2 x 2 matrices with integer
indices. Projective because, if all signs of a, b, c and d are changed, the transformation is the

same. Special because is has unit determinant. Mathematically this group is SL(2,Z)/Z,,
also denoted by PSL(2,Z).

5.4 p 148: Eq (5.1.14) PSL(2,Z) Transforming the Metric

Let’s apply the transformation (5.1.14) to the metric
ds* = (do')* + (7 + 7)do'do® + |7]*(do?)?
— (ddo™ + bdo™)? + (1 + 7) (ddo™ + bdo™®) (cdo” + ado’®) + |7|? (bdo™ + ado™)?
= (d® + cd( + 7) + b?|7]?) (do™)? + (2bd + (ad + be)(7 + 7) + 2|7[ab) do" do”?
+ (b + ab(r + 7) + a*|7]?) (do’?)?
= (cr + d)(cT 4 d)(do™)? + [(cr + d)(aT + b) + (a7 + b)(cT + d)] do" do™
+ (at + b)(aT + b)(do'?)?

T4+b ar+b
d/12 ar
(do™) +<c7'+d+07+d

a7’-i-b2
d/22
cT+d (do )]

= (et +d)(cT +d) [(da’l)2 + (7' + 7do't do™ + |7"|2(da'2)2} [5.16]

=(ct+d)(cT +d) ) do"tdo" +

with 7/ = (a7 + b)/(cT + d).
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5.5 p 148: Eq (5.1.15) The Fundamental Region of PSL(2,Z2)

We have seen already that the metric is invariant under conjugation of 7 so that we can
restrict ourselves in the upper half complex plane H.

Let us now consider a point with real part larger than 1/2. By repeated application of
T-!:7 — 7 —1 we can bring this modulus into the range Re T € [~1/2,1/2]. Similarly, if
ReT < 1/2 we can bring it in Re7 € [-1/2,1/2] by repeated application of ' : 7 — 7 + 1.
Every modulus 7 € H is thus equivalent to a modulus with real part between —1/2 and
1/2. The boundaries Re 7 = +1/2 are identified with one another by the application of 7.

Next, consider a modulus with Ret € [—-1/2,1/2]. Application of S on this moduli
bringsitto S : 7 — —1/7 = —7/|7| and so it reflects it around the complex axis and moves
it out of the unit circle in H. Repeated application of 7" or T~! then brings it back in the
region [—1/2,1/2] but still outside of the unit circle.

These steps are illustrated in fig. 5.2. So by judicious application of 7" and S every
modulus is thus equivalent using a modular transformation to a modulus 7 in the region

1 1
—5 < Ret < 5 and |7]>1 [5.17]
with the borders Re 7 = +1/2 identified.
Fo
" (T=1)"

%

S\[/S

o= 4
o=

Figure 5.2: The fundamental region of the modular group

The statement that Fj is the fundamental domain of the modular group consists of two
parts. First, it means that every point in H can be mapped by a modular transformation
into Fp, and second that no two points in F can be mapped into one another by a modular
transformation. In other words, Fj contains every torus once and only once. Whilst we
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have argued that Fj is the fundamental domain of the modular group, we have been quite
cavalier about the boundaries of Fj. Those who are interested in a more detailed approach
are referred to Zwiebach’s book, section 26.6 of the second edition.

5.6 p 151: Eq (5.2.4) The Diff x Weyl Transformation of the Metric, I

This is just (3.3.16). As a reminder
1
(P160)ap = §(Va(50b + Vpdos — gapVedoe) [5.18]

and satisfies (P160)q, = (P160)pq and g? (P10 )qp = 0.

5.7 p 151: Eq (5.2.5) The Diff x Weyl Transformation of the Metric, II

We want to find all variations of the metric that are not a diff xWeyl variation, i.e. that are
not a linear combination of variations of the form (5.2.4). In other words we are looking
for all variations ¢’g,; that are orthogonal to (5.2.4), i.e.

0= /dga \/§5gab5’gab = /d20 Vg [—2(P150)“b + (20w — V60) g™ | 8’ gap [5.19]

In order to work this out we need some properties of the operators P;. Note that P, takes
a vector (a one-index tensor) into a two index tensor. We now define transpose PlT that
takes a two index tensor u,y, into a one index tensor as follows

(P{u)e = —VPug, [5.20]

We now define an inner product between two symmetric traceless n-index tensors s and ¢
as (s,t) = [ d*o \/gs™ "t ...q,. We now show that for a symmetric traceless two index
tensor u and a one index tensor v we have (u, Piv) = (P{u,v). Indeed

1
(u, Pyv) = /dzU gu(P1v) g, = /d20 guabg(vavb + Vipva — gap Ver©)

— /d20 g u®® <Vavb — ;gabchﬁ)
= - /d20 VauVaeu® = /d20' V3 (Pru)bv, = (P, v) [5.21]

We have used partial integration, the fact that the metric is covariantly constant and the
fact that u® is traceless. Using this, we can write

/ng V38 g (P1éo)® = (8'g, Piéo) = (PLd'g,60) = /dQO' VI (PLd g)ad0™  [5.22]
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This relation is only correct if ¢’¢g,;, is traceless. We will imminently see that this is indeed
the case. Using this relation we thus find that the variations orthogonal to all diffxWeyl
must satisfy

_ / &0 \/g [—2(1317’ 5'9)ad0 + 8 gapg™ (26w — Vcéac)] [5.23]

This must be valid for all diff xWeyl, hence for all o and dw. The dw condition implies
8" gapg™ = 0 which justifies our assumption that ¢'g,;, is traceless.

5.8 p 151: Eq (5.2.5) The Conformal Killing Equation

The conformal Killing vectors are those infinitesimal diff x Weyl transformations that leave
the metric unchanged, i.e. satisfy dg,;, = 0. From (5.2.4) this means that conformal Killing
vectors are solutions of the equation

—2(Py60)® + (20w — V - 60)g™* =0 [5.24]

Taking the trace of this, and using the fact that (P;do)% is traceless by construction we
find that

1
ow = §V -0 [5.25]

which determines the Weyl transformation in terms of the diffeomorphism. The remaining
conformal Killing equations are therefore

(P1éo)® =0 [5.26]

Note that a conformal Killing vector is thus a specific combination of a diffeomorphism and
a Weyl transformation.

5.9 p 151: Eq (5.2.5) The Moduli and Conformal Killing Vectors in the
Conformal Gauge

We start with determining the equations for the moduli in the conformal gauge. In that

gauge the non-zero metric components are g.: = e> and ¢g°* = 2¢~2*. It follows that

V? = ¢??V; = —2e"2V; and V? = ¢**V, = —2e"2’V,. We also have the connections
Ly = % " (Oged + Ocgba — Oqgpe). It follows that

1 -
Fiz = *gzz(azng + azgzi - a?gzz) = 20w

2
_ 1 .
Fzz = §gzz(azgzz + azgzz - azgzz) =0
1 -
;= QQZZ (02925 + 02922 — 029.2) =0 [5.27]
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with all the other connections following from symmetry considerations. I.e. the only non-
zero connections are

%, =20w ; TZ =20w [5.28]
The equation for the moduli (5.2.6b) then becomes V¢’ g, = 0 or in complex coordinates
0=V?*0g., +V3gs. =V:8g.. = 0:0'g.. — 'S ve = 0:0'g.. [5.29]

Where we have used the fact that g,z = 0 by the tracelessness condition (5.2.6.a) and the
fact that I'Y, = 0. There is, of course a similar equation for the ant-holomorphic part. Thus
the equations for the moduli are

0:0'g,, = 0,6'g:s =0 and &g,z =0 [5.30]

The two holomorphic doubly periodical solutions of these equations on the torus are two
real constant. They combine together to form the Teichmiiller parameter 7.
Let us now turn to the equations for the conformal Killing vectors. They are

0= (P1oo)ep = %(Va(Sab + Voo, — gV - 60) [5.31]
Let us start with the zz component
0= %(VZ(SUZ + V.00, —g..V -60) =V, o,
=0,60, —I'Z,00, = 0,(g,z00°) — 20,wg,z00"
= %282w62w502 + 9.20,60° — 282(»%62‘”502 = ¢.:0,00° = 0% [5.32]

we have used the fact that the complex coordinates have the indices upstairs; thus do* = 2.
There is, of course, also the anti-holomorphic equation 9z = 0. Finally the mixed indices
(P1d0o),z give the trace, which is zero by construction. The equations for the conformal
Killing vectors are thus

0z =0z=0 [5.33]

The two holomorphic doubly periodical solutions of these equations on the torus are two
real constants, corresponding to the translations of (5.1.16)

5.10 p 152: Eq (5.2.10) No CKVs for Negative Euler Number and no
Moduli for Positive Euler Number

We start by showing that P,TP; = —3V? — 1 R. Recall that P; takes a vector into a two-
index tensor and P{ takes a two index tensor into a vector, so t P, T P; acts on a vector and
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changes it into a vector. We have
T rl
P} Pyv, = P} §(Vavb + Vv — gV - v)

1
= — §Va(vavb + Vyvg — gap V - U)

= — %V%b - %(Vavbva — gab V'V )

= — %Vzvb - %(Vavbva — gV Vav?)

- %Vz’vb - %(vavbva — Vi V%0,)

= — SV~ [V, V" [5.34]

Now, the commutator of two covariant derivatives acting on a vector gives the Riemann
curvature, see e.g. Carroll (3.112), [V, V,|v© = Rgabvd. Thus

1 1
PlTPﬂ)b = — §v27}b - §Rgab’l)c [5.35]
But we have already learned in (3.3.76) that in two dimensions R,p.q = %(gacgbd— Jad9ve) R-
Therefore

1 1
Ry.q = 9" Reped = igae(gecgbd — Ged9be) R = 5(5§ Gbd — 0gGbe) [5.36]
and
T _ } 2 . 1 a _ sa c __ _} 2 . }
Pl Py, = 2V Up 4(5a9cb 5bgca)RU = 2V Vp 4va [5.37]

which is what we set out to show.
Recall that under a Weyl transformation the curvature transforms as (1.2.32)

VIR = iR~ 2Vw) [5.38]

This equation can be solved for w to set R’ constant. Now the Euler number is defined as
(1.2.31)

1
= — [ d*0c\/9R 5.39
X = / a9 [5.39]
So if we have a negative Euler number, x < 0, this necessarily means that the curvature is

negative, R < 0. And if we have a positive Euler number, y > 0, this necessarily means
that the curvature is positive, R > 0.
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Let us now work out (5.2.10)

/ d*0 /g (P160)ap(P160)* = / d?c /g 604(P{ Piéo)*
2 1 2 1 a
= [ d°o+\/gdo, | —sV " ——R | o
2 4
= / d*o \/g <;Va50bva50b — iR(Saa(SU‘I) [5.40]

For negative Euler number, R is negative and the integrand is strictly positive, implying
that (P160),p is strictly positive, Thus (P1d0 )4, = 0 has no solutions. But this is the equation
for conformal Killing vectors. So we conclude that y < 0 = x = 0.

I have not been able to show in a satisfying way that for positive Euler numbers, the
number of moduli is zero. I have tried two ways. First by trying to find an expression for
(P PI'u)® that include the Ricci scalar, so that we can link it to the Euler number. Next by
trying to work out [ d%c /g V&' 9o V44’ gpq directly and trying to link that to the curvature.
But neither way has lead to anything useful. There is, however an indirect way. We know
that for closed oriented surfaces, the Euler number is x = 2 — 2¢g, with g the number of
handles. The only close oriented surface with y > 0 therefore has g = 0, i.e. is the the
sphere, the disk or the projective plane, for which there are no moduli.

5.11 p 155: Eq (5.3.2) The Gauge-Fixed Measure

The measure of the classical action is [dg d¢] d*"c where d*"o = [[_, d’c; denotes the
product over all vertex operators. Gauge-fixing the action we are left with an integration
over the gauge parameters ¢, but still need to integrate over all the y moduli t* as these
have not been fixed by the Faddeev-Popov procedure. We can, however use the « confor-
mal Killing vectors, to fix the coordinates of « of the vertex operators on the worldsheet.
Nothing changes w.r.t. the matter fields. We are thus left with a measure [d¢ d¢] d“t d*" " 0.

5.12 p 155: Eq (5.3.5) The Variation of the Metric Including the Moduli

This is just (5.2.4) with in addition a variation in the moduli Y }_, 9,xgas t*. Note that, as
per Joe’s errata page, there is an error in the last term. The correct equation should read

M
Sgab = Y Opefiap 0t° — 2(P160) g + (26w — V - 60) b [5.41]
k=1
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5.13 p 156: Eq (5.3.6) Inverse Faddeev-Popov Determinant

We basically repeat the analysis of the Faddeev-Popov procedure surrounding (3.3.18) for
completeness.

The first line is just the rewriting of (5.3.3) with the [d¢] = [ddo ddéw] the integration
over the diff xWeyl gauge parameters. We also write

1 . ala , o
6((50“(@)) =5 /e’y“";" (‘”)dyaz- = /62””‘“'5" ("i)da:ai [5.42]

with z4; = y,i/27. Thus

H 5(50“(@ H / 2mizaido (6 d:vm:/d”x exp |:2m' Z maiéaa(ﬁi)] [5.43]

(ai)ef (ayp)ef (a)ef

where d"z = H(M)E f dxq;, with k being the number of conformal Killing vectors that can
be fixed. We similarly write thed(dg,s) as an exponential and can thus write for the inverse
Faddeev-Popov determinant

cB =7R / d"st d*x [déw ddo df] exp {m ( / o /GBS + Y xai50“(6i)]

(a0)ef
ILL A
—np / d'5t d*z [ddw doo df] exp {2771' [ / 2o \/§B%® ( > Ohefab 5t — 2(P160) b

k=1
+ (20w — V - 6U)Qab> + Z xaidaa((}i] } [5.44]
(a0)ef

We perform the integration over dw. This gives a factor §(3%§,;), ensuring that the ghost
field 5% is traceless and thus that also the term 3%V - §o ., does not contribute. What
remains is

"
Eé :nR/d/‘étd”x [déo df'] exp {2m’ [/d2a \/gﬁlab(zaﬁgab Stk —2 Pléa)ab)

k=1

+ Z ZL‘M'(SUG(&Z']}

(ap)ef

=ng / d*st d*x [doo dB'] exp [2m‘(ﬁ’, 2P 00 — 6t* 0 gap) + 2mi > xaiéaa(&i)]
(ai)ef
[5.45]

Here ' is traceless, (t,t') = [d%c V/gtt" and we have changed the sign of what remains
from §(dg,p) for convenience.
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5.14 p 156: Eq (5.3.8) The Faddeev-Popov Ghosts

We use (A.2.28) from the appendix. For z and y c-numbers and ¢ and y Grassmann

numbers we have
1
/ dx / dy e¥™ Ay — { / dip / derX] [5.46]

We make the correspondence, including convenient normalisation

1
§o@ __— .a
g~ 4ﬂ_C

6:111 ~ bap

1
oth s — ng [5.47]
I8

This gives

1 ; 1 . ko - s
App = - / [dbdc]d"€ d*n exp [f E(b, 2Pic— £5 0 q) + ( Z):efnaic (ai)} [5.48]

We can perform the integrations over the Grassmann variables ¢ and eta using [ dée® =

[dé(1+ af) = e

1 M

Arp = [db dc] exp [ b 2P10} H (b, 0 §) H ca((&i)}
= (ag)ef
1 S|

- [db dc] exp(— H 1 (0:008) H (6) [5.49]

k=1 (aji)ef

where we have used the definition of the ghost action (3.3.21)
S :1/d2a\/§b (Pc)abzi(b Pie) [5.50]

g 27T ab 1 27T 471 .

5.15 p 156: Eq (5.3.9) The S-Matrix for the Bosonic String

This formula is obtained by filling in the various parts so is entirely straightforward. But
we repeat it here and discuss its different parts because of its sheer importance for string
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theory

1
Sjrega bty k)= Y nR/Fd“t/[ng)dbdc] exp (—Sm — Sy — AX)

compact
topologies
s n
a 1 s a( A =
X ( 1:[¢f/d0i 1}:[14”(@ 0 g) ( llfc (Ui)}j[l Vi(ai) Vj, (ki o) [5.51]

This is the S-matrix element for the scattering of n bosonic strings whose asymptotic states
are created by the vertex operators V. (k;, 0;). Let us explain what this expression means.

We sum over all compact Riemann surfaces, oriented or unoriented depending on the string
type.
When the gauge symmetry is fully fixed, there may be a residual set of discrete symmetries,

e.g. parity on the worldsheet. To avoid over-counting, we divide by the number of such
discrete symmetries, n .

We integrate over the y moduli ¢* of the Riemann surface over the fundamental domain F.
We perform the path integral over the matter fields ¢ and the ghost fields b and c.

The path integral is weighted by the matter action S,,, the ghost action S, and the Euler
term \x. Here x is the Euler number and ) is a parameter, that, as we will see later, is not
independent.

If the Riemann surface has « conformal Killing vectors we can use this symmetry to fix x of
the coordinates of the vertex operators. We call the set of fixed coordinates f and so we need
to integrate over all the coordinates of the vertex operators that are not fixed, i.e. that are
notin f.

We need to take into account the contribution from the variation of the metric under a
change of moduli. For each such moduli there is a factor (47)~1(b, 9,9).

For each coordinate of a vertex operator that was fixed using the symmetry of the conformal
Killing vectors, we need to insert a ghost ¢*(6%) evaluated at the point of insertion.

Finally, we add the product of all the vertex operators, weighted with /g at the appropriate
point.

5.16 p 157: Eq (5.3.14) P,C; is an Eigenfunction of P1P1T

Let us check explicitly that (P, P{)P, = P;(P! P;). This should, of course, be the case
because Py and P! are projection operators, but let us check it explicitly to make sure it is
indeed the case.

On the one hand, we have

1
(P1v)ap = i(vavb + Vv — gap Vve) [5.52]
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and thus
(PlTPlv)a = — %VC(VQUC + Vv, — gacvdvd)
= — %(vcvavc + VoV ey — gacVEV90,) [5.53]
and finally
(AP Pw)) = —% [Va(VoVhte + Vet = 95V V0)

+V3(VEV qe + VEV 04 — GaeVEV %)

g V(T ete + VoVt — gV 0g) |
1
-7 [vavcvbvc Vo VoV o0h — Ve VoV %04

+V VeV ove + VVV g — Gae Vo VeV %y
_gabvevcvevc - gabvevcvcve + gabvegecvcvdvd}

- —i [vavcvbvc VoV — VoWV -0
+VpVV v + Vi V20, — Vi VoV - v
—gab VOV 0 — gay VoV 20 + gap V2V - v] [5.54]
On the other hand we have
(Plu)q = —VCuUqe [5.55]
and thus
(PL(P{w)),, = _% (vavcubc + VpVeuge — gabvdvcudc) [5.56]

Using uqp, = (P1v)ap = 3(Vaup + Viyvg — gapV - v this gives

((PlPlT )P1v>ab - —% [vaw(vbvc FVoup — goeV - 0)
+VVE(Vave + Vevg — gacV - 0)
—9abVIVE(Vqve + Vevg — gaeV - U)}
= —i VaVoTitie + VaVoVet) — g1 Va VeV - v
+Vp VNV qve + ViVV g — 90V VeV -0
—9as VIV gve — g VIVV 04 + gy VIVgacV - v [5.57]
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which gives

1
(PPN P) = =1 |VaV* Ve + Va2 = Vo VsV -

+V VeV 00, + VeV20, — ViV V - v

— g VIV gve — g VIV204 + g V2V - v [5.58]

We see that indeed (P, P])P, = P (Pl Py).
This thus implies that P, C; is an Eigenfunction of P Pl with Eigenvalue v/2. Similarly
we have

(PIP)PIBx =P (P PIBg) = PIvi By = v Pl By [5.59]

and so P{'B is an Eigenfunction of P{ P, with Eigenvalue v%.

5.17 p 158: Eq (5.3.15) The Relation Between The B and C Eigenfunc-
tions

For those Eigenfunctions B; and C; that have equal but non zero Eigenvalue v; = v/;, we
have the normalisation

1
(B, By) = (PCy, PACy) = (Cs, P PICy)
vjv vjv g
1 / /
= (CJ,V3/CJ/) - (CJ,CJ/) = VfJ(SJ,J/ =1 [5.60]
vjv gt vy

5.18 p158: Eq (5.3.16) The Faddeev-Popov Determinant as a Function
of the Ghost Eigenfunctions, I

We need to write the ghost action in terms of the ghost Eigenfunctions. From (5.3.11) and
(5.3.15) we have

Sy = (b Pic) = ZbOkBOk-l-ZbKBK,ZCogHCo] +ZCJP1CJ [5.61]

But we know that P;Cy; = 0 and that similarly Pl'By;, = 0. There is thus only one
combination that survives

Sy = ZbKCJ B, PiCy) = ZbKCJ PICK7PICJ)
TIK
:i bKCJ(C PTPC):iZchJ(C V2C)) Zubc [5.62]
o 2 v K, Pi P1Cy 2 2 i Kk, v7C) gbcy -
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(5.3.16) then follows immediately by splitting the integration over the zero Eigenvalue
Eigenfunction b, and ¢ ; and the non-zero Eigenvalue Eigenfunctions b; and c;.

5.19 p158: Eq (5.3.17) The Faddeev-Popov Determinant as a Function
of the Ghost Eigenfunctions, II

Let us first consider the integration over the zero-modes [ H;Zl dcoj. The only place in
the integrand where we can find a ¢y ; that would make this integral non-vanishing is in
the ghost field insertion [, ;c ) c*(0i). Here f is the set of vertex coordinates we can
fix, which is equal to the number of conformal Killing vectors, i.e. k. If we write out his
product we find

H Ca(ai) = H ZCOJCOJ Uz +ZCJCJ Uz [5.63]

(aief) (aief) |J=1

To have a non-zero integral, we need to extract a product of x zero-modes. In the expansion
of the product — that, recall has exactly x terms — this can only be the case if we take the
terms that have only zero modes and no factors c¢;C;. Indeed a term in the expansion with
say ¢ factors of ¢;C; only has k — ¢ factors of ¢ ;Cy; and the integral of that would hence
vanish. Thus, that contribution reduced to

H Ca<0'i)v-> H ZCOjcgj(Ui) [5.64]
(ai€f) (aief) =1

For entirely similar reasons we find that the contribution of the b-ghost insertions reduces
to

“w
1 bo i
1:[ 1 (0:003) ~ kl_[lkzl Oﬂ (Bos, Oy ) [5.65]

What remains is the integration over the non-zero modes and the combination of all this
gives directly (5.3.17).

5.20 p 158: Eq (5.3.18) The Faddeev-Popov Determinant as a Function
of the Ghost Eigenfunctions, III

We need to show that

/HdCO] H ZCOJ/COJ (04) detCOJ (04) [5.66]

(ajef) g
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Note that the total number of different (a,) indices is exactly the number of conformal
Killing vectors . Getting rid of all unnecessary indices we thus need to show that

Dl = / ﬁ de; f[ i ¢¢Cy = det CJ [5.67]
j=1

i =1
The only non-vanishing terms in the integrand are those that contain ¢; ... ¢,. This the is a

general property of determinants, but rather than prove it in general, let us work this out
for a few cases so we see the pattern. For x = 1 we have

DIt = / dei e1Ch = Cl=det C [5.68]

For x = 2 we have

DI = /dq deg (e1C + 2CH) (e1C3 4 2C3)

= /dcl dey c1ca(C1CE — CACY) = det C [5.69]

For k = 3 we have

Dt = /dc1 deg deg (c1C + c2Ch + e3C3) (e1CF + aCh + ¢3C3)(c1CF + c2C3 + ¢3C3)
= /dq deg deg ercae3(CIC3CE — CIC3CE — CLC3C 4 cia3Cd 4 ciaics — ciascd)
1 o

= ief;’,gnczczncﬁ = det C [5.70]

The pattern should now be clear for general x. The same of course is valid for the b-ghost
part.

It remains to show that

) b VPP
DIV = / [ dbs desexp (—”‘”C]) — det’ ! [5.71]
™
J

2 2

If we expand the exponential, only the linear term remains as b; and c; are Grassmann
variables. Ignoring the irrelevant signs we thus have

SIN] _ vibjcy R
D /1;[de dey o 1;[ o [5.72]

But recall from (5.3.12) that y% are the (non-zero) Eigenvalues or PlT P;. We can thus

write symbolically that v, are the Eigenvalues of /P] P;. Now DIV is the product of the

Eigenvalues of 4/ PlT Py /27, which is the same as the (functional) determinant. This is what
we had to show.
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5.21 p 158: Eq (5.3.19) The Weyl Anomaly of the Ghost Current

The OPE of the energy-momentum tensor with the ghost current is given by (2.5.15)
1-2x j4(0) 0940
N L 400 95(0)

T(z)j .
(2)4(0) 3 > . [5.73]
According to exercise 3.6 the Weyl anomaly of the ghost current is of the form

Vi = aR [5.74]

with a read off from the third order pole of the OPE T'(2)5(0) = 4a/z% + ---. Thus 4a =
1 —2), implying a = (1 — 2)\)/4. Note there there is a sign error on exercise 3.6, as per
Joe’s errata page. Therefore

C1-2)

Vaj* 1

R [5.75]

Let us now, for completeness, derive the Weyl anomaly for the covariant derivative of
the ghost current. We will work it out for the holomorphic side. The anti-holomorphic is
entirely similar and just gives a doubling of the anomaly.

Recall that the ghost current is j(z) = bc(z) and so its covariant derivative V,j¢ has the
same dimension as its energy-momentum tensor. We can therefore use the same reasoning
as for the form of the anomaly of 7)? in (3.4.9) to conclude that the general form of the
anomaly is indeed Vj = «aR, with higher order terms in the curvature suppressed by
high-momentum cut-off. Here « is some constant that we have to determine. In complex
coordinates and expanding around a flat worldsheet and focussing on the holomorphic
ghost current = j, we have

V%4 = g%0ujy = 20:j(2) + 20.] = 20j + 207 [5.76]
The anomaly equation for the ghost number becomes
= ~ 1

We will now limit ourselves to the holomorphic side, the anti-holomorphic side being
entirely similar. Just as for the calculation of the Weyl anomaly of the energy-momentum
tensor, we now take the Weyl transformation of both sides. For the RHS we use [3.93]

SwR = — 25wR — 2V?%6w [5.78]

Near the flat worldsheet, R = 0, and using V? = 400 this gives for the Weyl transformation
of the RHS

SwRHS = — 40006w [5.79]
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For the Weyl transformation of the LHS we use (2.4.12) for a general conformal transfor-
mation

SA(z) = — i %8”@(2)/1”(,2) [5.80]
n=0

where the A" are the coefficients of the different poles in the OPE T'(z)A(0) as defined in
(2.4.11)

 A0)
T(2).A(0) ~ Z% i [5.81]
We now have for the ghost current
: da j(0) | 94(0)
T ~ — 4 == 5.82
(2)7(0) ~ 5 + =57+ — [5.82]
and thus A = 95, A' = j and A® = 4a. This gives
OLHS =00zj(z) = 0:0wj(z) = 03 (—v@j — Jjv — ;4a82v> [5.83]

The first two terms corresponds to a change in coordinates §z = v and can be ignored. A
Weyl transformation has dv = 20w, giving

SwLHS = — 4addéw [5.84]
Requiring this to be the same as the Weyl transformation of the RHS in [5.79] gives
—40000w = —4addéw = a =« [5.85]

We thus see that the ghost current anomaly is indeed to the form §,j% = aR = aR, where
4a is the numerator of the third order pole in the OPE T'(z);(0).

5.22 p 159: Eq (5.3.20) The Riemann-Roch Theorem, I

Just as for any anomaly equation, the ghost number anomaly equation is an operator
equation, i.e. it is valid as a path integral equation. It describes the non-conservation of
the ghost number symmetry in the path integral. The result is non-conservation of the
ghost current

5g#/[d¢]6_5 ocz—:/dga gVaj® [5.86]

We can use the expression for the ghost number anomaly (5.3.19) in this

1-—2\ 1
Ot /[d¢]65 o €/d2a\/§ 1 R = —3ame X = / = d’o Vg R = —3amex [5.87]

We have used A\ = 2, the actual value of the ghosts and have introduced the Euler number.
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5.23 p 159: Eq (5.3.21) The Riemann-Roch Theorem, II

The ghost number symmetry transforms the ghosts as 6b = —icb and dc = iec, see (2.5.14).
The ghost number current just counts the number of ¢ ghosts minus the number of b ghosts.
Let us now look at the expression for a general matrix element (5.3.9)

1
Sjrega bty k) = Y nR/Fd“t/[ng)dbdc] exp (—Sm — Sy — AX)

compact
topologies
® n
@ 1 P a( A ~
% ( 1:[¢f/d‘7i 1}:[14”(1)’ 949) (llfc (Ui)il:[l\/g(Tz‘)Vji(ki,Ui) [5.88]

We number of ghost fields b is the number of moduli iz and the number of ghost fields c is
the number of conformal Killing vectors . We thus have

ie(k — ) x ey [5.89]

The proportionality constant should be the same for any Riemann surface, so we can find
it by considering any example. For a close oriented surface we have y = 2 — 2g. The torus
has one handle and so has x = 0. This certainly agrees because for the torus y = k = 2, see
(5.2.8), but it doesn’t allow us to determine the proportionality constant. For the sphere,
we will see in the next chapter in (6.1.5) that there are no moduli, but six conformal Killing
vectors. The sphere has zero handles and thus y = 2. Therefore, the sphere tells us that
Kk —p=ayx = 6 —0=2a = o= 3 which leads to the Riemann-Roch theorem (5.2.9)

K—u=3x [5.90]

5.24 p 160: Eq (5.4.3) Weyl Invariance of the b Insertions

Note the b, is invariant under Weyl transformations, just as ¢* is. Thus

(b, O = / o /7 by (7)™ = / o /T busi 5" (04d)..,

= / A0 /G babd G Oy [5.91]
Now it is just a matter of counting: 8ja = +2wie and 0§*° = —2wije. In addition

0§ = +2w+/3.
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5.25 p 160: Eq (5.4.4) The Diffeomorphism Invariance of the S-matrix

Let us look at the generic S-matrix element (5.3.9)

Sjyojn (s -+ ken) = Z /d“t/d¢dbdc exp (—Sm — Sy — AX)
é%?ﬁif&
X H /dcr b@tkg H H\/ 0i) Vj, (ki, 0:) [5.92]
(ai)¢f (ag)ef

and identify which terms are not manifestly invariant under a worldsheet diffeomorphism.
These are the b and c-ghost insertions and the vertex operator insertions for the fixed
coordinates, i.e., ignoring an overall constant, the integrand factors

n
[1® 0.9 H (60) [[ vale?) Vi (ki of) [5.93]
k=1

(ai)Ef (ai)ef
From (5.3.5) we have for a general transformation with parameter 6c% = £° for diffeo-
morphisms, 6t* = 0 for moduli and éw = 0 for Weyl transformations
3¢ (b, 0x§) = (b, Opd¢ §) = (b, O (—2P1€ — 2V - €)§) [5.94]
Consider now
o (P +V-69) =0 (Vo + Vika = gV - €+ GV -€ )
Oy (@afb + @bga) = Vo0& + Vs [5.95]

Thus
3¢ (b,009) = — 2(b, @aﬁtk&, + ﬁbatkfa) [5.96]

By the tracelessness of b,;, we can add a term that contains a factor (b, f§) for some scalar
function f. Let us choose f = —V - (9x§):

¢ (b, 0k g) = — 2(b, @aatkfb + @batkfa — gapV - (0ix§))
—2(b, P10 &) = —2(PL'b, 0,:€) [5.97]

In the last line we have used (u, Piv) = (P{ u,v). With the ghost action (3.3.21)

1 R 1, - 1 - 1 ,
Sy =5 /d%\@bab(ac)ab = %(@ Pic) = %(PlTb, c) = 5 /dQJ@(PlTb)ac“ [5.98]
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We see that the equation of motion §S,/dc = 0 is indeed Pb = 0. We know that in a
general QFT the equations of motions are valid in a correlation functions except at the
contact terms. These are the so-called Schwinger-Dyson equations, see e.g. section 6.9
"Symmetries in the Functional Formalism" in Peskin & Schroeder. A review of that section is
given in the appendix of this chapter. For a scalar field ¢ (z) the Schwinger-Dyson equation
is given in [5.139]

[ cmyﬂ) (o) plan)) =

D (plan) - (=ib(z —a7)) - pl@n)) [5.99]

=1

<5s0ifv)

As explained in the appendix, the delta functions are actually the inverse propagators. If we
translate this to our string S-matrix then we see that the equations of motions for the b field
are satisfied except for the contact terms. To identify these contact terms, we look again
at (5.3.9). The contact terms will come from those factor in the second line that have a
non-vanishing propagator with b. The only factors in the second line that can give a contact
term are thus the c-ghost insertions at the fixed points J], ;) ¢*(6:).

I don’t understand the rest of the paragraph. What does Joe mean when he says that
these contact terms are precisely what is needed for the effect of diffs on the fixed vertex
operators to cancel?

5.26 p 161: Eq (5.4.5) The BRST Variation of a Vertex Operator

A vertex operator V creates a highest weight one state (L{* = 1), so it is a primary field of
dimension one. Therefore

55 V(w) = ie]Qp, V(w)] = ie ?{ Jp(2)V(w)

Cuw

:z}:j{ <ch + ng + 382c> (2)V(w) [5.100]
. 27 2

Because the vertex operator, by definition, only depends on the matter fields, only the first
term in jp contributes

5 V(w) =ie jéc o(2) [(52(7:;2 N 21}_(12})}
_igjgw [(cv(w) L 0V(z) + cﬁV(w)]
Cy

2z —w)? Z—w

= icd(c V) (w) [5.101]

(5.4.5) is just this expression in o coordinates.
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5.27 p 161: Eq (5.4.6) The BRST variation of the b-Ghost Insertion

From (4.3.1b) we have dpb = ie(T™ + T9). Recalling that g is the gauge-fixed metric so it
is not affected by the BRST charge, we have

(53((), 8th) = ((53[), O §) = iE(Tm +T9,09) [5.102]
5.28 p 162: Eq (5.4.8) The b-Ghost Insertion as a Function of the Bel-
trami Differential

We have

1 1 1 R
%(b,ﬂk) = 271_/(120' \/§bi /,L%b = 27‘_/(120' \/§bab gacﬂk(é

1 1 . 1 .
= %/d% V9 bab gac§9bd3kgcd = /dQU VG Oea

1 e 1 .
— 47r/dza VG bea g = E(b, k) [5.103]

which is the b insertion. In complex coordinates in the conformal gauge this becomes

1 1 .
g(bauk) = 27r/dQU VG bab G
1 1 s [
= o idzz (6220 pgz + bzz0"*" y.2)
1 _

5.29 p 162: Eq (5.4.10) The Metric under a Change of Moduli

We keep the coordinate system fixed, but change the moduli by an infinitesimal amount
th — tk 4 6t*. We start with a metric that is, using a Weyl transformation of the form
g x dzdz, where we have dropped the superscript " referring to the patch, as we will be
working in the same patch. We need to be careful. Whilst the metric is off-diagonal in the
original moduli ¢, i.e. g,,(t) = gz:(t) = 0, this is no necessarily the case when we deform
the moduli, i.e. g,/,/(t + dt) and g5z (¢t + dt) do not necessarily vanish. Note that we have
added a’ to the complex indices. Indeed, we may be talking about the same point P in the
patch but they do not necessarily have the same coordinates before and after the moduli
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transformation. We now have

g x2g:5(t)dzdz + g.-(t)dzdz + gz5(t)dzdz
— 20,5t + 6t)dzdZ + g..(t + 6t)dzdz + gz5(t + 0t)dzdz
=2[g.5(t) + 0g22(t)0t"] dzdz + [g22(t) + Okgs- ()0t | dzdz + [gz:(t) + Opgz=(t)5t*)dzdz
= (1 + 204g.2(t)0t*]| dzdZ + 0t* [O) .. (t)dzdz + Oy gsz(t)dzdZ)
=dzdz + 0" [O4g.-(t)dzdz + Opgs=(t)dzdZ) [5.105]

where we have kept the lowest order in each metric component. Let us now look at the
Beltrami differentials. Using the definition (5.4.7) we have

My = %szakgzz = OkGzz
1y %A”@kgzz = Ok2- [5.106]
and thus
g < dzdz + 6tF (sdzdz + p2dzdz) [5.107]

which is (5.4.10) taking into account the correction on Joe’s errata page.
5.30 p 162: Eq (5.4.11) The Infinitesimal Version of the Beltrami Equa-

tions

We abstain from writing the indices ”* denoting the patch we are working in. From (5.4.9),
2 = z + 6t*vi, we have

dz' = dz + 0t*(0.vidz + 0zvidZ) [5.108]
and thus
dzd? = |dz + 6t*(D.v7dz + Bgvzdi)] [dz + 6tk (907dz + 8Zvidz)}

= dzdz + 0t*(0zvidzdZ + d,vidzdz + O,vidzdZz + OzvidzdZ)
= dzdz + 5t*(0,vidzdz + Dzvidzd?) [5.109]

where, just as in [5.105], we have ignored the dzdz contribution. Comparing this with
(5.4.10) we find

ukj: = 3va,’i: and 2" = 0;, vi" [5.110]

Zm
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5.31 p 162: Eq (5.4.12) The b-Insertion in Terms of the Transition
Functions, I

Using (5.4.11) in (5.4.8) we have

1 1 2 z z
%(b, Mk;) = % /d z (bzzag’l)k, + bzzaz’l}k;)
1 _
- / 022 [0:(b2sv7) + 0 (bss?)] [5.111]
™
where we have used db = b = 0. We now use the divergence theorem (2.1.9)
/ d?z (0,07 + 0:07) = 17{ (v¥dz — v*dz) [5.112]
M oM

to find
Using (5.4.11) in (5.4.8) we have

1 4 Z J= z
g(l% Mk) = % ; fm(bzz’l)kdz - bzz’l)de)

1
27

> 7{ (b..vidz — bzzvidZ) [5.113]
— JCn

Here the sum ), is over all patches m needed to cover the Riemann surface. Indeed de
z-integration in [5.111] is over the entire Riemann surface. We can break this down a sum
over the integration of the different patches covering the Riemann surface and apply the
divergence theorem on each of these patches. For each such a patch m this will give a
contour C,, that circles the patch counterclockwise. In the overlap between two patches
the contours of the two patches will go in opposite direction and cancel (the integration
can be performed in the coordinate system of any of the two patches as they are related by
the transition functions). This is illustrated in the figure below.

Figure 5.3: Divergence theorem on the torus
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5.32 p 162: Eq (5.4.14) The Change in Transition Functions under a
Change of Moduli

We evaluate the total derivative in a patch m of dz,,/dt* in a region where two patches m
and n overlap. By Leibniz we have

dzim — F2m d7tk + Ozm dﬁ — O2m Ozm dﬁ [5.114]
dtk Otk |z, dtk Oz, ledth — Oth 1z, Oz ledtk '
Using dz,,/dt" = v;™ and dz,/dt" = v;" and re-arranging we find
0zm, o OZm| L
W ; = Uk_m — W t’l)kn [5115]

But for a general vector v* going to another coordinate system z — w, whilst holding the
moduli fixed, the transformation rule is precisely v* = dw/0dz/v* and thus we can write

Ozm
otk

= Ui% — UZ;L” [5.116]

Zn

5.33 p 162: Eq (5.4.15) The b-Insertion in Terms of the Transition
Functions, II

Let us consider (5.4.12) in a region where we have two overlapping patches m and n with
contours C,, and C,, both counterclockwise, as shown in Fig. 5.4. We split the contours

Cy, and C,, in a part outside of the overlapping region, 07[2] and CT[LO] and in a part in the
overlapping region CL2"" and C[ov!.

C'r[g} Cy[Lover]

cmemeepme X

Figure 5.4: Contour integration encircling two patches of a Riemann surface
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Restricting ourselves to the contour around these two patches, (5.4.12) becomes

1 1
Z(b, /,Lk) = % (L[O] dZm’Uz;szmZm + /Cy[zver] dZm”UZ%bzmzm

+ /CV[O] dZnUZZbZnZn + /;[over] dZn’UZ:Lbznzn + .- ) [5117]

n n

The dots include the anti-holomorphic part, that we will add at the end, and also the
contour integrations encircling all other patches of the Riemann surface. What happens
with the integration in the overlapping part? First we deform the contours so that to

Chn = O — _ vl This induces a sign change in the integration along C\>* and
so we have

1 1 P
%(ba Nk:) = % (/C[O] d’sz;;’)’nlemZm +/ dzmvk%bszm

+ / o dzp vt bz, — / dzp v bey s, + - > [5.118]
C

n mn

Note that z, is just an integration variable in the last integral, so we have

1 1
%Uj’ :U’k’) = % (/67’7[2] dZmUz;nanmzm + /C\”LO] dZnUZ;;bznzn + /C'v"m dZm(Uz% — ’U}zg)bzmzm + - )

1 . 02Zm
by (/07[2] A2V bz 2, + /CLO] dzpvitbz,, 2, + /mn dzmﬁ anzmzm + .. )

[5.119]

where we have used (5.4.14). ow that we know how to treat the overlap between two

patches we can complete the analysis. The curves 07[2] and C’,[LO] will on a compact Riemann
surface also have overlap with other patches and we can apply the same reasoning. We thus
have a sum of terms of the form fcmn dzm (02m)/ (atk)\zn b=, for all possible overlaps.
Adding then the anti-holomorphic part we get

1 1 82m 8Zm
—(b =5 d m AL bz z *d_mi
o (b k) 277%/%"(”2 OtF |, zmEm Mgk

where the sum is over all overlapping boundaries C,,,, of all the patches m and n.

meZm> [5.120]

5.34 p 164: Eq (5.4.18) Simplifying the b-Ghost Insertions

Adding a vertex operator on a closed string amounts to adding a hole on the Riemann
surface, see the discussion in section 3.5 for a reminder. The location of the vertex operator

—269—



Joe’s Book (version of November 20, 2020) Notes from Stany M. Schrans

is actually a moduli of the Riemann surface. Indeed, a vertex operator V (z) located at the
point 2z on a Riemann surface is not equivalent under a diffeomorphism with a vertex
operator located at a point z;,. We thus need to treat the location of the vertex operator as
a modulus, or more exactly, since zy is a complex number, we have two moduli, i.e. u = 2.
The transition function between two patches is as per (5.4.16). But let us take some time
to explain this in more detail.

The 2’ coordinate system corresponds to an m-patch of the previous discussion. There
the vertex operator is located at z{, = 0. The z coordinate system is the n-patch of the
previous discussion. In that reference frame the vertex operator is located at zy. The two
patches are now related by a simple transition function

z=27 + 2y [5.121]

Indeed, the point z = zy for the location of the vertex operator in the z-patch now corre-
sponds to the point z{, = 0 in the z’-patch.

In order to apply (5.4.15) we need the derivative 0z,,/ 6t’“’zn and its holomorphic
equivalent for both moduli. The moduli are now z, and zy and the m-patch is the 2'-
patch. Thus we need

Oz _ 02 0| _ 07 0

8t1 Zn B aZv z ’ 8t1 Zn B aZ\/ z

Oom) _ 02 _ T R R [5.122]
ot? 1z, 0zy |z ’ ot? 1z, 0zZy 1z )

and the b-ghost insertions thus become

] %(W’C) = <271” /C [d2'(~1)brs —dz/(O)bz,z,]>

k=1
X (217”/0 [dz'(0)b —dz’(—l)byy]>

1 1 ~
= — — dZ/ bzlzli_ / dZ' bg/g/ = bflbfl [5123]
211 C 211 C

The contour C' encircles the vertex operator and lives in the overlap between the 2’ and 2

patch. In the last line we have used the mode expansion for a dimension two field we have
be = $(dz/2mi) 2 1b(2).
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5.35 Appendix: The Schwinger Dyson Equations in a QFT

Consider a single real free scalar field ¢(x). The classical field satisfies the Klein-Gordon
equation

(0% 4+ m*)¢(x) =0  classical field [5.124]

Is there an equivalent equation of motion for the quantum field ¢(x) when it appears in a
correlation function:

(D2 +m?) (Q T {p(x)p(x1) - P(xn)} Q) =2 quantum field [5.125]

To find the answer to this, let us follow a similar procedure as in classical mechanics.
There, the equations of motion are found by requiring that the action is stationary under
infinitesimal variations

p(x) — ¢'(z) = ¢p(x) + €(x) [5.126]

The extension to QFT is to consider this as an infinitesimal change of the field and to
consider this in the functional integral. This is essentially a change of integration variables
in the path integral. E.g. for a three-point function this leads to the trivial equation

/D¢ e = L8 (1) o (o) (w3) = /D¢/ e = LN (31) ¢ ()¢ (03) [5.127]

Now [5.126] is a simple translation of ¢ and so the measure should remain invariant
D¢’ = D¢ and we find the slightly less trivial equation

/ D ¢ [ 4 L9 g (1) p(2) b (3) = / D i/ 1T L ()¢ (22) (w5)  [5.128]

Let us now expand the RHS of this using [5.126] to order . Consider first the product of
the three fields

2) + €(22))(p(x3) + €(x3))
e(z1)gp(x2)9(x3)
+ ¢(z1)p(w2)e(w3) [5.129]

¢’ (1)¢' (x2)¢' (x3) = (d(x1) + (1)) (p(x
=¢(z1)9(x2)9(23) +
+ ¢(x1)e(w2)p(73)
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Next, expand the part with the Lagrangian:
o / 1 1
) — expil [ da 30,0006 (a) (@)
1 1
= expil [ o 50,(0(a) + (@) 0" (0(a) + ela)) = ym?(0(z)

+ €(z))(¢(z) + e(2))] 2
= expil [ e J0,0()0"6(2) + ue(2)0"0(z) — mPo(a)? — me(w)o(a)
— et [ A" L] oy / d*z [Oe(x)0 d(z) — me(z)¢(x)
=1 0 expi [ e [e(a)(~0% - m) (o)
_ S de Lol / B [e(z)(—02 — m2) ()]} [5.130]

In the one but last line we have used partial integration. We can now bring it all together
and using shorthand ¢, = ¢(x), $1 = ¢(x1) etc we find

/ Do, ¢/ 1 £, oy = / D, '] 4 £o=l(1 4 / d'e [ex(~0% — m?) ]}
X (¢10203 + 10203 + Pre2p3 + P1d2e3) [5.131]
or keeping the first order term in €
0= [ Do, i [ e ¢, (~02 — m)6,010204
+ €10203 + P1€2¢3 + ¢1¢263] [5.132]

Now we can write €(x1) = [d*z e(z)d(x — z;) or in shorthand ¢; = [d*z €,6,1 and
similarly for e, and €3 and rewrite this as

0= [ Do, et [ e[~ i(02 + m?)0rin a0
+ G123 + 9102203 + 162013 [5.133]

This should be independent of ¢ and so we find

0= / Doy & 42 L1021 [(92 4 m2) 1 habs + 1001 baths + i1 0uabs + ih1dpades]  [5.134]
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or written down explicitly

(02 +m?) (QI T {6(x)6(@1)d(w2)b(5)} |©2) =
Q) T{(—ib(x — 1)) Ba)b(ws)} 1)
Q) T{(a1) (—ib(x — 22)) blas)} 2)
Q] T{pa)bl2) (—id(x — 23)) 1} ) [5.135]

We can obviously extend this for an n-point function

(0% +m?) (Q T {g(w)p(x1) -~ d() } ) =
S Qo) (~id(e — ) Baa)} Q) [5136)
i=1
So if taken in a correlation function, a field ¢(z) satisfies the Klein-Gordon equation, except
at a number of discrete points that coincide with the location of the other fields in the
correlation function. These terms on the RHS where the equation of motion is not valid in
a correlation function are called contact terms.

Eq.[5.136] shouldn’t really come as a surprise. Let us first consider the special case of
one field ¢(x1)

(07 +m?) (Q T{(x)p(21)} Q) = (Q T (=id(z — 1))} |Q) = —id(z —21)  [5.137]

So this is nothing else than a rewriting of the definition of the propagator D = (9% +m?)~!
Eq.[5.136] is a straightforward generalisation where the field ¢(x) is contracted with each
of the fields ¢(z1),- - - , ¢(z2) yielding each time a delta function, which is the result of the
commutator of the two fields.

This result can be easily generalised to a more general field theory with field ¢(x) and
Lagrangian L[p]. The variation of the action gives the Euler-Lagrange equations

&jx) ( [y cmy)}) = gg — 0, (agﬁp)) =0 151381

Eq.[5.136] generalises immediately to

<5¢ix) /d4y E[w(y)}) (p(z1) - p(zn)) =

n
D p(ar) - (—id(x — ) - p(wn)) [5.139]

i=1
In this equation, the fields are assumed to be in time ordering, but with derivatives
acting on p(x) are taken outside the correlation function. This is the Schwinger-Dyson
equation that states that the classical equations of motion are obeyed within correlation
functions, up to the contact terms where a delta function appears due to non-trivial com-

mutation relations.
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Chapter 6

Tree-Level Amplitudes

Open Questions

I have a number of unanswered points for this chapter. They are briefly mentioned here and
more detail is given under the respective headings. Any help in resolving them can be sent to
hepnotes@hotmail.com and is more than welcome.

& (6.2.38) I believe the expression for the Green’s function on RP» in Joe’s book contains an error. This is strange

because it is not mentioned on his errata page, which, otherwise, is very complete. I believe the correct expression
should be

/ / 2

G(o2,02) = —% In|z — 22|2 — Oéln

+1

2122

6.1 p 166: The Two-Sphere S,

Some general comments on the two-sphere S, and how it can be covered by two patches.
The standard description of Sy is with spherical coordinates 6 and ¢:

x = sin @ cos 6; y = sin @ sin 0; Z = oS [6.1]

We see that there is a problem because the points ¢ = 0 and ¢ = 7 do not have a single
value for #. This means that we cannot have one coordinate system to describe the entire
two-sphere. At this point it is convenient to introduce the stereographic projection. Draw
a line from the north pole of S, through a point P = (x,y, z) on the sphere and consider
the point where this line crosses the xzy plane, see figure 6.1. Call this new point P’ and
call its coordinates in the xy plane v and v.
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Pl
Y

Figure 6.1: Stereographic projection for Sy. The point P on Sy with coordinates (z,y, 2) is
mapped into the zy plane to the point P’ with coordinates (u, v) in that plane.

Elementary geometry then relates the (u,v) coordinates of P’ to the (z,y, z) coordinates
of P as follows

2u 2v u? +02 -1 (6.2]
r=——-—"; = 2= .
u2 +0v2+1 Y@y o1 u? +02 41
or in terms of spherical coordinates
2,2
u+v°—1 v
COSP = AT an " [6.3]
We also have
4 2 2

sin? p = S+ V) [6.4]

and so we see again the problem at ¢ = 0 and ¢ = 7 as at these points ©u = v = 0 and
then tan 6 is not well-defined. The issue is easily seen to be that the point at the north
pole doesn’t have a stereographic projection in the xy-plane; i.e. it crosses that plane
somewhere at infinity.

Introducing z = u+iv we thus see that we can describe the two-sphere by the complex
plane plus a point at infinity! In order to describe S, completely, the complex plane is
no enough; we need to introduce a second patch. This can be done by considering the
stereographic projection from the south pole. Now all point on S, will be mapped to the
complex plane expect for the south pole. But these two patches give together a complete
coordinate system for Ss.

Note that the great circle at z = 0 is mapped to the unit circle in the complex z plane,
|z| = 1. Points on the upper half two-sphere are mapped to points outside the unit circle

!There will be no confusion between the complex coordinate » and the third coordinate z as we
will not use the latter anymore.
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and have |z| > 1. Points on the lower half two-sphere are mapped to points in the unit circle
and have |z| < 1. We can thus take a p > 1 and take two patches: one with coordinates
|z| < p and one with coordinates |u| < p where u is the complex coordinate obtained
from the stereographic projection from the south pole. Where the patches overlap, i.e.
for 1 < |z] < pand 1 < |u| < p both coordinate systems are linked by the coordinate
transformation

u=1/z [6.5]
6.2 p 167: Egs. (6.4.5a,b) The CKVs on S,

We require 0z and Ju to be well-defined in their respective coordinate patches, in particular
to have no singularity at z = 0 and at © = 0 respectively. The former implies that we can
expand ¢~ in a Taylor series

0z = Z an?" [6.6]
n=0
As we have (6.1.4a) that éu = —z 25z we have

o o
ou = —u’ Z apu” "t = Z anu®" [6.7]
n=0 n=0

For ou to be well-defined at u = 0 we thus need a,, = 0 for n > 3, which means that only
ag, a1 and as can be non-zero. Therefore we have (6.1.5.a), i.e.

6z=ag+aiz+ a222 [6.8]

6.3 p 168: The Two-Disk D,

Some general comments on the two-disk Dy. The two-disk can be obtained by the identi-
fying the points 2z and 2z’ = 1/Z of the representation of the two-sphere S in the complex
plane. It identifies the upper half sphere with the lower half sphere and creates a boundary,
the unit circle

Figure 6.2: The two-disk D, is obtained from the two-sphere S, by identifying points z and 1/Z.
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In polar coordinates in the z plane, z = re’®, this amounts to identifying re’® = 1¢i.
Graphically this amounts to identifying points outside the unit circle with points inside the
unit circle. The unit circle is then the boundary of the disk; it consists of the fixed points of
the transformation z — 1/z, i.e. those points with r = 1.

1 i
2

Figure 6.3: The two-disk D, is obtained from the two-sphere S, by identifying points z = re'®
and 1/z = Le' in the complex plane. The boundary of the disk is now the unit circle.

An alternative description that is often more convenient is to identify the points z and
2! = z. This is the same as the previous identification up to a conformal transformation.
Now a point z = r€'? is identified with z = re~*® hence with the point on the opposite side
of the real axis. D, is thus represented by the upper half complex plane H = C* with the
real axis as the boundary of the disk.

- retid

* re‘w

Figure 6.4: The two-disk D, as the upper half complex plane C* by identifying points z = reti®
and zZ = re~'? in the complex plane. The boundary of the disk is now the real axis.

6.4 p 168: The Two-Dimensional Projective Plane RP;

Some general comments on two-dimensional projective plane RP,. We start from rep-
resentation of the sphere in the complex plane and identify the points z = re’® with
2 = —1/z = —1e = %e’(¢+”). Contrary to the two-disk this transformation has no

fixed points?. RP; thus has no boundary.

2The fixed point equation is re’® = —Le’® or hence 72 = —1. But as r is a radius it has to be real
and so there is no solution to this equation.
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To see where a point on the two-sphere S, is projected by this transformation, let us
take a point P, on the sphere. For convenience assume it is on the upper half part of the
sphere (and not at the north pole). We first perform a stereographic projection to a point
Py in the complex plane. P, is then transformed via z — —1/z,i.e. r — 1/r and ¢ — ¢+,
to the point P, in the complex plane. The inverse stereographic projection of P, then leads
to the point P] on the sphere. As P, was on the upper half part of the sphere, P, lies
outside of the unit circles in the complex plane and P, lies inside the unit circle. ] is then
on the lower half of the sphere. The points Py and P} are identified. Note that there is no
fixed points, hence no boundary.

Figure 6.5: The projective plane RP, from the two-sphere S,. The point P, on the sphere
has stereographic projection to the point P, on the complex plane. P, is then transformed via
z - —1/z,ie. r —» 1/r and ¢ — ¢ + 7, to the point P, in the complex plane. The inverse
stereographic projection of P, then leads to the point P on the sphere. The points P, and P} are
identified. Note that there is no fixed points, hence no boundary.

6.5 p 169: Eq. (6.2.3) The Functional Integral in Terms of a Complete
Set of Fields

Including the source term the action in the generating functional Z[J] is

4o’

1
S = / d?o /90" X 0, X, + i / d*o J'X,

1
=t / d*o \/gX'V2X,, +i / d*o J'X,, [6.9]
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In the second line we have performed a partial integration. We now fill in (6.2.2.a)

1
S =+ / Po /gy X VP Xy +i / Po "D wuXs
1,J I

dred
1 .
= —m Zw§$?$uJ/d20 \/EX[X] —I-ZZJiM]/dQO' J'“X[
1,J 1

1 .
= o Zw%x’;xu[—#—szuI(}f [6.10]
I I

which is (6.2.3) Note that the I and p’s in the measure should really not be called that,
they are not the same indices in the action, but denote integration over all such values.

6.6 p 169: Eq. (6.2.5) The Zero Mode Normalisation

The zero mode X, is the solution to V2X; = 0, i.e. Xy = ¢, a constant. The constant is
determined by the normalisation condition

1= /d%\/gxoxo = /d% gc? [6.11]

—1/2
c= (/ d*o \fg> [6.12]

6.7 p 170: Eq. (6.2.6) The Functional Integral as a Determinant

i.e.

This is standard stuff in the path integral approach to QFTs. First we complete the square.
For w; # 0:

2, 1 2 .
_Lljjrloff’m +ixh Jp, = — 4:10/ <:ﬁ‘;:1:[“ — %iﬂ‘ILJI#)
2 / / 2 .12
e
_ wi 1 "o
= - 47ra,y1y1# — w% Jr [6.13]
Thus
Z[J] = /ddggo exp(izgJos) X H /dy?( exp (—w%yuyf _ LO/JMJI > [6.14]
aa V1Y Tz

K#0,v
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We have split out the zero mode from the other modes. We can now perform the integra-
tion. The zero mode gives a delta function and the other integrations are just Gauusioan
The integration is now Gaussian and simply gives

Ar20/\ Y2 mo!
717) = i2m)i6 (o) x | ( S > exp <—oﬁJ?JIu> [6.15]
I#0 I I

Using the fact that —w? are the Eigenvalues of the operator V2, see (6.2.2.b), we can
rewrite the product of the Eigenvalues as the determinant of the operator:

—V?2 —d/2 o'
Z1J] :i(27r)d5d(J0) X (det /47r2a’> H exp <_w2J#JIM> [6.16]
I#0 I

The ’ denoting that the determinant excludes the zero mode. Finally, we can write the last
factor as

H exp (—ZOézlJme) = expz (— 7m2//d201 J“(Ul)XI(Ul)/d202 JM(O'Q)X[(O'Q)>

w
I#£0 I I#£0 I

= exp <— ;/dZUl oy J(01) - J(02) ) 27T;)/XI(Ul)XI(Uz)>

w
40 1

1
= exp < - 2/d201 d?oq J(01) - J(09)G (071, 02)> [6.17]
Bringing it all together gives (6.2.6).

6.8 p 170: Eq. (6.2.8) Green’s Function PDE

The PDE for the Green’s function (6.2.8) seems to have an extra term —X, compared to
the standard Green’s function. The reason for this is that we are working on a compact
surface without boundary. The “standard” Green’s function PDE (the Poisson equation)
V2¢(c) = §%(c) does not have a solution on a compact surface. One way to understand
this is to think about this equation defining an electric potential. Let us then look at the
flux of the electric field £, = —0,¢ through a closed loop around the delta function.
Performing the contour integration we get the charge, but on a compact surface we can
also consider the complement of the curve; that is also a closed surface but the integration
result is zero as that region contains no charge. So having a single charge on a compact
surface is inconsistent. A more physical explanation is that the electric field lines coming
out of the charge have nowhere to end on a compact surface.
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This can be resolved by adding a constant term to the PDE: V2¢(c) = §%(c) — kL.
This constant « can be viewed as a constant density charge over the compact surface, that
cancels the charge from the delta source. Both contour integrals, the original around the
delta function and its complement, can then be made equal by a judicious choice of the
constant. Working this out implies that « is the volume of the compact surface [ d*c,/g,
which gives exactly (6.2.5).

Linking this directly back to Joe’s book, let us consider (2.1.18):

0=nh <52(z -2,z2-2)) + %05 (XH(z,2)X"(<,7)) [6.18]
s

This looks indeed like the equation for the Green’s function. However, the way to derive
this equation is by starting with the fact that the path integral of a total derivative is zero

= 76 e S XY (2,7
0/[dX] 5XM(Z’2)[ X"(z,7)] [6.19]

This assumes that the integral is convergent. But if the X* have a non-vanishing zero
mode, i.e. a constant, then this integral does not converge as X* — +oo and so (2.1.18)
is not valid.

Let us expand X in the complete set (6.2.2.a)

XMo) = ahX; [6.20]
1

The path integral measure then becomes [dX] = [[; , dx. If the action is Gaussian then
the zero-mode has w3 = 0 and so the integral over z}, diverges. The formal way to resolve
this, is by putting X into a box, i.e. giving it an upper and lower bound. Note that this is
about X. The worldsheet coordinate o already live on a compact surface.

This zero mode is actually very important: we will see that it leads to momentum
conservation in amplitudes.

Note also (6.2.5) i.e. that Xo = ([ d%\/g)‘l/z, i.e. X is inversely proportional to the
square root of the total surface of the manifold. For a non-compact manifold the surface is
infinite and so Xy vanishes and we recover the standard Possion equation.

6.9 p 170: Eq. (6.2.9) Green’s Function on S,

Solving PDEs is hard, so it is better to show that the given solution satisfies the PDE. We
are working with a general conformal gauge metric (6.1.2)

ds? = (=2 gy dz [6.21]
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This means that the only non-zero metric components are

1
G2z = gz = 562‘“ [6.22]

and g** = g7 = 2e~ 2. This® implies that ,/g = €?*. Recall that g is indeed the deter-
minant with downstairs indices, the contravariant tensor if you wish to sound intelligent.
The Laplacian is then

V2 = g9, = 297700 = 4¢72*00 = 4¢~ /%00 [6.23]
Next we calculate
V21n ’212|2 = 4971/286 In ’212’2 = 8971/271'52(212, 512) = 471'971/2(52(0'1 — 0'2) [6.24]

where we have used (2.1.24) and the our convention that §2(z) = 16%(). Thus

| o 2 g~ '/? 2/ 1 2 1/252/ 1 2
—3 O/V (—QID\ZH\ > = x An0% (ot — 0?) = g7 V28% (0! — o?) [6.25]
™ vy

Next we calculate

2 - 2 O/X% 2, 2w(w,m) 2
Vif(z,2) =V | — [ dFwe*""" ]n|z —w|* + k

4
= 0/4)(3 /de 2w D)2 |2 — wl?
= O/4X(2) /de eQw(w’w)Swg_1/262(zlg,212) [6.26]
Now /g = ¥ in the conformal gauge, so we have
V2f(2,2) = 2ma’X3 / d*w 6% (219, 212) = 27/ X3 / d?0 6% (o) = 2ma/ X3 [6.27]
and thus
—2730/ V2f(z, Z) = —%Qﬂ'a'x% = —X% [6.28]

We have shown that —%’ In |z12|% + f(z1, Z1) satisfies the PDE for the Green’s function (,
but we know that G’ must be symmetric in the two points, so we need to symmetrise the
result. This means that

/

G,(O’l, 0'2) = —% In |Z12|2 + f(Zl, 21) + f(ZQ, 22) [6.29]

which is (6.2.9) and satisfies (6.2.8) indeed.

3To calculate the determinant we need the metric in the o coordinates. We have ds? = e?“dzdz =
e (dx +idy)(dx —idy) = e (dz?+dy?) and so g11 = g2o = €?* and g1o = 0. Therefore g = det g =
e* and /g = e*.
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6.10 p 171: Eq. (6.2.13) From the Zero Mode to Momentum Conser-
vation and the Renormalised Green’s Function

From (6.2.4) and using the fact that the zero mode X is constant, we have

Jt = / d?o JH ()Xo / AP0 Y K50 — o) Xo =Xo Y K [6.30]

i—1 i=1
The §%(.Jy) in (6.2.6) then becomes

§(Xo Y k) =Xg (> KLY [6.31]
=1 =1

which gives the momentum conservation in (6.2.13) and the X 4 in Cg‘; in (6.2.14).

The second important point in (6.2.13) is the appearance of the renormalised Green’s
function. This comes from the fact that the tachyon vertex operators in (6.2.11) are renor-
malised. Our definition of renormalisation is given by (3.6.5)

_ L[ o, N O d
[F], = exp (2 /d od“c’ Ao, o )5X“(U) 5Xu(a’)) F [6.32]

with A(o,0’) = & Ind?(0,0") and d?(o, 0") the geodesic distance between two points. Ap-

plying this on the tachyon vertex operator we find that

[ eiki.x(o—i)}

r

1 )
= exp <2 /d20'd20'/A(0', 0')@'21@- - k; 52(0 — Ui)52(0’ — O'i)> etk X (1)

1a'k? :
= exp (—20621 In d2(0'z'7 Uz)) eZki.X(ai) [6.33]

We thus find for the amplitude (6.2.11)
k)= (0], ] o]
_ o T K2 Ind(oi,00) <€i S kj-X<oj>> [6.34]

We can bring this in the form of a generating functional by using (6.2.12)

JH = i k(o — o4) [6.35]
=1
Indeed
<€ifd2UJ”(U)X“(O')> _ <€Z'fd20 PN kf52(0—0i)XH(a)>
= <€i2?:1 kj'X(Uj)>

[6.36]
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From (6.2.6) we thus have, ignoring all the pre-factors,
Z[J] x e o ZZ 1 kZInd? (UhUz’)e*% J d?cd?e’ JH (o) Ju(c!)G! (o,0") [6.37]

Let us focus on the last exponential; it is

exp —é / d?od’c’ Z k6% (o — oy) Z ky ;6% (0" — 0;)G'(0,0")

i=1 j=1
1 « ,
=exp—5 Z ki - k;G' (04, 05)
ij=1
=exp Z ki - k;G'(04,0,) ZkQG' 04y 0;) [6.38]
1<j=1
So that
/ n
Z[J] « exp —Z;Ik kG (04, 0) ZkQG’ 04, 05) — %Zk? Ind2(o;, o)
/
=exp | — Z ki - k;jG'(04,05) Zkz <G/ Oi, ;) O;lnd2(ai,0i)>
1<j=1
=exp |— Z ki - k;G'(04,05) ZkQG' Tiy0;) [6.39]
1<j=1
where we defined
/ / o 2
Gy(0i,05) = G (04,05) + 5 Ind*(0;,05) [6.40]

This gives us precisely (6.2.13) and (6.2.15) with the pre-factor of (6.2.14). The additional
term in G| comes from the renormalisation of the tachyon vertex operator.

6.11 p 171: Eq. (6.2.16) The Renormalised Green’s Function

We can now work out the renormalised Green’s function, using the equation for the geodesic
distance at short distance (3.6.9)

d2(01, o9) = (01 — 02)262‘“(”) = |212|262w(”) [6.41]
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Thus

/

/

. (0% _ _ (0%

Gl (01,01) = lim |——1In \z12\2 + f(z1,21) + f(22,22) + —1In ]212\262‘“(0)
Z9—21 2 2

=2f(z1,21) + dw(z,Z) [6.42]

This is, not surprisingly as we have regularised the tachyon operators, a finite result.

6.12 p 171: Eq. (6.2.16) The Tachyon amplitude on S,: Final Result

The exponential part of (6.2.13) is, writing f; for f(z;, z;)

n

exp | — Z ki - k; <—02[1nzij2 + fi +fj> — 52]912 (2fi + dw(2))

i<j=1 i=1
n n o n n e
=exp | — D> ki-ki(fi+ fi) =Y kifi— 2 D oKwz) | T =yl 16.43]
i<j=1 i=1 i=1 i<j=1
It remains to show that the f functions drop out. It is easily seen that
— Y kiki(fi ) =D kL= =Y ko> kif [6.44]
i<j=1 i=1 =1 j=1

If this is not immediately clear, let us work out the case n = 3. Ignoring the minus sign:

ki -ko(fi+ fo) + k1 -ka(fi + f3) + ko ks(fo+ f3) + k3 f1+ k3 fo + K3 f3
=fiki - (k1 + ko + k3) + foka - (k1 + k2 + k3) + faks - (k1 + k2 + k3)
:(kl + ko + k3) . (k‘lfl + ko fo + /Cgfg) [6.45]

and so the f contribution vanishes by momentum conservation > ;" , k; = 0, as enforced
by the delta function, which itself came from the zero mode.

6.13 p 172: Eq. (6.2.19) Amplitudes for Higher Order Vertex
Operators

This formula is rather confusing, so let us go slowly. We first consider one derivative.

Ag;,lp) _ <ﬁ [eiki-X(zi,zi)}TaX,u(zi)>

=1
, n
_ 6_% A kfw(zz) <HezkzX(21,Zz)8Xﬂ(zi)>
=1
S > k() A10) [6.46]
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where we have taken out immediately the regularised part of the vertex operators. Let us
now look at A(SZ’I’O) = (TI}, et X209 X1(2')). We need to take all possible contractions
to compute this. Start with

o .n

[1(512’1’0) _ <€ik1~X(21,21)axu(z’)> — Z L (k- X(21))"0X"(2))

— +Z§/Zk'fz, (ethr X A ettexe) 047
1 —

From there we find that

K~

A(n,l,o) _ _Q‘/ i L;L ﬁeiki'X(zi) _ _L‘/ - ? H ‘Z,,‘a’ki.kj [6.48]
Ss 2 Z — z 2 2=z Y .

j=1 i=1 i=1 1<j=1

Let us now consider two derivatives
AGRO = (XX (2)0X " () [6.49]

We need to contract out the two derivatives. They can either each be contracted with an
X in the exponential or they can be contracted with one another. We thus find

~ 1 — '
A§2,2,0) =[ik] X5 (21)0XH(2])] x [ik{ X (21)0XH (21)] <ezk1-X(zl)>

AL .
+OXH()0X" () (X))

i Ky > i k _o <6ik1-X(21)> [6.50]
2 / 2 ! 2 / 1\2 .
1A 2 T A1 (21 = 23)

Let us now look at what (6.2.19) says for this case? It gives, ignoring all the pre-factors,
AGEO o ([0 (1) + QU()] x [07(24) + Q(2h)] )
= v()0h(2h) + (Q"(1)Q"(25) ) [6.51]

Indeed v#(z]) = —(id/ /2)k!' /(2] — z1) is just a function and Q" (z}) needs to be viewed as
an field with two-point function

(") = -5 [6.52]
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We cannot have mixed terms with an odd number of Q) left or such a term will vanish in an

expectation value. Le. all @’s need to be contracted out. And so direct inspection shows

that our 215912’2’0) is indeed the same as (6.2.19).

Baby steps: consider three derivatives:
AGPO — (X2 X0 (20X P (50X (4)) [6.53]

There are two types of terms. Either we contract each dX with an X from the exponen-
tial, or we contract only one 90X with an X from the exponential and then contract the
remaining two 0X’s with one another. The result is

+(1,3,0) i k"f i/ /ﬁiL i/ k‘f
A = T2 ) T2 s “\T2 -
ia/ kY of iol kY of v
2 2] — = 2 (2 — 24)? 2 2] — 2 2 (2] — #4)?
) k# ! yng .
_ (JO‘ 1 ) <_0‘/77,2) <ezk1~X<z«1>> [6.54]
2 2] — 23 2 (2] —2b)

We can write this as

A%’&O) — [U#(zi)v”(zé)v#(zé) + v#(zixQu(zé)Qu(Zé»
P QUEAIQ () + QDR ()] (B¥E) f6ss

Which is once more (6.2.19). The pattern should now be clear. So if we have four 0.X we
will obtain something of the form

/1591’4’0) o vvvv (1term) 4+ vv(QQ) (6 terms) + (QQ) (QQ) (3 terms) [6.56]

2

again we recover (6.2.19).

Let us now turn to the case of more than one exponential factor. There must certainly
be a simple proof of the formula, but we will restrict ourselves to the physicist proof and
show that it is correct for two exponentials and three 0 X’s after which the general pattern
should emerge. So we consider

AGO) = (X ea) e X2 X121 OXH () DX (4)) [6.57]

2

We can have two types of terms: either all the 0.X’s contract with the exponential, or only
one of them does. Let us first focus on the terms when all partial X are contracted with
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an X from an exponential. We thus have three contractions. Let us denote by [ij’] the
contraction between X (z;, z;) and 0.X (2}). Three contractions thus give

(21 [12] [137] + [21'] [12]] (23] + [21] [22'] [13]] + [21'] [22] [23'] [6.58]

But we can rewrite these 8 terms as

(1] + [2177) (2] + [227]) ([13'] + [23']) ~ v(2])v(2"2)v(23) [6.59]
where, with some abuse of notation v(2}) = —(ia’/2) 2k (2j — 2;) which is indeed the

term with three v from (6.2.19). Let us now turn to the terms with only one contraction
between a 9X and an X from the exponential. Denoting by (i/j') a contraction between
0X (zg and 0.X (z;) we have

[117](2'3') 4 [21] (2'3) + [12] (1'3') + [22] (1'3") + [13] (1'2') + [23'] (1'2)
~v(21){Q(2)Q(23)) + v(25)(Q(21)Q(23)) + v(25)(Q(21)Q(22)) [6.60]

and we find this same term in (6.2.19).

From here it should be clear that the relation is valid for any number of exponentials
and for any number of 9X’s. It remains to consider mixed 9X’s and 0X’s, but it should be
immediately clear that this is just a duplication of the previous result. We can thus consider
(6.2.19) proven.

6.14 p 172: Egs. (6.2.21-6.2.23) How Holomorphicity can Determine
Expectation Values

we know that the OPE of 9 X* with itself is

o n,m/
OXH(2)0X" (w) = —gm + regular terms [6.61]
The regular terms are, by definition, holomorphic. Thus the expectation value on the two-
sphere s necessarily of the form

X)X ()5, = ~ 5 T D)sy + glaw) (6.62]

where (1)g, is the expectation value of the unit operator on the two-sphere and g(z,w) is
some holomorphic function. The coordinate z lives in the patch that covers the two-sphere
without the north pole. Let us now look at the other patch that contains the north pole,
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but not the south pole, described by the coordinate u. The transition function between the
two patches is simply v = 1/z. Therefore
1
Dy XM = gZaZX“ = ——0. X! =220, X" [6.63]
u

u

Our field must of course be holomorphic over the entire two-sphere and thus also in the
u-patch. Now, let us assume that 9,X* is not holomorphic and has a Laurent expansion
QXM =32 apz " Then

e}

(o] [o¢]
a a e
0 XH = =220, X1 = -2 ) Z% == an =— ) apu"? [6.64]

n=—oo n=—oo n=—0o0

Now 9, X* being holomorphic implies that it can have no poles at u = 0. This implies that
a, =0 forn—2 < 0. Le. 8,X* must be of the form

G GRS [6.65]
z z

Thus indeed, as z — oo, we have that 9, X* — 272,

Let us now use this on [6.62]. Requiring that 0.X*(z) falls off as z~2, whilst we keep
w fixed means that g(z,w) must also fall-off as =2 at the least. But g(z,w) must be
holomorphic, so it can’t have poles at z = 0. We thus conclude that ¢g(z,w) must be zero.

6.15 p 173: Eq. (6.2.25) The Expectation with a Level One Vertex
Operator

This should be straightforward by now. We start with one exponential

o .n

ik1-X (2 4 n
OXHM(z) : €M X =X H(2) Y m(k;l - X(21))
n=0
1 . 4n-l -
— ik XM ()X (1) Y (nz_ 7 (ka - X(z0))"
n=1 :
- w
_ ﬂkileier(Zl) [6.66]
2 2—2

(6.2.25) follows from that immediately.

6.16 p 173: Eq. (6.2.26) Momentum Conservation in the Expectation
Value

This is exactly the same argument as with the discussion around Egs (6.2.21)-(6.2.23) but
it is worth repeating it. The requirement of holomorphicity on the two-sphere implies that
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OX* falls as 2~ 2 as z goes to infinity. This means that (6.2.25) cannot have regular terms,
but it also means that it cannot have a single pole ~ 1/z. Hence the numerator of the single
pole in (6.2.25) needs to vanish and this implies momentum conservation ) _, kf = 0.

6.17 p 174: Eq. (6.2.28) Expanding around z — z;

We are just taking (6.2.25), splitting out the : = 1 term and expanding the sum of i = 2 to
n around z:

Ny Mo n nw

' Ky K
—— k ¢ 6.67
2 52(70)<z—21+§z—zi> [6.67]

Now, as z — z1 fori =2,--- ,n:
1 1 1 1
z—z =zn+(z—21)—2zi zn1—zil+(z—21)/(z21—2)

1 z—z 1

= {1— ! —i—o((z—zl)Q)] = +o(z — 21) [6.68]
Z1 — % z1 — % z1 — %

and we find (6.2.28).

6.18 p 174: Eq. (6.2.31) The Expectation Value of Vertex Operators on
S, from the Holomorphicity Condition

We first observe that the delta function for the momentum comes from (6.2.26). It is
then easiest to check that (6.2.31) does satisfy the differential equation (6.2.30). For the
holomorphic part, we need top show that

- kikj2 o - kik; e k1 -k
o'kiki/2 o' ki-k; 1 Rg
Oz H Zy = 9 H G Z 21— 2 [6.69]

i<j=1 i<j=1 i=2

Let us show this for n = 3 and the general pattern should be clear:

a'k1-ka/2 o'ki-k3/2 o'ko-k3/2
8. (Z1212/ 0613/323/)

. Oé ozk:1 ko /2—1 ak1 k?3/2 a’ko- k‘3/2 a'ky- k‘g/? a’'ki-ks/2—1 akg k‘3/2

- Ekl k2 213 223 ]‘Cl ks z 212 213 293
o ((ki-ky  ky-ks Lokika/2_o'kika/2 ol kyks/2

=5 + 212 213 293 [6.70]
2 Z1 — k9 Z1 — X3

which is what we needed to show.
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6.19 p 174: Eq. (6.2.32) The Green’s Function on the Two-Disk D-

The two-disk Dj is obtained from the two-sphere Sy by identifying the points z and z and
restricting z to the upper half complex plane, see (6.1.8). The Green’s function should thus
be the same if we replace one of the points by its conjugate. Let us transform z; — z;:

o a _
G'(01,02) = —Eln\zl — 2% - gln\zl — Zo|?
/ /
— —%hl’il — 22‘2 — %ln‘fl — 22‘2

/ /

o o
:—5111\21 —22\2—51n|21—22|2:G/(01,02) [6.71]
as |z — zo| = |21 — 22| and |z} — Z2| = |21 — 22|. The same, of course, also holds for

z9 — Zs. Let us also check that this Green’s function is consistent with the Neumann
boundary conditions 0, X|,—0 = 0 for an open string. We first translate this boundary
condition into complex coordinates. We have 9, = 92 = i(0 — 0). Thus

0y, G (01, 02) o (0, 821)(111\21 — 22\2 +1n|z — 22\2)
o-

1
1

= (az Zl)(ln(zl — ZQ) + 111(51 — 52) + ln(zl — 52) + ln(21 — 2’2))
1
= F0+———+0-0——"—0— =
Z1 — k9 Z1 — %9 21 — %9 21 — %9
1 1 1 1
_ I _ _ [6.72]

21— % 21 —Z2 ZI—Z2 21— 2

This needs to vanish at the boundaries of the open string. But these boundaries correspond
to the boundaries of the disk, which is the real line where Imz = 0 and hence z = z = u
with u € R. Thus

1 1 1 1
0y, G' (01, 09) x + - - =0 [6.73]
Uy — u2 Uup — u2 Up — u2 Uy — u2

Similarly we find of course that 9,,,G'(01,02) = 0.

Note that Ds is a compact surface with a boundary. It is not clear to me, and frankly
neither Joe, nor Kiritsis nor Tong make it clear whether or not there is a zero mode con-
tribution. Joe e.g. says "up to terms that drop out due to momentum conservation". So
he suggests that there is a zero mode and appropriate f functions. But the fact is that it
is only on compact surfaces without boundaries that the Poisson equation has no solutions
and one needs to include a zero mode. So in a way this statement is a bit surprising.
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6.20 p 175: Eq. (6.2.33) The Tachyon Vertex Amplitude in the Two-
Disk Do

/
The Green’s function has an extra term —O‘T/z In |2, — Z|? compared to the Sy. This imme-
diately leads to an extra factor

n n n

o o . L. 1. /1.2
| | ’Zz' o Zj‘a ki-kj;/2 _ | | |Z7L o 2j|a k;-k; | | ’Zi - Zi‘a k?/2 [6.74]
ij=1 i<j=1 i=1

which is (6.2.33).

6.21 p 175: Eq. (6.2.34) Boundary Normal Ordering

Recall the normal ordering procedure (2.1.21b)

/

L XP(21, 1) X" (29, 22) 1= X (21, 21) X" (22, 72) + %nw In |21 — 202 [6.75]

This ensures that a two-point function of a normal ordered product is not divergent at
coinciding points as it subtracts the divergence. This certainly works for the two-sphere,
where the Green’s function is given by (6.2.9)

/

G (01,09) = —%77“” In |z — 23| + finite terms [6.76]

This implies that the two-point function of a normal ordered product is finite:

o
<: X'u(Zl,gl)Xy(ZQ,EQ) :> = <X“(21,51)XV(22,52)> + 57’]"“’ 111‘21 — 2’2‘2
/

=" G (o1, 09) + %77’“’ In|z; — 23|? = finite terms [6.77]

However we have a problem on the two-disk D,. Indeed at the boundary we have
z =z and so

Oé/

G =——n" 1l In|z; — 22> + In |21 — 22|%) + finite terms
(01,02) . g, Jhm o (In|z1 — 22> 4+ In |21 — 22|?) + finite terms
= —a'n lim In |z — 2> = —a'n" In(z; — 29)? [6.78]

21 —>Z21,22—>22

As a result the two-point function of a normal ordered product is not finite, but has a
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divergence:
/
(: XH(21,21) X" (22, 22) 1) by (XH(21,21) X" (22, 22)) oD, + %77‘”' In(z; — 29)°
/
— ’ & )2
n (01702) oD, + 5 n Il(21 22)
/
= — gn‘“’ In(z, — 22)2 + finite terms [6.79]

2

That is why (6.2.34) introduces a boundary normal ordering when two points are on
the boundary

SXH(y) X" (y2)% = XH(y1) X" (y2) + 200" In(yr — y2) [6.80]

The two-point function of a normal ordered product on the boundary is now finite, as it
should.

6.22 p 176: Eq. (6.2.38) The Green’s Function on the Projective Plane
RP>

I believe the expression for the Green’s function on RP, in Joe’s book contains an error
as explained here. This is strange because it is not mentioned on his errata page, which,
otherwise, is very complete.

The Green’s function on RP; is given by (6.2.38)
/

/
(6% (6%
G/(O'Q,O'Q) = —Eln ’21 — 2’2‘2 — 5 In ‘1 + 21§2|2 [6.81]

RP, is defined by identifying the points z and —1/z, so both points should give the same
Green’s function. Let thus transform z:

G'(09,02) = ——1In(21 — 22)(Z1 — Z2) (1 + 2122) (1 + Z122)
of 1 1 1 1
() (- ) (1 —) (1 —
Yin(- L w)(- Lom-Laya- L
0/1 14+ 2120 14+ 2122 21 — Z2 21 — 22
=——1n
2 Z1 21 Z1 Z1
_ _g’ In (Zl — 2’2)(51 — 22)(1 + 2152)(1 + 5122) [6.82]
2 |2’1‘4
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But this is not equal to G’. If there is a sign error in the second term we get

, _ad (- 2) (5 - %)
G (02702) = 9 1 (1 + 2122)(1 + Z122)
o 1 1 _ L 1
Hfglﬂ(*glfﬁ)(*;1722)/(1757122)(17;122)

o 1+4+Zizo 1+ 2120 21 — Z2 21 — 22

=——1In - /——
2 Z1 21 21 21
_ _2, In (1 + 2122)(1 + 512’2)
2 (Zl — 22)(51 — 52)
= —G'(01,09) [6.83]

so this is not correct either.
I am pretty sure that this is not correct. Indeed GSW have for the Green’s function on
RP2 Eq. (8.3.21):

2z

G(z2:¢%) =™ <ln |z— 2| +In

2
4 4 1’) [6.84]

where the points with z and —q?/z are identified. In Joe’s convention this would corre-
spond to

o o 1 2
Ggsw(og,09) = ——In|z; — 22|2 ——In|— +1 [6.85]
2 2 Z1%29
Under z; — —1/% this transforms as
Gasw(02.09) = — (s — 2)(51 — 2) (—— +1) (== +1
09,09) = ——In(z1 — 22)(z1 — Z —_— —_
agswlo2, 02 5 1 2)(Z1 2 S P
! 1 1 z
() ()2 (50
2 21 21 29 ]
_ _g’ In (1 + 512’2)(1 -+ 2152)(21 — 52)(2’1 — 22)
2 21212229
o 1 1
g ——1 _ ]_ R 1 o 7, —
5 n <z_122 + > <z122 + > (z21 — Z2) (21 — 22)
= Gasw(02,02) [6.86]
Both Greens functions are related:
’ o 2
G'(01,02) = Ggsw(o2,02) — 5 In |21 2] [6.87]
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6.23 p 176: Eq. (6.3.1) The Simplest Ghost Non-Vanishing Expectation
Value

Recall the general expression for the S-matrix (5.3.9)

Sjtogn(kty o k) = Y / /dd>dbd6] —Sm =59 =Ax

comp topos
I n
1
M . 1/
X | | /dai | | 47r(g,8kg | | I | 0;) i (Kiy o) [6.88]
(a0)ef k=1 (ag)ef i=1

we refer to that equation for the explanation of all symbols, expect for what we need
here. f is the set of fixed coordinates we can chose, i.e. the number of conformal Killing
vectors (CKV). The integral is also over the conformal Killing group (CKG), denoted by
its moduli. The sphere, disk and projective space are genus zero, and as a result have
no moduli. The sphere has six CKVs, see (6.1.5 a,b) and so what remains from the FP
determinant is [], ;c;c*(6i), i.e. six c-ghost insertions, c(z1)c(22)c(23)c(21)c(22)¢(23).
The simplest non-vanishing expectation value we can make on the sphere is hence indeed

(c(21)c(22)c(z3)(21)c(22)E(23)) 55 -

6.24 p 177: Eq. (6.3.5) The Multi-Ghost Field Amplitude

This should be rather obvious, but here we go. We consider only the holomorphic sector,
the anti-holomorphic being a copy. We need three more c-ghosts than b-ghost, so that once
we have contracted all possible bc pairs we are left with a non-vanishing result. So we

contract p ghosts c(z;) with p ghosts b(z}) and this gives us p factors of 1/(z; — 2;) and an
expectation value of three remaining c- ghosts that gives us (2p+1—2p+2) (2p+1—2p+3) (2p+2—
zp+3). In addition we have, of course, to take all possible permutations of the p ghosts ¢
and b and how these can be contracted.

6.25 p 177: Eq. (6.3.6) The Holomorphic Derivation for the Need for
Three c-Ghost Insertions

Eq (2.5.17) shows how the ghost current transforms under a conformal transformation.
For A = 2 it gives

§8§u

(azu)]u(u) = ]z(z) + 20.u

[6.89]
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With u = 1/z we have 0,u = —1/2%2 = —u? and 0?u = 2/2% = 2u3. Moreover dz = —du/u?.
Thus
3 2u®

STy = Ja(z) = 3u [6.90]

*u2ju(u) = jz(z) +

We thus find that
o 2
7{ dz ja(2) = % du/u (—uzju(u) + 3u) _ j{ dl]u(u) _ di% [6.91]
C C C

2ri 2mi 2mi C2miu

The contour C'is counter-clockwise in the z-patch so, it is clockwise in the u-patch. Making
it counter-clockwise flips the sign and we have

d d
7{ i.jz(z) = - 7{ —u.ju(u) +3 [6.92]
C C

271 211

which is (6.3.6) with the correction from Joe’s errata page included.

6.26 p 177: Eq. (6.3.8) The Alternative Expression for the Multi-Ghost
Field Amplitude

There must be a neat mathematical way to show that (6.3.8) is equivalent to (6.3.5). But
why the permutations "evidently" sum up, is a mystery to me. We can however check it for
a couple of cases, to convince ourselves.

Let us start with p = 1 and work out (6.3.5). There are four c-ghosts and one b-ghost,
so there is one propagator. Let us denote by

(abe|d) = ZabZactbe [6.93]
Zd — W1
Up to the pre-factor, (6.3.5) is then
(YP=1 = (123]4) — (124]3) + (134]2) — (234]1) [6.94]

Using Mathematica, see the code in fig.6.6, where to be equal to (6.3.8), i.e.

Z12713223214224%34
(21 —wi)(z2 —w1)(23 —w1) (24 — wn)

[6.95]

Next, we consider p = 2. There are nor five c-ghosts and two b-ghosts, hence we have
two propagators. We define
Zab%acbc

(abc|de) = (oa = w1) (e —03) [6.96]
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and (6.3.5) is then given by

()P=2 = (123]45) — (124]35) + (125|34) + (134]25) — (135|24)
+(145[23) — (234]15) + (235|14) — (245[13) + (34512) [6.97]

This isn’t something one would like to work out by hand, so Mathematica comes to help
once more, see fig.6.6

ClearAll [z, w, cc, co];
z[a_, b_] := z[a]- z[b]; w[a_, b_] := w[a]-w[b];
ccla_, b_, c_] := (z[al-z[b]) * (z[a] - z[c]) » (z[b] - z[c]);
cola_, b_] := 1/(z[a] - w[b]);
ccla_, b_, c_,d_, e] :=
Simplify [Expand [cc[a, b, c]*(co[e, 1] *co[d, 2] - co[d, 1] * co[e, 2])]];

In[71] (* p=1 %)
p1635 = Simplify [
cc[l, 2, 3]*co[4, 1] -cc[1, 2, 4]*co[3, 1]+ cc[1l, 3, 4] *xco[2, 1]-cc[2, 3, 4]*co[1, 1]]/.
{z[1] » z1, z[2] » z2, z[3] » z3, z[4] » z4, w[1] » wl, w[2] - w2};
pl1638 = z[1, 2] z[1, 3]*z[1, 4] » z[2, 3] * z[2, 4] x z[3, 4] * co[1l, 1] *xco[2, 1]+ co[3, 1]=*
col[4, 1]1/.{z[1] » z1, z[2] » z2, z[3] » Zz3, z[4] » z4, w[1l] » w1, w[2] » w2};
Simplify [(p1635 - p1638)]

out[73] (0]

na= (% p=2 %)
p2635 =(cc[1, 2, 3, 4, 5]-cc[1, 2, 4, 3, 5]+
cc[1, 2, 5, 3, 4] +cc[1, 3, 4, 2, 5] - cc[1, 3,5, 2, 4]+cc[1l, 4,5, 2, 3]-
cc[2, 3, 4, 1, 5]+ cc[2, 3,5, 1, 4 -cc[2, 4,5, 1, 3] +cc[3, 4, 5,1, 2])/.
{z[1] » z1, z[2] » z2, z[3] » z3, z[4] » z4, z[5] » z5, w[1] » wl, w[2] » w2} ;
p2638 = z[1, 2]*z[1, 3]=*z[1, 4]* z[1, 5] z[2, 3] z[2, 4] * z[2, 5]*
z[3, 4] * z[3, 5] * z[4, 5] *w[1l, 2] xco[1l, 1] *co[l, 2] *co[2, 1]*
co[2, 2]xco[3, 1]* co[3, 2] *co[4, 1] co[4, 2]*co[5, 1]*co[5, 2]/.
{z[1] » z1, z[2] » z2, z[3] » z3, z[4] » z4, z[5] » z5, w[1l] » wl, w[2] -» w2};
Simplify [(p2635 - p2638)]
out[76] 0

Figure 6.6: Mathematica code for multi-ghost expectation value. p1635 and p1638 are the
formula (6.3.5) and (6.3.8) for p = 1 and similarly for p2635 and p2638. We show that for both
cases p = 1,2 these expressions are the same.
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6.27 p 179: Eq. (6.4.1) The Three Tachyon Open String Amplitude, I

Let us look at what makes out this expectation value. First, we have three open string
tachyon vertex operators, given by (3.6.25), i.e. Xg.e**(y)%, with boundary normal or-
dering as the asymptotic states are on the boundary of the disk, i.e. on the real axis. Next
we have the three c-ghost insertions corresponding to the three conformal Killing vectors of
the two disk. Then we have the Euler term e~*X, where for the tow-disk we find, using the
Riemann-Roch theorem, that 3y = x — u, with x the number of conformal Killing vectors
and p the number of moduli. For the two-disk this becomes 3y = 3—0 or hence y = 1. The
three fixed coordinates can now be fixed on the real axis of the complex plane in two ways
that are linked by a PSL(2,R) transformation, depending on the cyclic order, as shown in
the figure below. Bringing this all together we find (6.4.1).

Figure 6.7: Mapping the three open string tachyon amplitude to the upper half complex plane.
There are two cyclic ordering that are not related by a PSL2(R) transformation.

6.28 p 179: Eq. (6.4.2) The Three Tachyon Open String Amplitude, II

The three c-ghost insertions are given by (6.3.11), but with z; = y; for i = 1,2, 3 real:
C%2y12y13y23. The matrix element needs to be positive, so without loss of generality we
can replace y;; by |y;;|. The matter contribution was worked out in (6.2.35) and is given
by iC (2m)206%6(37, ks )|yra | k1-k2 |y |20 k1 ks |yoq) 20’k ks We thus find

3
Sy (k1; s k) =ighe *CF, CB,(2m) 6% " k) [yna| TR KRy | 20 R s [y g | 120 R ks
i=1
+ (ko < k3)
[6.98]
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Defining
Cp, = e=ACY, Cp, [6.99]

this becomes

3
Spy (k13 ko k) =gy Cp, (2m)6%0 (> ki) [yna| T2 Rk [y | H20 K ks g | 1207 ks
i=1
+ <k2 — k3> [6.100]

which is (6.4.2) taking into account the correction on Joe’s errata page.

6.29 p 179: Eq. (6.4.3-6.4.4) The Three Tachyon Open String Ampli-
tude, III

Momentum conservation is ki + ko = ks which implies that (k; + k2)? = k2, which gives
using k? = 1/a/

2 1
a + 2ky - ko = g = 20&,]{31 sk = —1 [6.101]

/

And of course as well ky - k3 = ks - kg3 = —1. This then immediately gives (6.4.4).

6.30 p 179: Eq. (6.4.5) The Four Tachyon Open String Amplitude, I

The four tachyon open string amplitude is similar as the three tachyon open string am-
plitude, with an extra open string vertex operator. The location of the that extra vertex
operator needs to be integrated over as it cannot be fixed by the conformal Killing Group.
The integration is over the real axis as it lies on the boundary of the two-disk. This imme-
diately gives the result (6.4.5).

6.31 p 180: Eq. (6.4.7) The Mandelstam Variables

It is a standard consequence of the definition of the Mandelstam variables that their sum
is equal to the sum of the mass squared of the particles. Indeed

s+t+u=—(ki +ko)® — (k1 4 k3)? — (k1 + kq)? [6.102]

We give here a short reminder of Mandelstam arises and how the above property arises.
This is taken almost verbatim from my QFT Notes. In order to keep the reader sharp, [ am
still using the mostly negative signature that is used in these notes. Consider a scattering
process of two incoming and two outgoing particles:
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k1

b1

We introduce so-called Mandelstam Variables:

s=(p1+p2)* = (k1 + k)? [6.103]
t= (ki —p1)? = (k2 — p2)? [6.104]
u= (ks —p1)* = (k1 — p2)? [6.105]

There is clearly some arbitrariness in the definition of ¢ and w, but this should not bother
us here. There is no ambiguity in the definition of s; it is always the sum squared of the
incoming momenta.

To get a better understanding of the Mandelstam variables it is useful to work them out
in a centre of mass reference frame, i.e. in a frame where the total three-momentum of the
two incoming particles is zero. We also assume all incoming and outgoing particles have
the same mass.

Figure 6.8: Kinematics for the Mandelstam Variables. We are using negative signature for a
change.

We chose the z-axis along the line of the incoming particles and we can always select the
x and y axis such that the outgoing particles are entirely in the y — z plane. We then have
for the incoming momenta: p; = (F,0,0,p) and po = (F,0,0,—p) and for the outgoing
momenta k; = (F,0,psinf,pcosf) and ko = (E,0,—psinf, —pcosf). The Mandelstam
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variables become:

s = (p1 +p2)* = (2E)* = Ecom. [6.106]
t= (ki —p1)*> =[(E,0,psin6,pcosh) — (E,0,0,p)>

= (0,0, psinf, p(1 — cosh))?

= —p%sin? 0 — p*(1 — cos0)? = —p*(sin® 6 + 1 + cos? @ — 2 cos 6)

= —2p2(1 —cosf) [6.107]
u= (ko —p1)?> =[(E,0, —psin®, —pcosf) — (E,0,0,p))?

= (0,0, —psin @, —p(1 4 cos h))?

= —p%sin? 0 — p*(1 + cos0)? = —p*(sin®§ + 1 + cos? @ + 2 cos 6)

= —2p2(1 + cos ) [6.108]

where E¢om. is the centre of mass energy.
We can note a few important properties of these Mandelstam variables :

e s is strictly positive, whilst ¢ and u are negative:

s>0 , t<0 and u<0 [6.109]

e t =0for =0and u =0 for § = x. If t or u appear in the denominator of an amplitude,
it will blow up. This is e.g. the case in electron-muon scattering. Note that s is strictly pos-
itive and cannot blow up an amplitude. So the particles interchanged through the different
channels will result in different angular dependencies of the scattering amplitudes.

e The sum of the Mandelstam variables is constant: s + ¢t + v = 4E? — 4p?> = 4m?. This is a
special case of a general rule when the particles do not necessarily have the same mass:

4

s—|—t+u:Zm? [6.110]
i=1
We also note that in the center of mass frame s = 4E? and t = —2p*(1 — cosf). But as 0 = E? — p?
we have
s —t? =(2F?)% — (2E?)*(1 — cos 0)? = 4E*(1 — (1 — cosh)? [6.111]

Butas0 <1 —cosf < 1 wehave s> —t2 > 0. As s > 0 and ¢ < 0 this gives us another constraint:

e sis larger or equal than the absolute value of ¢:

s> |t [6.112]
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6.32 p 180: Eq. (6.4.8) The Four Tachyon Open String Amplitude, II

Setting y1 = 0, yo» = 1 and y3 = oo in (6.4.5) should only raise concerns regarding the
y3 leading to an infinity. Let us keep y3 = y as it is and consider lim,_,,. Ignoring the
unimportant pre-factors (6.4.5) gives

“+o0o
Sp, o lim (0= 1) x (0 —y) x (1 —y)| / dya |0 — 1P| — g 2efchs
Y—+00 NN
X ‘0 _ y4|2a/k‘1~k‘4‘1 _ y‘2a/k’2~k23‘1 _ y4‘20/k32~k:4’y _ y4’20¢/k3‘k’4

o lim, yPy2e b hay 20 haksy 20 ks ka / dyy [y 2o FrRa |1 — gy 20 k2 [6.113]

We can justify replacing the y — y4 by y by introducing a regulator [ _+/<\ and then first take
the limit of y — oo allowing us to take it outside of the integral sign, and only then taking
A — oco. We now have

2
—t = (k1 +k3)? = kI 4+ k3 + 2k - k3 = =+ 2k -k
=20k k3 =—-2—at [6.114]

where we have used the tachyon on-shell condition k2 = 1/o/. Similarly we have

2
—u:(k1+k4)2=(k2+k3)2=k§+k§+2k2.k3:E+2k2-k3

= 2d'ky - ks = -2 —d'u [6.115]
and
2 2 2 2 2
—SZ(kl—i-kg) Z(k3+k4) =k3+/€4+2/€3-k4= 9+2k3~k4
= 2d'ks ks = -2 —0a's [6.116]
Therefore
. 2—2—a't—2—a’'u—2—a's 20'k1-ka)1 20’ ko ky
Sp, ylggo Y / dys |yl 11— y4]
. —4—a't—a'u—a's 2a'ky1-ka|1 2a’ ko kg
x ylggloy /dy4 |94 11— 4l
e / dys [ya| 2R 1 — g 2Rk [6.117)
Y—+00
where in the last line we have used (6.4.7), i.e. /(s +t+ u) = —4. The y thus has

disappeared and we can take the limit and recover (6.4.8).
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6.33 p 180: Eq. (6.4.9) The Four Tachyon Open String Amplitude with
Mandelstam Variables

We need to bring the integrals fj;o into the form fol. As explained in the text the integral

can be split into ffoo + fol + f1+°o and bring it to the desired form using Mobius transfor-
mations. Recall that a general Mobius transformation is of the form

;7 _ozy+5

with «, 3,y and ¢ real and satisfying |ad — 8| = 1.
Start with fol, corresponding to Fig. 6.2 (b). This is already in the right form. We can
thus write

[6.118]

1 1
Is.00) 2/0 dy ly| =21 —y| @ t—2:/0 dyy “" (1 —y) ¥ ? [6.119]

It is convenient to perform a Mobius transformation iy = P(y) = —y + 1. The Jacobian is
J =0y/dy’ = —1 and so

0 1
Iso) = /1 (—dy') (1 —y) " 2(y) 2 = /0 dy' (y)" "2 — )2
— I(t,u) [6.120]

Take now [, transforming to the form fol using a Mobius transformation. This corre-
sponds to the vertex ordering in Fig. 6.2 (c).

We can achieve the desired integration bounds if 1 remains unchanged and co becomes
0 and so 0 becomes oo. This is obviously achieved by the Mobius transformation

y =Py)=1/y [6.121]

The Jacobian of this transformation is J = 9y/0y’ = —1/y"? and so we can write the
integral as

o0 [o¢]
16.2((:) :/1 dy |y’_a/u—2|1 o y|_a/t—2 — /1\ dy y_a/u_Q(y o 1)—0/15—2

0 dy’ 1 —a’u—2 1 —a't—2
= — | = ——1
1
’ N —2+ao’u+2+a’t+2 n—ao't—2
- [ v ) (1-)

1 ! ! !
:/ dy/ (y/)Q—i-a u+ta't (1 . y/) —a't—2 [6.122]
0
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From (6.4.7) we see that o/u + o't = —a’s — 4 and thus

1 lg— —alt— ! —2—a's —a't—
16.2<c>=/ dy (y)" T (-y) 2=/ dy' () (1 —y)

0 0
= I(s,1) [6.123]

Finally, consider f?oo into fol. This corresponds to the vertex ordering in Fig. 6.2. (a).
The appropriate Mobius transformation is

y =Py) = — [6.124]

We see that P(—oo) = 0 and P(0) = 1. The inverse transformation is y = —(1 — y’) /¢ and
the Jacobian is J = dy /0y’ = 1/y%. Moreover 1 —y = 1/y. Thus

0 0
Is 5(a) =/ dy |y~ P —y| TR = / dy (—y) "1 —y) "2

—00 —00

dy 1_y/ —a'u—2 1 —a't—2
:/ ’2< Y ) <y’>

/ dy —2+a'u+2+a’ t+2(1 y/)—Q—a’u

/ dy 2+a u+at(1 —2—ad'u / dy —2— as( _yl)—2—a’u
= I(s,u) = I(u,s) [6.125]

where again we have used o/u + o't = —a’s — 4. We have also used the fact that I(a,b) =
I(b,a), which can be easily checked by a change of integration variables y — 1 — .

The vertex orderings for Fig. 6.2 (d), (e) and (f) can be obtained from these by inter-
changing &y with k3. This corresponds to interchanging s with ¢ and leaving « unchanged.
We thus have immediately

Isow) = o2y (s < t) = I(u,t) =1

Isa(e) = lsom)(s < t) = I(s,u) =1

IG.Z(f) = I6.2(c)(8 — t) = I(t, 3) = I(S, t) [6126]
Bringing the six contributions together we recover

2[1(s,t) + I(t,u) + Iu, s)] [6.127]

which gives (6.4.9).
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6.34 p 181: Eq. (6.4.11) The Divergence of the Amplitude at the Inter-
mediate Tachyon State

I(s,t) has potential divergences as we approach the two integration boundaries, y — 0 and
y — 1. The integral is symmetric under y «» 1 —y so it is sufficient to look at the divergence
at only one of the integration points, say y = 0. In order to avoid any divergences, we first
replace the upper integration boundary 1 by r, work in the region where the integrand is
convergent and then take the limit of » — 1. This allows us to expand the integrand around
y = 0 and that gives the factor 1/(a’s + 1) and so the divergence at s = (p; +p2)? = —1/a’
corresponding to an intermediate tachyon state.

6.35 p 182: Eq. (6.4.14) The Four-Tachyon Open String Amplitude and
Factorisation

Eq. (6.4.13) is an example of factorisation: the four-string amplitude is a combination of
two three-string amplitude amplitudes with an intermediate state of all possible momenta.
It is also reminiscent of the BCFW recursion formula for scattering amplitudes in QFT,
albeit that in the latter the intermediate momenta are complex. Let us work out (6.4.14).
From (6.4.13) and (6.4.4) we have

S —i / d*k [2ig3Cp,(2m)*00%0 (k1 + ko + k)| [2ig3Cp, (2m)?96%0 (—k + k3 + k4)]
? (2m)26 —k? 4+ o/~ e
+ terms analytic at k% = 1/a/
4igaCh, (2m)?00%0 (ky + ko + ks3)
—(k1 4+ k2)? + o/~ +ic
But we also have the expression for the four tachyon amplitude (6.4.9) and we know how

it behaves as k2 = —s = 1/a’ from (6.4.11). We get not only such a term from I(s,t) but
also from I(u, s). Thus

+ terms analytic at k* =1/a’ [6.128]

| 2
Sp, =2igyCp, (2m)*°0™ (k1 + ks + ks + ka) <_ o's + 1>

+ terms analytic at k* =1/a’ [6.129]
Equating these two expressions we find
9%Cp, 1

s+a1  als+1 [6.130]
or
Cc 1
Dy = ng [6.131]

which is (6.4.14)
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6.36 p 182: Eq. (6.4.17) The Pole of I(s,t) at a’s =0
Using (1 — )~ "2 =1+ (a/t + 2)y + o(y?) we have

I(s,t) = /01 dyy= "2 + (o't +2) /01 dyy @51 4... [6.132]
The first integral gives a term that diverges as o’s = —1 and is analytic as o’s = 0. So

we get, performing the integration over the second term, in oirder to identify the pole as
/
o's =0,

t+2 o)1 "t+2
I(s,) ~ lim —20 02 —als| gy &P F [6.133]
a’s—0 al's 0 a's—0  a's
Using s+t +u = —4 /o’ we can write the numerator as
1 1 1 1 1
at+2= §O/t + 5(0/1‘, +4) = ia't + 5(—0/3 —ad'u) = 50/(75 —u—s)
1
o 5o/(t —u) [6.134]
a's
and so indeed
I(s,t) = u2; + terms analytic at o’s = 0 [6.135]
s

6.37 p 183: Eq. (6.4.17) The Pole of the Amplitude a’s = 0 is Actually
not There

From I(s,t) = (u—t)/2s+--- we obtain immediately from replacing ¢ with « that I(s, u) =
(t —u)/2s + --- and so the pole at s = 0 cancels and is not present in the amplitude.
The comment about this not being valid for the more general open string amplitudes we
will study later is related to teh fact that we will add Chan-Paton factors A\* to the string
boundaries. The amplitude will then have contributions from traces of the A\%’s in different
order, and so the contributions will not cancel and the amplitude will have a pole at o’s =
0.

6.38 p 183: Eq. (6.4.22) Relating the Beta and Gamma Functions

We use the definition of the Gamma function, I'(z) = [;~ dz e *z*~!. Multiplying (6.4.21)
by [,° dwe " the LHS becomes

LHS — / dw e w1 B(a, b) = T'(a + b) B(a, b) [6.136]
0
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The RHS becomes
RHS = / dw ew/ dv v (w — v)bt
0 0
= / dve Petvyr! / dwe ™ (w —v)’71
0 0
= / dve Pya1 / dw e W) (1 — v)b~!
0 0

:/ dve_”va_l/ dye Yy’ =T'(a)T(b) [6.137]
0 0

6.39 p 183: Eq. (6.4.23) The Veneziano Amplitude

This is straightforward. Use (6.4.9) and plug in the expression for C'p, and the expression
of I in terms of the Beta functions (6.4.20).

6.40 p 184: Eq. (6.4.27) The Center of Mass Frame Kinematics

In the center of mass frame the incoming particles have momenta p; = (p), p;) and p =
(pY, —p;) for some three-vector p. The mass shell condition is —m? = p? = —(p{)? + p?
and —m? = p3 = —(p9)? + p?. From this it follows that p) = p9, which we will call Ey. The
total center of mass energy is thus £ = 2E),.

The outgoing particles have momenta p3 = (p9, —p,) and py = (p}, p,) for some three-
vector p,. The mass shell condition once more implies that p = p{ and energy conserva-
tion implies that p + p3 + p3 + pY or hence p§ = pJ = —Ey. Let us also call 6 the angle
between the three-momenta of particle one and particle three. All this is summarised in
fig. 6.9.

p1 = (Eo, +p;) p3 = (—Fo, —p,)
0
p2 = (Eo, —p;) pa = (—Eo, +p,)

Figure 6.9: Center of mass frame kinematics four a four-string amplitude.
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We then have

s =—(p1 +p2)* = —(2F0,0,0,0)* = 4E] = E? [6.138]
Similarly
_ 2 _ 2 2
t=—(pr+p3)”=—(0,p; —p,)" =0~ (p; — P,)
= —p; — D, +2p;-D, [6.139]
The mass shell condition is —m? = —EZ + p? = —E3 + p? and so p? = p? = Ef — m? and

pi - Po = |P;| [P, | cos 0 = (E — m?) cos 6. Thus
t = —2(E3 —m?) + 2(E3 — m?*)cos 6

= —2(E2 —m?) + 2(E2 —m?) (1 — 25sin? z>

0 0
= 4(m? — E?)sin® 3= (4m? — E?)sin? 3 [6.140]

We find, similarly,
u=—(p1+p1)’ = —(0,p; + p,)* = —p — P; — 2p;-p,
= —2(E2 —m?) — 2(E2 — m?) cosf
= —2(E —m?) — 2(E} —m?) (2 cos? g — 1>

0 0
= 4(m? — E2) cos? 5= (4m? — E?%) cos? B [6.141]
One easily checks that s+t+u = 4m? as it should for Mandelstam variables. The conclusion
that having s — oo at ¢ fixed requires § — 0, so that in that limit ¢ — 0, a fixed value indeed.

Similarly, requiring ¢/s fixed means

[\SI[Sa

. 4m? — E? sin?
im
E—oco E?

0
= 4m? sin® 5 [6.142]

fixed, so looking at a fixed angle 6.

6.41 p 183: Eq. (6.4.28) The Regge Behaviour of the Veneziano Am-
plitude

From (6.4.23) we need to calculate

B=DB(-ds—1,—-adt—1)+B(-d's—1,—d'u—1)+ B(=a't —1,—d’u — 1) [6.143]
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Let us start with using Stirling’s formula® for large s keeping ¢ fixed:

MN(—do/'s—1)I(-at—1) TI(—-as—2+1I'(=a't—1)
— B(—d/s—1,—a/t — 1) = -
B1 (-a’s —1,—a ) I(—a/s — o't — 2) IN—a's—ao't—3+1)

= (Cas - )7 et v/ mlaTs +2) D(—a/t—1)  [6.144]
(—O/S — ot — 3)fa’sfa’t73ea’s+o/t+3\/_2/7.‘.(@/8 o't + 3)

We now take the limit s — oo holding ¢ fixed. Thus

% (—a's)~'s=2e%'s /9 /1als Clalt 1
1= — o/ g)—s—a/t=3pa's [/ __ / (—Oz N )
(—a's) e¥'s\/=2/mals

x so‘,tHF(—O/t —1)= sao(t)F(—aO(t)) [6.145]

Let us now consider B4 = B(—a’s — 1,—a’u — 1). From s + t + u = —4/a’ We see that in
the limit s — oo with ¢ fixed, © ~ —s and thus

MN—ads—1)I'(-d'u—1) T(-ads—2+1I'(-ad'u—2+1)

%:B_,_lv—,_]‘: -
9 ( ao's au ) F(—a’S—O/U—Q) F(—o/s—o/u—3+1)

(—a's —2)'s72e's42 /9 /r(als + 2)(—a/u — 2) 2 ut2 /9 [ (afu + 2)
(—a/s — a/u — 3)~'s—a'u=dea'sta’ut3, /2 /r(a/s + o/u + 3)
(—als —2)7'572e"sH2 [0 [m(als + 2)(+a's — 2)t's 2e='sH2, [0 [n(—als + 2)
(—O/S +als — 3)—a’s+a’s—3€a’s—a’s+3\/_2/7T(a/8 —a's + 3)

N (_als)fa/,szea/sSfl/Q(+a/8)+a/37267a/3871/2 x 875 - O [6146]

Finally consider B3 = B(—a’t—1,—a’u—1). As u ~ —s in the limit we are considering, we
have B3 ~ B o s*OT(—ay(t)). We thus conclude that B, + By + B3 o s*OT(—ay(t)),
which is what we set out to show.

6.42 p 183: Eq. (6.4.29) The Hard Scattering Behaviour of the Vene-
ziano Amplitude, I

This limit implies that all the Mandelstam variables becomes infinite:

0 0 0 0
s = Ez; t — —F?sin? 3 — —ssin? 5; u — —E? cos? 3 = —5cos> 3 [6.147]

“There is a typo in Joe’s book, as per his errata page. Stirling’s formula should read I'(z + 1) =
z¥e*(2/mx) /2.
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We then have e.g.

Bl—a/s—1,—a/u—1) = I(—d's = 1)I(—ad'u—1) _ IN—d's—2+1)I(—ad'u—2+1)
IN—a's — a'u—2) N—a/s—a'u—3+1)
(—a/s —2)~s 20542, /29 /n(als 4 2)(—a/u — 2) =¥ v 2eut2 /9 /n(alu + 2)
(—a/s — a/u — 3)~s—ou=3ed!sta’utd, /2 /r(a/s + o/u + 3)
(als)—o/s—2ea’ss—1/2(a/u)—a/u—Qea’uu—l/Q
(O/S + alu>—a’s—a’u—3ea’s+a’u(8 +u)3—1/2

N R / / / e e vl —9_ / /
_y o/ ~@s—du—d+ta’sta'ut3 o (s+u—s u)S a’s—2 1/2U a'u—2 1/2(S+u)+a s+a’u+3+1/2

O( Sfa’sf5/2ufo/u75/2(8 + u)a’(s+u)+7/2 x Sfalsufa/utfa/t [6.148]

In the last line we have used s+u = —t —4/a’ and we have also considered the limit where
s,t,u — oco. The other Beta functions give the same result and so we do indeed find that

Sp, x s sy up—alt _ exp [—o/(s Ins+tlnt+uln u)] [6.149]

6.43 p 183: Eq. (6.4.30) The Hard Scattering Behaviour of the Vene-
ziano Amplitude, II

We have

0 0
slns+tlnt+ulnu=s <1I18—C08221n860822 —sin2§lnssin2 )

2

=s(Ins— cos? glncos Q—cos2glns — sin? lesin2 Q — sin? 0 Ins
2 2 2 2 2

0 0 0 0 0 0
_ 2t L9l 2t 20 . oU .2 b
—s[(l cos 5 sin 2)1113 cos 2lncos 5 sin 21nsm 2}

0 0 0 0
=s (— cos? 2 In cos? 5 sin? B In sin’ 2) = sf(0) [6.150]
which is (6.4.30).

We see that the amplitude of four tachyon scattering decays as an exponential decay
exp[—a'f(#)s]. In particle based QFT a four particle scattering amplitude has a power
decay. I seem to remember that this is a necessary condition for unitarity but I can’t find
it back in my notes. As an example the total tree level amplitude for the hard scattering
process eTe™ — pp~ is in the high-energy limit

- 4

= 6.151
7 3s L ]

and any four-lepton scattering will have the 1/s behaviour in the high-energy limit, only
the constant factor will differ, depending on the details of the particles involved.
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6.44 p 185: The Hermiticity of the Chan-Paton Factors

The Chan-Paton degrees of freedom give quantum numbers that are measurable, hence
these quantum numbers 4, j in (6.5.1) should be real. Our theory being quantum mechanics
these quantum numbers should be Eigenvalues of some operators. As there are n such
quantum numbers on each end of the string the operators can be represented by n x n
matrices that have to be Hermitian in order to have real Eigenvalues. A complete set of
Hermitian n x n matrices is given by the n? matrices Ay Herea=1,--- ,n? refers to the
n? different matrices in the basis and ¢, j = 1, - - - , n are the elements of the n x n matrices.

6.45 p 185: Eq. (6.5.4) The Trace of Chan-Paton Factors

Consider a four open string tachyon scattering. Each endpoint of each string has a Chan-
Paton factor associated to it. Each open string thus has a state [ N; k;a) = 377, [N; ks ij) A,
associated with it.

i1 Ja
ay ay
)\iljl /\i4j4
J1 iq
12 J3
ag as
)\’izjz )\iSjS
J2 3

Figure 6.10: Open string Chan-Paton factors

The matrices Af; don’t evolve with time so we prescribe that the strings can interact, i.e.
that two end points can coalesce, only if the Chan-Paton factors are the same. E.g. an
endpoint with a Chan-Paton factor i can only coalesce with another string with endpoint j
only if i = j. Each interaction thus introduces a §;;. The four-point amplitude in fig. 6.10
thus has a contribution

n

al § a2 § . ya3 § ya4 §
Z )\iljl5]17*2Ai2j25]213)\i3j35]3Z4Ai4j4634Z1
11,J1,82,J2,13,73,14,Ja=1
n
_ al a2 \a3 a4 __ al a2\ a3 \a4
= 3T ADAZAGAN = tr ATATAS ) [6.152]
i7j7k7€:1
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6.46 p 186: Eq. (6.5.6) The Four Tachyon Amplitude with Chan-Paton
Factors

This requires a bit of work and thinking. We need to go back to the derivation (6.4.9)
to track how the Chan-Paton factors occur. Recall that we arrived at this expression by
splitting the integral in (6.4.8) from fj;o into three integrals ffoo + fol + f1+°° and bring
each of these into the form fol using a Mobius transformation.

Let us start with the part ffoo, corresponding to fig 6.2(a). This corresponds to the
ordering 1423. We have seen in the derivation of (6.4.9) that this ordering gives I(s, u),
see [6.125]. This has a pole in the s-channel and in the u-channel as shown below:

3 4
3 4
s
U
2 1
2 1

Looking at the diagram and connecting the Chan-Paton factors of the coalescing end-points,
this means that (s, u) will come with a factor tr A* A%\ %2, Using tr abed = tr dcba
and cyclicity of the trace we can rewrite this as tr A% A2 \?3 \?4, Now we also need to take
into account the other cyclic ordering of the three vertices we have fixed. This means we
need to consider the contribution of k5 <> k3, or equivalently s <> ¢. Hence the diagrams

2 4
2 4
t
u
3 1
3 1

this gives a t-channel and a w-channel contribution hence 7(¢,u). The ordering of the
Chan-Paton factors is now tr A** A\ \*2\%3 and so this trace will accompany (¢, u).

Let us next go to the part fol. This corresponds to the vertex ordering 1423 and fig
6.2(b). From [6.125] we know that this corresponds to I(u,t) with a pole in the ¢ and in
the u channels. The corresponding diagrams are:

—313—



Joe’s Book (version of November 20, 2020) Notes from Stany M. Schrans

Connecting the Chan-Paton factor of the coalescing end-points we see that (¢, u) will be
accompanied by tr \® A3 \*2)\%_ The other cyclic ordering for this case will give I(u, s)
with diagrams

indeed giving a u and an s channel pole. Connecting the Chan-Paton factor of the coalesc-
ing end-points we see that I(u, s) will be accompanied by tr A*? \%4 \#3 \92,

Finally, consider floo.This corresponds to the vertex ordering 1243 and fig 6.2(c). From
[6.123] we know that this corresponds to (s, t) with a pole in the s and in the ¢ channels.
The corresponding diagrams are

3 4
3 4
s
t
1 2
1 2

Thus I(s,t) will come with a tr A2 X2 A% \%3, The other cyclic ordering also gives I(s,t)
and has diagrams
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and so this I(s,t) will come with a tr A*2 \@3 \®4 \92,
Bringing everything together and recalling that I(x,y) = I(y,z) = B(—a,(x), —as(y)) we
find

(tr AN NMNDS 4t NTABANUND2) B(—,(8), —ap(t))
(b ATTATHNI2 NG by \TTAT N2 XY B(— (£, —a(u))
S (fr ATIATZ AT NG by \TLAG NS \2) By (s), —a(u)) [6.153]

This is exactly (6.5.6), taking into account the errata on Joe’s website.

6.47 p 186: Eq. (6.5.7-8) The Four Tachyon Amplitude and Unitarity

Extracting the terms in (6.5.6) that have an s-pole we find the combination of traces for
the LHS of (6.4.13)

£r AT AT2 N4\ |- gy AT\ \04 \2 | gy \O1\02 \05 \@4 { y \01 \4 \G5 \02
= tr AT NBNDS fogp \T2 NG\ NG fopp AT \G2 N3 \B4 | gy \O2 \O1 \04 \03
= tr ATAT2{ N3 N4} g \92 )\ {\05| \04}
= tr {A%, A2 }{ A9 \04} [6.154]

which is (6.5.7). Looking at (6.4.13) we have for the RHS of (6.4.13)

So the three-three tachyon vertices will give a contribution tr A*? A?2 A% and tr A%\ \¢
with a sum over all intermediate a’s. But we need to take into account the other cyclic
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ordering as in (6.5.5) and this can be obtained by switching two of the vertices. Hence this
gives a trace contribution

D AMARAY 4 tr A2AMAY) (b AMABAC 4 tr A AMA)

=) tr A%, AR r (A%, AN [6.155]
which is (6.5.8).

6.48 p 187: Eq. (6.5.9) Traces and the Completeness Relation
tr (AA")tr (BA?) = Aij)\?inZ)\gk = AijBkZ)‘?i)‘Zk [6.156]
As the \* form a complete basis, they satisfy
)‘?i/\?k = (51'65]'16 [6.157]

The normalisation can be easily checked by setting / = i and k£ = j and summing over
them. The LHS becomes tr A*\%. Using (6.5.2) this is §%¢ = n?, the number of Hermitian
matrices. The RHS is 6;;6;; = n? as well. Thus

tr (AA")tr (BA?) = AijBkééiﬂ(Sjk = Aiiji =tr AB [6.158]

6.49 p 187: Eq. (6.5.10) One Gauge Boson and Two Tachyons, I

Recall the amplitude for three tachyons without Chan-Paton factors (6.4.1)
Sp, (K1, ka2, k) = gae ™ <§Cl€ik1'X(y1)§ scte X (yo)x iCl€ik3'X(y3)§> [6.159]

If we now want to replace a tachyon, say the first one, by a gauge boson then we have to
replace a tachyon vertex operator by a gauge boson operator. For an open string this is
given by (3.6.26)

_ [X“e“‘f'x} (y1) [6.160]
2a/ r

Recall that the vertex operator is on the boundary of the disk, i.e. on the real axis, so

X*(y) = 9,X*(y). We have, of course, to integrate this over M, which here is the

real line, i.e. fj;o dy;. But we know that we can fix the three coordinates by invariance

under Mobius transformations, so we can ignore this integration over this coordinate

and 1, and y3 as well. We do have to check that the final result does not depend on these
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coordinates. Adding the Chan-Paton factor and the other cyclic combination we get for the
amplitude of a gauge boson with two tachyons

Sp, (k1. ar, €15 ko, az; ks, az) = —iggghe e
% <§01Xueik1-X (y1)§ icleikTX(yQ)é écleikg-X (y3)§> tr )\al Aag)\a:;
+ (k2,a2) <> (k3,a3) [6.161]

Here ¢; = €(k;) is the polarisation vector of the gauge boson and we have replaced go/v/2¢/
by 9.

6.50 p 187: Eq. (6.5.11) One Gauge Boson and Two Tachyons, II
This is just an application of (6.2.36) which is for one derivative and two exponentials

<§X“€ik1'x(y1)§ e X (yo)x ieik3'X(y3)§>

— 201))(2 (27r)26526(k1 + k2 + k3)|ylz‘2a/k1-k2’y13|2a’k1-k3|y23’2a/k2-k3

I3 w
x {—27;0/ <kz 4 ki”)] [6.162]
Y12 Y13

Because the X* sits with e?*X(¥1) in a boundary normal ordering, no contraction has to be
taken between these.®

6.51 p 187: Eq. (6.5.12) One Gauge Boson and Two Tachyons: Final
Result

We now add the expectation value of the three ghost fields (6.3.4) and the Chan-Paton
factors and find

Sp,(k1,a1,€1;ka, az; ks, az) = —igéggef)‘iC%gCgDQ(271')26526(2 ki) (—2ia)

kﬂ kﬂ / ’ /
X elf (2 4 3) ‘y12‘2a kl-k2+1’y13‘2a kl-k3+1’y23’2a ko-ks+1 tr )\(11 Aag)\ag
Y12 Y13
+ (k2, a2) < (k3,a3) [6.163]

>As that contraction would be divergent and the boundary normal ordering’s job is precisely to
regularize this divergence.
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Let us first use (6.4.14), i.e. 6%(2 C’,%2e_A =Cp, = 1/a'gg. This gives

. kb kH
SD2 (kl, aj, €1, kiz, ag; kg, a3) = —2zg6(27r)26526(z kZ)EIf (y122 + y133>

% ’y12|20¢'k1-k2+1‘y13’2a’k1-k3+1|923‘20/k2-k3+1 fr 01 )92 \93

— +(kg,a2) < (k3,a3) [6.164]

Next we use momentum conservation and the mass shell condition. The gauge boson is
massless so k? = 0. The tachyons have k3 = k2 = 1/a/. Thus

1
g:kgz(—k:1—k2)2:k%+k§+2k1-k2:0+a+2k1~k2:>k:1-k:2:O [6.165]

Similarly k1 - k3 = 0. Also
2
0=Fki=(—ky—ks)® =k} +kj+2ky ks == +2ky ks =2k ks =—2 [6.166]
(6%

Therefore

Ky
Y12
+ (K2, az2) < (k3,a3) [6.167]

. kL _
Sp, k1, aver; ka, ag; ks, ag) = — 2igo(2m)*06%0 ()~ ky)el < + 11133) Y12913Y3 tT ATATZN
i

We have ignored signs in the last equation. Let us focus on the y-dependence. We use
momentum conservation k3 = —k; — ko and the fact the ¢; is a polarisation vector of a
massless boson, hence ¢; - k1 = 0:

kb kE _ 1 gy (1 | oy Ly _
ey <2 + 3) y12y13y231 = —¢f < 2 ! 243 1 2 > y12y13y231

Y12 Y13 2 Y12 Y13
1 _ 1 _ 1
:ielfkg:a(yl:a — Y12) Yy = 56%533/23%31 =5 ka3 [6.168]

with k;; = k; — k;. Thus
Spy (k1 arersky, ag; ks, az) = —igy(2m) 25620 (D " ki)er - kastr A AN + (kg a) 4+ (ks, a3)
= —igp(2m)?67 (D ki) (€1 - kastr A" AA 4 €1 - kgptr A ABA®2)
= —igper - ka(2m) 20070 (D ki) tr AN, A%] [6.169]
which is (6.5.12).
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6.52 p 188: Eq. (6.5.15) The Three Gauge Boson Amplitude
We first consider the matter part:

Sy (XM ()3 5 X ()2 X7 () ) [6.170)
From (6.2.36) we get

X . I s . TLos . /o,
ST =IO, (2m 053 ) ana P a2 s PR o ()0 (42)0 ()

1

+ 0 (y1)(q" (42)9° (y3)) + 0" (y2){¢" (y1)a° (y3)) + v"(ys)<q“(y1)qV(y2)>]
X tr APTA )\ 4 (kQ, as, 62) A4 (kg, as, 63)
:ZCé(Q (27_‘,)26626(2 ki)‘y12’2a/k1-k‘2|y13‘2a/k1-k3 ‘y23’2a/k2-k3

7

n 1Y v v o o
» {(_Ms (M HY (K b (4 0
Y12 Y13 Y21 Y23 Y31 Y32

kM M vo kv kY 0z ko ko no
+ (—2d/)(—2ia) K? + 3) T+ <1 + 3> T+ <1 + 2) 772]
Y12 Y13/ Ya3 Y21 Y23/ Yis Y31 Y32/ Yio

X tr AYTAR2 )\ (kg, as, 62) > (]Cg, as, 63) [6.171]

The first thing we note is that because of momentum conservation and mass-shell condition
0=Fki=(—hy—k3)> =k3 +ki+2k -ko=Fk -ka=0 [6.172]

We now add the ghost contribution (ccc) = C%lezylgygg, the polarisation vectors, the

cosmological term e~* and the normalisation of the boson vertex operators, —igy/v/2c/
see (3.6.26), and we find

999 __ . .
SD2 _SD2 (kla ai, €13 k27 az, €23 k37 ag, 63)

. 3
190 . _
:(_ ﬁia’) 420‘,2C1)?(201q726 /\elu€21/€30(277)26526(2 ki)y12y13Y23
i
« 2af(’fé‘+’fé‘> (’ﬁﬁz) (’ﬁﬁz)
Y12 Y13 Y21 Y23 Y31 Y32

k# k'u vo kv kY 7 ko kg Ho
+ <2+3> T+ <1+3> T+ (1+2> T
Y12 Y13 /) Yas Y21 Y23/ Yis Y31 Y32 /) Yio

X tr AT AP\ (k‘z, as, 62) > (k‘3,a3, 63) [6.173]
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Let us first simplify the pre-factor. Use (6.4.14), i.e. C5 C}, e™* = Cp, = 1/a/g} to write

. 3 ) 3
tgo - 2 ~X NG N 20095 ~x g x 290 B .
<— @) 4ioe CDQCDze = — \/@CDQCDQG = —2¢; [6.174]

in the last line we have used (6.5.14), i.e. g), = go/V/2¢/. The three boson amplitude thus
becomes

999 . .
Sp, =Sp,(k1, a1, €1; ko, ag, €2 k3, as, €3)

’ 26 £26 / k‘; kf; kY kg kY k3
= — 2g(€1€20€35(2m) "0 (Z ki)y12y13Y93 | 200 + =)=+ —+—
. Y12 Y13 Y21 Y23 Y31 Y32
k# k# vo kv kY ng ko ko Hno
(D () ()
Y12 Y13/ Ya3 Y21 Y23/ Yis Y1 Y32/ Yio
X tr AM AN 4 (Ko, ag, €2) > (k3,as, €3) [6.175]

In the remainder of the calculation we will repeatedly use the fact that k; - ¢, = 0 for

i = 1,2,3. This actually means that we can simply ignore any terms that have a &/, k4 or

a kg as these will be contracted with the polarisation vectors €, €2, and €3, respectively.

Consider first the terms linear in momentum and take the first such terms

k.# k# vo vo
2 . Ui Ui

Y12 Y13

y%g Y23

Y12Y13Y23 < (kY13 + K5v12)

vo

(K5 vns + (=K — K§)yis + Kiyio + (kY — K5y

2123
- (khay1s + khyy1o) = g (y13 — y12) = 201" Yoz = 1k:“ n"e [6.176]
2yo3 2 32 2103 2y23 2%

Contracting with the polarisation vectors €} e5¢J this gives a contribution 3 (e; - ko3) (€2 - €3).
The two other terms linear in the momenta give similar contributions so that we can write

Siq)gzgm = — g5(2m)*06%° (> ki) x [(e1 - kas)(ex - €3) + (ea - ksn)(es - €1) + (€3 knz) (€1 - €2)]
X tr Aal)\“;)\a?’ + (k2, a2, €2) <> (ks,as,€3)
= —g5(2m)%6% (> kz’){ [(e1 - kaz)(e2 - €3) + (e2 - ka1)(ez - €1)
B (e - kuz) (€1 - €2)]tr A1 A92 )%

+ [(e1 - k32)(es - €2) + (€3 - ka1)(e2 - €1) + (€2 - kuz)(e1 - €3)] tr Aal)\“””} [6.177]
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and finally for the linear term

SEI = —gf(2m) 252 (3" ki)

X [(61 . kzg)(EQ . 63) + (62 . k31)(63 . 61) + (63 . k12)(61 . 62)] tr A4 [)\aQ, )\%} [6.178]

Let us now focus on the term cubic in the momenta. We have

Y12 Y13 Y21 Y23 Y31 Y32

:k§y13 + k2 kY yas 4+ k§y21 kT yse + kSys:

Y12¥Y13 Y21Y23 Y31Y32
_ (KSyas + (=K — EY)yro] (kY yas + (—kY — k¥ )yo1|[kSyse + (—kS — kF)ys1]
Y12Y13Y21Y23Y31Y32
_ k5 (y13 — yi2)kY (yo3 — y21) (kT (ys2 — y31)
y%zl/%z%y%g
kb kYR yasyizyie  KHRVET
= 2.2 .2 = [6.179]
Y12Yi13Y23 Y12Y13Y23

We have repeatedly used momentum conservation and the fact that ¢; - k1 = €3 - ko =
€3 - k3 = 0. We now rewrite

V1,0 1 ’ 14 14 14 g g g
AT = (5 ) I+ (o = DI + (88 = KIAT + (=45 — K9]

1
§k§‘3k§3 % [6.180]

Bringing it all together, we find for the cubic terms

3 kb kYo kO,
S%ggg[ = - 2g5(2m)*05%°(> k‘z‘)y12y13y23€§t€5€§20¢/78532;;;223t T ATIATEATS
i
+ (ka, a2, €2) < (k3, a3, €3)

b (2m)20526 Zk - kas) (€2 - k13)(es - kio)tr A% A2\
+ (k2, a2, €2) < (k3,a3,€3)
L (2m) 25575 Zk %[ €1 - kas) (e - k1) (€3 - kio)tr A% A92 X3
+ (€1 - k32) (€3 - k12) (€2 - ky3)tr AP A3\

27’[‘ 26(526 Zk‘ k‘23 (62 klg)(eg k‘lg)tl‘ )\&1 P\az )\&3] [6.181]
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Bringing the cubic and the linear terms together we thus find
Sp,(k1,a1, €15 ko, az, €25 k3, a3, €3) = —96(27T)26526(Z ki)

X [(61 “ko3)(e2 - €3) 4 (€2 - k31)(e3 - €1) + (€3 - k12)(€1 - €2)

/
+ %(61 . k23)(€2 . ]{213)(63 . k‘lg)] tr )\al [)\aQ, )\a3] [6.182]

which is (6.5.15), up to a factor —i, but this might just be a normalisation issue of the
boson vertex operator as —i = 3°.

6.53 p 188: Eq. (6.5.16) The Yang-Mills Effective Field Theory

I realise that I am going on a limb with the following comment, but he who dares .... We
will not show that the action (6.5.16) gives the amplitudes we found if restricted to first
order momenta. In a way this should not come as a surprise. Indeed it is a general fact in
field theory that a theory of a massless boson that is Lorentz invariant, has a Lagrangian
with at most two derivatives and whose energy is bounded by below, necessarily has gauge
invariance. We will argue this to be the case for a spin one particle with no Chan-Paton
factor. This will then lead to non-Abelian gauge theories.

MASSIVE SIN ONE PARTICLES
Let us write down the most general Lorentz invariant Lagrangian for a non-interacting
massive spin one field A* (u = 1,--- , D = 4) with maximum two derivatives® . It must be
of the form
L= ! APOA 1bA“@ 0, AY ! ZarA 6.183
e 5@ " + 5 1Oy + §m m [ .18 ]
with some coefficients a, b and m. The equations of motion are

aOA, + 09,0, A” +m*A, =0 [6.184]

A higher number of derivatives leads to non-local theories and these have unitarity problems.
As an example a Lagrangian with a term of the form ay?¢ — Syp would lead to a propagator
proportional to 1/(ak* — Sk?). We can rewrite this as 5 [1/k* — «/(ak® — §)]. We can thus view
this as the sum of two propagating particles, but with opposite signs in the propagator. These lead
to particles with opposite norm and hence violate unitarity. We thus need to have o = 0. Note also
that we are restricting ourselves to four dimensions here. This will make the argument for positive
energy easy.
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Let us take the divergence 0" of this

[(a+0)O+m? (9,A") =0 [6.185]
If a + b = 0 then it follows that J,A" = 0. This is a Lorentz invariant condition and so
it removes one degree of freedom. Let us chose ¢ = 1 and b = —1. The Lagrangian then
becomes
_ 1 MY L o A* A
L= — P Ey + 5mPAMA, [6.186]

with F,, = 0,A, — 0,A,. This Lagrangian is known as the Proca Lagrangian. The
equations of motion are

(O+m?)A* =0  and  9,A" =0 [6.187]

One can easily check that this model has positive energy, bounded by zero. Indeed, the
energy-momentum tensor for this Lagrangian is
I 0, A° = 0,A° L oo ! 2474
T/“, = m v — g/WE = _FNU v + guy(zF FO’p — im O’) [6188]
It is then a straightforward exercise to show that the energy density £ = T can be written
as

£ %(EQ +B?) + %mQ(A(Z) + A?) + Agdo(9,A%)
— Ag(O+m?)Ag + 9i(AoFy) [6.189]

Where E and B are the electric and magnetic field respectively and A = (A;, Ay, A3) are
the gauge field space coordinates. The first two terms are manifestly positive, but the latter
three are not. The third and the fourth term, however, vanish by the equations of motion
and the last term is a total spatial derivative. If we take the conserved charge £ = [ d3z €
then this term does not contribute. So the total energy of the Proca Lagrangian is indeed
positive definite.

Had we chosen a + b # 0 then one easily sees that the energy would be unbounded
from below. This would mean that after quantisation every state could move to a state with
a lower energy ad infinitum and the theory is unstable. Hence our requirement for positive
definite energy.

MASLESS SPIN ONE PARTICLES
Let us now take the massless limit of the Proca Lagrangian

1
L=~ F"E, [6.190]
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We, of course, know that this Lagrangian is invariant under transformations
Ay(x) — Au(x) + 0pa(x) [6.191]

for an arbitrary function a(z), i.e. this Lagrangian has U(1) gauge invariance.

Adding Chan-Paton factors amounts to replacing A* by A* = AL 7% with 7% the gener-
ator of a symmetry group. The same reasoning then leads to a non-abelian gauge theory.

In a similar vein the tachyon is just a Lorentz scalar. The Chan-Paton factors just mean
that we know have n? such tachyons living in the adjoint representation of the symmetry
group.

It should thus not come as a surprised that the amplitudes of open strings, when lim-
ited to lowest order in momentum, are the same as the amplitudes for the corresponding
particles, with the lowest possible number of derivatives and that for a spin one massless
particle, this corresponding effective theory is a gauge theory.

6.54 p 189: Eq. (6.5.18) From a Global Worldsheet Symmetry to a
Local Spacetime Symmetry

It may sound very deep that by introducing Chan-Paton factors, which leads to a global
worldsheet symmetry, we suddenly have a theory with a spacetime gauge symmetry. This
miracle is quickly demystified if we realize that the global worldsheet symmetry A\* —
UMUT can be defined at each spacetime point X* for a different set of A’s. Thus this is
indeed a local symmetry from the spacetime point of view.

6.55 p 190: Eq. (6.5.21) Worldsheet Parity for the Open String

|N; k) is a state of the form

¢
(i)™t - (o) e |03 k) with Y i = N [6.192]

m=1
Let us take the simplest such state a_y |0; k). Then
Qa_y [0;k) = (Qa_nQ71) Q|0;k) = (-1)Na_y [0; ) [6.193]

where we have used (6.5.19) and the fact that the ground state is invariant under the
worldsheet parity operator. Moreover from (4.3.22) we have a relation between the level
n of the matter excitations and its mass: N = o/m? + 1. This then gives

Qa_y [0;k) = (=)™ a_y |0: k) [6.194]
For a more general state (a_;,)"" --- (a—;,)"" |0;k) we just insert a Q~'Q between each
excitations and we immediately obtain the same result.
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6.56 p 190: Eq. (6.5.23) Unoriented Open Strings with Chan-Paton
factors

This is trivial, but sometimes it is useful to show the trivial.
Q|N;k;a) = Q|N; kyij) = wn [N k; ji) = wns® [N k; i) = wns® |V k;a) [6.195]

The spin one particles have wy = (—1)”“/’”2 = —1 and so the states with symmetric
Chan-Paton factors, s* = +1, vanish, whilst only the states with antisymmetric Chan-Paton
factors, s® = —1, are non-zero. The U(n) symmetry of the oriented string is thus reduced
to SO(n) for the unoriented string. Since the Chan-Paton matrices \ are n x n matrices,
they transform into the adjoint representation of SO(n).

6.57 p 191: Eq. (6.5.26) The Orientation Reversing Symmetries of the
Oriented String, I

QN ki) = Quwn vy [N b3 79 it = whevgpeywir N3 ks 2"57) Vg v
-/ -1

= (’YT);/LY@'%” |Na k7l J >7;/1j/7}:j
= (Y1) aan | N3 ks 6757 [y 47575 [6.196]

which is (6.5.25) taking into account the errata on Joe’s website.

6.58 p 191: Eq. (6.5.27) The Orientation Reversing Symmetries of the
Oriented String, 11

Setting I' = (y7)~!y we have I'"! = v~14T and so we can write (6.5.26) as
|N; ki) = Dy | N k3 d'5') rjijl. [6.197]

Multiplying to the right by I" we find that, in matrix notation, |N; k) I' =T'|N; k). As |N; k)
contains a Chan-Paton factor Af;» this must hold for any of the n? unitary n x n matrices.
Only multiples of the identity n x n matrix commutes with all other n x n matrices and so
I' x 1, x». Without loss of generality we can normalise this to +1 and so we have

+1=T=(")"ly=>~y=14T [6.198]
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6.59 p 191: Eq. (6.5.31), The Orientation Reversing Symmetries of the
Oriented String, III

2 o0 1\/0 1y (-1 0)_
e (0B (8 Do 0) - 259

where 1 = 1;,,;, is the k x k identity matrix with 2k = N. So M ~! = M. Let us now write
a state |N; k,ij) as a matrix |N; k) ® )\fj We then have from (6.5.25) and (6.5.30)

First we note that

Oy N3 k3if) = Qo [N E) @ My = wn [N5E) @ %550 A Dy,
= wn [N; k) © My Ny Myt = wn [N k) @ My X My

)
= wn [N3 k) @ MJAG L Ml = wn (N5 k) @ (= M) X5 (— M)
= wy [N3 k) @ Mig Xy My = wn [N5 k) @ (MA“T M),
= wy [N k) @ s = wys® [Njk) @ A = wns® [N ks i) [6.200]

and so w, = wys® . We therefore have
QO [N ks ig) = (—1)1F™s% | N; ks i) [6.201]

and therefore to project out w, = 1 for the unoriented string we need s* = —1 if o/m
is even. This means that for o/m even, which includes the spin one particles, we need
MMM = s¥ \* = —\%, which means that A* are in the adjoint representation of Sp(k).

By introducing Chan-Paton factors and projecting out spin one particles in different
ways we can thus have unoriented open strings with a spacetime SO(n) or a spacetime
Sp(n/2), for n even, gauge symmetry. Recall also that the oriented open string the Chan-
Paton factors give a U(n) gauge symmetry.

6.60 p 192: Eq. (6.6.2) The Three Tachyon Tree Amplitude for Closed
Strings

This is just a duplication on the open string three tachyon amplitude, so there is no point
elaborating on it.

6.61 p 193: Eq. (6.6.4) The Four Tachyon Tree Amplitude for Closed
Strings

First we note that the amplitude is calculated for the normal ordering : ¢’*X : and not for
[eik‘X ] .- As explained in the paragraph under (6.2.31) we can obtain the former from the
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latter by setting the conformal factor w = 0, i.e. pushing the curvature to infinity. We can
then use (6.2.17) with w = 0 for the expectation value of the matter part and (6.3.4) for
the expectation of the ghost part:

Sgy (k13 ks g ka) = gae 2iCq,CL (2m)*56%° (> " k)

4

2 _ Mg ks
X/d 24 212213%23%Z12213723 || BT R [6.202]
c i<j=1

We set z; = 0, 25 = 1 and z3 = oo. Just as for the open string case (6.4.5) the z3 — oo does
not cause a problem and we are left with

c

S, (ks s ks ka) = igiCs, (2m)*56%°(> " ki) / APy 2| FVF L — 2|k [6.203]
i c

We now have, introducing Mandelstam variables,
u:—(k1+k4)2:—k%—k§—2k1-k4:—§—2k1-k4
= o'ky kg = —% — 4 [6.204]

and similarly

t:—(k1+k3)2:—(k2+k4)2:—k%—k§—2k2-k4:—§—2k2-k4

t
= ad'ky - ky = 5 4 [6.205]
where we have used the mass-shell condition for closed string tachyons k? = —m? = 4/a/.

Thus

SSQ(kl; ko; ks; k4) = 2'921052 (27‘()26526(2 kz) / d22’4 ‘Z4’7a/u/274’1 — 2:4‘704%/274 [6.206]
- c

6.62 p 193: Eq. (6.6.7) The Pole at o’s = —4

From o/(s + ¢t + u) = —16 we find —a/(u + t)/2 — 8 = &/s/2 and so if we look at the
behaviour of the amplitude for very large zy4, i.e. say |z4| > 1/ we find

SSQ (klv kQ; k‘g; k4) _ 193052 (27T)26526<Z kl)\/l » d224 ‘24’_0/u/2—4—0/t/2—4
i z4|>1/e

= ig:Cs, (2m)*°6° () _ ki) / A2y 24|/ [6.207]
s |Z4|>1/€
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We go to radial coordinates z = re'?, use d?z = 2dxdxy = 2rdrdf, and find

2
S, (ks ba; ks ) = ig21Cs, (2m)%06%0(> kz‘)Q/ d9/ rdrr®'*/?
i 0 r>1/e

:2ig§0§2(2w)26526(z ki)Qw/ ) g /241
i r>1/e

1 /
= 471'@'93052 (271')26626(2 ki) ——————r¢ 5/2+2

a's/2+2 r>1/e
X 1 /
= 87T7:g§CS2 (271')26526(2 ki)m’f'a s/2+2 r1/e [6208]
A

and we indeed see the poles at o’s + 4 = 0 for very large zj.

6.63 p 193: Eq. (6.6.8) The Four-Tachyon Closed String Amplitude and
Factorisation

A consequence of unitarity is factorisation of the four-string amplitude is a combination of
two three-string amplitude amplitudes with an intermediate state of all possible momenta,
see (6.4.13). Let us work this out for the closed string. From (6.4.13) and (6.6.2) we have

54 —i/ d*k (ig2Cs, (2m)*06%6 (k1 + ko + k)) (ig2Cs, (2m)206%0 (—k + ks + k4))
2 (2m)26 —k2 + 4o/~ +ie
+ terms analytic at k% = 1/a/
igSCg, (2m)%06% (k1 + ko + k3)
—(k1 + ko)? + 4o/~ +ic
Note that the intermediate string has a pole at the closed string tachyon mass-shell condi-

tion. But we also have the expression for the four tachyon amplitude (6.6.4) and we know
how it behaves as k? = —s = 4/a’ from (6.6.7):

1 /
Ss, :8i7rgzl052(27r)26526(2 ki) ———p's/242

+ terms analytic at k% = 4/a/ [6.209]

o's+4 r>1/e
+ terms analytic at k% = 4/a’ [6.210]
Equating these two expressions we find

iggcg'z o SinélCSz

= 6.211
s+ 4o/~ 1 a's+4 [ ]
or
8
Cs, = o [6.212]

which is (6.6.8)
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6.64 p 193: Eq. (6.6.10) The Virasoro-Shapiro Amplitude

We first work out
I(a,b) = /dgz 27291 — 2|2 6.213]
Using the representation

2|72 = F(a)l/ dtt* L exp(—tzZ) [6.214]
0

that is given as part of exercise 6.107
we have, writing z = x + iy,

1 a1 [ pn [T —t(@?+y?) —u[(1—z)2 412
((1 b) W dtt duu dedye Y e Yy
a

2
/ dt/ du @ Lyb~ 1/ drdy e™ (t+u)a? +2uz ,—(t+u)y® ,—u [6.215]

T'(a)T(b)
We can now use the Gaussian integral ff;o e~ — /o /a to write
+o00
dye o’ = [T 6.216
and
“+oo 40
/ dr e~ (HHwz*+2ua _ / dx e*(t+u){[wfu/(t+u)]27u2/(t+u)2}
= [ e/ [6.217]
t+u
and thus
2 o oo
I(a,b) = = / dt / o1 T ()
t +u
$o— 1 b
/ dt / duy —— 7tu/(t+u) [6.218]

"This follows immediately from the definition of the Gamma function I'(a) = [, dza®te™®.
Set z = t|z|? and find

e 2 e 2
F(CL) — / dt |Z|2ta71|z|2a72€7t\z\ _ |Z‘2a/ dttaileit‘zl
0 0
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We now make a change of variables

t4+u t4+u
The inverse transformation is
p=2 x [6.220]
D RN ‘
The Jacobian is
_0tu), 1/A —z)\2 B T
T =gy = de (1/(1 S 2/1-N2) T I [6.221]
Thus
vaml [ 5\l
2 ! o () (ﬁ)
I(a,b) = / d)\/ dx - e "
( ) F(Q)F(b) 0 0 /\2(1 - )‘)2 PYUES))
— d\ dr x11e +b—1 1/\ a+1-2+1 1—\ b+1 2+1€ x
Tt Jo s =%
2 /1 - —b /OO b2 —
= —— A1 — X dx x0T 2% [6.222]
tare) Jp TN,
We now use, once more, the definition of the Gamma function
I(z) = / dr 27 e ™ [6.223]
0
to write this as
2 1 b
I(a,b) = ———T(a+b—-1 / dAANTY (1 = )\)"
27T (a 4 b+ 1)
= ———— " B(— 1, - 1 .22
T (@) (—a+1,-b+1) [6.224]
With the Euler Beta function defined as
! T'(2)T(y)
B(z,y) = / det* 11 — ¢yt = ) [6.225]
R A (B
So we get our final result
2il(a+b+1)T(—a+ 1)I'(-b+1)
I(a,b) =
['(a)T(b) IN—a+b+2)
=21B(l —a,1—ba+b—1) [6.226]
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where

L(z)L(y)L'(2)
Nz +y)l'(z+ 2)(y+ 2)

B(z,y,z) = [6.227]

This means that we can write the four-tachyon amplitude (6.6.4) as, using (6.6.8),

s, = iglCo,(r PS8 (k) [ el e/t — ot

8
mgc 7)205%6 Zk (Quf/d+2,d't +2)

8
= %(2%)26526( g ki)2nB(—1 — d'u/4,—1 — o/t/4,0'u/4 + o't /4 + 3)
8mig: 26526
= - ;)27 B (— c —C 71 c c
o (2m)=°0 E ki)2mB(—ac(u), —ae(t), 1 + ac(u) + ac(t))
87”90 7)26526 § ki) —ae(t)) [6.228]

with a.(z) = o/x/4+ 1 and
C(z,y) =2nB(xz,y,1 —x —y) [6.229]
This gives us (6.6.10).

6.65 p 193: Eq. (6.6.12) The Regge Limit of the Virasoro-Shapiro
Amplitude

The Regge limit is s — oo with ¢ fixed. This also implies © « —s, see our discussion of
p183 (6.4.28). We will use Stirlings formula again: I'(x + 1) &< z%e™*/2/mx. We need the
Regge behaviour of

D(—ae(®)D(—ac(u)P(1 + ac(t) + ac(u))
D(—ae(t) — ac(u)T(1 + ae(t)T(1 4+ ac(u))

We first rewrite this in a more symmetric form between the Mandelstam variables. We note
that

C(—ae(t), —ae(u)) o [6.230]

a't  du o's o's

and
o't du o/s ol
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Therefore
D(—ac(t)T(—ae(u)I'(—ac(s))
Cl=aelt), —ae(u) % A= PO T ae )T + ae(@)) [6.233]
Let us first consider our limit for
P(=ac(w) (—ae(w))~*Me) /21 (—a.(u))
T(1+ ac(w)  (1+ a)+oc@e1-ac®) /27 (1 1 au(w))
oy~ 2ee(w) =1 g2ac(u) [6.234]

where we have used that for © — oo we have a.(u) — u. There is a similar expression for
the factors depending on s and therefore, in the Regge limit

—2ae(u)— ~2ae(s) - [(—ac(t))
o o 200 (u)—1 2ac(u) . —2ac(s)—1 2ac(s)
C(—ac(t), —ac(u)) cu e s e T+ ae(t) [6.235]

Using u s in the Regge limit we get

eng () —2cre () I'(—oc(t))
o - 200c(u)—2ac(s)—2 20 (u)+2ac(s)
C( Oéc(t), th(u» xS € F(l +ac( ))

20c(t) 2-20c(t)_L(=e(t)) - a0,y T(=ae(t) [6.236]
t

s T(1+ au(l)) T(1+ at))

where we have again used a.(s) + a.(t) + a.(u) = 1 and the fact that a.(t) is kept constant
in the Regge limit.

6.66 p 194: Eq. (6.6.13) The Hard Scattering Limit of the Virasoro-
Shapiro Amplitude

Recall that the hard scattering limit is the limit of all Mandelstam variables becoming very
large, while keeping s/t fixed. We thus have, using [6.233] together with the limit [6.234]
and a.(z) =1+ d'z/4

Ssz <k1§ kos k3 k4) o u—?ac(u)—leZac(u)S—2ac(s)—1e?ac(s)t—Qac(t)—1€2ac(t)

_ u—3—o/u/28—3—04’3/2t—3—a’t/2€2+a’u/2+2+a’5/2+2+a’t/2

o(u—o/u/Qs—O/s/Qt—O/t/Q [6.237]

—332—



Joe’s Book (version of November 20, 2020) Notes from Stany M. Schrans

in the last line we are taking the limit of infinite® s, ¢ and u and have used o/(s + ¢ + u) =
—16. Thus

—a'u/2

Ss, (k1; ko; ks; ka) o< explnu expln s~/ 2 explnt— /2

/

= exp e slns+tlnt+ulnu [6.238]
2

6.67 p 194: Eq. (6.6.14) The Amplitude for a Massless Closed String
and Two Closed String Tachyons

We have a vertex operator for each of the tachyons and a vertex operator for the massless
excitations. The two-sphere has zero moduli and six conformal Killing vectors. We thus
have six c-ghost insertions and no b-ghost insertions. The Euler number of the two-sphere
satisfies 3y = k — u = 6 = 0 = 6 and thus x = 2. This thus gives a contribution to the
action of e"™X = ¢~2*, This gives us indeed

Ss, (K1, €15 ka; ks3) :ggg;e_2)‘ety< G OXPOX Ve X (21, 7))

x 1 cce®2 X 1 (29, 7)) ¢ Geett X (23,23)> [6.239]

The expectation value of the matter part is just a special example of (6.2.19), with, of
course, w = 0. We find

S (ki €15 ko; ks) =< LOXMOXVERN 1 (21, 7) 1 €PN 1 (29, 79) 1 €N (23,53)>

=iC3, (2m)%08%0 () ki)l z1a| P H2 |2y ¥ F1KS | 2gg | K2 R

1

- ! © H i v v
w2 (R ks _ (ks kS [6.240]
2 Z1 — %9 Z1 — X3 2 Z1 — %9 Z1 — 3

The calculation now proceeds in the same way as for the calculation of the amplitude of
one massless and to tachyons states of the open string in (6.5.2), expect, of course, that
there are no Chan-Paton factors. We just repeat it here for convenience and completeness.
Adding the ghost contributions we have

,L'a/2

Ssy (K1, €13 ko; k3) = 1

gegee NCE,C, (2m)%°6% (Y ki)ey,
7

a’'ky-ko+2 a'ky-k3+2 o'ko-k3+2 ]{75 kg le/ kg
X ’212| 12 ’Z13’ 13 ‘Z23’ 273 — 4 — —= + —= [6.241]
212 213 212 213

8Note that s is strictly positive and ¢ and u are negative, see [6.109]. The condition o/ (s+t+u) =
—16 and lim, ;. s/t fixed, then implies that lim,, ;_,~ /¢ is also fixed and limg ; y— o0 (s/t +u/t +
1) =0.
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To start, we have Cg, = e‘Q’\ng C%,- Next we use momentum conservation and the mass
shell condition. The gauge boson is massless so k7 = 0. The tachyons have k3 = k% = 4/«
Thus
4
— =k =(—ki—ka)® =ki+ k3 +2k1 ko =0+ — +2k ko= k1 ko =0 [6.242]
o
Similarly %, - k3 = 0. Also

8
ozk%:(—k2—k3)2:k§+k§+2k2-k3:J+2k2.k3;»a’k2-k3:—4 [6.243]

Therefore
Sop (K1, €15 ko k3) = — Tgcgc L (27)26626( Zk
_ k# k# kY kY
2 |212|2|213|2|223| 2 <2 + 3> <_2 + _3> [6.244]
zZ12 213 Z12  Z13
We use momentum conservation k3 = —k1 — ko and the fact the ¢; is a polarisation vector

of a massless boson, hence €1, - k{' = €1, - k¥ = 0:
KRl Ty Yy T ¥y ¥y .
€y | — + — 212213223 = *61 + 212213793
212 213 2 212 213
1

_ 1 _ 1
:§elekz§3(213 — 2’12)2231 == §€1uyk532232231 == 561;“/]{353 [6.245]

with k;; = k; — k;. We have similarly

ku ku . 1 .
€yw | =5 + =5 | 212213293 = S€Luwkog [6.246]
Z12 213 2
Therefore
. /2
Sy, (k1, €13 kos kz) = — 1—69696052(27T )26526( Zk Kbk [6.247]

Finally we use the relation (6.6.8), i.e. Cs, = 87/a’g? to obtain

T,

S, (K1, €15 kos k3) = — 5

g.(2m 26526Zk )e bk [6.248]

which is (6.6.14).
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6.68 p 194: Eq. (6.6.15) The Relation between the Coupling Constant
of Tachyonic and Massless Closed Strings

From factorisation we know that we can write a scattering of four tachyonic closed string
as a combination of three-string amplitudes with all possible intermediate states. We used
this in (6.6.8) already to derive the relation between Cg, and the coupling constant g, for
the closed string tachyon vertex operator. From (6.6.6) we know that the four tachyon
amplitude for closed strings has poles at o's, o't,a’u = —4,0,4,8,---, i.e. at the mass-
squared of all the intermediate states. The next pole is for the massless intermediate state.
Thus, by looking at the behaviour of the factorisation as s — 0 we should be able to link
the four tachyon closed string amplitude to two amplitudes of a massless closed string with
two tachyonic closed strings, and hence also their vertex couplings.
As s — 0 we should thus have, in analogy with (6.4.13),

d®k Sg,(k, e k1; k2)S, k,e ks k
llisz(k1,k2,k3,k4 —zhmZ/ o) 52k, 6 1,—2]3245—2@(5 €5 ki ) [6.249]

Note that we do not only have to integrate over all momenta of the intermediate state, but
also over all possible polarisation vectors. Let us focus first on the s-pole of the four string
amplitude. We use (6.6.10)

8
Sisy (ko ko g k) = 7”90 26526Zk ), —ae(u)) [6.250]

with C' given by the symmetric form we worked out in [6.233], i.e.

P(—ae(s))T(=ac(t))L(=ac(w))

Claclt) —ael) = 27 G T AT o) oe@@) 02
We work out
lim [(—ae(s))) — lim I'—a's/4—1) — im ['(—a's/4)
ST T an(s)) o T(als/d+2)  sob (—als/d— DI(2)
= — il_I)I(l) I'(—d's/4) = % [6.252]

We have used I'(z) = (z — 1)I'(z — 1) and lim._,o I'(¢) = ¢! + finite a relation that should
be well known if you have studied regularisation of QFTs. From /(s + t + u) = —16 we
have that in this limit — and going further we will always assume we are working in this
limit — we have o/t = —a/u — 16 and thus likewise a.(t) = &/t/4+1 = —d/u/d —4+1 =
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—ad'u/4—1—-2=—a.(u) — 2. Therefore

(—ac®)l(zae(u))  _ Tlae(u) +2)T(=ae(u))
P+ ac(t)0(1 + ac(u))  T(=ae(u) = D1 + ac(u))
_ (oe(u) + Dl (ae(u) + 1) (=ae(u

c(u) = DI (—ac(u) — 1)
I(—ac(u) = D1 + ac(w))
= (ae(u) + 1) (—ac(u) = 1) = —(ac(u) + 1)?
= — (d'u/4 4 2)? [6.253]

Now recall form our little excursion on Mandelstam variables that we established that
s > |t|, see [6.112]. If s — 0, this thus implies that ¢ — 0 as well and hence from
o/(s+t+wu) =—16 that o’'u = —16 and so

I(=ae())T(=ac(u))

=—(—4+2)?2=-4 6.254
T+ o) +acwy P 10254
Bringing all this together we find that
_ 4 321
llil(l] C(—ac(t), —ac(u)) = — 27745 == [6.255]

and that the s-pole of the four tachyon amplitude is

256
LHS = lim Ss, (ky; ko: k3; ka) = L zgc ) 26526 ( § ki) [6.256]
s—0

Let us now look at the s-pole of the expression with the intermediate massless closed
string. The tachyon-tachyon-massless closed string amplitude is given by (6.6.14) so

d?k Sg,(k, € ki; ko) Ss, (—k, € k3; ky)
RHS—zhmZ/ 220 1 12 —|—2Z€

d*k
=1 lim Z/ {— mia! gheun ko kYo (2m) 20670 (ky + ko + k)}

50 27r)26
X [ m; Gepo kb kG (2m)206% (k3 + ka — k)] % —14321—1—26
= — lim W(Qﬂ)%(s%(kl + kg + k3 + k1) e €po —fl%llei %g% — [6257]
Since s = — (k1 + k2)? = — (k3 + k4)?, we can write this as
RHS = — lim Z Weu,,epak:ﬁk:ﬁk&k&(27r)26626(z ki) x % [6.258]
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Identifying the pole at s = 0 of the LH S with the RH S thus gives

12 12

25672%ig>  wia'%g .
e c _ i N euepoklykYokE kS, [6.259]
€
or
2 0‘/4922 by 1P 1.0
9c = 064 > cuepoklakiaki kS, [6.260]

€

Let us now work out Y__ e e€pokiykiok, k. First we note that we can write ky — ky =
k1 + ko — 2ko = k — 2ko and similarly k3 — kg4 = k3 + k4 — 2ky = —k — 2k4 and since
ewk” = €, k" = 0, we have

> ewepoklyklakE kS = 16> e epokb kS kGRS [6.261]

€ €
We now use the completeness relation for polarisation vectors familiar from QFT. For a
photon in QED it reads ) _e''e” = —g"¥, so in our case it is ), €,.€p0 = g ¢"7. Therefore
> epwepokhykYokE ks = 16(ks - ky)? [6.262]

€

Butt = —(ky +k3)? = — (ko + k4)? = k3 + k3 + 2ko - ky = 8/’ + 2ks - k4. We have seen that

in the limit of s — 0 we also have ¢t — 0 so that ks - k4 = —4/a’ and thus
256
D eppoklykiokE, kS, = 5 [6.263]

€

Plugging this in [6.260] we find

a’g’? 256 , a?
Je = 064 o2 Je = 74 9 [6.264]
This means that
, 2
9e = —Yc [6.265]
6%

which is (6.6.15)

6.69 p 194: Eq. (6.6.19) The Amplitude for Three Massless Closed
Strings

Eq.(6.6.19) should be clear following the derivation of (6.5.15) i.e. the amplitude for three
massless open strings. In particular, we saw there that the terms linear in momentum
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gives a contribution proportional to kb;n®Y + k$4n*Y + ki2y** and the terms cubic in the
momenta gives a contribution proportional to k% k31k¥2 It is now just a matter of doubling
this with the anti-holomorphic sector, contracting with the appropriate polarisation tensors
and checking out that the coefficients match. We will not bother doing this.

We will however point out that we see that the amplitude of three massless closed
strings is more or less equal to the square of the amplitude of three massless open strings.
The massless closed string particles, or at least the symmetric part of the field, are gravitons
and the massless open string particles are gauge bosons (and non-abelian ones once we
attach Chan-Paton factors). This is a first, albeit very heuristic, sign that

gravity = (gauge theory)? [6.266]

6.70 p 195: Eq. (6.6.21) The Relation between I(z,y, z) and I(x,y)
From the derivation of (6.6.12) we already showed, see [6.233], that we can write

[(—ac(?)

N _ )T (—ae(u))I(—ae(s))
J(s,t,u;a) =C(—ae(t), —ac(u)) = 27TF(1 +ae(s) T+ aelE)T( + ac(a) [6.267]
From (6.4.20) and ((6.4.24) we also have
I(s,t;a) :B( — ap(s), —ao(t)) = (—ao(s)I(—ao(t)) [6.268]

Let us now calculate

Jtue) L T(cod)D(—acu)l(~acs)
I(s,t;4a!)I(t, u;4a) L1+ ae(s)) (1 4+ ac(t)T (1 + ac(u))
I(=ae(s) = ae®))T(=ac(t) = ac(u))
I(—ae(s)T(—ae(t)) T (—ae(t)) T (—ac(w))

[(=ac(s) = ac(®)T(=ac(t) = ac(w))
I'(1+ ae(s))T(1 + ac(t))T(1 4 ae(w) T(—ac(t))
T(1 + o (u))D(1 + ae(s)
t

) )
I'(1+ ae(s))T(1 + ac(u)[(=ae(t))T(1 + ac(t))]
1

= 27T7T/ Ty —r = —2sinma(t) [6.269]

=27

=27

We have used a.(s) + ac(t) + ac(u) + 1 = 0. This is (6.6.21).
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6.71 p 195: Eq. (6.6.23) The Relation between Closed and Open String
Four-Point Amplitudes

We first define for any amplitude S = (27)?06%0(3", k;)A. 1 don’t remember this being
mentioned in Joe’s book. We thus have from (6.6.4) and (6.6.8)

: 2
SUL'E J(s,t,u)

a/

Ac(37 t,u; 0/7 gc) -

16mig?
=— O/gc sin e (t)I(s, t; go; o JA) I (¢, u; go; o' /4) [6.270]

where we have used (6.6.21). We can now rewrite the open string four tachyon amplitude
for just one of the six cyclic permutations of (6.4.9), using (6.4.14), as

1 2ig;
2a//4

- 2
I(s,) = 2o 115, p) [6.271]

O/

Ao(su t; 0//4; 90> =

Note the extra factor 1/2 because every I(z,y) appears twice in the six cyclic permutations
and also note that o’ is replaced by o’/4. Thus

167mig? . o o
Ac(s, t,usd ge) = — a/gc sin ma(t) <4ig§Ao(S7t; a’/4,go)> <4ig§Ao(t’U; o//4,go)>
P
= mgza Ao(s ;0! /4, 90) Ao(t,u; 0’ /4, go) [6.272]

o

I am not sure why the second A, is conjugated in Joe’s book. As I(x,y) is manifestly
positive, this would just change a sign, which is not needed. It may be due to his sign error
just below (6.6.21).

6.72 p 195: Eq. (6.6.24-25) The OPE of Two Tachyon Vertex Operators
and its Poles

(6.5.24) is just a Taylor Expansion of (2.2.13)

:eik1~X(z1,§1) . eik‘4~X(Z4,Z4 14‘a/k1~k‘4 . eikl-X(Zl,il)eik4-X(Z4,Z4) .

) = |z
= |Z14|a’k1~k4 : (1 +iz14ky - OX + iZ14k1 - 0X
— 2:14214(]€1 . 6X)<k1 . 5X) -+ .- )ei(k1+k4)‘X(2’4, 24) : [6.273]

Let us take the first term, consider the integration over 21,4 and write it in radial coordinates
214 = re'?. This gives a contribution proportional to

27 , 1
do drrofvks oo = 6.2
/0 /7" rr ocoz’kzl-k4—|—2 [6.274]
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and so indeed a pole when o’k - k4 = —2 and convergence for o’k; - k4 > —2. We also have
(k1 + k4)? = k2 + k2 + 2k - ky = 8/’ + 2k; - k4 so that the pole corresponds to
’ o 2 2 4
72:ak1-k4+2:§(k1+/€4) 74:>7u:(k‘1+k4) == [6.275]
«
and so the pole occurs as a on-shell tachyon is created in the u-channel. There will of
course be similar poles in the s-channel (from the contractions of the 1 and 2 tachyon
vertex operators) and in the ¢-channel (from the contractions of the 1 and 3 tachyon vertex
operators).
The next term in the OPE gives an integration

27 )
/ do /rdr ro'krkagif _ [6.276]
0

due to the 0 integration. Every term in the OPE with a different number of z14 and z14 will
similarly give zero due to the integration over 6 and it is just terms with equal amount of
214 and Z14, or equivalently X and X that do not vanish and give poles, corresponding
to intermediate particles becoming on-shell.

6.73 p 198: Eq. (6.7.3) The One-Point Function from the Mobius
Group

Let us first remins ourselves of some preliminaries. We will focus on the holomorphic side,
the anti-holomorphic side being just a copy of this. We are choosing operators .A(z) that
are Eigenstates under a rigid rescaling by a complex parameter z — 2’ = vz, see (2.4.9),
i.e. operators that transform as (2.4.13)

A(Z) =" A2) [6.277]

Now, under a general infinitesimal conformal transformation z — 2’ = z+wv(z) an operator
A(z) transforms as (2.4.12)

SA(z) = — %8"1}(7;)/1"(2) [6.278]

n=0

where A" (z) are the coefficients of the poles of the OPE of the energy-momentum tensor
with the relevant operator, see (2.4.11),

T(2)A(0) ~ i A™(0) [6.279]
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We have absorbed the infinitesimal parameter ¢ in v(z) for convenience. Eigenstates under
rigid transformation then have the OPE given in (2.4.14)

| hA©) | 0A(0)

22 z

T(2)A(0) ~ - [6.280]

From this we read that A' = hA and A° = 0.A. The infinitesimal rigid conformal transfor-
mation is z — z + v(2) = vz = (1 + €)%, i.e. v(z) = €z. The only non-vanishing derivative
of v(z) is dv(z) = . Thus

SA(z) =A(2) — A(z) = — [8v(z)A1(z) + v(z)AO(z)] = —chA(z) —e2z0A(z) [6.281]

and thus

A'(Z)=A(z+e2) = A(2) + €202 A (2) = A(z) — ehA(z) — €202 A(2) + €202 A(2)
=[1+e(=h)]A(z) = (1 +¢&) "A(z) =y " A(2) [6.282]

Which recovers [6.277] as it should.

We can now establish (6.7.3). Indeed, on the sphere we have three complex Killing
vectors, so we can always fix the coordinate to z = 0. We then have the transformation
z=0— 2 =~z =0and so A'(0) = y"A(0). This gives (6.7.3).

6.74 p 198: Eq. (6.7.4) The Two-Point Function from the Mobius
Group

We first perform a Mobius transformation z — z — z5. This gives v(z) = —z9 = ¢*® and so
all derivatives of v vanish. Thus®

SA(z) = A(2) — A(z) = —v(2)A%(2) = 2,0A(z) [6.283]
and
A () = Az — ) = A(2) — 200A(2) = A(2) + 20A(2) — 2,0A(2) = A(z)  [6.284]
which leads to
(Ai(z1,21)Aj (22, 22)) = (Ai(212, 212) 4;(0, 0)) [6.285]

This is, of course, nothing else but translation invariance of the two-point function.

°This is only valide for infinitesimal transformations, but we integrate over all these infinitesimal
transformations to end up with a finite transformation.
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We now perform a rigid transformation z — 2/ = zf;z, i.e. v = 219 in (6.7.3). This
gives immediately the behaviour

(Ai(z1,21) A (22, 52)) = 219" 25 ™ (A4(1,1)4;(0,0)) [6.286]

Don’t be confused by the fact that we have the weights h; and h; but z;; only appears in
A;. The scale factor comes from the rescaling of both the operators 4; and A; with the
points 215 — vz = 255 212 = 1 and 0 — 0 = 0.

Let us now require this two-point function to be single-valued. We replace z; and 25 by
e?"z; and e?™ 2, respectively and find

(Ai(21,21) A (22, 7)) = e 2milhi=hy) ;- Ri=hs g2mihi=hs) 7 hi=hi 4.1 1) A.(0,0))
= e 20t (A;(1,1)A;4(0,0)) [6.287]

where J; = h; — h; and Jj=h; — ﬁj. Single-valuedness indeed requires J; + J; € Z.

6.75 p 199: Eq. (6.7.5) The Two-Point Function Of Tensor Fields

Tensor fields, aka primary fields, have OPE with the energy-momentum tensor
hO(0) 00(0
_ho)  90(0)

22 z

T(2)0(0) [6.288]

i.e. the highest order pole is of degree two and we have O'(z) = hO(z) and 0°(z) =
00(z).We now consider the conformal transformation z — 2’ = z + (z — 21)(z — 22), i.e.

v(2)=(z—21)(z—2) ; O(z)=2z—(z14+2) ; *v(z)=2 [6.289]

Because we are restricting ourselves to primary fields 9?v(z) doesn’t contribute and we
have

§0(z) = — £[0v(2)0'(2) + v(2)0°(2)]
= —¢[(22 — 21 — 22)hO(2) + (2 — 21)(2 — 22)00(2)] [6.290]
Therefore
(0i(21)0j(22)) = (0;(21)O}(22)) = ((Oi(21) + 60;(21)) (O} (22) + 80;(22)))
<[0,»(z1) — (21 — 2)hi0;(21)] [0;(22) + (21 — zQ>hjoj(z2)]>
(0i(21)0j(22)) — e(z1 — 22)(hi — hj){Oi(21)Oj(22)) [6.291]

Which implies that
(2’1 — ZQ)(hZ' - hj)<0i(zl)0j(22)> =0 [6.292]
and thus if h; # h;, we necessarily have (O;(21)O;(22)) = 0.
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6.76 p 199: Eq. (6.7.6) The Three-Point Function Of Tensor Fields
We start by using translational invariance to write
&3 = (0i(21)0;(22) Ok(23)) = (Oi(213)O;(223) Ok(0)) [6.293]

In order to proceed we will need to work out how a primary field transforms under a
finite Mobius transformation. But this is easily done as a Mobius transformation is also
a conformal transformation. Under an infinitesimal conformal transformation » — 2’ =
z 4+ ev(z) a primary field O(z) of weight h transforms as

50(z) = O'(2) — O(z) = —e[hdv(2)O(2) + v(2)00(2)] [6.294]
The finite form of this transformation is
(02O (2 = O(2) [6.295]
as is easily checked by looking at the infinitesimal form 2’ = 2 4 ev(z):

(02O () =1 4 €dv(2)]"[O'(2) + ev(2)00(2)]
=0'(2) + hedv(2)O(z) + ev(2)00(z) [6.296]

Using this in [6.295] does indeed give [6.294]

We now need the Mobius transformations that transforms the triplet (213, z23,0) into
(A,1,0). Arguably we should take A — oo but if we do that now we will see that it leads to
complications, which are related to the fact that for the point at infinity we actually would
have to go to the u = 1/z patch first. But we can fix the coordinates as three points we
want, so we can as well keep A finite.

The Mobius transformation that achieves this is

) az+
_ _ 2
z— 2 = f(2) P 162971
with
Az12
a= —
VAN —1)z19213203
B=0
o Azog — 213
\/A(A — 1)z12213%23
(A —1)z13223 [6.298]

N \/A(A — 1)212213223
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It is straightforward algebra to check that f(0) = 0, f(z23) = 1 and f(z13) = A. Itis
also straightforward algebra to check that ad — 8y = 1 so that this is indeed a Mobius
transformation. Another straightforward calculation gives

or =2 AA = Darzziazzs [6.299]
0z [(A = 1)z13203 + (213 — AZ23)Z}2

and from this we find that

Az
07 =
z=0 (A — 1)2132’23
9/ _ (A =Dz
z=223 Az12203
v — M [6.300]
z2=213 212713

These calculation are most easily done in Mathematica. The code for this is shown in
fig.6.11. Note that we can take the limit A — oo for the first two derivatives, but not for
the last one, that scales as A2.

We can now work out the three-point function

&3 = (0i(213)O0;(223) Ok (0))

_ <<a )’“ o) (02 )h o, (7] _,)" ok<o>>

:<A<A—1)Z23>’”<(A—1)213>’” <<AAzw>hk<Oi(A)Oj(1)0k(o>>

212213 Az12203 —1)z13223

_ Zizécfhi*hj zilé‘*hi*hkzgé*hj*hkAhifthrhk (A o l)hiJrhjfhk <OZ(A)O](1)O]€(O)>

_ hi—hi—hj hj—hi—hg _hi—h;—hy,
= Cljik 212 213 Z93 [6.301]

Z=Zz13

with Cj;;, a constant, independent of the position of the vertex operators z1, z» and z3. This
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is (6.7.6).

n43:= ClearAll [f, a, b, ¢, d, z1, z2, 23, X, V]
flz_] :=(a*xz+b)/(cxz+d)
a=Lx(y-x)/(L*xy=-x) *xcC;
b=0;
d= (1-L)*x*xy/(Lxy=-X) xcC}
c= (Lxy-x)/Sqrt[L*(1-L)*x*xy=*(y-Xx)];
X =2z1-23;
y=22-23;
Print ["Transformed Coordinates "]
{f13 = Simplify [f[z1 - z3]], 23 = Simplify [f[z2 - z3]], 33 = Simplify [f[z3 - z3]]}
Print ["Derivatives "]
{df13 = Simplify [D[f[z], z] /. z -» z1 -z3], df23 = Simplify [D[f[z], z]/. z » 22 - 23],
df33 = Simplify [D[f[z], z]/. z » z3 - z3]}
Print ["Derivatives 1in L-Infinity Limit"]
{Ldf13 = Simplify [Limit[df13 /LA2, L » Infinity ]],
Ldf23 = Simplify [Limit [df23, L » Infinity 11,
Ldf33 = Simplify [Limit[df33, L » Infinity 11}
Print ["Jacobian "]
(Ldf13 Ahi) % (Ldf23 Ahj) % (Ldf33 Ahk) /. {z1 - 22 » z12, z1 - z3 - z13, z2 - z3 - 223}

Transformed Coordinates

out[52] {L, 1, 0}

Derivatives

out[54]=

(-1+L)L(z2-23) (-1+L)(z1-23) L(-z1+z2)
{(21—22)(21—23) ’ L(Zl—zZ)(z2—z3)’ -1+ L)(zl—z3)(—z2+z3)}

Derivatives 1in L-oInfinity Limit

z2 - z3 z1-2z3 z1-2z2

Out[56]=

{(zl —22)(z1 - 23) " (21 -22) (22 -23)  (zl - 23)(22 - z3)}

Jacobian
z12 hk z13 hj z23 hi
out[58]=
(213 z23 ) (212 z23 ) (212 z13 )

Figure 6.11: Mathematica code for the three-point function from a Mébius transformation.

6.77 p 199: Eq. (6.7.7) The Four-Point Function Of Tensor Fields

We follow the same procedure as for the three-point function. First we use translational
invariance

(’54 = <OZ(21)0J(ZQ)Ok(Zg)Og(,&;» = <Oi(zl4)0j(224)Ok(234)(9((0)> [6.302]
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Next we use the same Mobius transformation as for the three-point function to bring 214 to
A, z94 to 1. This is just [6.303] with z3 replaced by z4, i.e.

Az
\/A(A — 1)2122’14224

o= —

B=0
Y= Azog — 214
\/A(A — 1)2’122142’24
(A —1)z14204

_ [6.303]
\/A(A - 1)2122’14224
Under that Mobius transformation one then finds that
Az12234
2h = flz34) = [6.304]
34 f( 34) (A — 1)(2122 + Z324) — A(Z2Z3 + 2124) + 2123 + 2924
For A — oo this becomes
2192
lim 2hy = 22 — g [6.305]
A—o0 213724
The partial derivatives are now
A—1)Az
5/ _(A=1Azy
z=214 212714
azl — (A - 1)Z14
2=224 Az12204
Oz’ _ A(A — 1)212214224
2=234 [(A — 1)(21Z2 + 2324) — A(ZQZg + 212’4) + 2123 + Z224]2
Az
0z = 6.306
z=0 (A — 1)214224 L ]
and for A — oo this is
lim 92’ —— A?
A—oo z=2z14 212214
lim 07 S——t
A—o0 z=224 2127224
lim 0| =224
A—o0 z2=234 Z13%24
lim 92| =-212 [6.307]
A—o0 z=0 214224

Just as for the three-point function, only one of the derivatives does not have a finite limit as
A— — oo, but scales as A2. These calculations are, once again, best done in Mathematica;
the code for this is shown in fig.6.12.
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out[1C

Out[1:

out[1

0]=

2]=

4]=

ClearAll [f, @, b, ¢, d, z1, z2, 23, z4, X, Y]
flz_] :=(a*xz+b)/(cxz+d)
a=Lx(y-x)/(L*xy=-Xx) *xc;

b=0;

d
c= (Lxy=-x)/Sqrt[L*(1-L)*x*xy=x(y-Xx);

(I-L)xx*yl(Lxy-X) *C;

X =2z1-24;
y =22 -24;
Print ["Transformed Coordinates "]
{f14 = Simplify [f[z1 - z4]], 24 = Simplify [f[z2 - z4]],
34 = Simplify [f[z3 - z4]], f44 = Simplify [f[z4 - z41]}
Print ["Derivatives "]
{df14 = Simplify [D[f[z], z]/. z -» z1 - z4], df24 = Simplify [D[f[z], z]/. z » z2 - z4],
df34 = Simplify [D[f[z], z]/. z » z3 - z4], df44 = Simplify [D[f[z], z]/. z » z4 - z4]}
Print ["Derivatives 1in L->Infinity Limit"]
{Ldf14 = Simplify [Limit[df14 /LA2, L » Infinity ]1,
Ldf24 = Simplify [Limit [df24, L » Infinity 1],
Ldf34 = Simplify [Limit [df34, L » Infinity ]], Ldf44 = Simplify [Limit[df44, L » Infinity ]I}
Print ["Jacobian "]
(Ldf14 Ahi)» (Ldf24 Ahj) = (Ldf34 Ahk) » (Ldf44 Ahl) /.
{z1-2z2 » 212, z1-23 » z13, z1-24 » z14, z2 - z3 » 223, z2 -7z4 » z24, 23 - z4 -» 234}
Transformed Coordinates

L (z1 - z2)(z3 - z4)

{L, 1, , 0}
(z2-23)z4+L 23 (-z2+2z4)+z1((-1+L)z2+2z3-Lz4)

Derivatives

(-1+L)L(z2-24)  (-1+L)(z1 - z4)

{ (21 -22) (z1 - 24) ~ L(z1 -22) (22 - z4)
(-1+ L)L (21 - 22) (21 - 24) (22 - z4) L (-2l +22) }

((z2-23)z4 +L 23 (-22 + z4) + z1 (-1 + L) 22 + z3 - L z4))? ’ (-1+1L)(z1-24)(-22 +24)

Derivatives 1in L->Infinity Limit

z2 - z4 z1 - z4 (z1-22)(z1 - z4) z1l-2z2

{(zl -22)(z1-24)  (z1-22)(22-24) (21 - 23)? (22 - z4) (21 - 24) (22 - z4)}

Jacobian

( z12 )hl( z14 )hi ( z12 714 )hk( 224 )m’
Out[16]=
z14 z24 z12 z24 7132 724 z12 z14

Figure 6.12: Mathematica code for the four-point function from a Mobius transformation.
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Filling in all the details, we find for the four point function

hy h; Ry hye
224 Z14 7 [ z12214 Z12 o
By = A" {O;(N)O; (1) O ()04 (0
! (212214> (mm) (z%gzm) <Z14ZQ4> (Oi(8)0;(1)Ox(2)06(0))

= gt MR ity he iR =hiehe A 20 (0, () O5(1) Ok (2) 04 (0))

[6.308]
At first sight this does look nothing like (6.7.7). But let us rewrite the z-factors as
—hi—hj—hg—h h —hj+hp+h, 52k —hi+hj+he— he +h —hj—hg—hg
3 = (z12234) g 213 Fziy
_ 72h1‘72h 72hk h+h +hk hg +h; h —h—hy 7h27hjfhk7hg
=Z12 Tz 21 Zo4 Z34
—hi—=hj _—h; —hi ,—hi—hy —h; hk —hj—he H =P
=z1p 73 214 293 294 234
—hi=hy thi—hy,  Fhithe thith +h —hy _—hi—h;
X Z19 213 214 293 234
h h —h hk —h‘—hg _hg_hk _hj_hZ —hk—h[
=212 ' 213 2yt %03 Z24 Z34
213204 \ ™ [ 214223\ [ 214203\ ™
. ( ) ( ) ( ) [6.309]
212234 212234 Z13%24

It turns out that we can express the three fractions in terms of z. Indeed we have x =
212234/ 213224, from which it follows that

214723 1—2 214203

l—x= : - [6.310]
213224 x 2127234
and thus
b (1—2\" b, —hihs_—hi—hy, —hi—hy ~hj—hi_—h;—hs_—hg—h
o _h —hi=hj —hi—=hg —hi=he —hj=hi —hj=he —hip—hy
j=x - (1 —2)™ 2, 213 214 Zog g Z34
4
ho_h. . —hi—h;
= h; hj(l _x)hfrhk H Zij J [6.311]
ij=1

1<)

The products is a slight abuse of notation, for which I hope I will be forgiven. We thus get
for the four-point function

4
B4 = (znzza)' | [ 2" o (1= ) AR (O4(A) 05 (1) Ox(2)04(0))
z,ij<:jl
ijkz( (212234) HZ [6.312]
t,j=1
1<j
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where h = h; + hj + hy, + hy. Adding the anti-holomorphic part gives (6.7.7).

One last word about the ratio z, which is known as the anharmonic ratio. This ratio is
an invariant under Mébious transformations, in the sense that if calculated for the original
coordinates or for the transformed coordinate the result is the same:

_ zez3a (21— 20)(23 —21) (21— 29) (25 — 2))
v = R s M U [6.313]
213224 (21 —23)(22 —2z4) (2] — 25)(2 — 2})

as can be checked by direct calculation.

The four-point function [6.312] is thus determined by Mobius invariance up to some
function of the anharmonic ratio x. This function is not arbitrary but needs to satisfy
some constraints, set by more general conformal transformations. In some cases these
constraints allow to determine this function completely and hence we can have an exact
expression for the four-point function. This process is known as the conformal bootstrap.
This is linked to the associativity of three operators in (2.9.3) and in our fig.2.9.

6.78 p 200: Eq. (6.7.9) The Operator-State Mapping for the Two-Point
Function

At this point it could be useful to review the state operator mapping around (2.8.17) or my
sections 2.73 and 2.74.

The operator A; at z = 0 is mapped to the state U 4, [¢;(2)] taken at the unit circle z = 1;
likewise, the operator A; at u = 0, or equivalently z = oo is mapped to the state W 4, [¢p(u)]
taken at the unit circle z = 1. But we need to take into account that A4; is taken in the
u-patch and we need to write this in the z-patch. Now z = ¢ %7, sou = 1/2 = eT¥9 7,
We are working on the unit circle so zZ = u@ = 1 and thus e?>” = 1 which means that 7 is
the same in both patches, but going from u to z we have ¢ going to —o. This coordinate,
however, is periodic and defined between 0 and 27, so to bring it back into the range of its
definition we see that transforming u to z is the same as transforming o to 27 — o. All this
then leads to the two-point function in the operator-state mapping

(Ai(00)4;(0)) g, = / (Ao W 4, [0 1 4, [h5] [6.314]

where the integration is over the fields on the boundary, i.e. the unit circle and ¢§’(c) =
¢p(2m—0) reflects the transformation from « to z. The impact of moving the vertex operator
A’ (o0) from z = oo to the unit circle is thus to replace o by 27 — 0.

This is of the form [ dtf(¢t — a)g(t) and thus looks like an inner product, but with the
functions taken at different times, ¢t — a and ¢, i.e. a convolution.
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6.79 p 200: Eq. (6.7.11) The Two-Point Function of Primary Fields
with Zamolodchikov’s Inner Product

We quickly repeat the analysis of the two-point function for operators .4;(z1) and .4;(0) we
did for (6.7.4). The difference here is that we wish to take z; to infinity rather than to
one. We achieve this by a global re-scaling = — 2’ = Az| 12 and let A — oo This gives
immediately

(A4, 0)) = (1) 77 (Aloo) 45 (0)) = 5PN (A(00)A,0)) 63151

For primary operators O; and O; we have

0i(2)0;(0) = W [6.316]
where - -- denote lower order poles. In an expectation value on the two-sphere this be-
comes

(Ou2)0,(0)) = DDt ) 6317
From (6.7.10) we can also write this as
(0:(2)05(0)) = 2, """ AR (i) ) [6.318]
Thus

[0i0;hi+h; (L)s, = A3 (i) [6.319]

and thus

Aliths (45
0i(2)0;(0) = M<<<1>|2> + [6.320]

I am not sure how to get rid of the A-factor.

Let us, just for the fun of it, derive [6.315] for a general Mobius transformation that
changes z; into A and keeps 0 fixed. It is easily checkes that the most general Mobius
transformation achieving this is z — 2/ = f(2) = (az+ ) /(yz+ ) with « a free parameter
and
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One easily checks that f(0) = 0 and f(z1) = A. We also know from [6.295] that primary
fields transform under finite conformal transformations as (9z')"O’(z') = O(z) and thus
we need the derivatives at z; and 0 and these turn out to be

A2

o7 =o” ; 07 ——3 [6.322]
z=0 z=z1Q Zl
and so we find
A2 h; Ny
©:0,0) = (52) (@ 10050
1
= 2y 22 i) A2hi (0,(00) 0;(0)) [6.323]

This does seem different from [6.318] until we remember from (6.7.5) that the two-point
function of primary fields is zero unless both fields have the same conformal weight and
we do indeed recover [6.318].

6.80 p 200: Eq. (6.7.14) The Three-Point Function of Primary Fields
as a Function of the OPE Coefficients, I

The OPE for a general pair of operators is given by (2.4.20)

Az
Ai(m1)Aj(z2) = S -2 (_,i) [6.324]
K 212
Setting z; = 1 and z3 = 0 we get
(AG(00) Ap(1)45(0)) = (Ai(00) D el Ae(0) ) = D (Af(00)Au(0))
¢ ¢
= Z Cekjgié = Cikj [6.325]
¢

6.81 p 200: Eq. (6.7.15) The Three-Point Function of Primary Fields
as a Function of the OPE Coefficients, II

We first rescale z as z — 2’ = z; 'z to obtain
(AL(00) Ar(21)A;(0)) = 217" 4 (00) Ar(1).A4;(0)) [6.326]

Recall that for A’(co) we are in the u-patch and z = 1/u hence the positive sign of h;. We
then just apply (6.7.14).
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6.82 p 201: Eq. (6.7.18) The Four-Point Function of Primary Fields as
a Function of the OPE Coefficients

Four a general four-point function where two of the coordinates are unfixed, when we
go to the state operator mapping in the Hilbert space formalism we need to define the
ordering of the operators.!® In our case equal-time on the worldsheet means a circle of
fixed radius in the complex plane so time ordering becomes radial ordering.Thus, we start
from (6.7.16). We now assume |z;| > |z2| and insert the complete set — recall that we have
assumed that the A; form a complete set.

G4 = ((i| Ar(21)Ae(22) 17) = D] Ar(21) [m) G™(n] Ag(z2) |5) [6.327]

m,n

We now use (6.715) twice

Gy= D A Gy T ey [6.328]

Now Joe used the ) G™" to raise cpy; to oo but there is also a 232 so I am not sure how

this exactly works, unless of course ) gmn zhn Cntj = Zhm c’”Zj.

Let us now check the other way to calculate this that is mentioned in Joe’s book. We
first perform a translation z — z — z; and get

64 = <A;(OO)A]€(0)A@(22 - Zl).Aj(—Zl)> [6.329]

In the case of two point z; and z, that satisfy both |z;| > |22] and |21 — 22| > |22], the time
ordering gives in the Hilbert space formalism*!

&y = ((i| Ae(22 — 21) A (=21) |7) [6.330]
We now introduce a complete set and get

64 _ Z Zh ]’L[ Zl)hm_hk_hj C’LémC%‘] [6331]

Equating both expression for &, in the region of overlap gives

hi—hy—hm _hm—he—h; hi—he—h hin—hi—h;
Zzll Ky ]cikmc%zzzm (=) F Cim [6.332]

m

10Recall form QFT that time-ordering is needed in the Hilbert space mechanism, but that this is
automatically included in the path-integral formalism.

Naively one might thinks this is not possible if you think about the radii of circles r; and
as we cannot both have r; > ry and r; — ro > 71, as this would imply o < 0. But we are, of
course talking about complex number. So an example is z; = 6 + 8 and 22 = 3 — 5i. This gives
|21] = 10 > |22 = V34 = 5.83 and |2, — 22| = V178 ~ 13.34 > |23| = /34 ~ 5.83.
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6.83 p 201: Eq. (6.7.19-22) The Four-Point Function from the Hilbert
Space Expression, I

Eq. (2.7.11) states that
c XM(2,2)XY(2,7) = XM(2,2) XY (2,7)2 [6.333]

Here : are the (conformal) normal ordering symbols subtracting the singular part of the
product

/

s XH(2,2) XY (2,7) i= XM(2,2) XY (2, 2) + %77’“’ In|z — 2|2 [6.334]

and s s are the creation-annihilation normal ordering symbols, instructing to put all anni-
hilation operators to the right of the creation operators in the normal ordered product of
the mode expansions. (2.7.11) just states that for the free theory consisting of the fields
X* both normal ordering procedures are the same.

The remainder of these equations is just a split of the field X* in a creation and anni-
hilation part and a rewriting of the four-point function in the Hilbert space formalism, Eq
(6.7.22). Recall from the paragraph above (2.7.10) that p* is included in the lowering, i.e.
annihilation, operators and x* is included in the raising, i.e. creation, operators.

6.84 p202: Eq. (6.7.19-23) The Four-Point Function from the Campbell-
Baker-Hausdorff Formula

More commonly known as the Baker-Campbell-Hausdorff (BCH) formula it is actually
given by

XY — X HYH5IXY]H 35 (XX Y] = 5 [V [X,Y ] [6.335]

In our case X = iky - X14 and Y = iky - Xo¢ and we have that [X, Y] is a c-number so that
the BCH formula reduces to

XY — XY H35[XY] [6.336]
Thus also, trivially,
Y X = YHXHSVX] _ XY —3[XY] [6.337]
and
(¥ eX) ™ = em (X3 Y] [6.338]
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Therefore

(eYeX)*l XY — e—(X+Y)+%[X,Y]eX+Y+%[X,Y} [6.339]

We can once more apply BCH to the RHS and since [X, [X, Y]] = [V, [X, Y]] = 0 we have

(eyeX)—l XY — o (XA XY XY +5[XY] _ [XY] [6.340]
Multiplying both sides on the left with e¥ eX gives
eXeY = eYeXe[X’Y} [6.341]
and thus
ik X1a gika-Xoo _ ik Xac yik1-X1a ,—[k1-X1a,ksXa0] [6.342]
Let us now work out the commutator, using (2.75), i.e. [z/,p”] = in* and [ah,, k] =

mom+nn*”. We consider the holomoprhic side first as the anti-holomorphic side will follow
from there easily

[X T4 X5cIhol =[XY) 11 (21), XE noi(22)]

. oo o0
i/ e 1 ok, e 1
=|— —p'lnz +iy/ = E —— .z’ —i —aZ 2y
2 2 m 2’ 2 no "
m=1 n=1
! r > —-m_n
e o 27"z
= — —Inz]p" 2"+ — E : A2k v ]
2 ’ 2 mn - T
m,n=1

/

o o = 2y "2y i
= -5 ina+ 5 > M)

m,n=1
o o > (z2/21)™
e 117 =oopv
5 " inz; + 5 7 Z -

m=1

o o z2
s — S (12
277 nz 277 n( Zl)
' . '
1

Adding the anti-holomorphic side, which is just a copy we find thus

/ /
[XanXélo] = —%77“” In 2z — %77’“/ Inzip = —a' In 219 [6.344]

and thus
e~ k1 X1a,k2- Xo0] _ pa'kikzInfzia|

| 21| F1k2 [6.345]

Plugging this into [6.342] gives the required (6.7.23)
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6.85 p 202: Eq. (6.7.24) The Four-Point Function from the Hilbert
Space Expression, II

We first use (6.7.23) and then recall that all o -, [0;k3) = 0 and (0; k4| af, ., = 0. This
gives
By = ((0; k4] eF1-Xic gik1-X1a gika- Xoc yike Xac |0; ks3)
_ ‘Zu‘a’kl-kz <<O, ]{J4| eikl-cheikz-cheikl-XlAeikQ-Xg,c ‘O, k?3>
_ |Z12‘a'k1.k2 <<O, ]{14| eikl'x“'ik?we%(kl'pln |21|24+ka-pln |22]2) |0, k‘3>

= [z12]*" K12 (0; ky | otk m e (kuks Inaal+harks n 22 o) )
_ ‘ZIQ‘a/kka |2’1 ’a’kl-kg ‘Z2’a’k2-k3 <<0, k4’ ei(k1+k2)-x ‘0, k3> [6.346]

Now, the action of ¢?*** on a state is to give it a momentum boost of k. Indeed pe*® |0; K) =
(krete 4 ethrphy |0; K) = (k* 4+ KM)e*® |0; K). Thus e*1452) |0; k3) oc |0; k1 + ko + k3)
and we have

By o |210] @ F0R2| 2y |0 FUES | 2|2 R2 ks (0: Ky |03 Ky + Ko + K3 [6.347]

We now use the orthogonality condition (4.1.15), i.e. (0;k|0; k") = (2m)P6P(k — k') to
obtain

Gy = Cs)é ‘212 ’Oé/kl‘k‘g |21 |a/k;1-k3 ‘22|a/k2-kz3 (27T)D5D(Z kz) [6.348]

(2

The coefficient Cgiz is the contribution of the zero modes and the functional determinant,
see (6.2.6). In the Polyakov string it combines with the similar ghost coefficient ng and

the cosmological term to form Cg, = e‘”Céi ng. see just below (6.6.2) which in turn is
linked to the closed string coupling constant Cs, = 87/a’g?, see (6.6.8).

This is indeed (6.2.31) forn =4

4
Al (k) o< 6P (> ki) T 1zigl ke

ij=1
1<J

_ 5D(Z k2> ’z12|o¢'k1-k‘2 ‘Z13‘a’k1~k3 |Zl4‘o/k1~k4 |Z23|a’k’2~k3 |224|o¢’k2-k4 ’z34|a’k3-k4 [6.349]

7

We set z3 = 0 and take z4 — oo to get

A% (k) x ‘212‘a’k1-k2 |Zl ‘0/]61-]63 |ZQ ’O/kz-kg ‘Z4’a/(k1+k2+k3)-k4 5D(Z kz)
2

7

— |Z12|Oﬂk1~k2 |Zl‘a’k1.k3 |22’a’k2'k3 |Z4|—a’k25D(Z kz) [6.350]
i
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where we have used momentum conservation. If we wish to compare this to [6.348] we
need to go to the u-patch with u = 1/z4. As e’*X is a primary operator with weight o/k?/4

we can use the formula for the (finite) transformation of such an operator (9u)"(0u)" O’ (u, @) =
O(z, 2). Using Ou = —1/22 and the fact that ¢~ is worldsheet scalar so that O = ', we
find

o R o K2 ik X (w) i X (24) [6.351]

ika-X (z4) ika- X (u)

We thus see that if we replace e by e we introduce an extra contribution
|Z4|+a/k421 that cancels the one in [6.350] so that it is indeed the same as [6.348].
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Chapter 7

One-Loop Amplitudes

Open Questions

I have a number of unanswered points for this chapter. They are briefly mentioned here and
more detail is given under the respective headings. Any help in resolving them can be sent to
hepnotes@hotmail.com and is more than welcome.

& (7.3.8) I am not sure about this formula. It seems like Joe is saying that the ghosts cancel the contribution of two
of the non-compact dimensions, and that all the other non-compact dimensions don’t contribute to the partition
function. That seems strange. I would have expected the following. The theory consists of d scalar fields X
and a general CFT that has a Hilbert space H L with highest weights (h;, h;). The total central charge of the
matter sector plus the CFT is d 4+ ccpr = 26. The ghosts cancel the contribution to the transition function of two
of the matter oscillators, but we are still left with d — 2 matter oscillators that contribute a Dedekind function
|n(7)|2(4=2). T would thus expect the partition function for this theory to be

drdt 3
ZTQ [X[d]7CFTJ =iV, T T(47_‘_20/7_2)7(1/2|T](T)‘2(d72) Z qhiflqhifl
Fo 47-2 1€EH |

& (7.4.5) If we consider the integral

I(/\)Z/OAdseBS = % <eBA—1>

then the analytic continuation is obtained by just ignoring the A dependence. It just means you ignore the
divergence. I don’t understand why this is an analytic continuation. I also don’t understand why the second
term gives a divergence 1/0 as the corresponding integral is fooo ds. The argument that this looks like a zero-
momentum closed string propagator between two disks (i.e. open strings) makes sense and thus gives a 1/k?
divergence, but that is a purely heuristic argument.

& (7.4.11-7.4.13) Joe has completely lost me here. I understand the idea that you have a closed string propagating
from a time 0! = 0 to a time ¢! = s and that the partition function is then

Zc, = (B| cobpe=*Eot+Lo) | B) [7.1]
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with | B) denoting the closed string state at the boundary. The bgcg are the ghost insertions for the cylinder which
has one modulus and one CKV. The central charge term(c + ¢)/24 vanishes because in the critical dimension the
total central charge of matter plus ghost sector is zero.

But, I don’t understand that you can determine the boundary state | B) by requiring it to vanish under 6; X*, c!
and b b12. Why these components? Why not 9 X#, ¢? or b11? And what happens with the anti-holomorphic
side?

7.1 p 206: The Torus T2

The Euler number is given by y = 2g — 2 for a closed oriented surface, and so the only such
surface with Euler number zero has one handle, viz. the torus. We already know that the
torus has two real moduli, reflected in 7. From the Riemann-Roch theorem 3y = # CKVs—
# moduli and thus the number of CKVs must be two as well. Recall from (5.2.8) that the
CKVs are the holomorphic vector fields, i.e. the fields satisfying 96z = 96z = 0. The only
solutions to this that also satisfy the periodic boundary conditions are fixed translations in
the two directions of the complex plane.

The sewing procedure i~ h~ » ~mnnn in dllintunend G £~ 929. vhe ope in the z-space is
illustrated in fig. 7.1C v end of his book that
describes all this in exc , PR

2W%

Figure 7.1: The sewing procedure for the torus in w-space

Figure 7.2: The sewing procedure for the torus in z-space
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7.2 p 206: The Cylinder C,

In the w-space the cylinder C; is a rolled up strip: the thick ends are identified. Taking
t — 0 gives a very fine cylinder, more like capellini; taking very large ¢ makes it look more
like cannelloni. The cylinder has one moduli ¢ and so there is also only one CKV.

27t
]
t— o0
o2 0 T
R I —
g
! t—0
0 T

Figure 7.3: The cylinder in w-space

To obtain the cylinder from the torus we first take a torus with 7 = it, i.e. 71 = 2 and
75 = t so there is no stretching, and identify w = —w. Writing w = o' + io? this is indeed
equivalent to setting 0! = —o! or identification under a reflection through the imaginary
axis. Under this reflection ¢! = 0 obviously remains fixed and 0! = 7 goes to —= , but due
to periodicity this is the same as m and so o' = 7 remains fixed as well. We thus have a
surface with 2 boundaries and one periodic direction, i.e. a cylinder.

Recall the formula for the Euler number (3.5.6) for surface g handles, b boundaries and

¢ Cross-caps
X=2—-29g—b—c [7.2]

The cylinder has g = 0, b = 2 and ¢ = 0, hence y is indeed zero.

7.3 p 206: The Klein Bottle K,

We start from a strip in the complex plane with base 27 and height 27¢. We first make a
cylinder by rolling up, then we perform a reflection around the imaginary axis and identify
the boundary. This is illustrated in fig.7.5
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(TR, (o

2t 27t 2mt =

1,

o1

0 ™ 0 s 0 T

Figure 7.4: The Klein bottle in w-space. The points connected by a dotted line are identified with
one another,

A more artistic representation of the Klein bottle is given in fig.3.33 of these notes,
which we reproduce here for convenience.

O

The Klein bottle is a two-sphere with two cross-caps, no handles and no boundaries.
From (3.5.6) we then have y =2 — 0 — 0 — 2 = 0 and it is indeed an Euler number zero
Riemann surface. There is one modulus, ¢, and hence also one CKV, translation in the o9
direction.

7.4 p 206: The Mobius Strip M,
For the Mobius strip we identify w = —w + 7 + 27t or

ol=—0%1+7

02 =02 + 27t [7.3]

There is periodicity in the 2 direction but one of the ends of the strip is twisted
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"1

o1

Figure 7.5: The Mébius strip in w-space. The points connected by a dotted line are identified
with one another,

7.5 p 208: Eq. (7.2.1) The Equation for the Green’s Function on the
Torus T2

Recall that in section 6.2 Joe worked out the partition function for the bosonic string on
the sphere by expanding the filed X* in a complete set X*(c) = > ;z4/X;. When we
then considered the partition function with source Z[J] = (exp [i [ d?c J(0) - X(0)]),
all the integrals were Gaussian except for the zero-mode X, i.e. the mode that satisfies
V2Xy = 0. The integral over the zero was linear and resulted in momentum conservation.
The Gaussian integrals could be performed and give a functional determinant and the usual
Green’s function contribution of the form exp [ — 3 [ d?0 d?o’ J(0) - J(0')G' (0, 0")]. Here
G’ (0,0") is the Green’s function with the zero mode excluded, (6.2.7)

~ 2ra/
G'(o,0) =Y =5Xi(01)X[(02) [7.4]
I#£0 “r
where w? are the Eigenvalues of the complete set, V2X; = —w?X;. Because we are dividing

the RHS by w? we see why we had to exclude the zero mode. This Green’s function satisfies
the PDE (6.2.8)

1

—Qﬂalvgé’(m, 02) = g_1/252(01 — (72) — X(Q) [7.5]

When discussing (6.2.8) we explained the appearance of the zero-mode in this equation
as linked to the fact that on a compact surface without boundary, such as the two-sphere
or torus, the Poisson equation V?¢ = §2(o) has no solution. The physical explanation for
this is the equation for an electric field create by a point charge at o = 0, but on a compact
surface without boundary these electric field lines have nowhere to end. We can solve this
by adding a constant term to the Poisson equation V?¢ = 62(c) — x~!. This constant term
can be viewed as a density charge over the surface, that cancels the point charge. As a
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final comment, we also noted that the zero mode is essentially the inverse surface of the
manifold Xy = (fd%—\/g)_m, see (6.2.5).

All of this is repetition only, but it helps us understand (7.2.1). Indeed, in the conformal
gauge go» = €2“6,, we have V2 = 472999 and /g = ¢*; moreover using also §%(c) =
26%(2), (6.2.8) becomes

9 _
a@@G(w, w;w',w') = —216%(w — w') + me* X2 [7.6]

What remains to show is that

e X2 = e [7.7]
or that for the torus
e ( / Poyg) = [7.8]
ATy
or finally
/d2a\/§ = 4n%e?¥ 1y [7.9]

Does this makes sense? We can represent the torus in the complex plane as a parallelogram
with sides 27 and 277, see fig.7.6, Withe the curvature pulled to infinity, i.e. w = 0 the
area of the torus is exactly 472 Im 7 = 4727 and thus indeed

/d2a\/§ = 47r27'2 [7.10]

27T

0 27

Figure 7.6: The torus as a parallelogram with sides 27 and 277. The surface area of the torus is
472 ImT
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7.6 p 208: Eq. (7.2.3) The Green’s Function on the Torus

We need to show two things: (1) G’ satisfies the equation (7.2.1) and (2) G’ is doubly
periodic, i.e. it is periodic under w — w + 1 and under w — w + 277. We start with the
latter property.

Obviously, if we add one or 277 to both w and w’ the Green’s function remains the
same, but we must also have periodicity if we transform only one of the coordinates. In
order to avoid any confusion, let us call G’ (w, w; w’, w") the Green’s function in (7.2.2) and
G'(w,w;w',w") the Green’s function in (7.2.3). If we replace w — w+ 1 in é’(w, w;w', w')
we get

w—w

/ /
1 o o w—w
G'(w,w;w',w") — 5 [lnfh( +1,T)+ln191( 5 +1,7)] [7.11]
Now from (7.2.37d) ¢ (v, 7) = —9 Eg} (v, 7) and from (7.2.36) we have, using (7.2.32a),

[ (v+1,7) = e”ia2T+2m“(”+1+b)79(u +ar+b+1,7)

) . .
— p2miamia T+27rza(u+b),l9(y +ar+ b,’T)

= 29 (9] (v, T) [7.12]
and thus
D +1,7)= -9 [}ﬁ] (v 4+ 1,7) = —e2miay [}g] (v,7) = €299, (v, 7) [7.13]
Therefore

! / / *
iy o Corag (W W 9maq [(W—W
G'(w, w;w',w') — 2{hﬂ[e 191< 5 ,7')]4—111[6 191( o )} }

/ . _ / . _ /
- % 627”“191<w ad 77')6_27”“191(w v ,7')
2 2w 2

= — a—lnﬁl(w;rw ,T)ﬁl(w;rwlm) = é’(w,w;w',w') [7.14]

and so we indeed have periodicity under w — w + 1 for G/(w, w; w’, @'). This clearly also
implies periodicity of G’ (w, w;w’, w") as Im(w — w’) = Im(w + 1 — w’) = Im(w — w').

Now, if we replace w — w + 277, we get

/ / /

T o w—w w—w
G (w,w;w',w") — 5 [lnﬁl( o +T,T)+ln191( 5

+ 7, 7') ] [7.15]
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From (7.2.37d) 91 (v, 7) = =¥ [}g} (v,7) and from (7.2.36) we have, using (7.2.32b),

Vo) (v+7,7) = emITH2TIAWATE G () 4 g7 4 b4 7, 7)

. Y . I
_ 627r7,a7'e7r7,a T+27r7,a(1/+b)e T 27rz(u+a7'+b)?9(y +ar+b, 7_)

— T —2miv—2mib g [(g] (V, 7_) [7.16]
and thus
i+ 77) = =9 [[3] v+ 7o) = ey [ ()
= emieming [ (1,7) = e T 0, 7.7
and thus
/ / /
1 e ! @ 2wty i w-w
G (w,w;w',w'") — 2{111( e 2 191( o 77')>

_ —27ri7w_ﬂw, — T w—w' -
+ In ( e 2 % ( o >> }
o/ , N w—w Gy W — W
- _ % |:6—z(w—w )—7717—,’91< 77_) e—l—l(w—w )+7rm-191( ’7_>:|

2 2 2T

o - N o w—w w—w
S | —i[(w—w")—(w—w")|—7i(r—7) & 1 ( ) ( )

5 ne 5 nv o , T |t o T

_ _ g/ In eQIm(wfw’)JrZwIm(T) + é/(w o w ’lf)l)
2 ) ) )
= — o/ [Im(w — ') + 772] + G (w, w;w', @' [7.18]
and so the periodicity condition indeed picks up a term —a’/[Im(w — w’) 4+ 773]. On the
other hand we have that under w — w + 277
[Tm(w — w')]? — [Im(w 4 277 — w')]? = [Im(w — w') + 277)?
= [Im(w — w')]? + 47 mIm(w — w') + 47273 [7.19]
and so
o[Im(w —w))? o[Im(w — w'))?

4710 4719

+ o [Im(w —w') + 71'7'2] [7.20]

Combining the two we thus find that indeed G’ (w,w;w’,@’) is also periodic under w —
w + 27T

Let us now show that G'(w,w;w',w") also satisfies (7.2.1). Let us first consider the
case of G'(w,w;w’, w") with w # w’. In that case we have G’ (w, w;w’, w') is the sum of a
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holomorphic and an anti-holomorphic function of w and so clearly 900G’ (w, w; w', w') = 0
when w # w’. Just as for the case of the sphere, we need to be careful at coinciding points
because we expect that this will generate the delta function. Now the ¥; (v, 7) function has
a Taylor expansion in v and the constant term ¥, (0, 7) is zero by (7.2.42). Therefore, near
v=0,

91 (v, 7) = v9,(0,7) + o(?) [7.21]

where ¥ (v, 7) = 9,91 (v, 7). We thus have near w = v’

/ /

_% [h”gl(w%_w ’T> +ln191(w27TWI’T>} ~

2

O[I

/
= — [ln]w —w'|>+1n %(0,7)

27

5 + o(w — w')2)] [7.22]

and thus as w — w’ we have the same behaviour as on the sphere — which makes sense
as at coinciding points the global topology should not play a role in this — and we indeed
have

2 e
= lim 990G (w,w;w', @) = —2m6?(w — w') [7.23]

o w—w’

Let us now check the second second term in G’ (w, w; w', @'):

jéa{a,[lm(w—w’)]2} 1 58<w—w’—w+w’>2

YD) 21Ty 21

1 = _ 1
The function k(, 7) obviously satisfies 90k (7, 7) = 0 and we thus conclude that G’ (w, w; w', ')

indeed satisfies (7.2.1).

7.7 p 209: Eq. (7.2.4) The Expectation Value of Vertex Operators on
the Torus

The derivation is entirely similar as for the expectation value of vertex operators on the
sphere in the (6.2.13). We refer to that derivation for details. The first ting we did there
was to extract the regularised part of the vertex operators [6.33]

1a'k?

[eiki'X(Uz‘)} = exp <—227’ In dz(Uz’,Ui)> eikiX (1) [7.25]
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Using this we obtained via a straightforward calculation that [6.39]

Ao (k, o) :iC'%(Q(QW)DéD(Z k;) exp Z ki - k;jG'(04,05) Zk2G/ (04,0%)

1<j=1

where we defined
Of/
G;(Ui,aj) = G/(Ui,Uj) + B In dQ(O'Z', Jj)

with d the geodesic distance, which at short distance is given by (3.6.9)

)2€2w(0) |2€2w(a)

d*(o1,02) = (01 — 09 = |z12

We now need to work out G, at coinciding points:

/
lim G (w,w;w)0" = lim G'(w,w;w') + - Infw — w')? 4 w(w)
w'—w w'—w 2

But we saw in [7.21] thatas v — 0
91 (v, 7) = v,(0,7) + o(v?)

and therefore

/ 2
lim G'(w,w;w') = & [ln|w —w')? +1n 9,91(0,7) + o(w —w’)2)]
w!' —w 2 2w
so that
/
lim G (w,w;w') = @ [l 9910, 7) —i—aw(w)]
w' —w 2 2

[7.26]

[7.27]

[7.28]

[7.29]

[7.30]

[7.31]

[7.32]
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Bringing it all together we find

AEz(kw)=i0¥2(2w)D5D(Zki)exp{ — zn: k:l@( m‘m(“’” 7)‘2

i<j=1
2
+ o/w(wﬂ)] }

(Im U}l o
)
=i (2m) 0P (Y k) exp { Z o'k -k In [(191 (22,7 exp (W) ]

i<j=1

Z o krw(w;) + Z k2
wir a/(Imwi ')2 O/ki-kj
=iC%(2m) PP (D ki) exp { > I [‘191 (#,T) ’ exp <—47TT2J) ]

n
i<j=1

0,91(0,7)
2

819107')

!

n

- = ak:2 (w; In
Z IR

=1

=iC3%(2m) P67 (Y ki) exp [_2 > a’kfw(wi)]
) =1

819107‘)

Wi o (Imw;; )? okiki n o =5k}
9, (j7-> ‘ exp (_ZJ) _m
iZim1 [‘ 27 47Ty Zl_Il 0,91(0,7)
[7.33]
We can now rewrite the last product as follows. We use (6.44) with f;, =1fori=1,--- ,n
—22 ki - kj —Zk2 = k- Y Ky [7.34]
i<j=1 i=1 j=1

By momentum conservation the RHS is zero so that

ik? =-2 i ki - kj [7.35]
i=1

i<j=1
Therefore
- 2 =R or — % S K o o 3= kick;
L10,0:(0,7) ~ [8,9:1(0,7) ~ a0 (0,7)
u P
= 2L W [7.36]
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This gives our final result
Al (k, 0) =iC% (2m) PP (D ki) exp [—; > a'k?w(wi)]
- 27 Wi o (Imw;; )2 okicks
T [ (o ()
iZi=1 ( 2w )

0,01(0,7) 4Ty
This is (7.2.4), if just as in (6.2.13) we set the conformal factor w = 0 by taking a confor-
mally flat metric in a region containing all vertex operators.

7.8 p 209: Eq. (7.2.5) The Scalar Partition Function on the Torus, I

We have one translation in "time" and one in "space". The translation is Euclidean time
t is generated by the Hamiltonian , e~ and the translation in space is generated by the
momentum operator ¢©%, Think of the torus w = ¢! +i0? = w + 277 as being a closed
string of circumference 277, that evolves and turns into itself after a time 2775. So we
have a time evolution of e=2"2# with H the Hamiltonian of the worldsheet field theory.
We worked out in (2.6.10) that this is given by H = Lo + Lo — (c + ¢)/24. But that is not
all, when the closed string comes back to itself it has been "twisted" by an amount 277,
that is a translation of ¢2?"F'™ with the translation operator given by P = Ly — Ly.

To calculate the path integral without vertex operators Z(7) = (1)72(,) we thus start
from any ground state, we let it evolve over time 277> while at the same time we twist it
over 277, and then measure the overlap of that evolved state, with the original state. We
need to do this for all possible intermediate states, so we need to sum over all possible
states. Therefore

Z(T) = <1>T2(7) = /TQ( )[dX] G_SP — Z <¢‘ 6—27r7'2H627rz'7-1P |¢>

all states [¢)
=Tr exp(—2n1oH + 2miT P) [7.38]

where the trace is over all states and Sp denotes the Polyakov action. Let us now work this
out. We also use the fact that for the matter sector ¢ = ¢ = d, with d the number of scalar
fields.

~ d .
Z[r] =Tr exp |27 (LO + Lo — 12> + 2miTi (Lo — LO)]

[ ~ d
=Tr exp |27mi(iTe + 71 ) Lo — 2mi(—iTe + 71) Lo + 4777‘224}

~ d
=Tr exp |2miTLy — 2miT Ly + 477 24] [7.39]
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We now introduce ¢ = exp 2wiT so that
qq = exp 2mi(T — T) = exp(2mi2iImT) = exp —4n7o [7.40]
and thus indeed

Z(r) = (qq)~Y** Tr gFogho [7.41]

7.9 p 209: Eq. (7.2.6) The Scalar Partition Function on the Torus, II

The trace in the partition function is over all states in the Hilbert space. For the scalar field
these states are characterised by their momenta k and their oscillator level. The oscillator
level is given by N,,, where ;1 = 0,--- , 25 is the spacetime index and n = 1, --- , 00 is the
oscillator index. We saw in (4.3.31) and (4.3.32) that, focussing on the matter part only,!

/

Lo =7 L * +m?) +nzl ZNW [7.42]

and the same of course for Ly. Let us spend a minute to make sure we understand this
formula. Take as an example a state (a”3)?al7, |0; k). We have chosen a timelike and a
transverse Lorentz index for convenience. Th1s state has non-zero oscillator indices and
levels n = 1; Ny71 = 1 and n = 3; Ny 3—3 with all other N,,;, = 0. The weight of this state is
thus

Lo(a® )0, 0; k) = [jk2+<1+2x3>]< %0l [0 k)

oo
- 42 +> n Z Ny | (@5)2a7 |0; &) [7.43]
n=0 pu=0
To find the partition function we need to take the trace over all possible states
Z(’]’) — (qq) d/24 T[' q 4 p +Z’n lnzu 0 Nl”lq 4 p +Z7n 1 mzis:O Nﬂm [7_44]
To rewrite this is less simple than it is often inferred. Let us ignore the anti-holomorphic

side and the Lorentz index for convenience. We thus wish to evaluate Tr g>-n=1"Nn_ Let us
work this out for the first few levels

I'This means ignoring the ghost contributions Ny, N., and a9 = 1, see (2.7.21). Recall that
X =0, see (2.7.9).
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weight Lg states nr of states
0 1 1
1 a_q 1
2 a_9, 012,1 2
3 Qa_3,0_o0_1, ail 3
4 Q_g4,00_300_1,0_90_9, oz_ga%l, o/il 5
5 a5, 040 1,0 309, 302, 0’0 1, a_s03 1,05 7

Table 7.1: First few states of the string, matter sector

One sees that for weight n one needs to find all partitions of n, denoted by p(n) and we
have

Tr g2on=1"Vn — Z p(k)g* [7.45]
k=0

There is no closed form expression for p(n), but we can rewrite it as

S o) =T]> ™ [7.46]
k=0

/=1 m=0

One can easily work out the first few cases for oneself, but it quickly becomes very messy.
The easiest way is to use common sense. If you consider the expression

(1+q+q2+q3+q4+-~-) x (1+q2+q4+q6+q8+---> x <1+q3+q6+q9+--~)

If we wish to extract e.g. how many times we find ¢® e.g. we have a contribution ¢ + ¢ x
g+ q X q X g, so we recognise the partitions of three. This is easily seen to extend to all
power of ¢ which proves [7.46].

Adding the momenta, the Lorentz index and the anti-holomorphic part is straightfor-
ward and we get

dik co 25 0o

d -
26r) =)V [ gt I I] Y e [7.48]

n=1p=0nN,, N,,=0

Using, once more, q7 = exp —4n 7y this gives

ddk _ /k2 > N, N
T | D DENE A [7.49]

T Np,n 7Np,n:0

ﬂﬂz@ﬂwﬂw/
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7.10 p 210: Eq. (7.2.8)-(7.2.9) The Scalar Partition Function on the
Torus, III

The momentum integration is just a Gaussian, after we perform a Wick rotation of the
spacetime momentum k° — ik%:

dk /1.2 dk /9 d 1 T d
—mrea’k? _ TR N — (4 2 N—d/2 s
/ (QW)de Z </ 27" > ! <27T WTga’> i(4mmya’) [7.50]

We thus get

2(r) = (qd) " Vai(4r* 20 ) T[ (1 = )1 = )"
n,p

=iVy(qq)¥** (4’ ry0) d/QH ~1—gm

—~1 -1} ¢
=1iVy {(47F2720/)1/2 [ql/24 H(1 - qn)] [ql/% H(1 - qn)] }

— iV [(47r272a')*1/2|n(7)|*2r — iVyZx (1) [7.51]

with
Zx(1) = (4 o) (1) [7.52]

and
DE A | (D [7.53]

Let us check the modular invariance of Z(7). Under 7 — 7 + 1 we have clearly
472190 — 4m?ma’ and also

|77(7')\2 N [627ri(7'+1)/24 ﬁ (1 _ eQTrin(‘rJrl))] % [ —2mi(7+1)/24 H ( o—2mim( ‘r+1))]
n=1
:eQTri/24e—27ri/24 [eQTFiT/24 lo_OI (1 _ eQﬂinT)] [ —2miT /24 H —27r7,mT ]

n=1

= |n(T)? [7.54]
and under 7 — —1/7 we find, using (7.2.44), and

Zal 1Ty
23 12 + 2 12
1 2 1 2

T+ 1179 — — [7.55]
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that

, 1T

Zx(r) = <4m > T e e )
P

o O () = () ()]

= Zx(7) [7.56]

= (47727'20/)_1/2\7'|

and so also Z(—1/7) = Z(7).

7.11 p 210: Eq. (7.2.11) The Change of Metric for the Torus

ds? = (14 &* + ¢)d[w + e(w — w))d[w 4 £*(w — )]
=(1+¢&* 4 &) [dwdw + e*dwd(w — ©) + ed(w — w)dw] + o(e?)
= dwdw + *dwd(w — w) + ed(w — w)dw + £*dwd + edwdiw + o(e?)
= dwdw + &*dw? + edw? [7.57]

which is exactly how the line element changes under dg,,5 = 0, §guw = ¢* and dggz = €.

7.12 p 210: Eq. (7.2.12) The Periodicity of w’

Under v’ — w' 4 27 we have
wH2n=w+e(W—-w)+2r=w+2r+e(w—w) =w+e(w—w) =w [7.58]
and under w’ — w' + 27 (7 — 2ime), using 7 = (7 — 7)/2i

w' + 27 (T — 2ime) =w + (W — w) + 27 (T — 2iTe)
T—T
2
=w+e(W—w—277 +277) =w + (W — w) = w' [7.59]

=w+ 277 + g(w — w) — 4mi €

7.13 p 210: Eq. (7.2.13) The Change in Modulus form the Change in
Metric

The torus described by coordinates w,w and moduli 7 is thus the same as the torus de-
scribed by coordinates w’ and moduli 7/ = 7 — 2imee. The change in moduli is thus

Str=17 —7=—-2ime [7.60]
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7.14 p 210: Eq. (7.2.14) The Change in the Partition Function due to
a Change in the Metric

We have

5Z(7_) (5 / _S
0Z (1) = 1) ab = dX]e ”P )6 a
( ) 5gab Jab 5gab ( T2(7')[ ] Jab
= ([, tax1es 2 Yo,
T2(7) dGab
= — [/ [dX] e‘SPl/d2aTab(J)
TQ(T) 47‘(‘
_ % / 2w ( / dX] e_SPT“b(U)> 50
T2(7)

__ L / Pl (o)) g = — 5 / 2w [(T (0))8gun + (T (0))5gim]

5gab

S or
-2 / d2w[<Tm(w)>59ww + <Tww(w)>5gm] [7.61]

s

We have used the definition of the energy momentum tensor 7% = 4765/8gy, d>c = 2d*w
and 4T, = TY?, 4T3z = T*". We now fill in the form of the change in metric and then
use the worldsheet translation invariance of the theory to bring the energy momentum
tensor to the origin

= — 2 [T O)" + (T (0))e] / o [7.62]

We know from [7.10] that the surface area of the torus is 4727 and we have from (7.2.13)
that e = i07/27

3Z(7) = — %[— ;(:@W(o» + ZS;(TW(OMWTQ
= 2 [5T<Tww(0)> ~ 5%<TM,(O))] [7.63]

Note that there is an error in the first line of (7.2.14); the coefficient should be 2/7 and
not 1/2x. This is not mentioned on Joe’s errata page.
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7.15 p 211: Eq. (7.2.15) The OPE dX*(w)8X,(0)

From the (2.1.21b) we have

O/”I’]'LW 9
Xt (w) XY (z) = — In|w—z|*+ : X*(w)X"(2) : [7.64]
and thus
O/’I?“V
aX'u('lU)aXV(Z) = — m‘i‘ : 8XH(UJ)8XV(Z) :
__ﬂ_i_aXu()aXl/()_i_( _) [765]
= Sw—2p z z): tolw — 2 .
Therefore
o' o*
OXH(w)0X,(0) = — W;+ : 0XHOXY 1 (0) + o(w)
/
d
= — 5 — A Tuu(0) + o(w) [7.66]

where we have used T'(w) = —(1/d/) : 0X9X : (w).

7.16 p 211: Eq. (7.2.16) The Expectation Value of 8 X*(w)8X,(0) on
the Torus, I

The Green’s function is defined as #**G" = (0" X 0" X) /(1) 2(;). We divide by the vacuum
expectation value to describe the connected diagrams only. From this it follows that

_ : Ned — -
70 (w)0X,(0) =d u}'lgo OOy G (w, w; W', w'") [7.67]
Let us take the derivatives of the Green’s function (7.2.3)
2
bon o w—w 2 [Im(w —w")] ~
G (w,w;w',w'") = 5 In ‘191( 5 ,7’)‘ +a S e— + k(1,7) [7.68]
Let us start with the first term
8 291 - ,7'
oy 1n(191( )‘ - ( 2 )
n(57)
8 191 w= /191 aw’awﬂl w;:/’ T
_ () () (M)

19%( 27;” T>
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From the definition of the Jacobi theta functions it is clear that #; is even in its first argu-
ment and so we can replace 9, by d,,. Thus

N C TS

Oy Oy In |91 - [7.70]
o T Can R
and thus
2
o wew N2 od |00 ()] — o (gr)o2e(£.7)
- hm8/8 ln’zﬁ‘l( ,7')’ = - —X
2 2 2 192(2 ’ )
. a’d 19181%191 — 8w1918w191
=5 19% [7.71]
with 91 = %1 (w/27, 7).
Now for the second part. We already worked this out in [7.24]
_ Im(w — ') '
00 {o/ [m(w — w') } —— [7.72]
A7y 81Ty
Combining both expressions we find
1 /d 191(92 191 8w1918w191 O/d
X .
7y X ()0 X,u(0) = = 7 + 5 [7.73]

7.17 p 211: Eq. (7.2.17) The Expectation Value of 8 X*(w)98X,(0) on
the Torus, II

We first show that ¥;(v,7) is odd in v. We use the expression (7.2.37d) and find, using
y = 627ri1/ SN 6—27riu — 1/2,

D (—v,7) =i fj (=) (12 = fj (=gt 774
Changing summation index n = —m + 1 gives
91 (—v,7) =i i (=) = m o 1)l mm /2P m=12 = i (m=1/2)% m=1/2
- ;I; 7) T [7.75]
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Now if a function f(z) is odd, then its f/(z) is even. Indeed

This is easily generalised to that that if f is odd then its odd derivatives are even and its
even derivatives are odd. Now an odd function f always has f(0) = —f(—0) = — f(0) and
thus all odd functions have f(0) = 0, but also all there even derivatives are zero at zero.
This is a long story to say that ¥}; (v, 7) and all its even derivatives vanish at » = 0. We can
thus expand ¥, (v, 7) as

1
V1 (v, 7) = v91(0,7) + 61/3793”(0, 7) 4+ o(v°) [7.77]
Let us now write 6 for ¥(0, 7) and likewise for all its derivatives. We thus have
/ 1 3
V1(v,T) =vl + i 0" + -

0,01 (v, 7) =0 + %1/29”’ + -

020 (v, 7) =vd" + - - [7.78]
We thus get, ignoring the higher order terms

19183191 _ 61,1918,/191 B (1/9/ 4 %V?’Q”/)I/Qm _ (9/ + %VQQ///)Q
V2 - (Vo' + %1/39”’)2
1/29’9’” — 99 — V29/9///
V29/9/(1 + %V201/1/9/)2
1 1 29/// 9 1 1 9///
= el Tty

[7.79]

We now need to replace v by v = w/2x, but both sides have a total of a second derivative,
so we also have
19185}191 —8w1918w191 1 183)19(0,7')

= 4 T .80
2 w? " 38,0(0,7) [7.80]

Using this, we find for (7.2.16)

1 od  o'd39(0,7) = od
H = — — " :
Z(T)f)X (w)0X,,(0) 202 " 6 9,0(0,7) " 8wy

[7.81]

We see that the double pole indeed corresponds to the double pole of the expectation value
of (7.2.15) and that the order w° term is given by (7.2.17).
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7.18 p 211: Eq. (7.2.18) The Expectation Value of 8 X*(w)dX,(0) on
the Torus, III

We take the expectation value of (7.2.15) on the torus

OXH)IXA0)) = — 2 (1) s — o (Tune(0) + o)
=~ X 2() ~ o (T (0)) + ofu) [7.82]

Comparing with [7.81] we find that

3 T
(T (0)) = <_Z§ZZESZT§ B 87?7‘2) 2(7) [7.83]

7.19 p 211: Eq. (7.2.19) The Expectation Value of 8 X*(w)8X,(0) on
the Torus, IV

Working out the LHS of (7.2.14) we have

0Z 07z _
557 + E(ST = =270 [0T(Tww(0)) — 07 (Tiww(0))] [7.84]

Filling in (7.2.18) and its conjugate this gives

07 oz d039(0,7) d
- 57 = -2 7
or o7+ or 0T = —2mi [67 ( 6 0,,0(0, 7) 8717'2) (7)
([ da3v(0,7)  d \=
- 7 .
o7 ( 60,0(0,7) 87772> )] [7.85]

From the §7 part we thus have Filling in (7.2.18) and its conjugate this gives

0z mid 939(0,7)  id
ar ( 3 0u0(0, )+4¢2> zm) 786!

Equivalently

mid (93,19(0, T) id

3 0,0(0,7) | 4ms e

O-InZ(r) =
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7.20 p 211: Eq. (7.2.20) A Jacobi Function Identity

We have
v, 7) =~V Bg} (v, 7) Z ewi(n+1/2)27+2m(n+1/2)(u+1/2) [7.88]
Thus
i 1\2 . ) .
83191(1/,7') — 4?2 Z <n+ 2> ewz(n+1/2) T4+2mwi(n+1/2)(v+1/2) [7.89]
and
o0 1 2
091 (v, 7) = mi Z (n—i— 2) eTi(n+1/2)?742mi(n+1/2)(v+1/2) [7.90]
Therefore
0291 (v, 7) = 4mid. 01 (v, T) [7.91]

and setting v = w/2w

829, (%7) - %aml (%7) [7.92]

7.21 p 211: Eq. (7.2.21) The Differential Equation for the Partition

Function
We have
0.0, w3
7—1 w - - - W .93
8 Ila 191 aw’ﬁ1 Zaw’ﬁl [79]

where we have used (7.2.20). Thus, (7.2.19) becomes

O, InZ(r) = L"dia In 9yt (0, 7) + L
3 419

= — —8 In 0,91 (0, 7) + i—d [7.94]
T2
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7.22 p 211: Eq. (7.2.22) The Partition Function from the Differential
Equation

We check that (7.2.22) satisfies (7.2.21) and its conjugate equation.

d d — d. 7—7T
InZ(1) ~3 In 0,y (0, 7) — 3 In 0,91 (0, 7) — B In 5 [7.95]
and thus
d d 1
O-InZ(1t) = — -0, In0,01(0,7) — = —
3 27 —T
d d 1
— — %9 Mo, 0,(0,7) — =~
3(9 n 0y, %1 (0, 7) 5%
d id
= — 50: a1 (0.7) + @ [7.96]
4’7‘2

The conjugate equation is satisfied in the same way and so (7.2.22) indeed satisfies (7.2.21).

7.23 p 212: Eq. (7.2.23) The Partition Function for the Ghost System,
I

Our starting formula is an expression for the partition function of the matter sector, [7.48]
which we repeat here for convenience,

co 25

de k‘ o V
TI' 2o H+2mim P __ (qq) d/24 Vd/( k’2/4H H Z quN"qu/‘" [797]
n=1p=0 N\, Nyun=0

What are the changes for the ghost sector? To start with the —d/24 gets replaced by
+26/24 = 13/12. Indeed the d is just the central charge of the matter sector, so for the
ghost sector that is —26.

Tr =272 H+2Tm P _ g (qa)13/12 Ty qL()qio [7.98]

Next, we use again (4.3.32). We don’t need the integration over the momenta for the
ghosts, we don’t need the spacetime index. Furthermore, the ghost occupation number
can be only zero or one so the sum reduces to 1 + ¢". So both the b and the ¢ ghosts
contribute a |1 4 ¢"|?> which gives a |1 + ¢"|*. Moreover we have the normal ordering
constant a¢ = 1 which leads to an extra factor (¢g)~!. Finally each holomorphic and anti-
holomorphic sectors have two ground states |1) and ||) so that the closed string has four
ground states |1, 1),[1,1), ||, T) and |/, ]). We thus have four times the same contribution.
This formula thus reduces for the ghost sector to

oo o
Ty o~ 22 H+2miri P :4(qq‘)13/12 (q@—l H 11+ q2\4 _ 4(qq—)l/12 H 11+ q2\4 [7.99]

n=1 n=1
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7.24 p 212: Eq. (7.2.24) The Partition Function for the Ghost System,
II

The appearance of the (—)* is explained in appendix A in (A.2.21) to (A.2.23). Where F
is the Fermion number and is even for ||) and odd for |1). We thus have

O =+t O =+

Gt == O =-1) [7.100]

and so rather than adding up the four ghost ground states cancel one another.

7.25 p 212: Eq. (7.2.25) The Ghost Insertions

The fact that the trace (7.2.24) vanishes should not be surprising as we know that we
need to put ghost insertions in the the expectation value. We need equal number of ¢
insertions as we have moduli and equal number of b insertions as we have CKVs. We saw
that the torus has two real moduli (the complex 7) and two real CKVs, hence we need
two ¢ and two b insertions. So the vacuum ghost expectation value should indeed be

(c(w1)b(w2)&(w3)b(w4)).

7.26 p 212: Eq. (7.2.26) The Trace with the Ghost Insertions

Let us look at the holomorphic part first. We use the Laurent expansion of the ghosts
(2.7.16) and the action of their modes on the ghost ground state (2.7.18).

(b= 3 3 ﬁ«rmb 72

wy

- Z Z w” w1y n+2 n+2 —bnCm + Omin)12(r)

= boCo TQ(T) + Z Z — —m+2 <1g>T2(7') [7.101]

But (1,)72() = 0 by the fact that the trace over the two ground states of the holomorphic

sectors cancel one another due to the (—)% in the trace. We therefore find, adding the
anti-holomorphic sector that indeed

(e(w1)b(ws)E(m3)b(w4)) = Tr (—)Fcobgaoéoe—mm%iﬁP] [7.102]
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7.27 p 212: Eq. (7.2.27) The Partition Function for the Ghost System,
Final Result

Recall (2.7.18) the action of the ghost zero modes on the ghost ground states: by |]) =
co|1) =0,b0[T) =|4) and by |}) = |1). This means that

cobo [T) =cold) =11); and cobg |4) =0 [7.103]

The ground state ||) is thus projected out of the trace and both the holomorphic and anti-
holomorphic sector only contribute once to the sum. Therefore we lose the factor four in
(7.2.23). We also need to evaluate Tr (—)% g2=n=1"n for the ghost excitations. This looks
like an innocuous and straightforward formula, but, at least for me, it is not and needs
a detailed derivation. We refer to the explanation of (7.2.6). We need to consider the
different level ghost weights and their contributions to the partition function. The issue
here is that we can both have ¢ and b excitations at a given weight, so let us work out the
first few levels in detail.

e level 0: no ghost excitations so a contribution ¢° = 1.

e level 1: two ghost excitations: ¢_; and b_;. Both have a —1 from the fermion factor (—)¥
so a contribution —2q.

)

e level 2: there are three possibilities: c¢_5,c_1b_1 and b_5. Two have fermion number —1 and
one has fermion number +1. So we have a contribution —g¢2.

e level 3: the possibilities are ¢_3,¢c_sc_1,¢_2b_1,c_1b_5 and also b_3 and b_5b_;. There are
six possibilities, two of them have fermion number —1 and four have fermion number +1.
So we have a contribution +2¢3.

e level 4: the possibilities are c_4,c_s3c_1, Cfgbfl, Cfgcflbfl, C,Qb,Q, 071b737 Cflb,Qbfl, b_4
and b_3b_;. There are nine possibilities, four of them have fermion number —1 and five
have fermion number +1. So we have a contribution +q¢*.

e ctc.

The pattern should now be clear: we are looking for a double distinct partition at every
weight. We will leave it to the reader to work out that at level five there are six possibilities
with fermion number —1 and eight with fermion number +1 giving a +2¢°. So we have
found so far

Tr (—)Fgzn=1™n =1 - 2¢— P +2¢° + ¢* +2¢° + - - [7.104]

It turns out that we can represent this as [[°-;(1 — ¢")?. Indeed using Mathematica to
work this out gives

o
H(l ¢ =1-2¢— @ +2¢3 + ¢ +2¢° — 2¢° — 2¢% — 2¢° + ¢'° + 2¢"3 + 3¢™
n=1

— 2" 42416 — 219 _ 9420 4 9421 _ 9422 _ 64 — 4 42420 + .- [7.105]
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Adding the anti-holomorphic sector and bringing it all together we see that we can write

(el b(ws)é(is)b(w1)) = (q)"2 T] 11 = a"* = In(r)]? [7.106]
n=1

7.28 p 213: Eq. (7.2.29) Modular Invariance Implies Integer Spin

From (7.2.28) we have
Z(r+1) = Z o2mi(T+1) (hi—c/24) ,—2mi(7+1) (hi—¢/24)

— eQWi[hi—;Li—(c—E)/24]Z(T) [7107]
Invariance under 7 — 7 + 1 thus requires

c—¢C

h; — ilz _ cZ [7.108]

One operator that is certainly in the theory is the unit operator 1, which has h; = ﬁl =0.
The above equation thus implies that (c—¢)/24 € Z and thus from that, also that h;—h; € Z.

7.29 p 213: Eq. (7.2.30) The Density of States at High Weights

Setting 7 = i the partition function for a general CFT becomes
Z(if) = Z o~ 2ml(hi—c/24) ,—2ml(hi—&/24) _ Z o 2mtlhthi—(c+¢)/24] [7.109]

For ¢ — 0 we can expand the partition function

Z(i) =) [1 — ol <h + hi — C;j)] + o(£?) [7.110]

i
and it is the states with the large weights that give the largest contribution to Z.

By modular invariance we must have Z(r) = Z(—1/7) or with 7 = i/ this means
Z(il) = Z(i/l). Now

2(ift) = Y e i (e [7.111]

)

Now as we let ¢ approach zero, it is the smallest weight that contribute, but the state
with lowest weight in a unitary compact CFT is the unit state with weight zero. Thus as
limy_,o Z(il) = e™(¢+9)/12¢ and by invariance under 7 — —1/tau we have

lim Z(if) = emlete)/12¢ [7.112]
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7.30 The Jacobi Theta Functions

We will not derive all these equations as it it pure mathematics. For those readers interested
in more details see e.g. the seminal book E.T. Whittaker & G.N. Watson, A Course of Modern
Analysis, pp 462-490.

7.31 p 216: Eq. (7.3.2) The b-Ghost Insertion

By definition

1

B
47

(b, ,g) = ﬁ / &0 \/GH0; guy [7.113]

We use 2d°c = d*w, /g = 1 and. v® = g®v, = 2v, so that b*% = 4byy to get

1

B = 27 /d2w (bﬂ)ijaﬂ-gww + bwwaTglbm) [7.114]
T

Let us now look at the variation of the metric dg,,, = ¢* and using (7.2.13) i.e. i =
—2i7’2€2
Orgww = OrgwwdT + Oz guwdT
= 0rgww (—2im2¢) + Oz gww (2iT2e™) [7.115]

Setting this equal to dgg = € we find that 97955 = 0 and 0 ggw = i/72. We have of course
also the conjugate expressions, in particular 0, g, = 0. Plugging this into [7.114] we find

le/de L (w) ! /debww(w) [7.116]

2 2 Y - 4779

We use translation invariant to put the ghost field at the origin and are then left with the
surface are of the torus, which we know is [ d*w = 2 [ d?0 = 87?7, and thus

B = 2mibye, (0) [7.117]

7.32 p 217: Eq. (7.3.4) The General Amplitude on the Torus

The explanation in Joe’s book is quite detailed already, but let us just recall the main
point. We have used the CKV to fix the location of one vertex operator in w;. But we can
essentially put this anywhere on the torus. We can then just "average" out its location over
the torus. Basically what we do is we replace

1 9 B 1 9 _ 1 )
8777 /d whilen) = g /d R /d wivi(wr)  [7.118]

Vl (wl) =
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In the first equation we have kept the vertex operator at the position w; and multiplied
and divided by (twice) the area of the torus. We have then used translational invariance to
put the vertex operator at w and then change integration variables. Applying this, together
with (7.3.2), to (7.3.1) gives

Spa(1:2: i) = % /F e <2m’b(0)[—27ri5(0)]6(0)c(0)87T127_2 1:[1 Vi(w;, wi)>

— /F de%<b(O)l~)(0)é(O)c(O)ﬁVi(wi,wi)> [7.119]

41
2 i=1

7.33 p 217: Eq. (7.3.6) The Vacuum Amplitude on the Torus

We fill in the matter part (7.2.8) and the ghost part (7.2.27) in (7.3.5)

) drdt _ _
Zrs —iVag / o (Am2am) () 2 () !
Fy =72

. drd7 B _
— iVag / Z T (420l ) 13| (r)| 48 [7.120]
Fy 472

7.34 p 217: Eq. (7.3.7) Modular Invariance of the Vacuum Amplitude
on the Torus

Under 7 — 7+ 1 we have, using (7.2.44a), that |n(7)| — |n(t+1)| = ‘6i7r/1277(7)‘ = |n(1)|-
All the other factors in the torus vacuum amplitude are obviously invariant as well, so we
have invariance under 7 — 7 + 1.

To check invariance under 7 — —1/7, we first rewrite (7.3.6) as

. drdT _ —12
Zp2 :ZV26/ 1 (47r2a/7'2) 137—2 [7-2‘77(7-”4]
Fy #T2

i‘/26 d7d7_' 47—12
= 121
4(4m2a/)13 /Fo e [r2In(7)["] [7.121]

Now under 7 — —1/7, using (7.2.44b) and the fact that 5 — —72/|7|?,

72 . 40m
nli) = =5 [ = @l = nel 7122)
To show invariance of the measure - — 7/ = —1/7, we first note that the Jacobian is simply
_ or /ot 0 11
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Thus
dr'dt’"  drdrt 1 _drdT

T el T

[7.124]

and so is invariant as well.

7.35 p 217: Eq. (7.3.8) The Vacuum Amplitude on the Torus for a
General Theory

I am not sure about this formula. It seems like Joe is saying that the ghosts cancel the
contribution of two of the non-compact dimensions, and that all the other non-compact
dimensions don’t contribute to the partition function. That seems strange. I would have
expected the following. The theory consists of d scalar fields X and a general CFT that
has a Hilbert space # L with highest weights (h;, h;). The total central charge of the
matter sector plus the CFT is d + ccpr = 26. The ghosts cancel the contribution to
the transition function of two of the matter oscillators, but we are still left with d — 2
matter oscillators that contribute a Dedekind function |1(7)[>(=2). I would thus expect
the partition function for this theory to be

Zp2[X1); CFT] =iV / drdr

i - (47T2a/7_2)—d/2m(7_)|2(d—2) Z qhi—lqhi—l [7.125]
0

1€H |

7.36 p 217: Eq. (7.3.9) The Partition Function for a Particle on a Circle

This is similar to the derivation of (3.3.22) but limited to the point particle. We will in
particular closely follow the discussion in [19] as it solves exercise 5.1 which requires the
partition function for a point particle without periodic boundary conditions. We will, of
course, extend this to a particle on a circle. The formal expression for the path integral of
a particle on a circle is

X(1)=Xo b e
Zg = / [dX de]  _s,.(x.q]

[7.126]
X(0)=Xo 2Viit X Virans
with matter action (1.2.5)
1t 1
Sm[X, €] = 2/ dre <628X“6X“ + m2> [7.127]
0

Here e is the einbein?, 7 € [0, 1] is a parameter describing the circle and 0 = d/dr. Because
we are on the circle the fields X* and e are periodic under = — 7 + 1. As discussed in

2The reader shall not be confused by the fact that we use the same symbol for the einbein as for
the the Euler e.
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section 1.2. this action is diffeomorphism invariant. However, as discussed in section 5.1
not all einbeins on a circle are related by a diffeomorphism. Indeed if we define ¢ to be the
invariant length of the circle ¢ = fol dr e(7), then under a diffeomorphism 7 — 7/(7) we
have 7/(1) = ¢, see (5.1.4), and so we cannot simultaneously fix the gauge and keep the
coordinate region fixed. The invariant length ¢ is a modulus and describes circles that are
not diffeomorphism equivalent. Even after gauge fixing the theory has a residual symmetry
of a global translation of 7 around the circle, corresponding to the fact that we are free to
choose the origin of the circle. Thus we need to divide by the volume of that translation
group as well. These translations are given by (5.1.6), i.e. 7 — 7+wvmod 1 and the volume
of that group is obviously ¢. For now we will write this as V;;.,s and only use its value later
on. Even after that, there still is a residual symmetry of replacing = — —7 and so we need
to divide by factor of two as well.

It will be convenient to introduce an inner product on the space of functions of the unit
interval. For two such functions we define

1
(f.9) = / dr e(r) f(r)g() [7.128]

This is, of course, similar as the inner product we defined for the string. We can now
rewrite the matter action in terms of the inner product

Sm[X, €] = %(eilaX“, e 10X,) + %EmQ [7.129]
We chose a fiducial gauge é and define the Faddeev-Popov measure
1 = App(e) /dﬁ [de]d(e — €°) [7.130]

This is the equivalent of [3.27] for the point particle with an integration over all diffeomor-
phism parameters ¢ and é° being the einbein in the fiducial gauge after a gauge transforma-
tion and / is the parameter for the global translations. We plug this into the path integral
and perform the usual manipulations, including integrating over all possible moduli ¢,

XW=Xo  [dX de]
g = — —  Agpple /dﬁ deld(e — é8)eSmlXoel [7.131]
& /X(O)XO 2Vdiff X ‘/trans FP( ) [ ] ( )
We carry out the e integration and rename the dummy variable X
=Xo dXE dg] £ pe
d? —A 58 ) e SmX e 7.132
/ / =Xo 2Viift X Virans FP(e )e [ ]

We use the gauge invariance of the Faddeev-Popov measure, the action and the integration

measure
Xo dXd5] AN —S 5
de / ———— App(e)e X [7.133]
/ =Xy 2Vaift X Virans FP( )
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We can perform the integration over the gauge parameter ¢ and this gives Vgg which
cancels the same factor in the denominator. We now also use the volume of the translations
Virans = £. All this gives us

00 X(1)=Xo .
Zg, = / at / [dX] App(&)eImXoe [7.134]
o 20 Jx0)=xo

Let us now calculate the Faddeev-Popov determinant. Just as in (3.3.16) we expand
the einbein for a small change both in the coordinate 7 — 7¢ = 7 4 ¢~ !¢ and the modulus
£ — £+ 6¢. Let us first keep the modulus fixed. Then

=e°(7°) —edlne(r) —e(7) [7.135]

E(E\ __ dr _ i -1 _ i -1
e (%) =e(T) T = e(T)dT (1—e ) =e(r) (1 + = Oec — e 86)
=e(7)+edlne — Oe [7.136]
Therefore
de=e+edlne — 0 —edlne —e = —0¢ [7.137]

Adding a small change in the modulus as well then give
de = —0es + Ope OF [7.138]

Note that as we are working with a fixed coordinate rate and a variable ¢ we need that
7¢ € [0, 1] as well. This implies that (7 = 0) = ¢(7 = 1) = 0. From [7.130] it thus follows
that

App(e)™' = / dl[de](e — ) = / dl [de)6(De — Oge 0F) [7.139]
We rewrite the delta function as an exponential
App(e) ™ = /dﬁ [de |0(e —¢€°) = /d€ [de dB] exp {277@' / dr B (0 — Oge 56)}
= / dl [de df] exp {m / drep (e 10 — e 1y 5@)}

= /dﬁ [de d] exp [2mi(B, e 10 — e 1ope 60)] [7.140]
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We have chosen to write it in terms of our inner product for our convenience. We invert
the integral by introducing Grassmann variables &, ¢ and b and evaluate the determinant at
é, our fiducial gauge choice

App(e) = /d&[dc db] exp [41 (b, 0c — élagéﬁ)} [7.141]

4
We can now perform the ¢ integration; just keep the linear term as £ is a Grassmann
variable. Ignoring an overall irrelevant sign we get

Arp(é) = / [de db]% (b, 67" 0sé) exp [4; (b, élac)} [7.142]

We can plug this into [7.134] to find our result for the path integral after the Faddeev-
Popov procedure

o0 X(1)=Xo c(1)=0 1 R R
Zs, = / a / [dX] / [dedb] — (b,é710p¢) e SmIXd=Solbed  [7143]
o 20 Jx0)=x, (0)=0 4

with
. 1 .
Sglb,c, €] = ~in (b, é 180) [7.144]

Note that £(0) = ¢(1) = 0 translates into the boundary conditions ¢(0) = ¢(1) = 0 for the
c-ghost integration.

Let us now evaluate this partition function. We select a gauge é = /. The inner product
then becomes simply

1
(f.9) :E/o dr fg [7.145]

First look at the ghost part. We expand the ghost fields in Eigenfunctions of the Lapla-
cian

Aof = —0720%f = 2f [7.146]

on the circle. The coefficient —¢~2 is just a convenient normalisation. A complete set
of solutions satisfying these equations are sin(v7/¢) and cos(v7/¢). Requiring periodicity
under 7 — 7 + 1 requires v /¢ = 27k with k£ € N. These Eigenfunctions have Eigenvalues

47T2j2
Aysin2mjT = —0720? sin 2mj1 = 2 sin 2757
722
Aycos 2mjT = —0729% cos 2mjT = 7 cos 2wy T [7.147]

— 388—



Joe’s Book (version of November 20, 2020) Notes from Stany M. Schrans

i.e.
2 _
Vi = —— [7.148]

We thus expand the b and ¢ ghost fields

1 2 & _ 2 .
b= \/;bo + \/;JZ; b; cos 2mjT; c= \/;; cjsin 2wyt [7.149]

Note that the c-ghost has no zero mode because we need ¢(0) = ¢(1) = 0. The coefficients
are just convenient normalisations.

We now work out the ghost part of the partition function. We start with the ghost
action [7.144]

Sylb,c,é] = — E (b, e 10c)
1 1 2 — 2 —
= dT \/;bo + \/;Z bj cos 2mjT | X 8\/?23(:}C sin 2wkt
j=1 k=1
= dT bo + V2 b; cos 2mjT key. cos 2wkt [7.150]
s [ (b0 VRS byeosamir | ke

7j=1 k=1

To work this out we need the following integrals

1 1
1

/ drt cos2mjT = 0; / dt cos2mjT cos 2mkT = 505k [7.151]

0 0

This gives
R L /5 > 1 Ry
Sg[b, C, 6] = — ﬁ 2 Z k:bjckgéjk = 2—£ Z]bjCj [7.152]
L =

The b-ghost insertion becomes

Ly st A a1t
( age) 4 /dTbg 866_477/0 drb

4 T Jo
1 1 \/5 > 1
— dr \/>b +4/= bicos2mjr | = —=b [7.153]
; A e; § EO8End e/
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The ghost contribution to the partition function thus becomes

Zy = dc; dbg db;] ——=bgexp | — bic; | = = [7.154]
g /]r:[l[ J 0 J]47T\/ZO p QE;]]] 47T\/Z]1;[12€
Using [7.148] we can write this as
1 2w 1 Ay \ 2
Z, = L = det’( > [7.155]
g 47T\/Zj1_[1 A2 Ax/e 1672

where det’ denotes the determinant excluding the zero mode.

Let us now turn to the matter part. We can either use the approach of section 6.2
and expand the matter fields in generic Eigenfunctions, or we can take the approach of
[19] and use the same Eigenfunctions we have for the ghost system. The latter approach
requires that we first split the matter field in a classical and in a quantum piece, and that
is the approach that we will follow. So we first look at the classical equation of motion for
the matter field, X# = 0. It has general solution

XH = + (aff — )7 [7.156]

where zp = X#(0) and z; are some constants determined by the boundary conditions. We
then define the quantum fields X* as

XH = X8+ X+ [7.157]
We note that X* must also be periodic under 7 — 7 + 1 and that is satisfies X*(0) =

X#(0)— X/ (0) = X*(0) — 29 = 0 and likewise for X*(1). We can thus expand the quantum
fields in terms of the sin 27j7 Eigenmodes, just as the c-ghost and the matter field becomes

2 o0
Xt =X+ \/;Zmé‘ sin 27jT [7.158]
j=1
The matter action [7.127] then becomes in the gauge é = ¢
2
1/t 1 i 2= 4o o 5
S’mz5 ; dr/t 6—28 X0+ sz] sin27jT | +m
j=1

I 2 2
=5 dr || o —af + 277\/; g jal cos2mjT |+ *m? [7.159]
0 ;
J=1
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To work this out we use [7.151] and find

1 > 1
S = — | (a — ) + 2m? + 472> E j2:c]2<f
20 14 ot 2
(x4 —x0)2 m? 71'2 > 2 9
= 57 + 5 62 g )T [7.160]
Jj=1

The matter part of the partition function thus becomes

Zy — exp[ ($1;x0 tm? ]/H [T da” exp ——Z] [7.161]

p=1j=1

The integration is now Gaussian and can be performed and we find for Zx

d —dj2
(21 —30)®>  m?] [ 14 m B (21— 20)? —
P [ 20 2 j[[l n2jzje | — P 2 1;1 2
N
B (v1 —10)?  Im? i Vi B (v1 —10)®  Im? , —d/2
- P [_ 20 2 ]1;[1 In) TOP|TT T g |4t (A
[7.162]

It is time to bring everything together. The partition function of the particle on a circle
becomes

% qy
ZSI:/ ~ZxZ,
0

20
o [de (x1 — x0)2 ¢m? Ag -4z RAWAY; 1/2
= 2—€ exp | — 57 5 det’ 4 1 \/z det 1672
0 a & g
oo _ 2 2
0

where C' is some constant coefficient that encapsulates all the previous coefficients, but
whose exact form is not important to us.

In the bosonic string example we ignored the functional determinant at this stage, but
here we cannot do this as it depends on the modulus ¢ and so we need to extract that
behaviour. The functional determinant is divergent® and needs to regularised. Appendix

3This is obvious as det’A, oc []}2, j2/¢2.
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A.1 of Joe’s book explains how this can be done via Pauli-Villars regularisation. This adds
a contribution of a field with a very large frequency 2 and the determinant then becomes

det’A, = w22 Y
det’A —_— = = .16
s det’(Ay + 2?) ]1:[1 w252 + Q22 sinh Q/ [7.164]
The ¢2 in the infinite product is easily seen to come from the fact that A = —¢~'92. For
Q — 400 we have sinh ¢ — /2 and so
det /Af oY
———— ~ 200 7.165
det’(Ap + w?) ¢ [ ]
The partition function function thus becomes
B o dl (r1 —20)?  Im? _qr\(1=9)/2
_ ¢ X /21 (21 —20)®  {m? — (d - 1))

Let us quickly analyse the divergences. The pre-factor Q(!~9/2 is a multiplicative fac-
tor that can be removed via field strength renormalisation, i.e. by redefining redefining
XH — Z1/2X" for some coefficient Z that will be infinite as well. The divergence in the
exponential is different, but it can be removed by adding a counterterm to the Lagrangian
of the form ¢A? for some constant A. This counterterm is of the same form as the mass
term, so we immediately know that it will change the exponential into

(z1 —x0)?  Lm* — (d 1)Q+2A]] [7.167]

exp |— -
P [ 20 2
We can then chose a renormalisation condition so that m is the physical mass, which im-
plies choosing A? = (d — 1)Q2. The counterterm is then divergent as well, but it cancels the
divergence of the original integral, which is the whole point of counterterms.* The upshot
is that the partition function becomes

RY 2
(1 — 20) Em} [7.168]

Zgloc/o dee=2" exp | - 57 -

This is the analogous of formula (34) of chapter 5 in [19] for a particle moving from one
point to another. The difference is that we have an extra factor /~! here, which we can

4To readers who find it hard to follow these points, I would suggest to consult the sections on
perturbative renormalisation in any decent text book on QFT. Alternatively they can consult my
Notes on QFT, available on hepnotes.com.
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trace back to the fact that we needed to divide in the path integral by the volume of the
group of global translations on the circle.

In order to make sense of this we write it as a function of x = x; — ¢ and go to the
Fourier transform

o) Y 2 2
= / dee—a/2=1 exp [_m} /ddx exp [zkz -xr — :1:} [7.169]
0 2 20

The z integration is Gaussian and can be performed after completing the square

~ oo 2 . ) -
Z(k) / A= exp <_£Tg> /dd:c exp [_ (v —ilk)? + (?k }
0

20

e8] 2 2
= / dee=92"  exp (—@) exp (—HZ ) (2m0) %/
0

00 2 2
:(27T)d/2/ d%exp (E(k —2|—m )) [7.170]
0

This is the partition function for a particular momentum. To get all the particle states
propagating over the circle we need to sum over all possible momenta. This gives the
integration with with volume factor of (7.3.9).

7.37 p 218: Eq. (7.3.10) The Point Particle and the String Spectrum

I must admit that I don’t fully understand what is happening here. We use the partition
function of a point particle on a circle and then sum over the spectrum of the string, as
if every string state has the partition function of a point particle. Joe wants to illustrate
the difference, and in particular the difference in divergent behaviour, between what this
approach would yield versus what a full string approach gives.

In order to achieve this we need to relate the partition function of the point particle on
a circle that that of a particular state of a string. This can be done by relating the mass m?
in (7.3.9) to the mass-shell formula for a string state (4.3.32):

Oé/

/
Smt = Ly~ 1=h-1; %m?:Lo—lzh—1 [7.171]

Adding both together we do indeed find, assuming m = 7 that

o -
5m2:h+h—2 [7.172]

This is the generic relation between the mass and the weight of a state in the closed string.
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7.38 p 218: Eq. (7.3.11) The Constraints on the Weights

Let us work out the RHS of (7.3.11) and call g = h — h €N

RHS(g) = 1 e'9? m_ b [eig” - e_’y”] _ sinmg
2mig - 2mig g

[7.173]

Now if g # 0 then sin 7g = 0 and the result is zero. If g = 0 then we need to take the limit
witt the ’'Ho6pital’s rule

sinmg T COSTg

lim RHS(g) = lim = lim

=1 [7.174]
g—0 g—0 mg g—0 s

and indeed RHS(g) = 4 = 0, ;.

7.39 p 218: Eq. (7.3.12) The Partition Function for a Stringy Particle

So we now assume that the partition function for a string state with mass given by (7.3.10)
is given by the particle particle on a circle partition function and see what that means if
we sum this over all possible states in the transverse Hilbert space H', taking into account
the condition (7.3.11):

. d T dg e
Z Zs, (m;) sz/ 20 d/2/ ad S ilhimhidg-mie2
0 -7

s
iyeH- [i)yeH+

i d‘9 iy i(hi—h)0—(hithi—2)0/a
= Zvd 2 g Z 6
|%)

eH+

*’LVd (2m) /2 1/ dé/ 40 0—4/2-1 Z hi(0-+i€/a)=ih(0~it/a')+2¢/a’ 7 175]
o HeHL

We set 0 + il/o/ = 2ntau = 2m(71 + it2). We then find that d¢ = o/2wdm, and the
integration runs from zero to infinity. Similarly df = 27dr and the integration over 7 is
from —1/2 to +1/2. Let us call this integration region R. We can thus write

1 ) s
ZS1 — 7Z-Vd(2ﬂ_)fd/271 / 27T()4’d7'2271’d7’1(27T04/T2)7d/271 Z 6zh¢27r7'fzh¢27r7'+47r7'2
2 R iy eH

_ ;in(27T>—d/2—1+1+1—d/2—1a/1—d/2—1/ drdryry 4?71
R

« Z e27r7'h2-6—27r7_'ib7; e+47T(T—"F)/2i [7.176]
liyeHL
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We regroup and use 2d7; dry = dr d7 and write ¢ = ¢?™'7

) drdt _ B
Zg, :sz/ y (4m2a’ry) "2 Z 7" (qq) ! [7.177]
R e

which is (7.3.12).

7.40 p 218: Eq. (7.3.13)-(7.3.14) The Integration Region for the Parti-
cle on a Circle and the String on a Torus

The integration region for the particle on a circle summed over all string states is the region
R in (7.3.12). The integration region for the closed string on a torus is the fundamental
domain Fj of the torus, see fig.5.2. Both these regions are illustrated in the figure below.

AN AN AN AN
R Fy
“Z 1
1 1 1 1
2 2 2 2

Figure 7.7: The integration region for a particle on a circle summed over all string states R and
for a torus Fj

To see the divergence in (7.3.9) note that integral is basically the Gamma function
['(z) = / doe 27 te™ [7.178]
0

So we find a expression for the integral proportional to I'(—d/2), which is divergent for
even dimensions, in particular for d = 26 and d = 4.
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7.41 p 219: Eq. (7.3.15) The Torus Vacuum Energy for + — oo in Flat
Spacetime

Let us first write (7.3.8b) in terms of 7; and 7 and take d = 26. With a serious abuse of
notation, we write

2d7‘1d7'2(4ﬂ2a/7_2)—13 Z 2miT(hi—1) ,—2mi7(h;—1)

liyeHL

ZT2(T — OO) :’L‘/z()/

T2

2 . ) N
_ iV26/ dzl';;hb (47_[_20/7_2)—13 Z e27r(27'1—Tg)(hi—1)6—27r(7,7'1+7'2)(hi—1)

liyeHL
_ 2dmidry 5, i3 —277o(hi+hi—2) 2miti (hi—h;)
= Va6 i (4m°a' 1) Z e e [7.179]
2 liyeH L

If we consider the theory of 26 flat spacetime dimensions, then what does the the Hilbert
Space H consists of? We have the unit operator 1 of weight (0, 0), potential higher weight
states formed from derivatives the form 0™ X 9" X7 of weight (m,n) form,n =1,---. Note
that if m—n = p # 0 is still integer and then the 7; integration becomes zero. If m = n then
the 7, integration gives one. Now, as we take 75 — oo it is the states with lowest weight
that give the largest contribution to Zr2(t — o0). So let us consider the unit state of
weight zero and the states of weight (1,1) obtained by acting with the operators 0X*0X7.

24
(@rd/m) B (e > 1+ [7.180]
(m.n)=(1,1)

d
ZT2(T—> OO) —iV26/2Z

The states of weight (1, 1) are obtained by acting with the operators X‘0X7, so there are
24 x 24 of them and we obtain (7.3.15):

dTQ

Zp2 (T — 00) :iVQG/ (47‘(’20/7'2)713 (647”2 +24% .. ) [7.181]

27

Let us now look at this expression the contribution (e*"™ comes from unit operator which
comes from a propagating tachyon e**'X Recall that we are integrating over all momenta,
so the k-dependence disappears. This gives a divergence in the 75 = oo integration bound-
ary. The second term in the sum comes from the "graviton" contribution ¢;;0X*90X7ei*X.
The 7, integration is straightforward and the contribution at 79 = oo vanishes. The next
contribution would be from a state with weight (2,2) and give rise to a dampening factor
e~4™2 and vanishes as 7 — oco.
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7.42 p 219: Eq. (7.3.16) The Torus Vacuum Energy for - — ~ for a
General CFT

Our starting point is [7.179]:

2dmdTo
T2

Zo(7 — 00) = = z’V%-/ (47T20/72)—13Ze—27r7'2(hi+i~zi—2)eQm‘frl(hi—fzi) (7.182]

)

We saw earlier that unitarity requires h; = h; so the 7 integration decouples in the limit
7o — 00. Now use (7.3.10)

d /
ZT2 (7— N OO) [ — 7“/26 / 2(47(20/7_2)—13 Ze—ﬂ'a m?TQ [7.183]
279 -

showing the divergence for a theory with a state of negative mass.

7.43 p 220: A BRST Null State is Proportional to a Total Derivative on
Moduli Space

This statement refers to (5.4.6) where we saw that the BRST variation of the b-ghost inser-
tion was

0p(b,0rg) = ie(T, Okg) [7.184]

where 9}, is a derivative w.r.t. the modulus ¢*.

7.44 p 219: Eq. (7.3.16) The Torus Vacuum Energy for - — oo for a
General CFT

The one loop partition function for the particle on a circle Zg1(m?) in (7.3.9) can easily
be extended to all loops. Indeed, this is a free theory so there are no interactions and the
higher loops are just disconnected circles, as in fig.7.8

O
O O
O+0O+0O + - +

Figure 7.8: Multiloop partition function for a particle on a circle
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A contribution with n loops can be formed in n! different ways, so the total vacuum energy
is indeed given by

1
Zraelm®) =3 12, (m?) = P [7.185]
n=0

7.45 p 220: Eq. (7.3.20) The ¢ — 0 Limit of the Particle Partition Func-
tion, I

We use a different way from Joe. We define

I(e) = / dﬁe exp (—AY) [7.186]
0 20

where we defined A = (k% + m?)/2 and will then take lim. ,oZ(g). First we change
integration variables ¢ = x/A:

1 [*®dx rx\c1 11 & 1
I —_ — P N _mzii e—1 _—x — 1—\ 1
() 2/0 ( ) e 5 E/0 e tdr SAC () [7.187]

where we have used the definition of the Gamma function. Now, if you have had any
exposure to dimensional regularisation you will recognise the expression I'(¢) /A=, If you
haven’t had any exposure to dimensional regularisation, then this is an appropriate time
to remedy this. In any case, any text book on QFT will probably have — most likely in an
appendix — the expansion

. I'(e) 1

where ~ is the Euler constant. Using this we find

_ 171 1 1,5, o 1 1

;1_13(1)2(8) =502" InAy+o(e)| = %~ iln(k +m?) + 51112 — 5’}/—1—0(8) [7.189]
The regularisation scheme is not just to ignore the divergent term fracl2e but also to
ignore the constant (In2—+)/2. This is known in QFT as the Modified Minimal Subtraction
or MS to the aficionados.® After all, if we are neglecting an infinite term, what is the harm
of including in that a few small constants? The upshot is that after regularisation, we

indeed find

[e'e) 2 2

/ % exp <_l<:—;m€) — —% ln(k‘2 + m2) [7.190]
0

>Once more, if this is gibberish to you, consult your favourite QFT text book, or even better
consult my QFT Notes on hepnotes.com.
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7.46 p 220: Eq. (7.3.21) The ¢ — 0 Limit of the Particle Partition Func-
tion, II

In Euclidean space we have

©de [ idk" k2 + k% 4+ m?
LHS =i - - -
s Z/O 20 [ 2m xp [ 2 4

0 0 2 2
= — S at / dkOe 3t/ exp K m L
2w 0 20 2

1 /27r k:2+m '
- 2w 0

de o312 [—"’ J;m 4 [7.191]

r/

We introduce ¢ = 2/(k? + m?)

1 [~ 2 2 3/2
LHS = — d -
2\/27r/0 k? + m?2 v (k2+m2$> ‘
1 & 1
_ k2 2 -1/2-1 -z _ _ _~ k2 27 (=1/2
74\/7?\/ +m /0 x e i +m?T'(-1/2)
1 55— [ 1
= — E k2 + mz/(; .’1}'71/271671 == 4\/> k2 + m2( 2ﬁ)

= iwk [7.192]

7.47 p 221: Eq. (7.3.23) The Vacuum Energy of a Scalar Field

All the necessary formulas are available in Appendix A. For an action (A.1.38)

1
S = 3 / dz pAp [7.193]
we can write the vacuum energy, see (A.1.39) and (A.1.48) as
AN /2
Z[J=0] = <det 2) — (det A)~1/? [7.194]
T

where we have dropped the 27 as it can be removed by a rescaling of the field ¢. In our

case we have for a free scalar field of mass m the Klein-Gordon Lagrangian

02 —m?
2

1
L= —58“¢8M¢ —m2¢t=¢ b [7.195]
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and so we take A = —9? + m? where we have absorbed the 1/2 in a redefinition of ¢. We
now use det A = exp Tr In A to find

In Z[0] = In [det(—9? + m?)] —12

—% Inexp Tr ln(—a2 + ’m2)
1
= - 5I&~1n(—a2 +m?) [7.196]

The trace can be taken by using a complete set of solutions to the Klein-Gordon equation
ik-x
el

d . .
Trln(—32+m2) :Vd/ (;lﬂ—];‘zde—zk‘.x ln(_82+m2)e’bk"$
dk
Vd/(%)d n(k* +m?) [7.197]
and thus
1 dk 9 o
In Z[0] = — 2Vd/(2w)dln(l€ +m?) [7.198]

7.48 p 223: Eq. (7.4.1) The Vacuum Energy of a Cylinder

The cylinder represents an open string that evolves over worldsheet time and comes back
where it started after 27r¢t. The vacuum energy is thus calculated by summing over the time
evolution of all states for that period and overlapping with the original state:

Zoy(t) = D (e ™ |y) [7.199]

all states |v)
with H = L, — ¢/24 the open string Hamiltonian. Introducing ¢ = e~ this becomes
Zoy(t) = g/ Tr g0 [7.200]

Let us evaluate the matter sector first. From (4.3.21) and (4.3.22) we have for the matter
sector of the open string

Lo = o/ (p* + m?) [7.201]
and
oo o0
o/m>=>"n> N [7.202]
n=1 p=0
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The calculation is now similar as for the torus. For the matter sector we find

Zx(t) = q_d/24T1" qa'szerf:l n3" o Nun

ddk ) oo 25
(27[—) n=1 /J:O Nun

we refer to the derivation of (7.2.6) for this last step. Performing the Gaussian momentum
integral gives

Zx (t) — Z-qufd/24(8ﬂ_2ta/)fd/2 H Z qu;m
n,u N,un

_ inq_d/24(87T2tOé,)_d/2 H(l - qn)—l
n,

_ Z'qufd/24(8ﬂ,2ta/)7d/2 H(l o qn)fd

n

—d
= Z'Vd(87r2ta/)_d/2 [q1/24 H(l - q)]
= V(872! )~ 2y (it) ¢ [7.204]

with n(it) defined in [7.53] and 7 = it in our case.
For the ghost sector we can use the exactly the same argument as for the holomorphic
side of the of the ghost sector on the torus. The result is the analogue of (7.2.27)

Zy = n(it)? [7.205]

The vacuum energy, without Chan-Paton factors, on the cylinder is then equivalent to
the (7.3.5) on the torus, i.e.

< gt
Zo, = / O, [7.206]
0

The differences are that we integrate over all the values of the modulus ¢ from 0 to oo
as there is no modular invariance on the cylinder that limits the integration region to a
fundamental domain and that we loose the factor 1/2/ that was due to the symmetry
w — —w on the torus. We now fill in the matter and ghost parts, and limit ourselves to the
critical dimension d = 26

o0 dt o0 dt
Zc, = / 2—tZXZg = / 2—tin(87T2ta/)_d/2n(it)_dn(it)2
0 0

> dt
= iVag / E(8w2ta’)_13n(it)_24 [7.207]
0
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Let us now add Chan-Paton factors to this. It might be useful to review section 6.5 and
in particular (6.5.4) to remind oneself about Chan-Paton factors. The equivalent of (6.5.4)
or our fig.6.10 for the cylinder is the figure below

Figure 7.9: Chan-Paton factors for the cylinder. Note that in the A matrix the first index refers to
the o = 0 point and the second index to the o = 7 point.

Joining the two ends mean that the Chan-Paton factors give a contribution

A%(Sab(sié(sjkAZK = )\%)\?Z =Tr )\a)\a = 5aa = n2 [7.208]

where we have used (6.5.2), i.e. Tr A2\’ = §? and we recall that a runs from one to n?.
Note that it is important to connect the endpoints of the string correctly and to make sure
in the )\ matrix the first index refers to the ¢ = 0 point and the second index to the 0 = 7w
point. Using this coefficient from the Chan-Paton factors we find

Zc, =iVagn? / ;i—z(87r2ta’)_13n(it)_24 [7.209]
0
which is (7.4.1).

7.49 p 224: Eq. (7.4.2) Modular Transformation of the Dedekind Func-
tion for = = it

This follows immediately from (7.2.44) by setting 7 = it:
n(—1/it) = /—i(it)n(it) = n(it) =t~ /t) [7.210]
7.50 p 224: Eq. (7.4.3) The Vacuum Energy for a Very Long Cylinder

We first use (7.4.2) in (7.4.1) and then change variables t = 7/s, so that ds = —dt/t?

. > dt _ . _ iV26n2  dt . _
Zec, :zV26n2/0 2—t(87r2t0/) Bl2n/t)=2 = 2(87r20/)13/0 t—Qn(z/t) 2

iVagn? 0 e iVagn2 oo o
:2(87r20/)13/00(_d8)77<w/7r) = 2(87r20/)13/0 dsn(is/m) [7.211]
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7.51 p 224: Eq. (7.4.4) Expanding the Dedekind Function for a Very
Long Cylinder

With ¢ = > and 7 = is/m we have ¢ = e~2°. We use the expansion of the Dedekind
function

() =¢"* 0 —qg— P+ +q¢ +--) [7.212]

We are slightly abusing notation here because 7 should really be 7(7) with ¢ = ¢*™". From
this we find
n(is/m) > =q '1—q-¢+¢" +q" +---)*

:eZS (1 _ 6—28 _ e—4s + 6_108 + 6—145 4.

) [7.213]

We now expand to the leading contributions in s:

n(is/m) 2t =€ (1 +24e 2 +.- ) =e* + 2440 (e7%) [7.214]

7.52 p 224: The Long Cylinder is a Closed String

The partition function for the cylinder can now be written as

: 2 o)
Zoy (s — 00) = V260 - / ds [ + 24+ 0 (e7%)] [7.215]

2(872a/)13 J,

We can compare this with the vacuum energy of a torus for large 7 in (7.3.15)
d
Zp2 (T — 00) =1Vag / 277-2(47'('20/7'2)713 (647”2 +24% .. ) [7.216]
T2

It should of course not be identical because a torus is a cylinder closed on itself. But we see
that there is a similarity in the behaviour for large s and large 7». In both cases the partition
function is divergent due to the contribution from the tachyonic states. The limit s — oo
corresponds to ¢ — 0, which is a very long cylinder with very small diameter. In that sense
we can say that it looks like a close string propagating from one point to another, when we
have the Euclidean worldsheet coordinates interchanged. We tend to think as o2 as being
worldsheet time and o' as worldsheet space. But there is no one living on that worldsheet
that can tell us what is time and what is space. As far as the worldsheet is concerned they
are just two coordinates, and even more so, they have the same signature. So who is to say
which coordinate represents what?
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7.53 p 224: Eq. (7.4.5) The Analytic Continuation of the Tachyon Di-
vergence

If we consider the integral

A
1
_ Bs — — (BN _
I(A) —/0 dse’” = 3 <e 1) [7.217]

then the analytic continuation is obtained by just ignoring the A dependence. It just
means you ignore the divergence. I don’t understand why this is an analytic continuation.
I also don’t understand why the second term gives a divergence 1/0 as the corresponding
integral is [ ds. The argument that this looks like a zero-momentum closed string
propagator between two disks (i.e. open strings) makes sense and thus gives a 1/k?
divergence, but that is a purely heuristic argument.

7.54 p 225: UV and IR Divergences

Let us digress a little bit on UV and IR divergences. If what follows is complete gibberish,
then it would be fair to ask the question if the reader should not spend her or his time more
usefully than by trying to read Joe’s book. If it sounds vaguely familiar or reminiscent of
things known a long time ago, the reader could consult her or his favourite QFT text book
or, even better, my QFT notes on hepnotes.com.

UV divergences are divergences at high momentum/energy. This means that as we
increase the energy of the process our theory is not well-defined and breaks down. It is
usually a strong suggestion that the theory is just some kind of an effective field theory that
lacks the details and granularity to describe the process at high energy.

A typical example is the Fermi four point interaction that is quite successful at describ-
ing the weak interaction at low energies. As an illustration, the interaction Lagrangian for
this is of the general form

_ 1= 75 11— 75

Lin = 2V2Gp {WL 5 ,,] [u*yu 5 d} +h.c. [7.218]
This describes a four-point interaction between a lepton, neutrino, up quark and down
quark, represented by the fields ¢, v,u and d respectively. The (1 —~°)/2 is a projection
operator ensuring all fermion fields are left-handed as the weak interaction is chiral. h.c.
stands for Hermitian conjugate and G is the Fermi constant. This theory describes the
weal interaction well at low energies but not at high energies; in fact it is not renormal-
isable. It is a low-energy effective theory for the electroweak theory where the four-point
interaction is replaced by the propagation of an intermediate W boson. This then reduces
the four-point vertex to two three-point vertices with coupling constant g and reduces the
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dimensionality of the coupling constant and makes the theory renormalisable and a better,
let us just say correct, description at higher energy; see the figure below for an illustration.

Gr

Figure 7.10: The non-renormalisable Fermi interaction vs the weak interaction. The propagating
W particle ensures that there are only three—point vertices in this process. As a result the divergence
can be renormalised.

The relation between the Fermi constant G and the weak coupling constant g is, see e.g,
Peskin & Schroder (17.32).

Gr ¢
=32
V2 8miy,
where myy is the mass of the intermediate 1V boson. Let us do some dimensional analysis.

In the real world, i.e. four dimensions, fermion fields have (mass-)dimension [¢)] = 3/2.
For the action to be dimensionless we need

[7.219]

0= [Gp]+4[z] +4[Y] = [Gp] +4(—1) +4(3/2) = [GFp]= -2 [7.220]

so the Fermi constant has dimension minus two. We can then find the dimension of the
weak coupling constant g from [7.219]

[6?] = [GF] + [mw]? = —2+2=0 [7.221]

so ¢ is dimensionless. Now it is, or at least should be well known, that interactions
with negative dimension coupling constants are non-renormalisable, whilst interactions
with dimensionless and positive dimension coupling constants are renormalisable, super-
renormalisable respectively. The UV divergence of the four-point function is not renormal-
isable, but the the introduction of the propagating W -boson still gives a UV divergence but
one that is renormalisable.

IR divergences, on the other hand, occur for very small momenta, or, equivalently,
very large distances. These divergences are generally an artefact of how we solve the
theory. Let us give the standard example from QED for the radiation of soft photons during
Bremsstrahlung. This is the process where a low momentum photon is created and emitted
during the scattering of an electron, see fig.7.11.
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Figure 7.11: Bremsstrahlung in electron scattering. A very low momentum photon is emitted
fro the incoming or outgoing electron, before and after the scattering process respectively.

The emission of such a soft photon creates a divergence. This is rather surprising because
it is actually very hard, if not impossible, to measure a very soft photon. So something that
is too small to measure would lead to a divergence?

The solution to this is to look at the so-called electron vertex correction. This is the one
loop correction to the electron-electron-photon interaction vertex, see fig.7.12.

= +
—el'® = —z’e’y“ + —z’eél“’é)

Figure 7.12: Electron vertex one loop radiative correction

The one-loop correction to this vertex also has an IR divergence, but it is exactly of the
same form, but of opposite sign to the soft photon radiation above, so taken together
these Feynman diagrams are perfectly well behaved, as shown in fig,7.13, where we also
indicate the type of divergence . Note, en passant, that this type of divergence has basically
a (log ¢*)? form and is known as a Sudakov double logarithm.

There is, of course, much more to IR divergences than just that. But the upshot of this
is that, in general, whilst individual Feynman diagrams may have IR divergences, when all
diagrams of the same order are combined, there is no IR divergence at all. Nature, as far
as we know, does not care about the fact that we calculate results in QFT via diagrams, let
alone on how we split them. So the appearance of IR divergencies, is, at least in this case,
an artefact of how Feynman has told us we can easily calculate things.
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+
+%log7‘fl—zlogg—z —%log%log%i

Figure 7.13: Cancellation of the first order QED IR divergence. Here ¢? is the momentum squared
of the emitted photon and u is a very small we have given to the photon.

7.55 p 226: Eq. (7.4.11)-(7.4.13) The Partition Function for the Cylin-
der from the Closed String

I must admit I am completely lost by this part. I understand the idea that you have a
closed string propagating from a time ¢! = 0 to a time ¢! = s and that the partition
function is then

Z¢y, = (B| cobpe* Lot | B) [7.222]

with |B) denoting the closed string state at the boundary. The bycy are the ghost inser-
tions for the cylinder which has one modulus and one CKV. The central charge term(c +
¢)/24 vanishes because in the critical dimension the total central charge of matter plus
ghost sector is zero.

But, I don’t understand that you can determine the boundary state |B) by requiring
it to vanish under 9; X*, ¢! and b b;5. Why these components? Why not 9, X*, c? or by?
And what happens with the anti-holomorphic side?

Let us assume that these are the right conditions. In the traditional cylinder, see (2.6.4)
: - 1 2 .
we have z = e = ¢79 +9° Here we have interchanged the role of ¢! and ¢? and so we
have

2= 0"t [7.223]
and consequently
O = 0120+ 120 = 20 + 20 [7.224]
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We then expand 0 X* | B), using the mode expansion (2.7.1)

ey Z _ aﬁ%
s O G
- 2m:Z_oo <Zm " Zm) ’B> [7'225]

We now evaluate this at ! = 0,

] B\
0.1:0_ Z —zm02 etima? | >

_ —i\/; Z (ot +a",,) €™ |B) [7.226]

and so requiring 9, X* |B) = 0 is indeed equivalent to (af, + &",,) |B) = 0 for all n.

O X" |B)

Consider now the condition that c¢!'(w) vanishes at the boundary. Going to complex
indices, we use (2.1.5). i.e. v = v? + jv! and v = v? — iv!, where we have interchanged
the indices one and two, as we should. Thus v!(w) = (v¥(w) — w®(w))/2i and thus

1 1

c(w) = %

We now still need to go to the ghost field on the complex z plane with z = e~*. For that

we need the the rule for the transformation of a weight & primary field under w — z. That
is

[c(w) — é(w)] [7.227]

(002)"O(2) = O(w) [7.228]
For the c-ghost with weight —1 this becomes
(—iz) 7t (2) = M(w) = (w) =iz () [7.229]
and similarly & (w) = —iz~1¢(2). Therefore
1 1. _ 1y
() |B) = - le(w) — éw)] |B) = o [i="e(z) — (~ iz~'&(2)] 1B)
_ % = le(2) + 7 18(2)] |B) [7.230]

We know fill in the Laurent expansion

1 < ¢ Sl
c1<w>B>—2[z1 DD Dl I )
m=—oco T~ m=—oo T~
1 — Cm  Cm
_ tmo tm g 7.231
22<2m+zm>\> [ ]

m=—0Q
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We now use [7.223] and set o' = 0

o0 o0

1 o 1 Cm 6777, o 1 - im02
¢'(w) |B) =5 > ( +€+im02>\3>_2 > (em+Em)e™ |B)  [7.232]

—1 2
e mmao

m=—o0 m=—oQ

Requiring c!(w) to vanish on the boundary this implies that (c,, + é_,,,) |B) = 0 for all m.

The reader should not be confused that we use a different method for the condition on
from 9; X* and from c!. They are actually consistent. In the 9; X* we such used the fact
thatd; increases the weight by one, so that X* has h = 0. One more comment that may
have passed unnoticed. The indices on the ¢ and b ghosts have been chosen so that they
transform nicely under conformal transformations.

Finally, let us consider the condition that b;5 vanishes on the boundary. We follow the
same procedure as for the ¢! condition. We first go to complex w coordinates using (2.1.5)
and v, = (v2 —iv1)/2 and vy = (v2 + iv;) where we have, dutifully interchanged the
indices. From this we have

V1 = Uy + Vg and vy = 1(Vy — V) [7.233]
And thus
b12 = bw2 + bw2 = i(bww - bwﬂ; + bvj}u) - bsz) = i(bww - bww) [7.234]

where we used the fact that b is traceless by the Faddeev-Popov construction, i.e. by,g =
bgw = 0. We now perform the conformal transformation to z and as b has weight two we
find

(—i2)?0%(2) = b%(w) = bP(w) = —2%bP(2) [7.235]
and similarly v (w) = —22b%(%). Therefore
bi2(w) | B) = i[buww — baw] | B) = i[—2%bs. — (—2%bz:] | B)

= —i[2%b., — Z%bs:] | B) [7.236]

Using the Laurent expansion we therefore find

bia(w) |B) =i [ﬁ )DL S [P
Moo A2 N
N (b b

:imz_:m (Zm — Zm) |B) [7.237]

We now use [7.223] and set o' = 0

bia(w) |B) =i Y < b _ _bm >yB>:¢ 7 (b — b_m)e™ " |B)  [7.238]

e—ima? etimo?

m=—0o0 m=—00

Requiring b1 (w) to vanish on the boundary this implies that (b, — b_,,) |B) = 0 for all m.
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7.56 p 226: Eq. (7.4.13) The Explicit Form of the Boundary State
Taking into account the correction on Joe’s errata page, we need to show that the state
IB) = e~ Zazi(mo-n@ontbnlontboncon) (¢ 1 5)10;0) [7.239]

satisfies the conditions (7.4.12). Let us for simplicity define

00 1 _
X=-— Z <nan Oy + by + bncn> [7.240]

We start by considering (c,,, + ¢_,)e*(co + &) |0;0). We fist work out ¢,,e* and é,,e*.
We need to look at three separate cases depending on whether m < 0, m = 0 or m > 0.

e m < 0: In this case ¢, and é,, both commute with X and we simply have

¢m |B) = cmex(co + &) 10;0) = —ex(co + é)em |0;0) [7.241]
ém | B) = Eme™(co + ) 0;0) = —e*(co + )ém |0;0) [7.242]

e m = 0: Here ¢, and X commute as well and we have

em | B) = coeX(co + &) 0;0) = eFeg(co + &) [0;0) = eXeoéo |0;0)
Em | B) = épe*(co + &) 0;0) = eXég(co + &) [0;0) = —eFeoéo |0;0) [7.243]

e m > 0: Here we need to be more careful as ¢,, and X don’t commute, but we have

o0 1 5
[Cma x] = |fm7 - Z (na—n Qg+ b_pCpy+ b—nc—n>]

n=1
= - i [Cmsbnlon] = —Com [7.244]
n=1
Thus
cmX =X¢y — ¢y and ¢ X =XCp —com [7.245]
Next

mX? = (X)X = (Xem — )X = XX — E_p X
=X(Xepm — ) — XC_m = X2cp — 2X0_ [7.246]

because if m > 0 then ¢_,, and X commute. Similarly, of course,

EmX% = %%, — 2Xc_pm, [7.247]
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Next
X3 = (X)X = (X%¢n — 2X6_ )X

=X%(Xep — E_p) — 2X%6_,, = X3 - 3%%_, [7.248]
We see the general pattern: for m > 0 and k& > 0 we have
emXF =xFe,, — kXM e, [7.249]
Therefore
o0 1 o0 L
Cmex = Z k— = Z mek =1+ Z k' CTYL — kxk ! —HL)
k=0 k=1
o0 1 oo
=) X Z xk—“_m =etem —etiy, [7.250]
k=0 " k:l
From this

Cm | B) = cme™ (co + &) 10;0) = (eXem — €é—m) (co + &) |0;0)
=eX(co + )é_m |0;0) [7.251]
and similarly

ém | B) = éme™ (co + ) [0;0) = e*(co + é)c—m |0;0) [7.252]

We can now work out the impact of ¢, + ¢_,,, on |B). If m = 0 the we simply have
(co + G) |B) = e*coéo |0;0) — e¥eoéo |0;0) = 0 [7.253]

Now take m > 0. We then use [7.251] and [7.242] to find

(em + E-m) |B) = e*(co + €)é_m 0;0) — e*(co + &)é_m |0;0) = 0 [7.254]

Of course, a similar relation holds if m < 0. We have thus shown that (¢, + ¢_,,) |B) =0,
which is what we set out to do.

Next, let us turn to (a™u,, + &*—n) | B). Here we consider two cases

e m < 0: o commutes through X and we have

ok |B) = e™(co + éo)ak, |0;0)

at |B) =e*(co + &)ak, |0;0) [7.255]
e m > 0: We have
ab X = — i loz’,floz_n a_py = Z a_n G_pab +moy,_ n5l,a_m)
=" n—1
=Xak —a",, [7.256]
This is a similar relation as for the c-ghost and so we can immediately write down
afnex = exoz“m - exd’im [7.257]

—411—



Joe’s Book (version of November 20, 2020) Notes from Stany M. Schrans

Thus, for m = 0 we have
(af +af) |B) = (af + af)e™ (co + &) |0;0) = e (co + ) (g + &) [0;0) =0 [7.258]

by the fact that o}, = dy, |0;0) = 0 for m > 0, the definition of the matter ground state.
For m > 0 we have

(afy, +a",,) [B) = (afy, + a2, )e* (co + &) |00)
- (exa’,‘n - efa’im) (co + &0) |0;0) + eX&* (co + &) |0;0) =0 [7.259]
as two of the terms cancel and the other one annihilates the ground state. The same, of

course, holds for m < 0 and we have thus shown that (a4, + &" ) |B) = 0 as well for all
m.

Let us finally tackle the case of (b, — b_,)|B) and see how this sign comes in handy
here. We split in two cases

e m < 0: The b-ghost commutes through the X and we simply have
b |B) = €*byn(co + o) 0;0)
b | B) = eXby(co + &) 0;0) [7.260]

e m > 0: We have

bmx = - i bmi)—nc—n =+ i E—nbmc—n = - i B—nc_nbm + B—m
n=1 n=1

n=1

=Xbp, + b_, [7.261]
This generalises to
b XF = X0y, + kX0, [7.262]
and

bne* = eXby, + €Xb_mm, [7.263]
Thus we have

(bo — bo) | B) = (bo — bo)e™ (co + &0) [0; 0) = e*(bo — bo)(co + é) |05 0)
= €x(boco + boco — 6000 - 5050) |0, 0> [7.264]
The second and the third term vanish because the b, and b, can be moved to the right

and gives zero by the definition of the ghost ground state. For the first and last term we
can mode the b-ghost to the right but pick up a factor one for each of them due to the
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anti-commutator. These two factor cancel and we thus find that (by — bo) | B) = 0. Now, for
m > 0 we have

(bm — E—m) |B) = (bm — l;_m)ex(c() + ¢o) |0;0)
= (exbm + exl;_m> (co + ép) |0;0) — exi)_m(co + ¢p) |0; 0)
=0 [7.265]

because in the first term we can move the b, to the right and it gives zero, whilst in the
second term cancels the third term. The same, of course, holds for m < 0. We have thus
shown that (b,, — b_p,) |B) = 0 for all m.

We will not show that plugging (7.4.13) into (7.4.11) gives, up to a normalisation,
(7.4.3). That seems like a real nightmare calculation. If anyone has a simple way to
demonstrate this, please send me an e-mail via hep.notes@hotmail.com.

7.57 p 226: Eq. (7.4.14) The Vacuum Amplitude for the Klein Bottle, I

Recall that the Klein bottle is a cylinder with a parity transformation 2 on one of the
boundaries and the boundaries then sewn together. The Klein bottle has one modulus and
one CKV. We thus have one b and one ¢ insertion. We thus have the same integration
over the moduli as for the cylinder. The momentum integration contribution of 872a/t that
came from the open string of the cylinder now gets replaced by 472a/t from the closed
string contribution. The extra factor 1/2 comes, I believe, from the same symmetry as for
the torus w — —w. All of this gives (7.4.14).

7.58 p 226: Eq. (7.4.14) The Vacuum Amplitude for the Klein Bottle,
II

Consider a typical state of the form
) = ()" (a2t (aZ,,)™ |0;0) [7.266]
The contribution of that state to the trace is
W12 1) = ((0")" (@) (@a%,) M || (0 )F (0% ) H(@E2,.)™ )
= (@) (% ) MG, )M (@ K (@2 ) (a,) ™) [7.267]

where we have use (1.4.19) i.e. QahQ~! = &k, its conjugate and the fact that the ground
state is invariant under 2. We see that this contribution is zero and that a non-zero contri-
bution to the trace can only occur if every left-handed oscillator is matched a right-handed
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oscillator with the same index, and vice-versa. Only then do we have just the right amount
of left- and right-handed oscillators to commute through one another and leave a non-
zero result. If we have a general state of left-moving oscillators that we denote by L and
right-moving oscillators that we denote by R then that state has a non-vanishing contri-
bution to the trace (LR|Q|LR) iff L = QRO ™!, and, of course, it follows that conversely
R = QLO™!. So, if we denote by A the operation of adding a tilde where A has none
and removing one when A already has one, then the trace is s sum over all states A of
the form (AA|AA). So if we sum over all left-moving states and call that A, then all the
right-moving states are included. Hence this is the same as the sum over open string states.
Looking at (7.4.1) this would give us a contribution 7(it)~2%. But recall that the ¢ comes
from the sum in the exponent of ¢~ = ¢TI E00 Nem i [7.203]. Now we have
q~otLo with only non-vanishing contributions to the trace if Ly = Lo so we double that
amount and need to replace t by 2¢.°

Taking all this into account, we conclude that we can write the vacuum amplitude for
the Klein bottle from looking at the vacuum amplitude for the cylinder (7.4.1) as

Zx, =iVag / %(47720#)_137)(2%)_24 [7.268]
0
which is (7.4.15).

7.59 p 227: Eq. (7.4.17) An Identification for the Klein Bottle, I
With w = o1 + 102, we have form
wWEw+2r & o +ict 2ol 4+ 2r4+i02 = o Xol42r7 [7.269]
and also
w=w+2mit & ol +io? 2 —o! +io? +2mit =2 (21 — ') +i(o? + 2nt)  [7.270]

where we have used the periodicity of ¢! to bring it back in the range [0, 71]. This is exactly
the description of the Klein bottle, see fig.7.5.

7.60 p 227: Eq. (7.4.17) An Identification for the Klein Bottle, II

We show that (7.4.18) follows from (7.4.17).

wXw+4drit & ol +ict ol + z'(a2 +4nt) = o 2o + 47 [7.271]

6This is also consistent with replacing the opens string factor 872a/t by 472a/t. Indeed a factor
two comes from replacing ¢ by 2¢ and a factor 1/4 comes because for the closed string we replace
o’ by o’ /4, so overall we have to divide the open string contribution by two.
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We can obtain this by applying the second part of (7.4.17) twice. Indeed, that part says
that

o'~ gl with o2~o?+ 27t [7.272]
Let us apply it once more and we have
—ol >l with 0%+ 27t 2 o2 + 27t + 27t = o2 + 4Art [7.273]

and so we have indeed 02 2 02 + 4xt or w = w + 4mit.

The second part of (7.4.18) is obtained by first taking the second part of (7.4.17) and then
applying the first part

w = —w + 2mit & —(w + 27) + 2mit [7.274]
from which it follows that, by adding 7 to both sides,
w+ T —(w+7) + 2mit [7.275]
If we work this out for the components we find
ol + 1 +ioc® =2 (o +7) +i(o? + 27t) [7.276]
or, using o1 = 01 + 27,

1

ocl+r2r—0o' and oo’ +2nt [7.277]

which fits the description in the text of a cross-cap.

7.61 p 227: Eq. (7.4.19) The Klein Bottle Amplitude as a Cylinder with
Two Cross-Caps

We perform the transformation ¢ = 1/2s in (7.4.15).

0 2 1\ —13 .\ —24
ds 1 4 21
L2 =1 V5 - —_— —
et 26/oo< 232> 4/2«9( 2s ) n<23>

) ~13
iVog [ 8m2a & N
= < 1 / ds s?n(i/s) =%
0

2%V > L
_Z4(87r2a’)13/0 ds s'%n(—1/is) ™ [7.278]
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Use (7.2.44b) n(—1/1) = (—it)/?n(7) to find

226V26 o0 19 —924
A _. 2 Ve |: e N1/2
K2 Z4(87r2o/)13 /0 ds s |(—iis) ' *n(is)
2%V % A2.-12 . 24
— ’LW /0 ds S TS 77(@8)
226V26 o) » 04
:ZZM(&TQO/)B/O dsn(is/m) [7.279]

In the last line we have just rescaled s — s/m.

7.62 p 227: Eq. (7.4.21) The Oscillator Trace for the Mobius Strip

The trace over the matter sector is similar as for the left-handed side of the torus, see table
7.1, but all odd level acquire a minus sign. The trace is then, for one matter field,

o0

Tr Qgenz1MNa—1 — ~1 Z(—)kp(k)qk [7.280]
k=0
q = e?™7 = =27t and p(k) the number of partitions of n. One can rewrite this as

o0 oo
{=1m=0
as is easily checked by working out the first few factors of the infinite product
(1—q+q2—q3+q4—--'> x (1—q2+q4—q6+---) x (1—q3+q6—q9+---)
><<1—q4+q8+.--)><~- [7.282]

The geometric sums can be rewritten as

[e.e]
0 1
Tr Qgn=1"Nn—1 — =1 H — [7.283]
o 1=(=9)
Taking into account 24 transverse oscillations we this get for the trace
o0
¢ T[0 - (=97 [7.284]
n=1

— 416—



Joe’s Book (version of November 20, 2020) Notes from Stany M. Schrans

We now use (7.2.38a) the product representation for ¥y (v, 7) and (7.2.43) the definition
of the Dedekind function, with 7 = 24t

Yoo (0, 2it)r(2it) = [H (1—e ™)1 - e_m(m_lﬂ))?] e (et
me1 m=1
0o
_ 8_47rt/24 H (1 _ e—47rtm)2(1 _ 6—47”5(7”—1/2))2 [7.285]
m=1

so that

i —24
1900(0’ 27;15)71277(27;15)712 — 627rt H [(1 o 6747rtm)(1 - 6747rt(m71/2))}

It so happens that

[Ta-om=J[a-"+m =g [7.287]

m=1 m=1

as can easily be checked by e.g. working out the first few powers of ¢q. Adding the momen-
tum integral and the ghost insertions we thus find for the vacuum energy of the Mdbius
strip

> dt
Znt, =iVag / E(w?a’trli"ﬁoo(o,zz't)*l?n(zz't)*” [7.288]
0

7.63 p227: Eq. (7.4.23) The Mobius Strip as Cylinder with a Boundary
and a Cross-Cap

Setting ¢t = 7/4s we find

Ly, = £inVog /0 (Zj) <87r2a’418)713 [1900 (0, 2@%) n (22%)} e

gt () [ o)) e
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Using the transformation of ¥y in (7.2.40) and of 7 in (7.2.44)

inVag  [4\" /°° 1 2is\ /2 2is 2is\2 (2is\ |
Iy, =& ——2 (2 d —iZ2 ) W0 (0,22 ) (=2 =
Mo 4(8m2a/ )13 <7r> 0 o " 0\ " v
inVag (AN [ 5 [(2s\ " 2s\ (2is\] "
— 4% (= d il 9 il I el
4(8m2a’)13 <7r> /0 o8 7'(' |0 T T

2in2%Vg [ 2is\ (2is\] ™"

— 418—



Chapter 8

Toroidal Compactification and
T-Duality

Open Questions

I have a number of unanswered points for this chapter. They are briefly mentioned here and
more detail is given under the respective headings. Any help in resolving them can be sent to
hepnotes@hotmail.com and is more than welcome.

& (8.1.6) In deriving the infinite tower of fields due to the Kaluza-Klein compactification, one needs to assume
GHe = (. I believe this derivation of the equation and the corresponding mass of these states is meant to be in
flat spacetime and merely serves as an illustration of the more general case.

& p240 When considering the action of a DDF operator on a state of given momentum g, i.e. corresponding to
the OPE 90X ek X (1) £(9787 X*)eie X (0) Joe finds a term with a factor 2~ 7k04” /2_ ] believe this should
rather be a term with a factor z—® "*04" /2 Indeed this term comes from the X+ (#)X ~(0) OPE and the X~ (0)
comes with ¢T. It is a bit strange that this is not on Joe’s errata page.

& (8.3.3) In the compactified bosonic string the massless scalar a2_51 d2_51 |0; k) is said to be "the modulus for the
radius of the compactified direction". It is clear that this state is linked to the compactified dimension, but what
does this statement exactly mean?

& (8.4.25) Show that if I" is an even self-dual lattice then so is AT’ with A and O(k, k; R) transformation.

& (8.5.19) In discussing general orbifold theory with a non-Abelian subgroup H and projection operator Py =
[order(h)]™1 3 hg e N2 Joe argues that the diagonal matrix elements of h; are zero. I don’s see that.

& (8.6.6) I have a sign difference with the Hamiltonian for a point particle with charge ¢ in a compactified di-
mension. It must be linked to some Minkowski-Euclidean transformation I did incorrectly, but I can’t figure it
out.

& (8.6.9) Itisn’t clear to me why [i5) has charge +1 under U(1); and change —1 under U(1) . The charge is linked
to the phase the open string picks up in Wilson loop. The open string has an A* Chan-Paton factor on one end
and a \J Chan Paton factor at the other end. Why do they pick up a different sign?

& (8.7.5) In his Little Book of Strings [16] Joe refers to Pythagoras. Yes, it looks like an application of Pythagoras,
but where does it come from? The original infinitesimal two-dimensional element dX ' dX? gets collapsed into
a one-dimensional one. How does good-old Pythagoras come into play? This is a Greek mystery to me.
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& (8.7.23) I cannot reproduce the graviton propagator from the spacetimeaction.

8.1 p 231: Eq. (8.1.2) The Metric in D = d + 1 Dimensions
Write out (8.1.2)

ds® = G dat dat + Gdd(d:vdda:d + 2Aﬂdx“dxd + A, A dat dx”)
= (G + GaaAuA)dztdz” + 2G gq A, dat dz? + G gadada?

Comparing this with ds? = G, we see that

Gl =G + GaaAuA,
Gl =GaaAy

G =Gaq

[8.1]

[8.2]

8.2 p 232: Eq. (8.1.4) The Gauge Transformation of the Kaluza-Klein

Vector

Let us do this carefully. In the primed reference frame we have

ds" = [GLV(J:‘/M) + GzldAL(x'“)A’V(x'“)]d:r’“dx’” + QGQd(x'“)AL (M) da"M da'
+ Gy (2" dz'da’?

We are only looking at a transformation of z¢ so z/* = x/:

ds? = [G:W(a:“) + Gfid(:c“)AL(x“)A;,(x“)]dar“dm” + ZGQd(x“)A;L(x“)dw“dw’d
+ Gyt )d:r’ddx’d

We don’t write the z* dependence anymore and use dz'? = daz? + 9, \da"

ds”? = (G, + GygAl, Al )datda” + 2Glj, Al dat (dz® + 0, Adx”)
+ Gly(da + 9 dx™) (dz? + 9, \dz)
=[G}, + Gl A, + Glyg (A, 0\ + ALOLN) + Gligdu Ao, \)|dat dz”
+ (2G4 A + 2G),0, 0 dat da + Glyydada®

Requiring ds?> = ds? we find from the dz¢dz? term

Ga = Gad
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so G4q transforms as a scalar under this transformation. From the dz*dz? term we see that
we have invariance if the vector field transforms as

Al = A, — 9N [8.7]
Indeed, using this we find that

ds”® =[G, + Gaa[(Ay — 0N (A — O N) + (Ay — 0N DA
+ (A — BN A + 0,20\ |datda” + AFdatda® + G gedada?
= (G;W + GaqApAy)datdx” + 2AMdatdz® + G ggdazdz®

=G, datdz” + Gaq(A*da" + dx?)? [8.8]

and so we have invariance if G}, = G, as well.

We conclude that we have invariance under z¢ — 2/ = 2¢ 4 \(2#) and z* — z/* = z#
with G, and G 44 unchanged and A* — A), = A, — 9, \. This is a U(1) gauge transforma-
tion.

8.3 p 232: Eq. (8.1.5) Expanding the Compact Coordinate in a Com-
plete Set

A complete set of functions for any coordinate x is eP?; it just provides the Fourier trans-
form. For the compact coordinate we need to impose the boundary condition

. d . d . d .
ePdT" o ezpd(:p +27R) P eQmde [8.9]

so this implies p;R = n for n € Z, i.e. quantisation of the "momentum" p; = n/R. We can
thus expand the dependence on the compact dimension of any scalar field in this complete
set

B) = D da(aeP = 3 ()R [8.10]

n=—oo n=—oo

8.4 p 232: Eq. (8.1.6) The Wave Equation for the Kaluza-Klein Theory

The location of the indices is crucial here. As 93¢ = (in/R)¢ we have

Or10M = (90" + 0430%) Y fn(at)em /R

n=—oo

=0,0" Z (bn(:c“)eimd/R—&—é?d Z %qﬁn(x“)emxdm [8.11]

n=—oo n=—oo
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Now 94 = G#9,, + G419, and thus

aMa ¢ = 8 M Z ¢ [A zn:v /R—l—G“d@ Z 7d)n l,) inz?/R

Gdda Z 7¢n zn:vd/R
00 . 2 '
= > {@ua“ GO 22} D)1 [8.12]

and so the wave equation 9,0 ¢ = 0 becomes
2

M4 n

We have an additional term compared to Joe. One could argue that G*?9, = ¢ and
that we have assumed there is no dependence on the compactified dimension. But that
is no dependence on z¢. And 0¢ = 9 /dz, with 24 = Gayz™ = Guar# + Gaaz®.
So one needs to assume as well that G,,; = 0 but that would imply that there is no
vector field A*. I actually believe that Joe meant this to be an example in flat spacetime,
so that indeed G** = 0 and that it just serves as a simple illustration. This certainly
seems to be suggested in the Notes of Chris Pope on Kaluza-Klein theory on page 3 of
http://people.physics.tamu.edu/pope/ihplec.pdf.

Assuming this to be the case, we deduce that
n2
0u0" dn(a") = 3 Pn(a”) [8.14]
where we have re-instated the z# dependence.
8.5 p 232: Eq. (8.1.7) The Infinite Tower of Kaluza Klein Fields
Eq. (8.1.6) is nothing but the Klein-Gordon equation for a field ¢, with mass squared
n?/R?. The compactification of one of the dimensions of a scalar field ¢ thus leads to

an infinite set of fields ¢, that behave like scalar fields of mass n?/R? in the d spacetime
dimensions. The mass shell condition for that field is —p? = n?/R2.

8.6 p 232: Eq. (8.1.18) The Ricci Scalar in the Kaluza-Klein Theory

This is an entirely straightforward albeit exceedingly tedious calculation. Even if one con-
siders the fact that we should really only consider the terms that involve a G4, and/or a
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A, as everything without any of these automatically leads to R;. There is an argument
based on dimensional analysis and symmetries that bypasses some of the calculation, even
though there is still a lot left to do.

Let us denote the D dimensional quantities with a = and the d-dimensional quantities
without one. We start by looking at the mass-dimensions of the various quantities. These
are

quantity | dimension explanation
otz r -1 standard dimension of length

éuw Guv,0 0 [ds?] = —2 and ds? = Gyndx™MdzN
R,R,F,, +2 R x 0T « 02G and [9] = +1, [F] = [0A] and [A] = +1

Table 8.1: Mass-dimensions of Kaluza-Klein Fields. z¢ is the compactified dimen-
sion and r is the radius of compactification.

Let us now write down all combinations of mass dimension two that we could use to
expand R. But let us keep in mind that we have a d-dimensional diffeomorphism so that
we should have scalars under that and also that a gauge symmetry of the metric, i.e. under
2 — 2¢ + X\ we have A, — A, — 9, so that A, can only appear in gauge invariant
combinations. We are then lead to a combination

R=aR+ bE,, F* + c(Vo)? +doVie +eVio + f [8.15]

Here a,b,c,d, e and f are to be determined. They can depend on ¢ as that is a scalar in d-
dimensional space time, but they cannot depend on G, or on A4, as any such dependence
is already in R and F),, F*" respectively. We could combine doV2s + V20 into a gV2o
with ¢ a function of o, but it is convenient to split it in this way.

What else can we say? Under a scaling

24— A

Ay — AA,
€27 3y N\ 722 [8.16]

and keeping z# and G,,, fixed, with X a constant, the line element ds* = G, dz*dz" +
%7 (dz? + A, dz*)? is manifestly invariant. Under this scaling we obviously have

F o F" — \*F,, FH
Vo —V,o [8.17]

The latter relation follows from ¢ — o — In A\. How does the curvature scale under this?
It turns out that R remains unchanged under this scaling, and so does R as well.
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This is not too hard to see if we investigate the scaling of the metric components. Let
us for arguments sake momentarily take D = 5. We will just use this for illustration and

will see that the arguments are general. The metric G is now

Goo + 620140140 Gor + 620140141 Goo + 620140142 Gos + 620A0A3 620140
_ Gio + 620141140 Go1 + 62UA1A1 Goo + 620A1A2 Gosz + 620A1A3 620141
GMN = GQO + 62UA2A0 GOl + 62UA2A1 Gog + 620A2A2 Go3 + 620A2A3 620142 [818]
G30 + 620143140 G01 + €2GA3A1 G02 + 620143142 G03 + 62UA3A3 620143
620140 e2o’A1 e2o’A2 620143 62(7

The first thing we notice is that the determinant of the D dimensional metric is very simply
related to the determinant of the d dimensional metric. This can either be done by direct
calculation, for those with sufficient stamina, or by noting that if one adds a column (row)
of a matrix to another column (row) then the determinant of original and new matrices
are the same. We see that the first three columns are just the G metric plus a coefficient
times the fourth column.! This means that

Goo Go1 Goz Gosz €7 A
_ G Gu G Gz €4
det G = det G20 G21 GQQ G23 626142 = 620 det G [819]
Gso Gs1 Gsy Gsz €743
0 0 0 0 e
The second observation is that the inverse of G is very simple
GO0 Qo1 02 ;03 _ A0
GIO Gll G12 G13 _Al
éMN _ G2O G21 G22 G23 —_ A2 [8.20]
G3O GBl G32 G33 _AS
—Ay —A; —Ay —As g2 + ANAH
In other words
GH — G
GH — _ pAm
G =720 4 A, AP [8.21]
and let us just remind ourselves that
G =Gy + €A, A,
é ud = (22014'u
Gag =€ [8.22]

11t is this property of factorisation of the determinant, which, as we will see later, remains valid
if more than one dimension is compactified, that warrants the choice of metric (8.1.2).
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Here G is the inverse of G ,,. It is easily checked that GunGNE = 6K Indeed

GuNGN? = GG + GuaG% = (G + T ALA)GYP + ¥ A, (— AP)

=G G =5
GunGN? =G G+ GG = (G + e A A (—AY) + €27 A, (e727 + A, AY)

= — G A" + A =0
GanGN? =G, G" 4 GggG = €27 A, (= AY) + €% (e7% + A, AM) =1 [8.23]

From these expressions of the metric we find the scaling
G" — G,
G — MG
G — \2G gy [8.24]

and for the inverse metric

G G0
éud — )\_lé“d
édd — A T2G [8.25]

We see that any upper index ¢ gives a factor A and any lower index 4 gives a factor A~ !.
As the Ricci scalar is formed from the curvature tensor with all indices contracted and any
d can only contract with a ; we conclude that R indeed remains unchanged. R is also
unchanged as both G v and G are invariant under our scaling.

Let us now go back to [8.15] which we repeat for convenience

R=aR +be* F,, F*" 4 ¢(Vo)? + doVio + eVio + f [8.26]

The LHS is invariant under our scaling. So the RHS must be invariant as well. Recall that
a,b,c,d,e and f are still allowed to be functions of o, but as R is invariant and a(c) R must
also be invariant we need to have that « is independent of ¢. Similarly as F},, F*" scales as
A2, we must have that b scales as A2 and so b « ¢2°. Finally Vo is invariant, so ¢, d and e
must be independent of . We have thus established that

R=aR+ ﬁez"FwFW + ’Y(VU)Q +00V30 +eVio+ f [8.27]

for some constants «, 3,7, 6 and e. We now see the reason why we kept the split into d and
e. We can still have f to be a function of ¢, but with f(oc = 0) = 0, obviously.

To fix these constants we can look at special cases of the metric. But in order to do so
we unfortunately need the expression for the Ricci scalar and this starts with an expression
for the connections. Before we tackle this calculation, let me give you some pep-talk.
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It turns out that Kaluza had first developed his theory with éW = G, éud = kA,

and Ggq = k. This, however, made it prohibitively difficult to "split" the four dimensional
theory from the fifth dimension, as we can see from the fact that the determinant G is
then not easily expressible in terms of (G, and from the fact that the inverse metric GMN
is already a mess. Imagine how the connections and curvature tensor must look like, let
alone the Ricci tensor. It was Klein’s insight, about five years later, to write the metric as
we are now doing. And this led to dramatic simplifications in the calculations. Dramatic
being a relative term here.

With this anecdote off our chest, we are ready to tackle the calculation of the connec-
tions. We start with

I, = %éMk(auéMy +8,Gry — O G
=5GP0+ 0,Cpp — 0,Gy) + 5 GO, C s + 0, — 0uCp)
=5 {67 [0u(G + 7 4000) + 0,(Gp+ A A = 0y(Go+ ¥ A, A
— AN[0,(eX A) + 0, (€2 Ay) — 0a(Gluy + €2 A, A)] }
—T, + %&U{GM 20,0 A,A, + 0, A, A, + A0, A,
+20,0A, A, + 0, Ay A, + A0y A, — 20,0A,A, — 9,A, A, — A,,A,]
— A 20,04, + B, Ay + 20,04, +0,4,] } [8.28]

We have used the fact that there is no 2¢ dependence so that 94(G ., + €27 A, A,) = 0. Let
us first consider the terms with a do:

27 G (Ou0 Ap Ay + 0,0 Ay Ay = D,0 Ay A, ) — AD,0 A, — 40,04, ]
=e? (9,0 A Ay + 0,0 A A, — D0 A A, — 0,0 AN A, — 9,0 A1 A,)
= — e o AA, [8.29]
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The terms without a do give
1
3¢ [GP’\ (8, Ap Ay + Apdu Ay + By Ap A, + AYDy Ay — 8,AL A, — ALS,A,)
— 429, 4, - 419, A,]
= %e% (GP0,A,A, + A0, A, + GPO,A A, + AMO, A, — 0 AL A, — A0MA,
— A, A, — A, A,)
= %(32” [Ay (GP9,A, — M AL) + A (GPro,A, — aAAy)}
1
= e [ A0GP (DA = D, A,) + A, G0, A, = D, A,
1 1
— 562" (A,GP*F,, + A,G"*F,,) = 562“ (A, F, + ALF,) [8.30]
We thus find
~ 1
Ly =T, — €00 Ay Ay + S (AL, + ALE, ) [8.31]
Next, we have
~ 1~ ~ ~ ~
Iy = §GM>\(8uGMd + 0aGrrp — O Glra)
1~ ~ ~ ~ 1~ ~ ~ ~
= 5Gfﬂ(a,ic:pd + 904G oy — 0,Ga) + §Gd*(aﬂadd + 904G iy — 0aGa) [8.32]
We use the fact that all 9,’s are zero
~ 1 1
F//\Ld = §Gp/\ [au (620Ap) —0p (eQJAu)} - 514)\3# (620>
- %e20 (20,04 + G0, 4, — 2000 A, — GOy Ay — 20,04
= — 6208)\014“ + %BZUGP)‘FW = —6208/\O'AM + %GQOF/B‘ [8.33]
And on we go
~ 1~ ~ ~ ~
[ = §GM/\(adGMd + 0aG g — OmGaq)
1~ ~ ~ ~ 1~ ~ ~ ~
= §GPA(3ded + 04Gpa — 0pGaa) + §Gdk(3ded + 0aGaa — 0aGaa)

1~ ~ 1
= — EGP’\aded = —iGp)‘@pe% = —e29s [8.34]
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Next
£, = 3G 0,Cs + 0, Crry — 00G)
= 3G @,Cpu + 0,Cp — 0,Gy) + 3G O Gt + Gty — 0aC)
== %Ap {8;; (Gpw + €7 ApAy) + 0y (G + €27 ApAy) = 0p (Gl + ezaAuAV)]
+ %(e—% + ApA7) [0,(27AL) + 0, (77 A,) | [8.35]
Let us first consider the terms without a do: ignoring a factor 1/2 these are
— AP9,G,, — APO,Gpy + AP0,G
(= APOAN A, — APALD, A, — APD,AA — APAD, A+ APD AL A, + APALD,A, )
- OuAy + Oy A+ ¢ (A, AP0, A, + A4,409,A,) [8.36]
Now look at the terms without €2’ and consider
VA, + VA, =0,A, —T), A\ + 0,4, — T}, A,

=0uAy + 0 A, — G (aMGﬂV +0,Gpu — apGW)AA
=0 Ay + 0, A, — AP(0,Gp + 0,Gpp — 0,G ) [8.37]

which we see gives exactly these terms. Let us now focus on the terms with ¢2?. This
simplifies to

APAL(=0,A, +0,A,) + APA (-0, A, + 0,A,)) = APAF,, + APALE,, [8.38]
We can thus write
e, — %(V#A,, VA, + %e% (424, Fy+ AP ALF, ) + 00 terms [8.39]
Let us now consider those terms with a 0o in [8.35]:
27 (= AP0 ApAy — APD,0 A, A, + APOy0 ALA,)
+0u0 Ay + 0,04, + ¥ (A AP 0,0 A, + A,A00,04,)
=0u0A, +0,0A, + eQUAuA,,ApﬁpU [8.40]
We thus have
fzv = % (V“Al, + VVAH) + %e% (ApAquu + A"A”pr)
+ 0,04, + 0,0 A, + e* A A APD 0 [8.41]
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Two more to go
~ 1~ ~ ~ ~
rd, = §GMd(auGMd + 0aGrp — O G ud)
1~ ~ ~ 1~ ~
= 5Gf’d(auc:pd — 0,Ga) + §Gdd8qud

=~ %AP {811» (e*74,) =0, (eQUAM)} + 1(6720— + ApAp) D,e*

2
1
- 5620( — A0y APDyAL) + € (= APAD + AP AT+ ApAPD, o) + o
1
= §€2UApru + eQUAMApapa +0u0 [8.42]
and finally

_ 1~ _ _ _ 1 ~ _
rd, = 5GW(adGMd + 943G rna — O Gaa) = —iaﬂdauc;dd
_ L gng e 20 ang o [8.43]
=3 we = . :
Let us for convenience write all the connections out once more:
- o 1 o
I, =T, — e 0 cA,A, + 562 (ALF, > + A F,N)
™ o 1 o
I‘f;d = —¢é? 8)‘0/1# + 562 F#A
féd = — 29
~ 1 1
T, =5 (Vuds + VoAu) + 562 (AP A B + APALF,, )
+ 0,04, + 0,04, + € A, A, APD,0
~ 1
I‘Zd = 562UAPFPM +€*7 A, APD,0 + 0,0

rd, = 44,0 [8.44]

As an aside we note that, evidently, the connections scale with a factor \ for each ¢ and a
factor \~! for each ,.

We now return to [8.27] which we repeat for convenience.
R=aR+ ﬁeQUFWF“” + ’y(VU)2 +60Vo +eVia + f [8.45]

To fix these constants we can look at special cases of the metric. Let us set A* = o = 0. In
that case we simply have R = R and so we find that o = 1.
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Next, let us take G, = 6, and A4,, = 0, leaving only o free.> The only non-vanishing
metric component with upper indices and connections are then

GHv — §Hv

édd — 6—20'

f’jd = — 9o

Iy =0u0 [8.46]

The Ricci scalar thus reduces to
R=G" (aNfJ\Nu — OMIN, + TN TR L — f%}(fﬁ/:)
=GM (8NF;]LVA — 0N + FJNVKF;IfA - F,]YKFIJ\(IA>
+ G (ONTR) — 0T Na + TN ATl — TR
=G (_aﬂfz)\ -T degx) + G (al/fgd + T4 Th, — Tyl — fgnfgd>
= — 0,0"0 — 0,00"c + e %7 [0, (—e*0"c) — Dpo (—e* 0 0)]
= —0,0'"0 — 0,00"0 — 20,00"0 — 0,0"c + 0,00"0
= —2(0,0"0 + 0,00"0) [8.47]
From [8.27] we have for this choice of metric
R =~(00)? + 6080 + 00 + f [8.48]

and we thus find that v = ¢ = —2 and § = f = 0. To link this to the expression in (8.1.8)
note that

e =70, (0,0¢7) = 0,00 + 900" [8.49]

and e~ V?2¢? is just the covariant expression of this. So we have a contribution —2e~7V?¢?.

Finally, let us take G,,, = 0, and o = 0, leaving only the A, free. Here we don’t have to
do any calculations as the theory we have is just a Euclidean d dimensional flat spacetime
with an Abelian gauge field 4, and we know that the action reduces to —3 F},, F*” so that
8= —i. For the assiduous reader who is not yet tired of these calculations we will do them
in detail. Less assiduous readers can immediately skip to [8.57]. The only non-vanishing
metric component with upper indices and connections are in this case

GHv — v
GH — _ AM
G =1+ A, A"

[8.50]

Note that taking G,,,, = 0 is not an allowed choice as the metric would then not be invertible.
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and

e, = % <8uAl, + a,,AM) + %(APA,,FW + APAHFPV)
I, = %APFPM [8.51]
The Ricci scalar is given by
R=G"M (@ﬁﬁL — ouIN, + TN LTE, — fﬁKf§L> [8.52]
Let us do the four terms separately. Because G, = ¢,,, we do not have to make a distinc-
tion between upper and lower indices in d-spacetime and will move them all downstairs,

but we do need to be careful with the order. We start with
GEMoNTN, =GHMa, T, = GM o, T, + G™Mo, T,
=GMo,IYy + GMo,TY, + GO, T, + G9,TY,
= SO0 (AP + AxFlu) = S AN0 Py — 3 Auu
= % (00 A Fy + A0y Py + 00 Aoy + A0y Fray = 4,0, Fyy = Ay, Fy)
=0,A,F,, = %FW(Z?VAM - 0,A)) = —%F,“,FW [8.53]
where in the last line we have antisymmetrised the result. Next we have
~GFMoy TN, = — GMo, TN, = —Gtro, Ty, — GMo, T,
= — GMY, TV, — GHy, IV, — GMY, T — GHo,TY,
= SOnOu(AuFau + ANEW) + 3 Au0uFo — 00 (A7 F)
- %( — 0, Ay F . — Ay Fy — 0,A,F,, — Apaquu) —0 [8.54]

The third and fourth terms with the products of the connections are a lot more tedious
to work out, and is most easily done with a software package such as Mathematica. The
result of this is

SLMEN = ~IMSEN = 1
GIMPN, TK, =0 and —GLMrﬁKrﬁLZZFWFW [8.55]
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The Mathematica calculation is shown in fig.8.1.
Bringing the four terms together we conclude that

1 1 1
R — _iFﬂl’FHV + —

4FM,,FM,, = _ZFWFW [8.56]

and hence g = —1/4.

nie7i=  dim = 53
Do[g[a, b] = 0, {a, dim}, {b, dim}]
Do[g[a, a] = 1, {a, dim - 1}]
Do[g[a, dim] = -A[a], {a, dim - 1}]
Do[g[dim, a]=-A[a], {a, dim - 1}]
gldim, dim] = 1 + Sum[A[m] * A[m], {m, dim - 1}];

Do[G[a, b, c] = 0, {a, dim}, {b, dim}, {c, dim}]
Fla_, b_] := dA[a, b] - dA[b, a];
Do[G[a, b, c] = (1/2)*(A[b]*F[c, al+ A[c]*F[b, a]), {a, dim -1}, {b, dim -1}, {c, dim - 1}]
Do[G[a, b, dim] = (1/2)* F[b, al, {a, dim - 1}, {b, dim - 1}]
Do[G[a, dim, b] = (1/2) F[b, al, {a, dim -1}, {b, dim - 1}]
Do[G[dim, m, n] = (1/2)*
(dA[m, n]+ dA[n, m] + Sum[A[r]*A[n]* F[r, m] + A[r] * A[m] » F[r, n], {r, dim - 1}]), {a, dim - 1}]
Do[G[dim, m, dim] = (1/2)* Sum[A[r]=* F[r, m], {r, dim - 1}], {m, dim - 1}]
Do[G[dim, dim, m] = (1/2)* Sum[A[r]=* F[r, m], {r, dim - 1}], {m, dim - 1}]
F2 = Sum[F[a, b] * F[a, b], {a, dim -1}, {b, dim - 1}];

nea= GGl =
Simplify [Expand [Sum[g[l, m] * G[n, n, k]*G[k, m, 1], {L, dim}, {k, dim}, {m, dim}, {n, dim}]]]
GG2 = Simplify [
Expand [- Sum[g[l, m]* G[n, m, k] *G[k, n, 1], {1, dim}, {k, dim}, {m, dim}, {n, dim}]]]
Expand [GG2 - 1/4 % F2]

Out[164]= 0
1
ounesi-  — (dA[1, 2]* + dA[1, 31>+ dA[1, 4]° + dA[1, 5]° - 2 dA[1, 2]dA[2, 1]+ dA[2, 1]* +
2
dA[2, 31° + dA[2, 4] + dA[2, 51° - 2 dA[1, 3]dA[3, 1]+ dA[3, 1]* - 2 dA[2, 3] dA[3, 2]+
dA[3, 2]° + dA[3, 4] + dA[3, 51° - 2 dA[1, 4] dA[4, 1]+ dA[4, 1]* - 2 dA[2, 4] dA[4, 2]+
dA[4, 2]° - 2 dA[3, 4] dA[4, 3]+ dA[4, 3]° + dA[4, 5]* - 2 dA[1, 5]dA[5, 1]+ dA[5, 1]*-
2dA[2, 5]dA[5, 2]+ dA[5, 2]* - 2 dA[3, 5] dA[S, 3]+ dA[5, 3]* -2 dA[4, 5] dA[S, 4]+ dA[5, 4]%)
Out[166]= 0

Figure 8.1: Mathematica code for Ricci scalar in Kaluza-Klein theory. We are illsutarting this with
D =5, but it is obviously a general result.
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Taking everything together, we conclude thus that « = 1,4 = —1/4and v = § = -2
and thus

~ 1
R=R- ZeQUFWF“” —2e7 V3 [8.57]

which is what we set out to show.

8.7 p 233: Eq. (8.1.9) The Kaluza-Klein Action with a Dilaton

Let us now add a dilaton to the Kaluza-Klein theory. The action is the D dimensional
Einstein-Hilbert action augmented with a dilaton field ®.

e

S p—
25%

/ dPx v/ ~Ge** [R+ 4V ,0V" D) [8.58]

Note also that we have /—G, the square root of the determinant of G¥; and not v/—Gy,
the square root of the determinant of the non-compactified metric, as per Joe’s errata page.
We have also replaced 0,® by V,® as ® is a spacetime scalar.

As we are ignoring any dependence on the compactified dimension =%, we can just
integrate it out and find a factor 2rR. We also use [8.19] , i.e. v/—G = €2°v/—Gy, and
(8.1.8). This gives

TR 1
S = 2 A’z \/—Gae 7 | Ry — 2¢77V?e” — ZeQUFWF‘“’ + 40,00/ ® [8.59]

where we have used the fact that ® is a spacetime scalar. In order to rewrite this as the
second line of (8.1.9) we to replace —2e~°V?¢e’ by —40,20,. The solution to this was
given to me by "Kosm" on the Physics Stack Exchange and involves the ubiquitous partial
integration.

We first note that

e V% =e IVH(V,0e7) = Vo + V,0VFe = Ve + 0,00t [8.60]
Next we consider

V. (e7217VHe) = (—2V,@ + V,0)VFoe 2?17 4 Vige 2P0
=(—20,90"0 + 0,00"0 + V20)6_2¢)+U [8.61]

We now integrate both sides over [ d?z\/—G,. The LHS is a total derivative and hence
zero. Thus

0= [ d%+\/~Gae ?*T7(-20,90"c + d,00"c + Vo) [8.62]
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From which we have

A%z \/—Gae V20 = [ dlx \/—7@6_%4‘”(28“@8“0 — 0,00"0) [8.63]
From this and from [8.60] we then get

Az \/—Gge 2t (—26_”V2e‘7) = [ d¥x\/—Gge 20T (—2V20 —20,00"0)
A% \/—Gae 22T (—40,80" 0 + 20,000 — 20,00"0)
— / A%z \/—Gae 2217 (—40,00" o) [8.64]
so that we can indeed replace —2e~7V?2e? by —49,,20,.
To find the last line of (8.1.9) just write ® = &; + ¢/2 in

40,8010 + 40,0"® = — 49, (cbd + ) 0o + 49, (cbd + ) o (@d + %)

= — 40,9400 —20,,00"0 + 40,940, Pq + 40, 940" 0 4 O 00" 0
= 48M(I>d8M<Ed — aMO'a'uO' [8.65]

It looks like the dilation kinetic term has the wrong sign. But as explained in Joe’s book
we have seen this before. Indeed the lowest order effective action for the bosonic string
(3.7. 20) also had such a wrong sign. We then performed a Weyl transformation G, —
G L e2w(@ @G > see (3.722). We also shifted the dllaton d = &— Py and found in (3.7.25)
that the k1net1c term of this new dilaton field was — 5750, ®0"® and so has the right sign.
The situation here is identical.

8.8 p 234: Eq. (8.1.11) The Relation Between the Graviton and Gauge
Coupling in Kaluza-Klein Theory

We rewrite the action (8.1.9) with the definitions of the couplings

1
S = /ddx VvV =Gy [%QRd - @ [—(00)* + 4(09)?] — —F2 [8.66]
d

ko 4g3
Equating the coefficient of R, with that in (8.1.9) gives
1 20,7R

2

20, 2 2
QH?z 2 = e ik = 2T RKy [8.67]
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Equating the coefficients of the field tensor gives

1 R R?
= e T [8.68]
4g5 kG 4
The extra R? on the RHS coming from the definition A, = RA,,. We thus have
e?®apk  2wrRKZ 2K3
gi=—mge = ——gt =74 [8.69]
TR TR R

8.9 p 234: Eq. (8.1.12) The Relation Between the Graviton Coupling
in D and in d Dimensions

Focussing on the Einstein-Hilbert part of the action we have in D dimensional spacetime
1 1
K K

But if we wouldn’t know about the compactified dimension and thought we lived in a d
dimensional spacetime we would simply write

1
S = /ddﬂj vV —Gd@Rd + - [8.71]

Comparing the coupling constants we find

TR 1 1 2R
PR : R

— =

= — [8.72]
2 2
K 2/<;d K3

K2

8.10 p 234: Eq. (8.1.14) The Antisymmetric Tensor in the Kaluza-Klein
Theory

This is once more a straightforward albeit tedious calculation, which we will not write
out in detail. We will just illustrate how the term with the vector potential arises. From
(3.7.20) the contribution from the antisymmetric tensor is

1
Sy = — 5 /de vV *G6_2¢HKLMHKLM
24k§
1
= — mQﬂ'R ddx v —Gdea672(I>GKNGLOGMPHKLMHNOP [8.73]
ko

We extract the terms that have a G%:
TR
s /—Gge—2%4 (GUGEOGMP Hyy \ Hyop

Sy = —
i 12r2
+ GENGUGMP e v Hyap + GEYNGFO QU H e gHyog + - - ) [8.74]
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and take all other indices to be d-dimensional:

TR

Sy = —
" 12k2

ddac vV —Gd672¢d (GddG)\pG'uWHdAqumr

+ GKVGddGWrHKdMHVdﬂ- + GHVG)\dedH,{)\dHW)d + - ) [8.75]

Now use the inverse metric as derived in [8.21]

CHy — v
G = — A
Gld — =20 4 A, AH [8.76]
This gives
SH = — 17;]:(2) d'z\/=Gae (7 + A%) (GMG*T Hypy Hopr

+ G" G' Hyqy Hydr + G G HyyaHypg + -+ [8.77]

We have been sloppy with the notation as we have used G*” both for the metric in D
dimensions as in d dimensions, but as they are the same, we will be forgiven for this sin.
The three terms are identical by symmetry and we can thus write

R
Sy = — 17; 3 d% \/—G e 2% [Se*QUHdAuHC?“ + .- ] [8.78]
Ko

where we have also moved the terms with A* into the ---. Note that this is the only
place where the e~2° can occur. We now also have found a term of the form Asz,\MH g‘“ .
Hopefully this term will combine with terms that contain the inverse metric G*¢ = — A*,
We will leave this as an exercise for the reader.

8.11 p 236: Eq. (8.2.5) The Coordinate Change and the Winding Num-
ber

If we allow a winding number w then going around the string we have periodicity up to
27 Rw and the relation

2nRw = f(dz 0X +dz0X) [8.79]
C

Here C is a closed contour counter-clockwise around the origin. We plug in the Laurent

expansion
o > « a
. m - m
2T Rw = —i4/ 5} jéc Z (dz TS +dz zm+1> [8.80]

m=—0oQ
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In the second term we perform a change of variables z = w, a counter-clockwise closed
contour in the z plane €2™" with 7 € [0,1] now becomes e~2™" and thus a clock-wise
contour. Flipping the direction of the contour introduces a minus sign so we have

e > A, Qm,
a/

m=—0oQ

/
= — i/ S 2mi(a0 — &) = 2y %(ag — Go) [8.81]

8.12 p 236: Eq. (8.2.6) The Noether Momentum for the Closed String

We worked this out in (2.7.3), see our [2.114]
1

20/

P = (ap + ap) [8.82]

8.13 p 236: Eq. (8.2.7) The Left and Right Momentum

From (8.2.5) and (8.2.6) we have

o — G — 2WR
0 0 o
ap + g =V2ap [8.83]
from which we get
1 /2wR
== Voo!
(7)) 5 ( o + ap)
1 2WR
v = — — 2 ! *
o =3 ( o + v ap> [8.84]
and thus from the definition of p;, = \/2/a/ag and pr = \/2/c’ &,
21 (2Rw wR n  wR
—,/ 2z Voolp | = — _ by Bt
pL ()/2( /207, Oép) o +p R+ o
21 2Rw wR n  wR
I Voalp | = - 22 4, = 2 8.85
PR a,2< Vool Ozp> o +p B o [8.85]

where we have used the quantisation condition (8.2.2).
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8.14 p 237: Eq. (8.2.9) The Partition Function for the Compactified
Dimension

We have for a single dimension from (7.2.5)

(qq)~V/*¥Tr gPogho [8.86]
with ¢ = €2™7 = ¢27(in=72)  The oscillator part and the (¢g)~'/?* give the Dedekind func-
tion |n(7)|~2. The momentum is now quantized and not continuous and so the integration

is replaced by a sum over all possible momentum states, i.e. over all n and w. Plugging in
(8.2.7) this gives

> o 2 o 2
Z qiPLgaPr
n,W=—00
° / / 2
=Y limemH () i) ()
n,Ww=—00
=y G G o (G G
n,Ww=—00
[o.9] o
— Z el m;/ 427” 6*727%/2<%+wj,§2> _ Z 627ri7'1nwe*ﬂ'7'2(a1;77§2+#) [8.87]
n,w=—0o0 n,w=—0o0

Together with the Dedekind function we find (8.2.9).

8.15 p 237: Eq. (8.2.10) The Poisson Resummation Formula

This formula is also known as the Poisson summation formula and links an infinite sum of
a function to an infinite sum of its Fourier transform:

o fmy= > fk) [8.88]

n=—oo k=—o0

where f(k) = [ dx e?mk f(z) is the Fourier transform of f(z). In our case we have

—0o0

0 0
o o _ 9 . _ 9 o
f(k) — / dr e 27rmk€ maz?+2mwibr _ / dr e~ ™0 +27i(b—k)x

—00 —0o0

T —4n2(b—k)? _ —r(b—k)2
=4/ —e dm =a 1/26 a [8.89]
T
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where we have used the Gaussian integral

o0 2
/ dx e—oT Pz — \/?efa [8.90]
. a

o0 o

)2
Z exp(—Trcm2 + 2mibn) = a2 Z exp [—W(mb)} [8.91]

a

Thus

n=—oo m=—0o0

8.16 p 237: Eq. (8.2.11) The Partition Function After the Poisson Re-
summation Formula

We now use the Poisson summation formula with a = o/75/R? and b = w7y on (8.2.9)

N 7 P T R2w?
(qq) "/ Tr gPoghe =|n(r)| 7> D exp (—20/>
o' -1/2 X 7(m — wry)?
% < R2> mz_:ooeXp T an/R?
> _ xR2 P22 (w1 )2
g 2 e ey ot +mowm?]
R > _zR% w2(P24+12)+m2 —2mwt
=!n(7)|*27(, 17 oo i et amen ] g o
QT2 m,w=—00

Note now that

|m — w7'|2 =(m —wt)(m —wT) = m? + 11)2\7'|2 —mw(T +T)

=m? +w(rf +73) — 2mwn [8.93]
and thus
(qq)i / TI'q O(j 0 :’7](7')|7 W Z [ O‘IT2 [894]
m,w=—00

We use (7.2.9), i.e. |n(7)|~2 = (4na’m)"/?Zx (1) to find

o0

~ 2 R2 |m—wr|?
(¢q) " Y/* T gPogho = (47720/7'2)1/2ZX(T)(O/:j)l/Q Z € o2
m,w=—00
00 2R |m—wr|?
=2rRZx (1) Z e o [8.95]
m,w=—00
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We can view this as the partition function Zx(7) of the non-compact theory times the
volume of the compactified dimension 27 R times correction due to the discrete momentum
spectrum and the winding number.

Note that the partition function Zx (72) for the uncompactified free scalar has a factor

Ty 2 You will recall that this factor comes from the integration over the continuous

momentum. This factor 7, 172 is not present in the original form of the partition function
(8.2.9) for the compactified free scalar, but it does arise from the resummation formula.

This partition function is modular invariant. We have shown earlier that the non-
compactified partition function Zx is modular invariant, so we need to focus on the infinite
sum part only. Under 7 — 7 + 1 we have m — wr — m — w(7 + 1) = m — w — w7 and
so replacing m by n = m — w shows invariance of the infinite sum.

Under 7 — —1/7 we have 1y — —7/|7|? and 75 — 7 /|7|?. Thus

7rR2|m w7'|2 TR |m +w/T|?
ZexP( ) Ze"p( o rflrP

m,w
7R2 | — wr + ml|?
= Z exp ( - | | ) [8.96]
[0 T2
w,m
In the last lime we have set w' = —m and m' = w.

8.17 p 237: Eq. (8.2.13) The Periodicity of the Classical Solution

X has the right periodic boundary conditions

Xa(o! +27m,0%) = (¢! 4+ 20)wR + o*(m — wr)R/7 = Xa(o',0%) + 2rwR [8.97]

and
Xa(ot + 277y, 0% 4 277y = (01 + 2171 )wR + (02 + 2773) (m — wr) R/
d(a g )+27T7'1wR+27['T2( Tl)R/TQ
a(o',0%) +2rmR [8.98]

If we now split the compactified dimension in its classical and quantum part X = X + X
then X satisfies the ordinary boundary conditions X(o! + 27, 02) = X(o!,0?) and X(o! +
271711, 02 + 21713) = X(o',0?). So the path integral over X is just like the path integral
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over a non-compactified dimension and gives Zx the 27 R comes from the volume of the
compactified dimension. We thus need to evaluate e~ where, see (1.2.13),

1

Sa = —
o 4o

/ d%0 78, X0, Xl [8.99]

We have applied the Faddeev-Popov procedure so we have fixed the gauge 7% = §%°. We
now simply have 0, X; = wR and 02 X = (m — w71)R/7. Thus

1
e = exp{ — [wQR2 + (m — le)QRQ/TQﬂ /d20 [8.100]
dma!

Here [ d?0 = 4m%r, is the surface area of the torus, see [7.10]. Thus

2

el = exp {— (w2722 +m?+ w2712 — 2mw7'1) 47r27'2}

12
dra/Ts

R?
= exp [—0/7_2 (w2|7]2 +m? — 2mw7'1)]

~ ex _7TR2]m—wT\2
= exp — [8.101]

0/7’2

In the last line we have used [8.93]. This is the infinite sum of (8.2.11).

8.18 p 238: Eq. (8.2.20) The Phase when a Vertex Operator Circles
Another Vertex Operator

To describe how a point z on the complex plane circles the origin, we describe a curve
e?™sz with s € [0, 1] a parameter. At s = 1 we have come full circle and are back to the
original point in the complex plane. To describe how a point z; circles another point 2z, we
first shift the reference frame so that z, is now at the origin and then circle the transformed
point z; around the origin, thus we describe a curve e2™(z; — 29) = €2™215. So encircling
it completely once, means replacing 21 by e?™z;5.

Circling z; around z, in the OPE (8.2.19) thus gives

_ _ : Lkl )2 | _omio kRl /2 _
Vi kg (21, 22) Vi, s (22, 22) — (77 212)" ° v/ (e72mizyp) " ™" w/ Vi), (kb g (225 22)

_ 67ria’(kLk/L—kRk3g)VkL ke (21, 22) Vi k,R(ZQ’ %) [8.102]
and so we pick up a phase e™® (kLKL =krkR) 1f k; = kp and k), = k', then the phase is zero.

This corresponds to a non-compact dimension. However if we have different momenta,
then we have, by (8.2.7), different winding numbers w and w’ and so we need to be able
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to wind the string around something and thus have a compact dimension. Filling in the
possible values of the momenta explicitly we have for the phase

wicd (ko —knkl) ) n  wR n  WwWR n  wR n  WwR
e o (12) () (32) (-

w'R wRn .
= exp [ma 2 (R = + a’R>] = exp [27Tz(nw/ + n’w)] [8.103]

For the OPE, and consequently amplitudes, to be well-defined we need this phase to disap-
pear, i.e. (nw' + n'w) € Z.

8.19 p239: Eq. (8.2.21) The Equal Time Commutator [ X (z1), X (z2)]

We chose the worldsheet coordinate o' to be in the range [, 7]; it still has periodicity
2r. Defining as usual z = e~ = ¢~ +°” we thus have Inz = —ic! + ¢2 and thus ¢! =
—Im In z. The logarithm has a branch cut that we put on the negative real axis. Working
out [X1(z1), X1 (22)], the only non-zero commutation relations we have are [zy,pr] = i
and and [am,, an] = Mp4n. Thus

[(XL(21), Xi(22)] = [xL - Z* Llnzl +Z\/> Z mzT"
1

xL—z— rInzo +iy/ = an
2

/ /
= — 1%1n22[$L7PL] —Zglnzl[pL,wL] -2 > [om: 0]

m N
2 e/ mnzy'z4
o MO tn
=—11 —1
2 =2 ne Z mnzytzy
m,n#0
o 2
=— |lnzg—Inz — 1 8.104
5 [mz2—nz Z g [ ]
n#0
Now from In(1 — z) = — "7 , 2" /n we have
o0 n & n —1 m
z1 22 27 &) 21 A1
In{fl—-—=|-In(l—-—=)=- 2 S
( 22> < zl> Z nzy Z nzy Z nzy Z mzy'
n=1 n=1 m=—o0
2y
- _ Z — [8.105]
nzy
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and thus
/
[XL(Zl),XL(ZQ)] = g anQ — lnzl +In(1-— Zl) —In <1 — 22>:|
2 ) z1
o (20 — 21)/22
=— 1 —1 |
5 nze —Inz +in (1 —22) /71
-
& Inzg —Inz; +1n <Zl)] [8.106]
2 | 22

Using z = e~ +9” and the fact that we have equal time commutators, i.e. that o2 = o3
we have

~

a _e—ioi+o}
[(X1(21), X1(22)] = 5 [—iaé + 03 +iol —o? +1n <eimial+02>]
e 03 T0,
o - 1 ;2 +ir—iol+iod
:5<—202+wl+1ne 1 2)
o mia!

I
.
v |

(o3 +oitm—o0f +03) =+ [8.107]

Let us now sort out the sign. Let us look at the logarithm in more detail In eilEm—oi+o3) If
of > o4 then —o} + o1 < 0 and we need to take the + sign. Indeed the most negative we
can have of = +7 and o) = —x. This gives —of + 04 = —27. But this is on the branch
cut, and we can bring it back in the range [, 7] by adding +. Similarly, if o} < o}
then —o{ + o1 > 0 and we need to take the — sign. Indeed the most positive we can have
o{ = —m and 0§ = +. This gives —o] + 04 = 227 and we can bring it back in the range
[—7, 7| by subtracting 7. We thus conclude that, indeed,
mia/

sign (o] — 03) [8.108]

[(X©L(21), Xi(22)] =

8.20 p 239: Eq. (8.2.22) The Correct Oscillator Expression for the
Vertex Operator

We need the equal-time commutation relation for X z. This derivation is very similar to the
one of (8.2.21); we only have to change z by z. This leads us immediately to the similar
relation to [8.106]

/

[(XRr(z1), XRr(22)] = % Inzy —Inz; +In (—_)] [8.109]
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We now use z = e+ 79 and the fact that we have equal time commutators. to find

O/ 1 9 1 9 4 6+i0'%+0'%

_ . . 17T
[XRr(21), XRr(22)] = 5} ioy +05—io;—oi+In|e 7€+w%+gg
o 1 mia!

. . . . 1 i
=— (—l—w% —i0? 4 InetiTHioL “’2> ==
2 2
We work out the sign in the same way as before, but now as the argument of the loga-
. . ; 1 1 ; A .
rithm is In e/(¥7+71-92) and not In e!(=7~71172) we have the réle of o} and o} interchanged.
Therefore

[8.110]

mia/ 1

[XRr(21), XRr(22)] = — 5 sign (0’% —03) [8.111]
We now wish to see find the relation between
VkleRl (21, El)VkLQkRQ (ZQ, 52) and VkLQkRQ (2’2, EQ)VkleRl (21, 21) [8.112]

with the vertex operator as defined in (8.2.22). Let us reflect a little bit on this before
we start calculating anything. The commutator of an X; and an Xy vanishes and the
commutators of two X ’s or two Xpg’s is a scalar. So, from the Baker-Campbell-Haussdorf
formula formula we have e“e? = el4BleBeA if [A, B] is a scalar. We thus have

eikLIXL(Zl)eikLQXL(ZQ) — eik:le‘L2 [XL(Zl),XL(ZQ)]eik:LzXL(ZQ)eikLlXL(Zl)
.
— eikleL2 T sign (U%*U%)eikLQXL(ZQ)e’ikleL(21)

_ e*(ﬂa’/Q)kleLQ sign (o} 70'%)eikLQXL(ZQ)e’L'kLIXL(Zl) [8.113]

and similarly

eikr XR(21) ikry XR(22) — o+(ma/2)kn, kR, sign (01=03) gikr, Xr(22) gihry Xr(21) [8.114]

=e
Together we have
etkny XL (21)+ikp, XR(21) kL, X1 (22)+ikry XR(22) _ —(ma’/2)kp, ki, sign (0] —03)
« et (T [2)kR kR, sign (01 -03) gikr, X1, (22)+ikp, X (22) gikr, X1 (21)+ikp, Xr(21)
— o~ (md//2)(kL kL, —kR, kRy)sign (oc1—03)

w eikLy X1 (22)ikp, Xr(22) ike, X1 (21)+ikR, Xr(21) [8.115]

Now

ni wlR no ’UJQR ni wlR no sz
bk, = Kig, = (R + af> (R + af> - <R - O/> <R " )
nijws + wing

_9 : [8.116]
(04
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and thus
eikleL(Z1)+ileXR(21)eikLQXL(22)+ikR2XR(22) — e*ﬂ(n1w2+w1n2)sign (O’%*U%)
% eikLQXL(ZQ)—‘,-”HCRQXR(ZQ)eikLlXL(Zl)—l-ileXR(Zl)

— (_)n1w2+w1n2e’ik‘LQXL(ZQ)—I—ik;RQXR(ZQ)eik‘LlXL(Zl)-i—ile Xr(z1) [8117]

We thus see that if we define the vertex operators as in (8.2.18) then they would commute
only if njwy + wins is even and anti-commute if nyws + wing is odd. This vindicates the
remark under (8.2.21).

Let us now add the cocyles. We use C;2, with the subscripts denoting the order of the
vertex operators, i.e.

Cio = /™ (kL —kr ) (prtpR)e’ A ik, X1 (21) +ikp, Xr(21)
« T (kLy—kRry)(PLAPR) /4 ik, X1 (22)+ikRy X R(22) [8.118]
The p are momentum operators, so they pick up the momentum component of everything
that is to their right. This thus becomes
Cio = e (kL —kry ) (kL) +kry+kry +hry)a' /4 ik, X1 (21)+ikr, XRr(Z1)
w e (kLy—kRry) (kLo +hRy o' /4 jikL, X1 (22)+ik Ry XR(22)
— i [(]CL1 —kry)(kLythry+tkr, +kry)+(kLy—kRry)(kLy +kR2)] o' /4

% eik‘LlXL(Zl)—i-ile XR(Zl)eik‘LQXL(ZQ)-f—ikRQXR(Ez) [8.119]
Use [8.117]
Cio = el [(kLl_le)(k'Ll"Fk'LQ +kRry +EkRy )+ (kLy—FkRy) (FLy +k32)] a'/4
% (_)n1w2+w1n2eikL2XL(Z2)+’ikR2XR(22)eikLIXL(Zl)+ikR1XR(51) [8120]
and re-introduce the cocycles and their inverse. This gives
Cro = i [y —kRy Ybny +hpy +hRy +hmy )+ (b, —kRy ) (kpy +hny) 0! /4
x (_)n1w2+w1n26—i7r(kL2—kRQ)(kLl-I—kLQ-FkRI +kR2)e—i7T(kL1 —kry)(kr, +kR1)a//4C21 [8.121]

It remains to work out the phase:

Crp = (—ymwatwime gim [(key =k, ) (g iy )~ (b, —kiy (ke ey /4

_ (_)n1w2+w1n2 eiW(+2kL1kR2—2kR1 kL2)o//4C21

[8.122]
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We find

ni U)lR no wQR ni wlR n9 wQR
kr,kr, — kr, kL, = <R + o > <R — o ) — <R — o > <R + o )
niwy — winy

= gtz thl2 [8.123]
(6%

and thus
612 _ (_)n1w2+w1n2e—iw(nlwg—wlng)cm _ (_)n1w2+w1n2(_)nlwg—wlngcm

= (—)?M"2Cy = Cy [8.124]

as 2njws is always even. We thus see that adding the cocycle indeed ensures that the vertex
operators commute.

8.21 p 240: Eq. (8.2.26) The OPEs in the Light-Cone Reference Frame

Ignoring the L and R we have the OPEs X*(z)X"(0) = —(a//2)n*" In z so that

X ()X~ (w) ~ % IX0(2) + X1 ()] [X°(0) — X' (0)] = é [X0(2)X0(0) — X'(2)X(0)]
= - 2/1112

X)X H(w) ~ 3 [X0() & X'()] [X0(0) & X1(0)] = 3 [X°(:)X°(0) + X' (:)X(0)]
—0 [8.125]

Recall that spacetime has Lorentz signature (— + - - - +).

8.22 p 240: Eq. (8.2.27) Vi(nky, z) is a Primary Field

We can split the energy-momentum tensor as

T(z) = — ai [~0X00X"(2) + 9X'0X(2) + OX°OX'(2)]
_ @D () _ % [(OXF +0X)(OX* +0X)(2) + (OX+ — 0X )X+ — X )]
=TD)(2) + %GXJW?X_(,Z) [8.126]
where TP (z) = — 19X 0X'(2) is the energy-momentum tensor for all but the first two

space-time fields. As T(**P)(2)X*(0) is regular we can break down the calculation in
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parts. We clearly have, ignoring the normalisation /2/¢/,

T(g...D) (Z)VZ (nkio, 0) _ T(2~~~D) (z)aXieink0X+ (0)
a‘XieinkoX+ (0) N aQXieinkoX+ (O)

.12
22 z (81271
We also have have
2) _ i 2 — 7 _in +
FOXTOXT(2)V' (nko, 0) = ZOXTOX™(2)0X e ™R (0)
2 DX H (200X (0) inko) kX (0)
o 0 2z
i + pinko Xt iHeinkoX
N 00X inkg0X e (0) _ 0X"de (0) [8.128]

z z

where we have used 9X~(2)X*(0) ~ o//2z and have expanded dX*(z) around z = 0.
Therefore

T(2)Vi(nko,0) =T(z)0X e X" (0)
a)(z‘einkoXJr (0) aZXieink’oXJr (O) aXiaeinkoX+ (0)
22 + z + z
_ aXieink0X+ (0) N a(aXiez‘nkoX"')(O)

22 z
Vi(nko,0)  0Vi(nkg,0)(0)
5 +

~

[8.129]

z z

and so V*(nk, z) is indeed a primary field with weight one.

8.23 p 240: Eq. (8.2.28) The Vi(nko, z)VJ (mko, z) OPE

This is straightforward as the only non-singular terms come from the 9X%(2)0X7(0) =
—a/8% /222 part:

v (nk'(), Z)VJ (mkg, 0) = aaXZemkoX+ (z)aX] elmk0X+ (0)

9 a/(;ijeinkox+ (z)eimkox+ (0)
o 222
5ijei(n+m)koX+(0) ink08X+5ijei(”+m)k0X+( )
= - o2 —~ [8.130]
z z
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8.24 p 240: Eq. (8.2.30) The Commutation Relation of the DDF
Operators

It’s been a while since we did one of these, so we go slowly. Our staring point is (2.6.14)

. , d . .
(A 4] = § 522 Rese eV (o, 20) Vb, )

T
_ y{ dZQR 5ijei(n+m)kox+ (22) - inkOaX+5z'jei(n+m)k0X+ (22)
= 211 €821 —2o 2(2’1 — 22)2 = 2
= dz + 5ij l(n+m)]{;0X+
N 7{2m ( inkodX ™0 )
= — inkydY % 272;2 OX*te z(n+m)l<:0X+( 2) 8131]

Let us work this out. For n + m = 0 we simply have

. d / . /
—inkyd™ 7{ =2 20Xt = + imkyo¥ (— i/ Zab") = mko6" 4/ %aar
= mkgd®y | & ,/ - mkoap MIOXP_ 5ij [8.132]

where we have used (2.7.2), i.e. al, = \/2/a’ f dz/2m) zmOX* and (2.7.3), i.e. pt =
VETaal

If m +n # 0 then we can write 9X Tei(mtmkoX™ () — geilntm)koXT () But by
definition ¢#("t™*0X" (2, is normal ordered and all its singularities are subtracted, so that
it is regular, and so is its derivative. Thus in that case § X+ e!("Tmko X" (2,) — 0,

We conclude that

o It
(A}, ALl = mko%é” Smtn [8.133]

8.25 p 240: The DDF Operators as Building Blocks for Physical States

A physical state of momentum ¢ of the form |¢) = f(8'97 X*)e!?X |0) with f a function
of the derivatives of the transverse fields, such that L,, |¢)) = 0 for m > 0. The vertex
operator creating that state is V = f(9°0? X*)e’? X, If we take the OPE with a DDF oper-
ator V*(nko, z) then we see that the exponential in that operator only contracts with the
exponential in the vertex operator giving something proportional to

8Xi€inkoX+ (Z)f(aiéij)eiq-X (0) — 8XieinkoX+ (Z)f(aingk)ei(fq*'X_fq_X*'ini) (0)
N z—a’nkoq+/2 : 8)(—1‘ez‘nkoXJr (z)f(aingk:)ei(—quX*—q*X*ini) (0) :
+ other contractions [8.134]
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Here the "other contractions" are terms that arise from contractions of the transverse coor-
dinates. The important point here is that all these other terms are by construction single
valued. The only possible non-single-valued terms is thus the one above. So if we require
the OPE of a DDF operator with a vertex operator of momentum ¢ to be single-valued we
necessarily need a'nkoq* /2 € Z. In particular, the choice kg = 2/aq™ gives a single-valued
OPE.3 This means that the action of a DDF operator on a physical state, that is, after all,
created by action of a vertex operator on the ground state, is well-defined.

To show that Virasoro operators and DDF operators commute we use (2.6.24), which
says that for a primary operator O of weight i we have [L,,, O] = [(h — 1)m — n]Opyn,
with the mode O,, = §(dz/2mi)z"*""10(2). As a Vi(nk,z) is a primary weight one
operator its zero mode is

; d , dz . .
Vi (nko) = %;zo+1_1V’(nkg,z) = —i]{;V’(nko,z) = —iA}, [8.135]

™

and so
[Lin, AL] = —[Lu, Vi (nko)] = [(1 — 1)ym — 0]V}, o(nko) = 0 [8.136]
8.26 p 241: Eq. (8.3.1) The Mass-Shell Condition with a Compactified
Dimension, I

This starts from our all time favourites (4.3.31) and (4.3.32) which we just repeat here

/

Lo= O‘Z(p2 +m?) [8.137]
with
o, S 25
T = 2 n | Npn 4 Nen + ;;)Nm -1 [8.138]
The mass-shell condition for the matter sector Lg[1)) = 0 thus becomes m? = —p?. But

now we have to split this in the non-compactified and the compactified dimensions. For
the non-compactified dimensions we can use the above equation. As we are looking at
the matter sector only we can ignore the ghost contributions and set the total level of the

3
Joe has kg = 2/ag™. I believe this is an error as the contribution clearly comes from the

X*(2)X~(0) OPE and the X~ (0) comes with ¢*. It is a bit strange that this is not on Joe’s
errata page.
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matter excitations as N = ) >, S i N,n. For the compactified dimension we need to
treat the momentum separately as it is quantised. We thus have

m? = —p> = —(N - 1)+ (k¥)? [8.139]

We have reintroduced the fact that we were working in the left-moving sector. There is a
similar equation for the right sector.

8.27 p 241: Eq. (8.3.2) The Mass-Shell Condition with a Compactified
Dimension, II

We rewrite the mass-shell conditions (8.3.1) into two new equations. For the first one, we
use the quantisation (8.2.7) and take the average of both sectors

m? :% [(k%’))? + (k3) + %(N 1)+ %(N - 1)]

1 n  wR\? n  wR\?> 4 ~
3 (R+()/> +<R‘O/> W(N“V‘?)]

n2 w?R? 2 ~
:ﬁ+7+a(]v+jv_2) [8.140]

For the second equation we take the difference of the two mass-shell conditions:

4 4 -

_ 25
0= ()"~ (k) + Sv - - L)

n wR 2 n 2y ~

) ) e

n wR 4 ~

4—— — 8.141
R o o/ ) [8.141]

From this we get
0=nw+N—-N [8.142]

8.28 p 241: Eq. (8.3.3) The Massless States

The identification of the different states should be obvious. The only clarification I want
to make is about the scalar a3 &5 |0; k). This the modulus for the radius of the compact
dimension. What does this exactly mean? A modulus is a flat background field. Here is
corresponds to the compactified dimension in both the left- and right-handed sector, so it
is clearly linked to the compactified dimension.
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But what does it exactly mean to say that it is "the modulus for the radius of the com-
pactified direction"? That is not clear to me.

The second statement, that "its vertex operator, : 0X2°0X%%¢**X: is a perturbation of
the metric Go5 25 follows from the discussion in section 3.7 about strings in curved back-
grounds. There we saw that the interaction with different states created by the vertex
operators can be viewed as perturbations of the spacetime metric. As an example, expand-
ing the spacetime metric (assuming an uncompactified string) G, (X) = 1. + x v (X) the
integrand in the worldsheet path integral is, see (3.7.3) and (3.7.4)

1
e P |1 — / d’o \/ﬁg“bxuy(X)aaX“(?bX” + - [8.143]
4o M

where Sp is the Polyakov action. This corresponds to the introduction in a correlation
function of a vertex operator g*x,, (X)3, X9, X" with x,,(X) = —4mg.e”™*s,,. And
so the introduction of a vertex operator : dX*9X?°¢**X: does indeed correspond to a
perturbation of G5 25.

8.29 p 242: Eq. (8.3.7) The Gauge Coupling

We need to evaluate

5 _ _ A A . .
Sét[:l:] _ <\[agf,25 : (aXMaXQS 4 6X258Xu) ezkl-X(zl’Zl) © Geos : ezk2L~XL(z2)+lk2R~XR(Z2) .
X o5 : etksr-X1(23)+ikar-Xr(23) . > [8.144]

Let us consider the term with 9X#9X?°. The other term will follow from this immediately.

Sggi)] =C< . 6XM(§X25eikl'X(zl, 21) .. eikQL'XL(22)+ik2R‘XR(22) :

% - etksL-Xr(z3)+iksr-Xr(23) . > [8.145]

where ¢ = \/592725 /a’. We now use (6.6.14), or even better, our derivation of that equation,
so it might be worthwhile revisiting that. The first equation we use is [6.241]. We repeat
it here for convenience. What we did there is calculate

Ss, (K1, €15 ka; ks3) :gggée_QAGLl,<  EcOXMOXV etk X (21,21)

x 1 éce™ X 1 (29, %) 1 ek X (23,23)> [8.146]
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and this lead to

,L'a/2 B .
552 (]Cl, €1; kQ; k3) = — nggée 2)‘05(2052 (27T)26(526<Z ki)E,}W

/ / / Ky kb kY kY
> ’212|o¢ k1-k2+2’z13’a kl-k3+2‘z23’a ko-k3+2 (2 + 3> (2 + 3) [8.147]

z12 z13) \Z12 213
Let us now see how we need to adapt this result. First we note that we have 25 non-
compact dimensions in stead of 26. The factor (27)?¢6%6(}", k;) came from the zero
mode contribution, see the derivation of (6.2.13). The compact dimension has no zero
mode as such a mode cannot satisfy the boundary conditions. So these factors become
(2m)2°6%°(>", k;). Moreover the holomorphic and anti-holomorphic sectors split and as
X = X1+ Xp these two sectors only talk to one another. Ignoring the details of the overall

constant, for now, we thus find

Su[i] C(27T 25625 Z k a k- kQL/2+1 a k- ]CQR/2+1 O/kl k3L/2+1 O/k’l kgR/2+1
3(a)

k25
4 MR

Z12 Z13

M M 25
o'kor k3p /241 _a'kar-ksr/2+1 k?L k3L kZR
X z z == == )=
23 23
212 Z13

> [8.148]

The remainder is analogous to the derivation of (6.6.14). The tachyon mass shell condition
implies that k; - kar, g = k1 - k3r,r = 0 and the gauge boson mass shell condition implies
that k2L,R . kSL,R = —4/0/. We thus get

Ky,  KEL\ (k3% k3%
S“Ei)} &(2m) 22625 ( Zk |212]?[213]%|223] 2 <2L + dL) (2R - 3R> [8.149]
212 213 212 213

This enables us to write down immediately the corresponding result from [6.247]

+
SZ?E)] 4( 255252’“ 25Lk23R [8.150]

From this it follows that the second term is

S:IJEZE)] - 25525 Zk k23Lk§3R [8.151]
and thus
4 I
S:’;[ = 1(277)25525(2 ki) kg?,Lk 23R T k23Lk23R) [8.152]

But from momentum conservation in the non-compact dimensions we have

Ky, = kb — ki, = ko + Ky + Ky — 2kh, = 2k [8.153]
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where we can ignore the k4" due to the Ward identity for a gauge boson € - k; = 0 as the
gauge boson vertex operator will be contracted with a polarisation vector. We also use the
fact that for the non-compact dimensions we don’t have a split of the momenta in a left-
and right handed part and &k}, = kb, = k4. We have, of course, similarly kb, , — 2k.
Therefore

Sé”[i] = 5(27r)25625(z ki)ky (K33 % k33L) [8.154]

Finally we also write for the compact dimension
kasp = k31 — k3] = k) + kD0 + k3] — 2k3] [8.155]

where this time we have taken k; — 0. Similarly we have k323, — 2k3%. This gives our
final result

S = — a2m) P67 (" k) (k33 % k3) [8.156]

We will leave it to the reader to work out the proportionality constant. Filling in the
momenta (8.2.7) this gives

S = — 262w 6 (3 ki)
S = — 22(2m)6%(S ki)ky w;, [8.157]

So one couples to the compact quantised compact momentum and the other one to the
winding number.

8.30 p 242: Eq. (8.3.8) The Mass-Shell Condition at R = v &’

We start from (8.3.1) and use k?°;, = (o/)"/*(n £ w):

4 1
Oz(k%‘r’)Q—i—J(N—l):&[(n+w)2+4N—4] = 4=(n+w)?+4N
4 1 ) .
0= (k) + (N -1) =~ [(n—w)2+4N—4} ~ 4=(n—w)?+4N [8.158]

Note that there are also additional massless states at other values for the compactifi-
cation radius. Set R = 2(p/q)v « for integers p and ¢ with p mod ¢ = 0. The mass-shell
conditions then become

P
1:—2(n—|—w)2—|—N and 1=
q

N

(n—w)?+N [8.159]

»Qw"@
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This shows that we cannot have massless states for N, N > 1. For N = N = 1 the only
massless states have necessarily n = w = 0. For N = N = 0 we get

[
[

1= (n+w)? and 1=%5(n—w)? [8.160]

Qw"@
»-QM"B

From this we get that (n + w)? = (n — w)?, which implies that either n or w is zero. If
w = 0 then n? = ¢%/p?. As n needs to be an integer we need p = 1 and s solution is given
by n = 4¢. We have similar solutions for w when n = 0. In summary we have R = 2/¢/o/
then we have the following massless states written as (n, w; NN ):

(£4,0;0,0); (0,+¢;0,0); (0,0,1,1) [8.161]

8.31 p242: Eq. (8.3.9)-(8.3.10) The Special Massless States at R = Vo’

We put the extra massless states at that level of the compactification radius in a table for
our convenience

n w N N|Vak?® +/a’'k? | vertex operator

+1 +1 0 1 +2 0 DX 1tk X o +2i(a’)HEXE?
1 -1 0 1 ) 0 DX etk X g=2ia)) T AXE
1 -1 1 0 0 12 DX etk X g+2i(a)TEXE
1 41 1 0 0 ) DX etk X g=2i(a))TAXE
+2 0 0 0 +2 0 etk X gH2i(a’) T AXE

2 0 0 0 ) 0 eik-X g=2i(a”) THAXE

0 42 0 0 0 ) eik-X g=2i(a) THAXE

0 -2 0 0 0 +2 ek X o +2i(a) THEAXE

Table 8.2: Special massless states at R = v/o/

In order to see what couples with what, let us take the (n,w, N, N ) = (0,0,0,1) state in
(8.3.5). It is proportional to 0X2°9X*e* X, Because there is an 9X?° it can only have
a non-zero amplitude with another state if that state also has an X?° in its vertex oper-
ator. This means that it can only couple to the states (n,w, N, N) = (£1,+1,0,1) and
(n,w, N, N ) = (£2,0,0,0) from the above tables. Under that gauge vector, these states
have a charge of +1. They also have a charge zero under the gauge vector corresponding
to the X symmetry. We thus have three operators that couple with one another on the
holomorphic side with charge 0, 1. The anti-holomorphic side has similarly three opera-
tors that couple with one another and have charge 0, £1. Each sector is neutral under the
action of the other one. The gauge group we have uncovered is thus SU(2) x SU(2).
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8.32 p 243: Eq. (8.3.12) The SU(2) x SU(2) Current Algebra

The three operators involving a 9X* from an SU(2). The operator 9X2°0X*¢**X has zero
charge and so we can take this to be the j3. The operators X" ethX ¢£2i(e)"/2XE* haye
charge +1 and hence are the j*. We can combine the latter to create the standard SU(2)
generators. Including appropriate normalisation these are (8.3.12).

8.33 p 243: Eq. (8.3.13) The SU(2) Current Algebra OPEs

We will just show this for a couple of OPEs. As a warm-up let us first do an easy one, the
normalisation of j3(z)

P w) = — LOXPOXPw) ~ (— “'/22)=2( L g6

of (z —w) z—w)
Marginally increasing the level of complexity and calling a = (a/)~ /2.

25

1 . ,
73(2)71(2) =1a0X?5(2) cos 2aX 25 (w) = ia@X?(z)i (e’LQWXL + G_QWX%5) (w) [8.163]

Now
00 - \E
) +2
OXP(2)e 2T (w) =X P(2) S (];,a) (X2 (w)
k=0 )
o0 .
+2ia)k !
=03 S5k [ e - wi o
k=1 ’
iao eX21aX?’ (w)
_ — [8.164]
and thus
. . ) _42iaX25 - 1 —2iaX 25
O i O W A 0
j(Z)] (Z)_2< Z—w + Z—Ww
a2 eT2aXE (1)) — e~ 20XE (1p)  isin 2iaXP(w)  ij*(w) (8.165]
D) z—w B zZ—w Ca-w .

We will leave the rest to the reader if he/she is bored enough to do this.
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8.34 p 243: Eq. (8.3.14) The Affine Lie Algebra Commutation Rela-
tions

This should be entirely standard by now, but in the spirit of being as complete as possible
we will do this. Our starting point is, of course, (2.6.14) which becomes in this case

dZQ
i 4] = 74 T2 Rese, 2245 (1) (22)

dz 64 i€k ik (2
?{ZReszlﬁwzl 2y { + 7 2>]

2(2’1 — 22)2 21 — %2
dzy 1 1 €7k 5 (29)
= Reszlﬁwzl zy | —=d0"0 +
27 2 zZ1 — %9 Z1 — %2
l(sz] m—1_n m n; ijk ;k
y{dzz 507 mz"" 2y 4 225 e §¥ (20)
Z1—>Z2
21 — 22

dz2 .. _ i
B 7{ 271 { 2 (WZSHH L+ “Uk]k(@)zgﬁn}

m ..
= 500 + iRk [8.166]

8.35 p 244: Eq. (8.3.15) The Relation Between the Gauge and the
Gravitational Coupling in the Compactified Dimension

(8.1.11) is g2 = 2x2/p?, where p = R = Vo is the compactified dimension. Using d = 25,
this immediately gives (8.3.15).

8.36 p 244: Eq. (8.3.16) The Magnitude of the String Length va/

Here we are back in traditional Kaluza-Klein with five dimensions. The compactified fifth
dimension, confusingly 22°, gives rise to the gauge field with gauge-coupling g4. This
gauge coupling is, give or take, of the order of one. Indeed for QED the coupling is the fine
structure constant « ~ 1/137. The weak gauge coupling is also smaller than one, hence
perturbation theory works there as well. For QCD the coupling constant is larger and
perturbation theory fails, but as we increase the energy of the system, we need to take into
account the renormalisation of the coupling constants. For QED and the weak interaction,
the coupling constant slowly increase, for QCD it decreases — asymptotic freedom. So in
terms of order of magnitudes, saying that the coupling constants are of the order of one,
isn’t too far of the mark. Setting g7 ~ 1 we get Vo/ ~ v/2x.
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8.37 p 244: Eq. (8.3.17) The Effective Gauge Coupling

We refer to table 8.3 for the mass dimensions of the different fields. As [9] = [A] = +1
and we have D,, = 0, + igA, we thus have [g] = 0. The gauge group coupling constant
is dimensionless (and hence a gauge theory is renormalisable). The gravitational coupling
appears in the Einstein-Hilbert action £ =2 [ d*z,/gR. With [d*z] = —4, [g] = 0 and [R] = 2
we have —[k3] —4+2 = 0 or [k3] = —2 (and hence quantum gravity is not renormalizable).
As energy has mass-dimension one; recall £ = mc?, we can make a dimensionless effective
gravitational coupling

96.4(E) = kiE? [8.167]

with indeed [g?;74(E)] =[ki] +[E?=-2+2=0.

The gauge coupling g4 gets renormalised as well so has an energy dependence, but for
Yang-Mills type theory this change in running of the coupling constant is at a snail’s pace
and involves the logarithm of the energy; see your favourite book on QFT, or even better,
my QFT Notes. Using (8.3.16) we also have

/

!
_ (6% o
wi=Egga(B) =0 = g4u(B) =5 E%;] [8.168]

The string mass scale is where the string effects become relevant, i.e. when the energy of
the system is of the order a~'/2, in which case ¢2 ,(F) = g3, i.e. when the gravitational
coupling is of the order of the gauge coupling.

8.38 p 245: Eq. (8.3.20) The Gauge Boson Mass for near the Enhanced
Symmetry SU(2) x SU(2)

The general mass-shell formula is given by (8.3.2)

2 2p2 9 3
m2="0 U L S NE N 9) [8.169]

The enhanced symmetry states at (n,w, N, N) = (£1,41,0,1) or (+1,F1,1,0) and there-
fore

s, 1 R? 2
R R [8.170]
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and we see that they are massless as R = v/o/. We now take R?> = o/ + ¢ with ¢ small. This

gives
9 1 o+e 2
m° = - —
o +¢ a'? o
1 3 g? 3 €
2 2 n2
€ (R* — o)
—@4‘0(53) = 0/3 +0(€3)

We can rewrite this, to lowest order as, as m? = (R? — o/)?/R?a/?. Indeed

R2q/2 - 0/2(0/ + E) a3

(R? — o)? g2 g2 € g2 3
(17 ) = 5 o)

Taking the square root we find

|R* — |
Ro/

m =

[8.171]

[8.172]

[8.173]

In order to show that this is the same as the second equation of (8.3.20), let us square both

sides. We need to show that, to lowest order,

(RQ_O/)Q_ /2

S = (R V)
Now R? = o/ + ¢ so that

R=+Vd te=Va 1+3:\/&(1+i)

o 20/

The LHS of [8.174] becomes

2 2 2 2

g 15 g g 19
LHS = — - (1 _ ) _ 3
(1+e/202  o(1te/a) o o T o)

The RHS of [8.174] is

RHS_2[\/J(1+€>—\/§F—4< < )2—Z+o(e3)

20/

so that LHS = RHS, showing (8.3.20).

— 458—

[8.174]

[8.175]

[8.176]

[8.177]



Joe’s Book (version of November 20, 2020) Notes from Stany M. Schrans

8.39 p 245: The Ten Massless Scalars at the Enhanced Symmetry Com-
pactification Radius

The first two massless scalars are from the list (8.3.3). They are the dilaton, which is
the traceless part of o a”,(0;k) and the modulus for the radius of compactification,
a?5a?% |0;k). The enhanced symmetry providers eight more scalars. Four come from
the states (8.3.9) with vertex operators (8.3.11). These split into a spacetime vector in the
non-compactified dimension with . = 0, - - - , 24 and a spacetime scalar for the compactified
component i = 25. This gives four spacetime scalars

= . :—1/2y25 T . —1/2y25
8X25 ezk XeiZwa X7 and aX25 ezk Xeina Xz [8.178]

Finally, there are four more massless scalars coming from (8.3.10). These have vertex
operator

- :—1/2 25 i —1/2 25
6zk Xe:I:QZCx X7 6:|:27,az Xz [8.179]

8.40 p 245: Eq. (8.3.21) The (3,3) of SU(2) x SU(2)

We consider the vertex operators V¥ = ji7¢* X From the definition of the j* and 7 in
(8.3.1) it is clear that these 9 vertex operators create 9 out of the 10 massless scalars. The
one not created by these operators is the dilaton.

The operators V7, V2 and V3 transform under the left SU(2). Each such operator has
three components, e.g. V' consists of V1!, V12 and V3. It thus forms a three-dimensional
representation of the first SU(2) of SU(2) x SU(2) which is denoted by 3. Similarly the
Vil V2 and V*® from a three-dimensional representation of the second SU(2) of SU(2) x
SU(2). The currents V¥ thus form a (3, 3) of SU(2) x SU(2).

8.41 p 246: Eq. (8.3.22) The Invariance of the Potential U (M) under
SU(2) x SU(2)

We wish to show that the potential u(m) = €“*m;m;my; is invariant under an SU(2)
transformation. We are using small letters here as we are only considering the left-handed
side of the potential. The situation for the right-handed side is entirely similar. An SU(2)
transformation is obtained by acting with a generator t‘ on such a field. Here k = 1,2,3
the dimension of SU(2). This means that we wish to show that the potential is invariant
under a transformation m; — (t‘m);. As m is in the 3 representation of SU(2), i.e. the
adjoint representation, the generators are given by the structure constants: (tf)ij = €1,
We are being somewhat sloppy with upstairs and downstairs indices, but they are raised
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and lowered with a Kronecker delta, so it doesn’t matter. We thus need to check the
potential under the transformation* m; — (6% + i€’ )m;. To lowest order in ¢ we have

u(m) —s €98 (5™ 4 i ™Y my, (57" 4 i€ Ymy, (3P + ice*P)m,,
= eijkmimjmk + ieed® (eﬁméjncskp + §metingkp 4 5im5j”€£kp> My Moy M

u(m) + ie (empe&m + emipehin 4 em”ke%p> M My My
u(m) +ie <€inp€im€ + eipmeiné + Eimneipé) Mo MMy

u(m) + e (877G — GG 4 GG — GG GG — 6 ) gy

u(m [8.180]
Adding the right-handed side we see that U(M) is invariant under an SU(2) x SU(2)

transformation.

8.42 p 246: Eq. (8.3.24) The Equations for the Scalar Fields M;;

If only the diagonal elements of M are nonzero then U(M) = det M = M1 Mo M35 and
so the equation of motion U (M) = 0 implies M1 M2 M33 = 0. In addition, OU (M )/0M;;
is zero automatically for i # j. For i = j we have, e.g. 0 = OU(M)/OM11 = Moz Mss.
Similarly, we have M1, M33 = 0 and MaoMs3 = 0.

To solve these equations, we note that a first solution is My; = Msy = Ms3 = 0; this
solution does not have any of the nine scalars. Another solution is M;; = M = 0 and
M33 # 0, and similar solutions for My # 0 and Ms3 # 0 by symmetry. There are no other
solutions.

8.43 p 247: Eq. (8.3.27) The Momenta under T-Duality

Under n «+— w and R +— &'/ R we have

o5 _n  wi R m s

pL—R o o R_pL

s N wWR R n n  wR 25
_n_wi B on_ (n_whY 8.181

Pr R o wa/ R <R o Pr [ ]

4The €% are the generators of the Lie algebra su(2) to find the group generator we need to
exponentiate the Lie algebra generators. We are only considering an infinitesimal transformation
with parameter ¢, but the group is connected.
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8.44 p 247: Eq. (8.3.28) T-Duality gives Equivalent Theories

We have from (8.2.16), dropping the superscript <° for convenience,

i/ e O,
+Xr =+zp — ?lenz—i—M/E Z o
m##0

1! o O,
—Xp = —mR+7pRlnz—z 03 %ﬁomzm [8.182]
m

In Xp we can change &,, into —&,,. This doesn’t change the commutation relations
[Gm, Gn] = Mbpyo or anything else. Similarly zp is just the c.o.m. momentum. The
only real impact is that pp comes with the wrong sign. Now pg is a combination of mo-
mentum and winding number, but we know from (8.3.27) that we can change py into —pg
by interchanging n and w and replacing R by o’/R. So the theory with X' = X — Xp
is just the theory with X = X + Xp after the T-duality transformation. But the theory
with X and X’ are exactly the same CFTs, and this is a non-perturbative statement, as they
have the same OPE and energy-momentum tensor. The two theories related by T-duality
are thus the same, also at a non-perturbative level.

8.45 p 248: Eq. (8.3.30) The Gravitational Coupling under T-Duality

Consider the scattering amplitudes of gravitons with n = w = 0. The amplitude must be
the same under n «+— w and p — «'/p. In this particular case, it is only the compactifi-
cation radius that changes. The amplitude of these gravitons depends on the gravitational
coupling constant in the non-compactified dimensions — as these are the dimensions in
which we define the graviton — i.e. k25. Under T-duality that coupling constant must be
unchanged, i.e. k95 — Kh; = Ka25. We know the relation between the gravitational cou-
pling in the non-compactified dimensions and the gravitational coupling in the full theory:
K3 = 2mpK3s.> After a T-duality transformation this becomes b = /270’ /prlys. Setting
Khs = Kos then gives

Va!

!
K26 Kag r
= Kog =

V2mp 2ma! [ p

K26 [8.183]

SRecall that this is due to the fact that we assume that there is no dependence on the compacti-
fied dimension, so it can be integrated out. It just sits there and does nothing.
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8.46 p 248: Eq. (8.3.31) The Dilaton under 7T-Duality

The low-energy effective action (8.1.9) is of the form

A% \/=Gge *®*(Rg+---) [8.184]

where @ is the dilaton field. The Einstein-Hilbert action for the full theory is
S o kg | A% /—Gg4 Ry [8.185]

and thus k¢ o e72% or kg o< e®. Plugging this in (8.3.30) gives (8.3.31).

8.47 p 249: Eq. (8.4.2) The Low Energy Action for £ Compactified
Dimensions

This is an extension of (8.1.9) and (8.1.13) for the case that more than one dimension is
compactified. We will not give a full derivation, but only check a number of things.

Let us first recall the origin of this equation. Go back to section 3.7 of Joe’s book,
where he analysed Weyl invariance of the non-linear sigma model [ d*0c G*9,X,0°X,
and showed how this lead to the requirement of the vanishing of the g function. This in
turn gave the Einstein equations plus string corrections. He then wrote the most general
non-linear sigma model, by introducing, next to the spacetime metric G*¥, also the anti-
symmetric tensor B*” and the dilaton ®. This gives the more general equations for the
vanishing of the § functions, viz. (3.7.14). Next, he claimed, and we checked, that these
equations followed from the variation principle with a low energy action given by (3.7.20).

Let us now check the number of scalars. The D = 26-dimensional metric splits into
Gun = (G, Gum, Gmp) With p,v = 0,--- ,d =26 —kand m,n = 1,--- ,k. The G, is
the (spacetime) graviton. The G, are k spacetime vector fields and the G,,,, are spacetime
scalars. Gy, is symmetric so there are k(k+1)/2 such scalars. Similarly, the anti-symmetric
tensor splits into Bysy = (B, Bum, Bmn). Here again, B, are spacetime scalars and due
to antisymmetry there are k(k—1)/2 of them. In total we thus have k(k+1)/2+k(k—1)/2 =
k? scalars from both these fields.

Next, let us first check that for one compactified dimension (8.4.2) reduces to (8.1.9)
and (8.1.13). In that case m and n can only take the value d and Gy4q = €2° and Bgy = 0

by symmetry. The dilaton is defined as &; = & — iln det G, which becomes

1 1
CIJd:<I>—ZlndeteQU:<I>—Zln 2’ =P — [8.186]

7
2
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which is the same formula as used in (8.1.9). We thus get in this case for (8.4.2)

(27R

S =
2/1(2)

1
1
) /ddaj V=G ge 2% [Rd +40,940"®, — 16_206_208H6208“€20

1 20 1 —20 1
— 16 FMVF#V — 16 HdudeMV - EHM

_ %]j A% \/=Ga e 2% [Ry + 40,840" B4 — Dy00%c
0

VA Hﬂl’)\}

1 1
_ Ze%F;wFW _ Ze—ZUHdMVHd#V

and this is indeed (8.1.9) plus (8.1.13).

1
_ EHWAHW’\} [8.187]

Let us now turn to the longer stuff. We first find the relationship between the determi-
nants of the D and the d-dimensional metric. As in the derivation of (8.1.9), we use a ~ to
denote D dimensional quantities. The D dimensional metric is given by the generalisation
of (8.1.2), or in our case [8.22],

G =G + G A AL

Gum =Gmn A,

Gin = Gmn [8.188]
Note that we now have £ vector fields A] for m = 1,--- , k. The inverse metric is

G = g

GH™ = — G AT

G™ =GM" + G AT AL [8.189]

One easily checks this:
GunGY? = GG + GG = (G + Gran AT AL)GYP + G AT (—GP7 AT
=G G’ + G Al ARG"P — Gy GP7 AT AT = G, GYP = 0,
GunGN = GG + GunG™ = (G + G AP AR (=G AL) + G ARG + GV AR AL)
= = GG AL — GrunG" AT AL AL + G GF AL + Grn GV AL AL A
= — Al + A AT AL + AL+ A AR AL =0 [8.190]
and finally
GrnGN =Gy G + GrinG™ = G AL(—GP AL + G (G™ + G ATLAY)
= — GunG" AL A, + GrunG™ + Grn G AL AL,
- _ A%Aﬁ + 0L + AV AL = 6 [8.191]
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As is the case for a single compactified dimension, the specific choice of metric implies
that the determinant of the D dimensional metric factorises:

det G = det G det G, [8.192]

Just to remind ourselves here G is the D dimensional metric Gp, G is the d dimensional
metric G4 and G, is the metric in the compactified dimensions. This property can either
be worked out explicitly, or as in the case of one compactified dimension, by noting the
structure of the rows. We can rewrite this as

\@ = \/a\/Gm =G expln+/det Gy = VG exp % Indet G, [8.193]
and thus
\/56*2‘1’ _ \/EequDG%lndet Gmn _ \@672@7%1@@ Gmn) _ \/56*2% (8.194]

where &; = & — i In det G,,,,,. This explains in (8.4.2) the coefficients of the integrand in
front of the square brackets.

It remains to derive what is in the square brackets. The first two terms, the first part
of the second line and the first term of the third line are merely the decomposition of R.
We will not do the detailed calculation, but remind ourselves that we just showed that
it reduces to the correct formula for & = 1 and that it is the natural generalisation of
one compactified dimension to k compactified dimensions. Note that we now have k field
strengths P, = OuA) — 8,,142”.

Let us now turn to the antisymmetric product in (3.7.20), i.e. —% Hy v HMNE. This
is

1 N
- Hyn HYNE = GMPGNQGIRH vy Hpor

1 e o
= — EGMPGNQGLR(aMBNL + OnBry + OLBun)
x (0pBgr + 0gBrp + OrBpg) [8.195]

Clearly if we consider all the indices to be in the non-compact dimensions we find a con-
tribution

1 1
—EHMNLHMNL = —EHM,,,\H‘“’A + .- [8.196]

Where we have also used the fact that G*¥ = G*¥. We now focus on the terms that have
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the same index in the derivative, i.e.

Hynp HMNE = GMPGNQGLR 9y BN 10pBor + OnBrvdgBrp + 0L BunOrBpg) + -+
=GNCGIRYy B0 Bor + GMPGFRoN By ™ Brp
+ GMPGNRY By nO  Bpg + - - -
=3GNRGIRY) By, 0M BorOM Bor + -+ -
=3GNCGIRY, BN 0" Bor + -+ - [8.197]

In the last two lines we have renamed the summation indices and used the fact that we
assume that there is no dependence on the coordinates of the compact dimensions, 9,, = 0.
If we now take the remaining indices those of the compact dimensions, we find, in addition
to [8.196], a contribution®

1 1
——Hyn H"VE =

1
5 =T A HMA — Zc:mlc;f?"auBMam_f;W +- [8.198]

and we have already recovered two of the terms in the square bracket of (8.4.2).
One can proceed in the same way with all the possible combinations of indices to
recover (8.4.2).

8.48 p 249: Eq. (8.4.3) The Antisymmetric Tensor in the Worldsheet
Lagrangian

The antisymmetric tensor appears in the worldsheet Lagrangian in the nonlinear sigma
model in (3.7.6)

1
S =
4o

/ &0 \/g ( i€ B0, X 0, XY + - - ) [8.199]
We now have

Bun®a (VG X 0,X" ) = Buun (9ay/3 )€ X0, X" + \/Ge 0, X9 X" + (/e X 0,0, X"
= Bin /€0, X" 0 X" [8.200]

The last term vanishes due to symmetry considerations and the first because we have fixed
the gauge to Euclidean spacetime.

6Gmn — G™"+GH AT Ay so there will also be contributions quadratic in A, but we are focussing
on the terms that don’t have any A’s.
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8.49 p 249: Eq. (8.4.4) The Zero Mode of the Compactified String

We have
X™(o! + 27, 0%) =2™(0?) + w"R(c! + 27) = X™ (0}, 0?) + 2nw™R [8.201]

Here w™ is the winding number in the m-th dimension and not some winding number to
the m-th power. We see that we recover the boundary condition (8.2.3) as we should.

8.50 p 249: Eq. (8.4.5) The Worldsheet Action for the Zero-Mode of
the Compactified Dimensions

We plug the zero-mode contribution (8.4.4) in the nonlinear worldsheet action (3.7.6), i.e.
1

4o’

- / &0 \/g [(gabGW(X) n ie“bBW> B XFI X" + o/ RB(X) [8.202]
We fix the gauge ¢%® = §% and ignore the dilaton term because we are considering the low
energy action, i.e the lowest order in o/. We focus on the compactified dimensions only
and find for the Lagrangian

1
T
Now
ale :81 [l,m(UZ) + meo,l] — me
O X™ =0y [wm(a2) + meal] =g™m [8.204]
and thus
1 "o n cmen ) R
_M[Gmn(w Rw"R+ 2™z )—}—QZanw Rz }
1 1 mo n man) L .m
=5 {MGmn (w™Rw"R + #"i™) = Bt w R] [8.205]

We have interchanged the dummy indices m and n in the last term to obtain a minus sign.
This is in line with the correction on Joe’s errata page. I am not sure what happens with
the factor 1/27 but it is not relevant for our purposes.

8.51 p 249: Eq. (8.4.6) The Canonical Momenta of the Zero Modes

We have by definition

oL o oL [8.206]
™) O(0jex™)  i0F™ '

Pm = 8(8

%
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where O'(QM) = ¢V is in Minkowski signature and U(QM) = jo? is the Wick rotation. With

™ = 2™ we thus have

oL 1 1 . 1
Pm= =5 = 75 (kan%ﬁx" - O/Bkn5fnw”R)
1 1
== (1Gmna"™ + Bpnw"R) = a (Grn?" + Bpnw"R) [8.207]

8.52 p 250: Eq. (8.4.7) The Quantisation of the Canonical Momenta
of the Zero Mode

Using p,, = n,/R with n,, € Z in (8.4.6) we have

m 1
L R A 8208

with v,,, = G,,»,v"™. From this it follows that

Uy = o/n—m — B R [8.209]

8.53 p 250: Eq. (8.4.8) The Zero Mode Contribution to the Hamilto-
nian

The Hamiltonian # of a system with generalised coordinates ¢ and canonical momenta p;
for a given Lagrangianis H = Y, ¢'p;— L. As the canonical pair of coordinates is (—v™, py,),
see (8.4.6), we thus find for the contribution of the zero modes to the Hamiltonian

1 1
=0"— [Gpnv" + Bnw"R| + [

- 57 G (W Rw" R+ &"3") — — B w" R

1 1 1
= — V" Gpnv" + 0" Bripw" R + §Gmnwmw”R2 + §Gmn(—ivm)(—iv”)
(6%
- ian(—ivm)w"R}
1
— FGmn(va" + wmw”R2) [8.210]
@
There seems to be an overall minus sign that I can’t trace, but this form is positive definite,
so it must be correct.
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8.54 p 250: Eq. (8.4.9) The Compactified Closed String Mass Formula

From (8.4.9b) we have

vivg + v vR ="+ w"R) (V" + w"R) + (v — w™R)(v" — w"R)
=2(v™" + wmw”RQ) [8.211]
The mass formula (4.3.31) and (4.3.32) glves am?/4=Lo+N—1= Lo+ N — 1 so that
o/m?/2 = Lo+ Lo+ N + N — 2. Now Lg + Ly is nothing but the Hamiltonian so we have

/

~ 1 ~
%m2:H+N+N—2:2—O/Gmn(vmvn+wmw"R2)+N+N—2

1 1 ~
or
2 1 m, n m,.n 2 \/

What is the interpretation of this? Let us recall the case of one compactified dimension
where the momenta split in a left- and a right-moving part, (8.2.7), i.e. ppr = n/R £
wR/a/. We now have a momentum

v g =v" £w"R = o/%n — Bypnw"R+w™R

w™R
=« < 7 o > — B w"R = a'p[fRO] — B, R [8.214]

We see that the appearance of the the spacetime scalars B,,,, shifts the momenta of states
with non-zero winding numbers, and accordingly also the mass of these states.

8.55 p 250: Eq. (8.4.10) The Ly — Ly Constraint for the Compactified
Closed String

The second constraint fror~n (4.3.31) and (4.3.32) is that Lo+ N = Lo+ N. This gives with
Lo =d/(p2 +m?)/4 and Ly = o/ (p% + m?) /4
0=0/(p +m?)/4+ N — o/ (p + m*)/4 = N
1 -
= 4—0/(@,% —vi)+N-N [8.215]

or

v?2 —v% 4+ 40/ (N - N) =0 [8.216]
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As v} p = Gunv}' g} g this is the first line of (8.4.10). To get the second line, we work
out

v2 — 0% = (U + W R)? — (Vg — Wy R)? = dvw™R

=4 (a'%ﬂ — anw"R) w™R = 4a/n,,w™ [8.217]

In the last line we have used (8.4.7) and the antisymmetry of B,,,. The constraints [8.216]
thus becomes

0 =4d/n,w™ + 4/ (N — N) = 4/ (ny,w™ + N — N) [8.218]

8.56 p 250: Eq. (8.4.12) The World-Sheet Action for the B,,,,, Field on
the Torus

The Lagrangian contribution in this case is, using (8.4.3)

1
L= — e B 0. XM X + =
1 iB
_ - 'Pmn w'Rwy R+ - -
o o

/i2an81Xm82X” +

1.
2Trzbmnw{”w§ + - [8.219]

The world-sheet action is obtained by integrating over d?c with both ¢! and o? ranging
from 0 to 27. In the cae of constant B,,,, which is what we are considering, this gives a
factor (27)? and thus

S = 2wibppwtwy + - - - [8.220]

We now estimate the partition function from the canonical approach and show that
we recover the same phase. So we need to work out Z;, = (¢q)~'/?*tr ¢oglo. For the
compactified spacetime dimensions we have

1
LO Aoy ,'UL+;GmnOé k,Oék

1
Lo= ,vR+ZGmna L [8.221]

and we can repeat the calculation of (8.2.9) for more than one compact dimension

Zk; — (q@_l/mtl" qﬁvﬁ'i_zzo:l Gmna:nkayquﬁv?q"’_zzil Gmn&lﬂkaz [8222]
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The oscillator part and the (qg)~'/?* gives as usual the Dedekind function for each com-

pactified dimension. Thus

Zi =In(r)| *tr g+t qar

:|,'7(7_)|—2k Z eim-ﬁvie—mrﬁv%

n,weZk

:|77(T)|72k Z ezar (iM—m2)v} 577 (—im—Ta)vg,
n,wezZk

el S & e P U AR
n,wezZk

We already found that v — v% = 4a/n,,,w™ in [8.217]. We also have
v? + 0% = (U + W R)? 4 (Vg — Wy R)? = 2(v2, + w2, R?)
Therefore
Zi = ()| 727 e A o Y

n,wezZk

We now have

/ /
v2 =G, = G (agm — Bmkka> <a}7§n — BngweR>

a/2

= ﬁnmnm — 20/ G B,ywng, + R2G™ B,y Bpow*w*

and thus

[8.223]

[8.224]

[8.225]

[8.226]

2
Zk _ ‘7,’(7_)’—2]6 Z e27ri‘r1nmwme—ﬂai,?(O;_TQnmnm—2a’Gm"Bngwénm+R2GmankBngwsz—&—wfnRQ)

n,wezZk

n,wezZk

‘n(T)’—Qk Z 6—71'1'2g—;nmnm+27ri(716z”—iTsz"Bng)wénm
n,awezZk

R? ,
X e % (Gmn Bk Bne ‘|’C71k5)’wku}Z

As a quick check, let us set £ = 1 and hence also B,,,, = 0. Then

’ ) R2
—92 — Ty & n2 4 2miT wn— T2 qp?
Zy=In(r)| 2 Y TR o
n,weZ
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and we recover the case of a single compactified dimension [8.87] as we should indeed.

In order to show that we recover from the path integral the partition function for the
shifted spectrum, we need a generalisation of the Poisson resummation formula (8.2.10)
which is

Z 6—wsaﬂnanﬁ+2mbanﬁ _ gl/2 Z e—wSaﬁ(na—bo‘)(nﬁ—bB) [8.229]
nezk nezk

Here S% is a symmetric invertible matrix with inverse Sap and S = det S,3. We will not
prove this, but just check the k£ = 1 case, when it becomes

Ze—anQ—‘er'bn _ 5—1/2 Ze—w(m—b)Q/S [8.230]

which is precisely (8.2.10). We now apply this to [8.227]. We have

O[/

T R?
V™ = (1107 — iaG™" By) w' [8.231]

S™™ is obviously symmetric and invertible with

2
Smn = —},z Gmn [8.232]
()
and
R2\"
S = det Sy, = <,) det Gonn [8.233]
T

Applying the Poisson resummation formula then gives

Rk

7, — —2k
b=l s >
n,w

e*Tl’ al,%l Gmn [nmf (7'1 5?’ —iTo Gkakg)’u)Z] [n” — (7‘1 5;}71'7'2 Gnr Brp)wp]

—n 2B (Grn B, Byt Gt
x e "ol b BnetGhe [8.234]

Let us work out the argument of the exponential

7 R?

a/TQ

a=— [Gmn(nmn” - Tmmégwp +imG"" BpwPn™
- Tléfwen" + 7'12(5?151?104101’ - iTlTQ(sg”GmBrprwp
+ i1 G Bipw'n — iTngGkakgégwéwp — TQQGkaMGm'BprEwp

+ TQQGm"Bkangwkwé + T%Gkgwkwé [8.235]
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Denoting a - b = G,,,a™b" and a? = a - a this gives

B TR?

a= 7
AT

<n2 —2mn-w + waz + 210G G BrpwPn'™ — 2iTngGmn52”G”TBprewp

— gGmnGkakgG”TBrpwzwp + TQQGm"Bkangwkwg + 722w2)

R2 -
= — W/ n? —2mn-w+ (712 + 722)11)2 + 2079 BpppwPn™ + ZTngngwzwp
QT L
+ T%(—BngG”””Brpwewp + Gm”Bkangwkwg)}
TR T , 2 2\ 2 . p.om
= -V - 2rn - w + (17 + 75)w* 4 2iTe BypwPn } [8.236]
QT L

We use [8.93]. i.e. |m — wr|* = m? + w?(r# + 72) — 2mwr, and By, = by /R to get

R? o
a= — pr <|n —wr|* + 2iTg—R2 bmpwpnm)
TR?
= — ——|n—wr|’ — 2mibpywPn™ [8.237]
T

and so our partition function becomes

Rk _ _7rR2 _ 2_9 ib DM
T = o et G ()| 72 Y ¢ TRt

/
(Oé TZ) n,awezZk

[8.238]

Finally, using the partition function for the uncompactified dimension (7.2.9), i.e. |n(7)| 72 =
(4m%a/19)' /2 Zx (1) we find

Rk 2 1/2 k — ﬁ,R2 n—wr|2—27ibmpwPn™
Zk = W det Gmn |:(47T Q ’7'2) ZX (T):| Z e «T2
2 n,wezZk
— = R2 _ 2_9mi m
_ (QWR)]C det Gy Zx (T)k Z o o |n—wT|?—27ibmpwPn [8.239]

n,weZk

and we indeed see that the the calculation of the partition function from the canonical
approach also gives the phase (8.4.12), i.e 27ib,,,w”n" that we see in the path integral.

8.57 p 250: Eq. (8.4.13) Introducing the Spacetime Tetrad

If we write G,,,,, = e} el , withr = 1,--- |k, then the corresponding term in the worldsheet
Lagrangian becomes
1
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where X" = e X™. Here e], is the spacetime tetrad; it lives in the tangent space of
the spacetime coordinates X" and so does not depend on the worldsheet coordinate, i.e
dq€;,, = 0 by construction. In terms of the X" the action is now that of the free scalars and
so we can use that, including their standard OPE.

8.58 p 250: Eq. (8.4.14) The Momentum for the Vertex Operator with
X" =el X™

We can write a vertex operator for the left-moving field X} as
oL XL — gL X[ _ ipLmel X] _ pi(vim/a)er X] _ ik, X [8.241]

where

[8.242]

Here we have used e/ as the inverse of €] , i.e. e¢’e] = 4" and have used [8.214], i.e.
vy = 'pr. A similar relation holds, of course for the right-moving part.

8.59 p 251: Eq. (8.4.15) The Mass Shell Conditions for the Vertex
Operator with X" = e} X™

For the mass-shell conditions, we just rewrite (8.4.9a) in terms of the "tetradic" spacetime
coordinates

1 2 ~
m? = M—QGmn(vTvz + VR vR) + J(N +N-2)

2(N+N—2)

Ofl

/ / t / / t
= 5072 erer(ael'kia’elky + a'el'kpa’elkp) +

1 2 -
= iermegeg’leg(kiki + k5 kb)) + J(N + N —2)

1 2 ~

= 5070 (kEkE + kikly) + (N + N = 2)
1 2 ~

= S(KEKE + KpkR) + S(N + N —2) [8.243]

We have been a bit sloppy with the location of the indices r, s, ¢ but these live in a tangent
space and so the metric is flat and indices can be raised and lowered at will.
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For the second condition we use [8.216]

0=v2 —v% 4+ 40/ (N — N) = Gp07 0} — GruntBv + 40’ (N — N)
reraemkS o ekl — el el o/ eMkha ekl + 40/ (N — N)
=ao%e" el eMel (ki kb — kkh) 4+ 40/ (N — N)

=o20787 (k3 kb — kkb) 4 40/ (N — N)

=2 (kL kT — kWER) + 40/ (N — N) [8.244]

8.60 p 251: Eq. (8.4.16) The OPE of Vertex Operators for Winding
States

: eikL'XL(Z)+ikR'XR(Z) = elk/LXL(O)‘l'Zk%XR(O) :
_ alkp Ry /250 kK /2 . ik Aky) X (2)bi(kn k) XA(2) .

— ALl Rty . ik kD) XL (2)+i(krtkR)-XR(2) . [8.245]

8.61 p 251: Eq. (8.4.17) The Phase for One Vertex Operator Encircling
Another One

This was already worked out in (8.2.20). The net phase when z; circles zs is

o2 _ pmic! (kpky —kpky) _ jmio! 2 (0Ll —Crly) _ 2mi(LLl) —Lrly) [8.246]

(8.4.17), i.e. Lo ' € Z is the requirement that this OPE is single-valued.

8.62 p 251: Eq. (8.4.19) The Condition £o £ € 2Z

The requirement that Ly — L, € Z was derived in (7.2.29). We now use Ly = o/ (p? +m?)/4,
vy, = d'pr, (8.4.14) and 41, = (o// 2)1/ 2k, and the same for the right-handed components

1 1 2
o (P2 —p%;) = a(v% — v%) = JQ/Q(]{% — k%) = O/J(g% _ g%) = 2(0% — g%) [8.247]
So the condition Ly, — L, € Z becomes
2002 —1%)/4€Z = (3 —1h=(olc2Z [8.248]
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8.63 p 251: Eq. (8.4.20) 7 — 7 + 1 Implies Single-Valuedness
We have

4+ Yo (b+0)—Lol -1 ot
:(fL—l—flL) (0, +£/L) — (ER—FEQQ) : (ER—f-flR) — -4 _E/L'E/L_ER'ER_EZQ'%Q
=2 -l —2g - bp =200l [8.249]
Modular invariance of the partition function under = — 7 + 1 implies, according to
(8.4.19), that (ol € 2Z for all ¢ € T'. But then we also have that ((4¢')o({+¢')—Llol—{' ol €

2Z and thus that 2¢o¢’ € 2Z and hence /o¢’ € Z. Wich is the condition for single-valuedness
of the OPE of two vertex operators (8.4.17).

8.64 p 251: Eq. (8.4.21) The Partition Function for Compactification
on a Lattice

The partition function for compactification of £ dimensions is given by [8.223]

iTT] /.2 2 TTY

Zy=In(r)| 7 Y emd i Rema (i) [8.250]

naweZk

From (8.4.14) and the definition ¢;, = (o//2)'/%k;, we have v? = o/2k? = 2a/2. Thus

Zpr = ()|~ Ze?&l (20/63 ~20'03) ,— 323 (2003 2003,
Ler
()2 Y i () —rmt 3
ler
— ‘77(7.)’72143 Z eiw(T1+i7'2)£2L7m(7-1 71'72)@%
el

— |,r](7_)’—2k Z ei7r7'€2L—i7r7"€% [8.251]
Ler

8.65 p 252: Eq. (8.4.22) The Delta Function Sum over the Lattice

Consider the function

fo) ="y ermiket 8.252]
k

er
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Let us first consider the case where ¢ € I'. From the definition of the dual lattice I'* we
know that £ o k = n € Z for any k € I'*. Note that n is here an integer number, not a point
on the lattice or the dual lattice. Thus, in this case,

foy=> €m"m=>3%"1 [8.253]

kel'* kel'*

Now if ¢ ¢ T, then £ o k ¢ Z for any k € I'*. If ¢ o k would be an integer, then ¢ would be
in I'*, which is a contradiction. We then have a non-vanishing phase and the sum averages
to zero. We thus have that f(¢) is non-zero if and only if ¢ is in I". We can write this more
precisely as

Fo)y =Y ¥t = NN 50— k) [8.254]

kel™ kel

Indeed ), - 0(¢ — k) is zero unless / is a point in I'. Here  is a normalisation constant,
which turns out to be the volume of a unit cell of I.

8.66 p 252: Eq. (8.4.23) The Change in Partition Function under
T — —1/7

Let us first consider the RHS of the first line of (8.4.23). On the one hand, we can write
this, using (8.4.22), as

RHS_‘H(T)IWC/CZQkE (VF_1 Z 6271'%”0[) eiﬂTf%*iﬂff%

erer=
_ ‘77(7')’2k/d2k£ Z 5(€ . £/>ei7r7'é%fi7r7"€%
el
= In()[7* Y2 & = Zp(r) [8.255]
ver

On the other hand we can perform the ¢ integration first

ZI‘(T) — ‘n(T)‘iszI‘_l Z /d2k€ e27ri€”o€ei7r7'€%fi7r7"€%
Z//el_‘*

:‘n(T)‘fchF—l Z /d2k662ﬂi(€Z£LE%@R)‘Fiﬂﬂ'f%7;71'7'@%
Z//el—‘*

:‘n(T)‘kaVF—l Z /d’%L eﬂi(T@%+2£géL)/dk€Reﬂi(T@%‘i’Qé%@R) [8.256]
ZNGF*
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. . 2 2
We now use the Gaussian integral [7°° e=@"+b% = (1 /a)!/2¢b"/4a;

- — § : 7 —4m20"? /(—drir m —4m2¢? T
7 (7_) |77(,7_)| Qk‘f 1 ( > e 4 Z[ /( 4 ) ( ) e 4 KR /(4 )

—TiT T
él/er‘*

—2kvr—1 1 k/2 _ »[/2/ + »E//Q/_
:|n(7_)| VF ( > Z e~ T THmily” /T

—1T1T Vrers

= ()| "V (r7) T2 Zps (= 1/ 7) (=1 /7) | [8.257]

Using (7.2.44b), i.e. n(—1/7) = (—i7)/?n(7) we get

Zr(r) = |n(r)| Ve (r7) 2 2 (<1 7) | (i) () [
=V ' Zp(—1/7) [8.258]

8.67 p 252: Eq. (8.4.24) The Lattice Must be Self-Dual

If T' =I'* then (8.4.23) becomes
Zp(r) = Vi Zr(—1/7) [8.259]

From Vf = Vr_*l we have for a self-dual lattice that V = 1, and so V- = 1. Therefore, for
a self-dual lattice we have indeed modular invariance Zr(7) = Zp(—1/7). Joe claims that
"a little thought shows that it is also necessary if modular invariance is to hold for all 7".
Unfortunately that little thought has escaped me so far.

8.68 p 252: Eq. (8.4.25) The Lorentz Invariance of Even Self-Dual
Lattices

We need to show that if T' is and even self-dual lattice then so is I' = AT’ where A is
an O(k, k;R) rotation, i.e. it satisfies ATpA = 7, with 5 the (k, k) Minkowski metric n =
(+1,---,4+1,—-1,--- ,—1).

If we write

Arr ALR>
A= 8.260
<ARL ARR [ ]

then the fact that A € O(k, k;R) means that
0 —1) \Arr Arr/ \0 —-1)\Agrr Agr
_ ( A3, — A% ArrALr — ARLARR>

8.261
ArrArLrL — ARrARL A? = A%p [ :
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This gives three equations

1=A7p — A%y

1= A%%R - A%R

0=ArrArLr — ArRrRARL [8.262]
We now have ¢/ = A/l or

<€/L> _ <ALL ALR) <€L> _ <ALL€L +ALR€R> 18.263]
Uy Arr, Agrr) \Ur Arrlr, + Arrlr '

Let us now check that if " is even, i.e. £ o ¢ € 2Z then also AL is even, i.e. ¢/ o ¥ € 2Z.
Indeed

Vol = (€IL)2 — (ZIR)2 = (Aprlr + ALRER)Q — (ARl + ARRKR)2
= (A2, =A%) 6+ (AT g — ARg) (5 +2(AntALr — ArLARR) (LR
= (L) —(lp)? =tole2Z [8.264]

I am not sure how I can show that IV = AT is also self-dual. Indeed in order to show this
I need to work out (AT")* and I am not sure how to do that. Any help is welcome

8.69 p 252: Eq. (8.4.26) The Narain Momenta for One Compactified
Dimension

We first establish the relation between ¢;, p and py,,,. Dropping the subscripts 7, p for sim-

plicity we have
o' ey, o e pm, o o
by =Y e = [0 18:269]

Using (8.2.7) we thus find the quantisation

g — g/ ﬁ_‘_@ — Oi/l n_|_wR2 — g, 31 n+wo/ [8266]
IF=N9\rR" &) V2R o ) V2Vaor 20/ '
and thus
n wr
0, =242 [8.267]
r 2
We have, entirely similarly,
(pp = 2 Y [8.268]
T 2

— 478—



Joe’s Book (version of November 20, 2020) Notes from Stany M. Schrans

Let us check that this is an even self-dual lattice. First we check
2 2
fofzé%—EQ :(ﬁ—l—ﬂ) —(ﬁ—ﬂ> =2nw € 27 [8.269]
r 2 r 2

Next we find the dual lattice. It consists of pairs k = (kr, kr) such that k o ¢ € Z for all
¢ in the original lattice. I.e.

b (5+5) ke (G- ) €2 [8.270]
T 2 2
or
(kr, — kR)% + (kr + kR)% cz [8.271]
and this must be valid for all integers » and w and for all radii . Thus we need to have
ki —kr=rp
2
kL+kr="_q [8.272]
for some integers p and ¢. Thus
q  pr
kp ==+ —
L=y + 2
kp=1_2 [8.273]
T 2

and so k = (kr, kr) spans exactly the same lattice as ¢ and hence the lattice is self-dual.

8.70 p 253: Eq. (8.4.27) Lorentz Boosts for One Compactified Dimen-
sion

It should be obvious that this is a O(1, 1) transformation, but let us check for completeness.

We have
cosh A sinh A
A= <sinh A cosh /\> [8.274]

cosh A sinh A\ 0 cosh A sinh A
sinh A cosh A -1 sinh A cosh A

cosh A sinh A cosh A\A  sinh A\
sinh A cosh A —sinh A —cosh A

and

ATnA =

cosh? \ smh2 A 0
sinh? \ — cosh? \

1
0 > [8.275]
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Now we write the transformed momenta in terms of n and m:

(M 7”“> h ) (ﬁ_iw>'h)\
L (r+ 5 cosh A + . 5 sin
:ﬁ(cosh)\—ksinh/\)—i—%(cosh)\—sinh)\)
r
-2 /
no\ o mro_, n mre n mr
_n _ mre - _n 8.276
€ +26 re*AJr 5 7n,+2 [ ]

with 7' = re~*. A similar relation holds for ¢}, as is easily checked.

8.71 p 253: Eq. (8.4.28) The Space of Inequivalent Even Self-Dual
Lattices, I

When we set B,,,, = 0 and are at the compactification radius of the enhanced gauge sym-
metry, i.e. R = /o/, for each of the k compactified dimensions, then each such dimension
has an SU(2) x SU(2) symmetry as we have seen. Assuming these compactified dimen-
sions are not mixed up in some way - that is probably what is meant with them being
orthogonal — then we have k copies of this, i.e we have a (SU(2) x SU(2))¥ = SU(2)%*
gauge symmetry.

We know that if if perform a Lorentz rotation O(k, R) xO(k, R) on the quantum numbers
(np,wr) X (nr,wg) then the transformed theory has the same spectrum and is thus the
the same as the original theory. Thus, if we have a given even self-dual lattice I" with
a given signature (k, k) then we can get all other even self-dual lattices by acting with
an O(k, k,R) rotation on the lattice Ag xr)[- But all these lattices that are related by
an O(k,R) x O(k,R) rotation Ag (i r)xo(kR) give the same theory. The space of different
theories is this given by

O(k,k,R)

O R) x O(k,R) 182771

8.72 p 253: Eq. (8.4.28) The Space of Inequivalent Even Self-Dual
Lattices, II

Assume that we have a given even self-dual lattice I" and that this lattice has a (discrete)
symmetry group, which we call O(k, k, Z). This means that I' and Ap(; 2 I are the same
lattice. We then obtain all even self-dual lattices by acting with a Ay 1, r) on this original
lattice T', or equivalently on Ay 1. z)I'. All these new even-self-dual lattices that are related
by an O(k,R) x O(k,R) transformation are equivalent. Thus we conclude that the lattices

Aowrer)ls  AowrixomR)Now k) AowR)xok R AoMk,kR) Ao k,2)T [8.278]
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are all equivalent. Taking into account the discrete symmetries of the even self-dual lattice
I" the space of inequivalent theories is thus in fact
O(k,k,R)

O(k,R) x O(k,R) x O(k,k,2)

[8.279]

8.73 p 254: Eq. (8.4.32) The SL(k,Z) Part of O(k,k,Z)

Joe says that " [...] large spacetime coordinate transformations respecting the periodicity
=L" "
with L™ integers and det L = 1 for invertibility" are transformations of the 7T-duality group

O(k, k,Z). This rather cryptic statement deserves some explanation. Remember the most
general worldsheet action is (3.7.6)

47r &0 /g [(g“bGW(X) + ie“bBW> B X 3, X" + o’ RO(X) [8.280]
This action is by construction invariant under GL(1, d, R) transformations of X*,i.e. X* —
X' = L*,X". We can normalise this and restrict ourselves to those transformations with
unit determinant so the symmetry group is SL(1, d, R). If we compactify k dimensions then
we have a symmetry under the subgroup SL(k,R) on these compactified dimensions, i.e
X™ — X'™ = [™ X". However, we need to ensure that these transformed spacetime
fields satisfy the boundary conditions. Recall that the compactified coordinates are given
by (8.2.15)

m = o Om CVm
X"™(z,z) = 2™ —z?pL Inz— pR lnz+ul Z < zm> [8.281]

with 2™ = 27" + 2’3 and the c.o.m. coordinate. But we still need to ensure that the
transformed coordinates X'™ satisfy the appropriate boundary conditions (8.2.1) X'™ =
X'™ + 27 R together with the condition (8.2.3) that one can wind the string around a com-
pact dimension, i.e. X (o + 27) = X (o) + 2rRw with w € Z. Recall from the discussion in
section 8.2. that the former condition requires the total c.0.m. momentum to be quantised,
p = n/R,n € Z whereas the latter condition allows to split this total momentum in a left-
and right-moving sector p = pr, + pg, with py and pg taking values on an even self-dual
lattice as per the Narain analysis of modular invariance of the torus partition function. Let
us now check that these conditions are also satisfied for the transformed coordinate. We
have

X'"™(z,2) =L", |z —z—lenz—z—pRlnz—i—n/ Z (an >

[8.282]
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The total c.o.m. momentum after the transformation needs to be quantised

m

k
p™ = L" (P} +pR) = = KmeZz [8.283]

or RL™ (p} + p}) € Z. We know that R(p} + p}) = ¢" € Z, so that the requirement
becomes that L} ¢" € Z for all " € Z. This can only be the case if the L"}, themselves are
integers and so in order to satisfy the boundary condition X' = X' + 27 R the group
SL(k,R) is actually reduced to SL(k,Z).

We still need to check that an SL(k,Z) transformation satisfies the second boundary
condition, i.e. X (o + 27) = X (o) + 2mRw. Recall that we have z = ¢/ = ¢ ~o°_ Under
o! — o' 4 2 we thus have  — z and similarly z — z. We need to be careful with the
momentum terms as they contain logarithms. We have In z = io! —0? — 2mi+ioc! —0? =
27i + In z and similarly In z = —io! + 0% — —2mi —io! + 02 = —27i + In 2. Therefore

/

X™(o! + 21, 0%) = L™, [x - zgpL(Zm +1Inz)— zgp?%( 2mi+In 2)
n

gt ()]

= X" (o', 6% + a7 L™ (p} — p}) [8.284]

Here we also know that o/7(p} — pl) = 2rRw™,w™ € Z as X™ satisfies these boundary
conditions. Thus o/wL™, (p} — p}) = L",2rRw™ = 2r Rw"™ with w'™ = L™, w™ € Z as all
the L™ are integers as we have already established.

In summary we have shown that an SL(k, Z) is indeed a symmetry of the theory that
preserves the boundary conditions, both for the quantisation of the momentum as for the
winding of the string around the compactified dimension. This transformation mixes up
the n and w numbers into new ones, n™ — L™, n™ and w™ — L",w", and so necessarily
transforms one point of the even self-dual lattice into another such point and is thus part
of the T-duality. Le. it is a part of the O(k, k, Z) symmetry. Notice that we did not have to
use the explicit form of the momenta p;, and pg, i.e. the explicit form of the even self-dual
lattice. This reasoning is valid for any G,,,, and B;,,,.
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8.74 p 254: Eq. (8.4.33) Integer Shifts of the Antisymmetric Tensor

We consider the shift b,,,;, — b+ Ny With Ny, integers on v, = 2™ given in (8.4.7.2).
Using Byun = bmna’/R? we find

/ /
U —o/m <abmn> w'R = % (N — bppw™)

o o

— [ — (b + N )w"'] = = (n;n — bmnw”) [8.285]
with n}, = n,, — Np,w™ € Z, which is another point on the lattice and hence a symmetry.

Alternatively, putting this in the phase (8.4.12) we get
271 bnw Wy — 27 (b + Ny )W wh = 2w Ny w ' wh + 2wiby wi wh [8.286]

The first term is 27 times an integer and so that phase doesn’t contribute. leaving the par-
tition function invariant. As the partition function "measures" the spectrum of the theory,
recall Z oc tr ¢f/g™°, such a transformation leaves the spectrum unchanged.

8.75 p 254: Eq. (8.4.35) The Kinetic Terms of the Moduli

We will not perform the detailed calculation but show that it is a reasonable result by com-
paring to previous calculations. Let us remind ourselves of what the Weyl transformation
is and why it is needed. We go back to the low energy action of the uncompactified closed
string in (3.7.20)

2(D — 26) 1
S e — - —H
3o/ +R 12°°H

1
5:72
2K

/ dPx/—Ge 2 AHMA 440,001 [8.287]

plus terms of order o and higher. Here H,,, is the field tensor of the antisymmetric tensor
B, Recall that this action gives the field equations necessary for Weyl invariance at the
quantum level, at first order, of the most general worldsheet action, i.e. the vanishing of
their 8 functions. The dilation factor e~2? is inconvenient and we could simplify the action
by making a field redefinition G, = ¢?*(*)%uv(2) of the spacetime metric. This is effectively
a Weyl transformation. Under such a transformation the spacetime Ricci scalar transforms
as (3.7.23)

R=¢*[R-2(D-1)V’w— (D —2)(D - 1)9wd*w| [8.288]
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By choosing w = 2(®o — @) /(D —2), for some constant ®, and defining a new dilaton field
® = & — P all the terms in the action recombine as

g 1 /dDX1 /—&| 2(D — 26)646/(13_2) L R_ 1 sb/D-2) N2

2k2 3o/ 12 w

- %a@a#é + o(o/)] [8.289]
The H denoting that spacetime indices are here raised with G*”. We see that the Weyl
transformation has gotten rid of the nasty e~2® factor in the action and has left us with
nice kinetic terms coming from R or 8,}@8“&).

We now apply the same reasoning to the low energy action with compactified dimen-
sion (8.4.2). Let us focus on the terms that will contribute to the kinetic terms:

9 k
S = ( ;}? / da\/—G e 2% [4auq>daﬂq>d
Ko

1
= GG Dy G0 G + 0B Bug) + - ] [8.290]

One sees by comparison with the uncompactified case that these kinetic terms become

S o | dix\/—Gy

4 ~
- —0,90"®
D_zaﬂ 0

1
= LG G (O Crp®" Grg + O B Buy) [8.291]

which is (8.4.35).

8.76 p 255: Preliminary Considerations to the d = 2 Example

Before we look at the d = 2 example it is useful to put the preceding results in a more

formal framework. We are looking for a general formula of how the moduli G and B

transform under an O(k, k, R) transformation and what transformations leave the spectrum

invariant. In order to achieve this we follow Giveon et al hep-th/9401139v1, section 2.
We start by rescaling the spacetime coordinates to a dimensionless one.

X — X =RX [8.292]

The periodicity of the coordinate is now 27. The worldsheet action is the
1

4o

_ ﬁ / 2o /g [(gabémn n ieamen> D X OpX™ + R@(RX)} [8.293]

/ 2o \/g [(gamen + z’gamen) R29, XM, X" + a’Rcb(RX)}
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where we have defined the spacetime metric and antisymmetric field

2 2
A mn > an
Grn = G ) Byn = d 7

a/

[8.294]
o

Note that the hatted fields are dimensionless, just as the unhatted fields are. In the above
equation R is the worldsheet Ricci scalar, not to be confused with the compactification
radius R. We also rescale the compactification radius as

R— R=Vd'R [8.295]

Under T-duality the rescaled R now simply transforms as R — 1/R.

We now rewrite the mass-shell formula (8.4.9) in a convenient way. We start using the
unhatted fields. Focussing on the terms without the oscillator contribution we have
9 1
- 202
- 1
20/2
1

= EGmn(vmv” + Rmew”) [8.296]

m Gonn (V07 + VR UR)

G [(V" + W R) (V" + w"R) + (v — w™R)(v" — w" R)]

We need to be careful about the location of the indices. In order to use (8.4.7) we need to

lower the indices on the vs.
1 m T m n
m? = 5 Gmn (GG v + R*w™w™)
1 mp ng o T o s 2. . m, n
= —5 Gmn |GG Enp — RB,w Enq — RByw® | + R*w™w") [8.297]

Oé/

First, consider the terms in n?:

1
o

/ /
1
Gmn (GmpG”q(;np(;nq) = ﬁanpqnq [8.298]

Next, take the terms in w?

1
—5Gmn (GG RByw" RBysw® + R*uw™uw")

R? R?

= ﬁwr (quBpT’BqS + G’FS) ’LUS = ﬁwr (GTS - B?”pququ) ws [8299]
Finally, the term in nw gives
1 / /
— GGG (O};npRquws + RBpTwTOJ;nq>
1 2
— ngq(anqsws + ngBprw") = awsBsqG‘”’nP [8.300]
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We bring the contributions together and use a matrix notation
G=Gpn ; G'=G™ . B=Bm, [8.301]
and see that we can write the mass-shell condition in the simple form

1 R?
m? = ﬁnG n+—w(G BG™ 1B)uH——wBG n [8.302]

We now go to the hatted fields G, = (o//R?)Grns Bimn = (¢! /R?) By, and (G—1)™n =
(R?/a/)(G~1)™" and obtain

1 R?. RZ o R? o 2 R?
2 _ 1 _
m° = ﬁn?G n 4+ —w(R2G 2 B G o B)w+ — o R B G n  [8.303]

which simplifies to
o'm? =nG 'n 4+ w(G — BG™'B)w + 2wBG n [8.304]

where we have here, and in the forthcoming expressions, deleted the hats for convenience.
We can simplify this even further. We put the momentum quanta and the winding
numbers in a 2k-dimensional row matrix

Zt = (w', - wF ng, - ony) [8.305]

and introduce the 2k x 2k matrix

G—-BG'B BG!
M = ( o o ) [8.306]
The mass-shell condition then becomes simply
m?=27Z'MZ [8.307]

We will also denote £ = G + B where the matrix F has as symmetric part G and an
antisymmetric part B.

The moduli space for the toroidal compactification is (8.4.28), i.e. O(k, k,R)/O(k,R) x
O(k,R). The group O(k, k,R) acting on a given even self-dual lattice, generates all possible
even self-dual lattices of the same signature.” Let us work out how this group acts on the
moduli G and B. We represent an element g € O(k, k,R) by the 2d x 2d matrix

a b
g = <c d> [8.308]

’This is a standard mathematical result, see e.g. J.P. Serre, A Course in Arithmetic, Springer-
Verlag 1973.
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such that it preserves

J= <2 é) [8.309]
ie. J=g'Jg:
3 0)-( )G o))
1 0) \bo d)\1 0)\c d
toat t t ¢ t
B (Zf cclt> (Z Z) = (Ztcc i T thj_dctz) [8.310]
Hence
detca=bd+db=0; dd+cb=1 [8.311]

Under an orthogonal transformation g, the matrix M in [8.306] transforms as
M — m, = gMg' [8.312]

Note that from J = g'Jg we have J~! = (¢*Jg)~' = g7 'J (g")~!. Using J~! = J this
gives J = g~ 1J(g")~!. Multiply both sides with g on the left and ¢* on the right to get
J = gJg' which shows that if g € O(k, k,R) then so is g’.

We now write the moduli G and B in an O(k, k,R) form as

gE = <8 B(if;Ll) [8.313]

Here e is the vielbein (in matrix form) satisfying G' = ee’. One easily checks that g%J Jg =
J. Indeed

(o @) (o) (0 50) = (e ) (sl

0 el(e)! 01
= (6—16 e 1B +e1BEe)t) T \1 o [8.314]
as B is antisymmetric, B = —B and ee™! = ¢f(ef)7! = 1.

Define the action of an element of ¢ € O(k,k,R) on a k-dimensional matrix F' as a
fractional linear transformation

g(F) = (aF 4+ b)(cF 4 d)~* [8.315]

Note the multiplication of the inverse is form the right. Using this we find (with here 1 the
k-dimensional unit matrix)

98(Lk) = (el + B(e") ") (0 + (")) = (e+ B(e") )" = e’ + B
=(G+B) =E [8.316]
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This is how we can extract G and B from an O(k, k, R) transformation.
Furthermore we have

9E9E = (S EZS;)?) <€6th 601>

B eel + B(et)"le7!B! B(el)~le !

= (LS T A

_ (G +GBlGB_tlBt BGG?) _ (G :5(1;13 BGg—11> Y 8317
where we have again used B = —B.
Using all this it follows that under a transformation g € O(k, k,R)
M — My =gMg" = ggp9%9" = (99£)(998)" = 9w 9 [8.318]
where g = ggp is also an O(k, k, R) transformation. From [8.316] we have that
E' = gp(1p) = 995(1;) = g(E) = (aFE + b)(cE +d)™* [8.319]

We have found how the moduli transform under an O(k, k,R) transformation g =

abie
c d)

By taking the symmetric and antisymmetric parts of both sides, we find the transformation
rule for G and B respectively.

E — E' = (aE +b)(cE+d)™! [8.320]

Now that we have found how an O(k, k,R) transformation acts on the moduli, we will
look at such special transformations that leave the spectrum invariant.

1. Consider the element
1 6
Jo = (0 1> [8.321]

with © and antisymmetric & x k matrix with integers as entries, i.e. ©,; = —©,; € Z. One
easily checks that, because © is antisymmetric, g5 Jgo = J so that go € O(k,k,R). The
moduli are transformed as per [8.320]:

E'=(E+0)(0+1)'=E+06 [8.322]
Taking the symmetric and antisymmetric side we find that

G'=G and B ' =B+0© [8.323]
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This transformation thus leaves G invariant and shifts B by integers. Let us now check the
mass spectrum [8.306]. The hurried reader can check that this transformation leaves the
mass spectrum invariant if we change n into n — ©®w and leave w unchanged. and then rush
to the second symmetry, about two pages from here. The more assiduous reader can follow
the derivation below of how we come to this solution.

The mass spectrum for the transformed moduli is given by
om? =nG 'n+w[G — (B+0)G (B +0)w+2w(B+06)G 'n
=nG 'n+ w(G — BG™'B)w 4+ 2wBG ™ 'n
+w[GGT'® - BGT'O —O0G'B-06G"'0] w+ 200G 'n
=nG 'n+w(G - BG'B)w +2wBG 'n
—2wBG 'Ow — wOG'OW + 2wOG " n [8.324]

We have used the fact that wOG ! Bw = wBG~'Ow and that wOw = 0 by antisymmetry of
©. We now wish to see if we can rewrite this as [8.306] with n replaced by n’ = n + An and
w replaced by w’' = w + Aw with An and Aw integers, i.e.

a/m? =(n+ An)G™ (n+ An) + (w + Aw)(G — BG™'B)(w + Aw)
+2(w + Aw)BG ™ (n + An) [8.325]
Let us first analyse the terms in the middle. This gives
0 =2w(G — BG™'B)Aw + Aw(G — BG™'B)Aw
= (2w + Aw)Aw(G — BG™'B) [8.326]

This is one equation for & components (Aw',--- , Aw*), but this must be valid for any pos-
sible background G and B. We must thus have Aw = 0 or Aw = —2w. Both give integers so
both need to be taken into consideration.

Next consider the last term in [8.325]:
0 =2wBG'Ow + 2wBG ' An + 2AwBG ™ 'n + 2AwBG ' An [8.327]
Let us firs look at the Aw = 0 solution. This equation then becomes
0 = 2wBG 'Ow + 2wBG ' An = 2wBGH(Ow + An) [8.328]

Once more this needs to be valid for all G and B and thus this implies that An = —©Qw, and
this is an integer. For the other solution Aw = —2w we have

0 =2wBG 'Ow + 2wBG 'An — 4wBG 'n — 4wBG'An
=2wBG H(Ow — An — 2n) [8.329]

which implies An = ©w + 2n which is also an integer.
We thus have two sets of possible solutions:

(An, Aw) = (—Ow,0) or (Ow + 2n,—2w) [8.330]
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It remains to check the first term in [8.325]:
0 =wOG 'Ow — 2wOG~'n+ 2nG~'An + AnG~'An [8.331]
For the first solution the RHS becomes
RHS = wOG™'Ow — 200G~ 'n — 2nG~'Ow + OWG ™ 'Ow [8.332]
Let us look at the last term
OuwG'Ow =0,;uw’ (Gil)ik Orw’ = 'Oy (G*I)ik 0w’
= — 'Oy, (G 0w = —weGew [8.333]

and so the last term cancels the first term. Similarly we find that the third term cancels the
second term:

nG'Ow = n; (G 0wk = —w*Oy; (G n; = —wOG ' [8.334]

We have thus found that we can rewrite the mass-shell condition [8.306] as
om? =n'G 0/ +w'(G - BG™'B)w' + 2w’ BG™'n’ [8.335]
with
n=n—0w and w =w [8.336]

As © consists of integers n’ and w’ range over all integers and this solutions does leaves the
spectrum invariant. In other words, the transformation [8.323],i.e. G' = G,B’' = B+ 0O is
a symmetry of the spectrum.®

2. Next, we consider a transformation

ga = (61 (At())1> [8.337]

with A € GL(k,Z), i.e. a matrix of integers. We leave it as an exercise that g%, Jga = J.
From [8.320] we find that this corresponds with a change of moduli

E—FE =(aE+b)(cE+d)~' = AEA® [8.338]
Let us first work out how the moduli change under this transformation
1 1 1 1
G = §(E/ +E" = i(AEAt + (AEAYY) = i(AEAt + AE'AY) = Ag(E + EY)A!
=AGA' [8.339]

8What happens with the second solution? It doesn’t matter we already have one working solu-
tion. Never mind about the extra work.

— 490—



Joe’s Book (version of November 20, 2020) Notes from Stany M. Schrans

and similarly

B' = %(E’ - E" = %(AEAt — (AEAYY) = %(AEAt — AE'A") = A%(E — EhHA!
= ABA? [8.340]
The mass-shell condition [8.306] then becomes simply
am? =n(A)TTGTT AT In 4+ o/ w(AGA" — ABAY (AN TIGTIATT ABAYw
+2wABAY(AY)TIGTr AN
=n(ANT'GTP AT In + wA(G — BGT'B)A'w + 2wABG 1A n
— (A7'n) @A™ 'n) + o/ (A'w)(G — BG™'B)(Atw)
+2(A'w)BG™H (A 'n) [8.341]

From this we immediately see that if we define n’ = A~'n and w’ = A'w then we can write
this as

om’? =n'G n/ + w'(G — BGle)w’ + 2w BG 10/ [8.342]

with n” and w’ ranging over all integers, by virtue of the fact that A € GL(k,Z) and that A~}
exists. Hence, this is also a symmetry of the theory. We see from the form of n’ and w’ that
this symmetry actually orresponds to a change of of basis for the compactification lattice.

3. A third symmetry is given by the matrix

1—e¢; e;
Gp, = ( o 1o ei) [8.343]

Here 1 is the k-dimensional unit matrix and e; is a k-dimensional matrix, with all zero entries,
except for the ii component, which is one; i.e. its elements are (e;);; = 0;;0;5. Note that
Let us proceed as for the previous cases

(e;)> =e; (nosum) and thee~! = el = g,.
t _ 1- € 0 1 1- e; e;
GDi, JGD7 - ( . ; 1 0 . 1_e

e;
e; 1-—e e
(1l —¢ e; e; 1-e
o e; 1-—e¢; 1—e; e;

_((L—ei)e; +e;(1—e) (1—e)*+e?
- e? + (1 —¢;)? ei(l—e;)+(1—ee;
_(ei—el+e —e? l+el—2e+e7\ (0 1)
_(e?+1+e§—2ei e,—e?+e —e?2)  \1 0 = [8.344]
so G p, is an appropriate transformation.
The background fields then transform as
E—FE=[1-¢)E+e](e;E+1—¢)" [8.345]
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with G and B following from the symmetric and antisymmetric part respectively. These are
in general messy formula. To understand what these transformations means, let us look at
the case k = 2. Taking i = 2 one finds after some algebra that

, B %2 + G ] , Bis ) 1 G2

- : =22 gl=— Bl= 212 [8.346]
11 G22 12 G22 22 G22 12 G22

where, as usual G = det G;;. Note also that det G’ = det G/G3,. To see what this means, let
us take the example where the two dimensions are compactified in two circles that factorise
completely. This means that G2 = 0 and that also the anti-symmetric field vanishes, B> = 0.
In that case, the above transformation reduces to

1

/ . r_ . /o .
11:G11, G12—0, 22—G227

Bl, =0 [8.347]

What happens with the mass spectrum? With this background we have

T n3 2 2
am” = Gill + @ + Guwl + G22w2 [8.348]

After the transformation with 7 = 2 we thus find
2 2

n n

e B 5 ;2 /2

= + a + Ghwy + Goows
11 22

2 2

ny w3

+ Gogn3 + Giw? + [8.349]

T Gun Gao

If we interchange n, with w,, then we get exactly o/m?. We thus see that this case corre-
sponds exactly to the T-duality transformation of the second compactified dimension. Sim-
ilarly, of course i = 1 corresponds to the T-duality transformation of the first compactified
dimension. We can thus see that the transformation for a general background corresponds
to generalisations of the T-duality.

At this point, Giveon et al. write that "It can be shown straightforwardly that this transfor-
mation leaves the partition function invariant as well". As so often happens, straightforward
usually means anything but that. If it were that straightforward why do they not even give
a hint? At other points in the text they sometimes go to excriucating detail to show very
simple facts. Alas, I have not found this straightforward at all and shall just have to accept
the result. Any help on this is more than welcome.

4. A last symmetry comes from the worldsheet parity o — —o. It corresponds to a change of
sign of the antisymmetric field B — — B. Contrary to the three previous symmetries, this is
not an O(k, k, Z) symmetry. In fact it interchanges p;, with pg.

The first three symmetries of the theory are O(k, k,Z) symmetries. Indeed in all three
cases the matrix has integer entries. Contrary to the first three symmetries, the last sym-
metry is not an O(k, k,Z) symmetry. In fact it interchanges p;, with pr. For convenience it
is in the discussion treated as part of the O(k, k, Z) symmetry group.

An important caveat is on order. We have only that the above transformations are a
symmetry of of the mass-shell spectrum, without the oscillator terms. In order to show that
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they are a symmetry of the full interacting theory, we need to show that the oscillator terms
and the correlation functions are invariant as well. We refer to the Giveon et al article for
details on this.

From here on we will revert to the original unhatted fields and compactification radius.

8.77 p 255: Eq. (8.4.36)-(8.4.37) The Complex Moduli  and p

There are four moduli from the spacetime action: three from the symmetric spacetime
metric Gp, i.e. Ga424,G25 25, Goa25 and one from the antisymmetric tensor B, i.e.
By 5. We rewrite these four moduli in terms of two complex fields 7 and p and find the
transformation law between them.

Just under (8.4.12) b, is defined as by, = R%B,,,/a’, which explains the first term
of (8.4.36). For the second term, recall that G/? = (det G,,,)'/? gives the unit volume of
the two-dimensional surface described by the metric G,,,,,. The volume of the two torus of
the compactified dimension is V = [ dX?*dX?® G'/2? = (2 R)>G"/2. We thus have

z’R—2G1/2 = L.(%R)QGV2 = L(QWRY _ W [8.350]
o 42/ dm2a/ (2rR)?2  4m2/ '
which gives the second term of (8.4.36). We thus already have
R2
p1=— Baa s
(6
R2
py = ?\/5 [8.351]

Consider now (8.4.37). Recall that GG,,,, defines the spacetime metric, i.e.
ds* = GrndX™dX™ = G2420d X dX* + Go5,25d XA X% + 2G4 05d X **d X [8.352]
From (8.4.37) we also have

o'pa
R2’7'2
'
= %2{)2 (dX24dX24 + ’T|2dX25dX25 + 27‘1dX24dX25) [8.353]
T2

ds® = —5—(dX** + 7dX*°)(dX** + 7dX*°)
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and thus
o’ po
G =
2424 = o
o pa|7|?
GQ —
25,25 27
o' pami
G pu—
24,25 = "o
o py
Boy o5 = 72 [8.354]
We have also added the expression for the antisymmetric tensor for completeness.
For later use, it turns out to be convenient to write this as
o’ po
Ginn = 3 Gmn(T) [8.355]
with
1 /1
G = Bn(1) = — ( 712> [8.356]
A\ |7
We first note that
1 1
det &y, = —2(\7']2 —13) = —2(7'12 +m -1 =1 [8.357]
72 72
We thus have
1 E—
& =6""(r) = — <’T‘ Tl) [8.358]
T2 \— 71 1
We also have
R2
G = —— (6~ H)™" [8.359]
a p2

Indeed, one see immediately that G,,,,G™" = &b, as it should. Finally, using [8.357] we

also have

o’ po
vdet Gy = —5-

R2

R2
Vdet Gmn = ——

a’p2

— 494—

[8.360]



Joe’s Book (version of November 20, 2020) Notes from Stany M. Schrans

Repeating [8.351]t and inverting [8.354] we find

R?
p1 = — Bas2s = baa 25
o

/

R? R?
p2 = ?\/G24,24G25,25 - G§4,25 = e

"= G425
G24.24
\/G24,24G25,25 - G%4,25 VG 8.361]
Ty = = .
G424 G24,24

as can be checked by direct calculation.

8.78 p 255: Eq. (8.4.38) The Full T-Duality Group for Two Compacti-
fied Dimensions

[1] The symmetry transformation (8.4.32) for k£ = 2 ie. 2™ — LM a"™ with L €
SL(2,Z) does not affect p as can be seen from (8.4.36 ). Indeed ba4 25 is unchanged
by this transformation and and so is the volume of the two-torus V. So these transfor-
mations can only affect the 7 moduli. There is moreover a symmetry X" — —X™
and so the symmetry group is PSL(2,Z) and it acts on the modulus 7 of the space-
time two-torus, leaving p invariant.

Let us now repeat this using the framework of our section 8.76. We simplify the dimension
by renaming (24,25) = (1, 2). We have an O(2, 2, Z) transformation with

L 0
gL = <0 (Lt)_1> [8.362]

with L a matrix of integers with det L = 1. The moduli transform according to [8.339] and
[8.340]. Working this out we find
11 =L3,G11 +2L11L12G 12 + L3,Gao
G'9 =L11L21G11 + (L11 Loz + L12L21)Gia 4+ L12LooGao
Ghy = L3,G11 + 2L91 LosG12 + L3,Goo
B!, =B, [8.363]
We also find that det G’ = det G. In these expressions, we have used det L = 1. From this
and the relation with the complex moduli p in [8.361] we find that
pr =Bl =Bur=pn
ph =VG =VG = py [8.364]
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and so p does indeed not change under this transformation. For 7 we find from [8.361]
,_ G7/12 _ L11L21G11 + Gra(L11 Log + LiaLay) + L2 LaaGas
! G, L2,G11 + 2L11L12G1a + L35G

/ VG e
GY 131G+ 2011 L1Gha + L3,Ga

[8.365]

We now express the moduli G in terms of 7 and p using [8.354] and find, after some algebra

o= L12L22(7'12 + 7'22) + (L11La2 + LiaLoi)m1 + L1 Loy

' L3, (1 +73) + 2L11 Lyomy + LY,

/ T2
S [8.366]
2 Li,(t +73) + 2L11 Lo + L3,

We now wish to show that this corresponds to an SL(2,Z) transformation of 7, i.e. for
a,bc,de Z
, ., ., ar+b  (ar+b)(cT+d)

TEn = ort+d (et +d)(cT +d)
_acTT + adt + beT +bd
27+ cd(t 4+ 7) 4 d2
_ac(t? +73) + (ad + be)y + bd (ad — be) o
(4 72) + 2cdTy + d? ‘2 (12 + 72) + 2cdm + d?

[8.367]

Equating this with [8.365] gives for 7| and for /2

L12L22(T12 + T22) =+ (L11L22 + L12L21)’7’1 + L11Loy . CLC(’7'12 =+ 7'22) + (ad + bC)Tl + bd

L2,(t8 +73) + 2L11 Lo + LY (1 +72) + 2cdTy + d?
T2 T2

+ p—
L2,(t2 +73) + 2L11L1om + L3, (13 4+ 72) + 2cdTy + d?

[8.368]

we have used the fact that det . = 1 and also ad — bc = 1. This gives a set of equation that
can be easily solved

a=Ly; b=1Ly; c=0Ly; d=0Lg [8.369]

up to an overall sign that drops out in the transformation. We notice that a, b, c and d are all
integers.

We conclude that the O(k, k, Z) transformation

L 0

corresponds to a transformation of the moduli where p remains invariant and and 7 trans-

forms as an SL(2,Z) transformation with matrix Lz L .
Ly Ln
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[2a] The shift (8.4.33) of the antisymmetric tensor, i.e. by, — by + Npm With Ny, € Z
obviously changes p to p 4+ Na4 25 as can be seen from (8.4.36); more specifically it
changes changes p; to p; + Na4 25. This transformation leaves p, and 7 invariant.

As for the previous example, let us repeat this with the general framework we developed.
This symmetry corresponds to an O(k, k, Z) transformation of the form [8.321]

1 ©
go = (O 1) [8.371]

which leaves G invariant and transforms B as B’ = B + ©. Here © is an antisymmetric & x k
matrix of integers. In our example of two compactified dimensions, B thus has only one
non-zero element, Bio = — B>y, and so has ©, i.e. ©15 = —0©5;. The mass-shell condition is
preserved, provided we take n’ =n — Qw and w' = w, see [8.336].

Let us now work out the change in the moduli. From [8.361] we immediately see that, as G
is invariant, 7 is invariant as well, 7/ = 7. Similarly p, is invariant and p; — p} = Bi, =
Bio + @12 =p1+ @12. Thus we see that p—rp+ @12.

[2b] Let us look at this using our familiar framework. This corresponds to the third symmetry
[8.343]

1-—e; e;
Gp, = ( . 1__&) [8.372]

But we combine the two transformations, so we are considering Gp,Gp,. We already worked
out the transformation rules for two compactified dimensions in [8.346] for Gp,. For the
transformation G p, we need to interchange 1 and 2. Performing G p, followed by Gp, gives
after some algebra. See the Mathematica code below for details.

"o G22
11 — p2 | ~
B}, + G
"o G2
12 B}, +G
/A Gll
22 7 2 |~
B}, +G
Bl2
By = — ——— 8.373
12 B} + G [ ]
We can now easily work out the transformation of the moduli 7 and p. We find after some
algebra
m_ T m_ T2
= 2+ 72’ 72 +7'12—|—7'22
4 4
" P 1 T p2
ol = — ; oy =+ [8.374]
IR > pites
or thus
1 r
2 p— —— [8.375]
T p
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el = {{1, 6}, {0, O}};

e2 = {{0, 6}, {0, 1}};

u={{1, 6}, {6, 1}};

EE = {{G11, G12 + B12}, {G12 - B12, G22}};

G = {{G11, G12}, {G12, G22}};

EEpl = Simplify [ExpandAll [((u-el).EE +el). Inverse [el.EE + u -el]]];

EEp2 = Simplify [ExpandAll [((u - e2).EE + e2). Inverse [ e€2.EE + u -e2]]];

Gpl = Simplify [ExpandAll [(EEpl + Transpose [EEpl])/2]];

Bpl = Simplify [ExpandAll [(EEpl - Transpose [EEpl])/2]];

Gp2 = Simplify [ExpandAll [(EEp2 + Transpose [EEp2])/2]];

Bp2 = Simplify [ExpandAll [(EEp2 - Transpose [EEp2])/2]];

T1 = {G11 - Gp1[[1, 1]], 612 - Gpl[[1l, 2]], G22 - Gp1[[2, 2]], B12 - Bpl[[1, 2]I};
T2 = {G11 - Gp2[[1, 1]], G12 - Gp2[[1, 2]], G22 - Gp2[[2, 2]], B12 - Bp2[[1, 2]]};
SOL = {611 - Simplify [ExpandAll [(G11 /. T1)/. T2]],

G12 - Simplify [ExpandAll [(G12 /. T1)/. T2]],

622 » Simplify [ExpandAll [(G22 /. T1)/. T2]],

B12 - Simplify [ExpandAll [(B12 /. T1)/. T2]]};

sol = {G11 » RA(-2) *r2/t2,

G22 - RA(=2) #r2#(t172+t242)/t2, G12 » RA(-2) xr2 xt1/t2, B12 - RA(-2) % rl};
solt = {tl » G12/Gll, t2 - Sqrt[Det[G]]/Gll, rl -» RA2x B12, r2 » RA2xSqrt[Det[G]]};
Print[{"rl1 -> ", Simplify [ExpandAll [(rl /. solt)/. SOL /. sol]],

"r2 -> ", Simplify [ExpandAll [(r272 /. solt)/. SOL /. sol]],
"tl -> ", Simplify [ExpandAll [(tl /. solt)/. SOL /. sol]],
"t2 -> ", Simplify [ExpandAll [((t242)/. solt)/. SOL /. sol]}}]

R*r1 R® r2? t1 t2?
{r1»>,» ,r2 o, ,tl -
r12+r22 (ri2+r22y?

s

T2 20 B2 z}
t1%+t2 (1% + t22)

Figure 8.2: Mathematica code for the change of the moduli p and 7 for a T-duality transforma-
tions of both of the two compactified dimensions

The factor r* shouldn’t be there, but is probably just an error of dimensionality some-
where earlier. Indeed, Giveon et al work with dimensionless fields, effectively eliminating
the R/+v/a’ from the calculation. I have reintroduced it and must have made an error
somewhere, that I really can’t be bothered to check at this point.

Another point is that Joe’s example 7 remains invariant. This is not the case here, but we
. . 0 1

can always apply a symmetry of the first type with L = <_1 0). We have seen there

that this leaves p invariant and transforms 7 — —1/7. Thus we see that a transformation

G1Gp,Gp, indeed leaves 7 invariant and transforms p into —1/p.

[3] We now consider duality on X! alone using our framework. The calculation is similar and
the Mathematica code is given below. The background fields transform as

1 B B, +G G
/ Glo= 121 Gop= o ]512:_G712
11

L _ : it T [8.376]
H Gll 12 Gll Gll
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From this we find that the moduli transform as
p— —F; T— —p [8.377]

In order to bring this into the form of Joe’s book, where p and 7 are interchanged, we need
to include the fourth symmetry, given hereunder. That symmetry transforms p into —p and 7
into —7. So combining this symmetry, we indeed have p — 7 and 7 — p.

el = {{1, 6}, {0, O}}; e2 ={{0, 0}, {0, 1}}; u={{1, 6}, {6, 1}};

EE = {{611, G12 + B12}, {G12 - B12, G22}};

G = {{G11, G12}, {612, G22}};

EEpl = Simplify [ExpandAll [((u-el).EE +el). Inverse [el.EE + u -el]]];
EEp2 = Simplify [ExpandAll [((u - e2).EE +e2). Inverse [ €2.EE + u -e2]]];
Gpl = Simplify [ExpandAll [(EEpl + Transpose [EEpl])/2]];

Bpl = Simplify [ExpandAll [(EEpl - Transpose [EEpl])/2]];

Gp2 = Simplify [ExpandAll [(EEp2 + Transpose [EEp2])/2]];

Bp2 = Simplify [ExpandAll [(EEp2 - Transpose [EEp2])/2]];

T1 = {611 - Gpl[[1, 1]], G12 - Gpl[[1l, 2]], G22 - Gpl[[2, 2]], B12 - Bpl[[l, 2]]};
SOL = {G11 - Simplify [ExpandAll [(G11 /. T1)]],

G12 -» Simplify [ExpandAll [(G12 /. T1)]],

622 » Simplify [ExpandAll [(G22 /. T1)]],

B12 - Simplify [ExpandAll [(B12 /. T1)]]};

sol = {G11 » RA(-2) *r2/t2,

G22 > RA(-2) #r2 »(t1A2+1t272)/t2, G12 » RA(-2) »r2«tl/t2, B12 » RA(-2)* rl};
solt = {tl » G12/Gll, t2 - Sqrt[Det[G]]/Gll, rl » RA2x B12, r2 » RA2xSqrt[Det[G]]};
Print[{"r1 -> ", Simplify [ExpandAll [(rl /. solt)/. SOL /. sol]],

"r2 -> ", Simplify [ExpandAll [(r272 /. solt)/. SOL /. sol]],
"tl -> ", Simplify [ExpandAll [(tl1 /. solt)/. SOL /. sol]],
"t2 -> ", Simplify [ExpandAll [((t272)/. solt)/. SOL /. sol]]}]

ri r2?
{rl >, -R¥tl, r2 - ,RYt2%, tl > ,-—, t2 > , —
R? R*

Figure 8.3: Mathematica code for the change of the moduli p and 7 for a T-duality transforma-
tions of both of the two compactified dimensions

[4] Under spacetime parity X?* — —X?* we necessarily need Gago5 — —Ga495,
Byyos — —Bas s and @ an even function of X for the worldsheet action to be
invariant. From [8.361] we readily see that this corresponds to p; — —p; and
71 — —71 and leaves po and 7 invariant. We can write this as (p,7) — (—p, —7).
The same holds, of course for the parity transformation X?® — —X?25. As the world
we live in is, as far as we can see, parity invariant, this transformation must yield the
same theory.

Let us now summarise this. The symmetry [1] gives a symmetry under PSL(2,Z) acting
on 7, leaving p invariant. The symmetry [2a] combined with [2b] and an action of [1] gives
a symmetry under PSL(2,Z) acting on p, leaving 7 invariant. The symmetry [3] gives a
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Zy symmetry and so does the symmetry [4]. Note that the latter two symmetries do not
commute with the former two and so the product is semi-direct. The full T-duality group
is thus

PSL(2,Z) ® PSL(2,Z) x Zs x Zs [8.378]

8.79 p 255: Eq. (8.4.39) The Kinetic Terms as a Function of the Moduli
Let us now work out the scalar kinetic terms of (8.4.35) ignoring the dilaton,
Sk =G GP(0,GmpO" Grg + 0y Brmp0" Brg) [8.379]

We start with the first term and note that

/
G0, Gy = G™0), <O;§2@5mp(7)>
o - o ps
ﬁﬁmpaupz +G ﬁauﬁmp(ﬂ

_1 R2 71
=G""Grppy Oup2 + TpQ (6 )

— Gmn

/
mn O P2

ﬁauﬁmp(ﬂ

=0105  Oup2 + (&)™ 0By (7)

=py ' Oup20y, + (6719,6) [8.380]
Thus
Sky = G G0, Gy Ging = | 05 D2y + (8710,0)" | [ 70" pad + (671 040)" |
=205 20,p20" p2 + 25 Op2 (610467 + (6719,0) " (&710"8), [8.381]

We can rewrite the second term as 2p, laﬂm tr 0*In® and we note that because 1 =
det & = exptr In ® we have that tr In® = 0 and also J,tr In® = 0. The second term thus
vanishes and we have

Sk, =2p520,p20"po + tr (610,68 G~10'®) [8.382]

The last term becomes

2
tr (6710,6 G 1o"®) = tr [1 < ! _Tl> B, (1 ! )] [8.383]

T2 \—T1 |7'|2 MTQ
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It is a matter of straightforward algebra, best left to a machine or a keen student, to work

out that this is

(317'1)2+(<927'1)242(3172)2+(3272)2 0
_1 1 i T
tr (6 3,&5 G 8“@) =tr 02 (817'1)2+(327'1)2-2(317'2)24—(327'2)2
T

(317'1)2 + (327'1)2 + (817'2)2 + (827'2)2

2
(b

=2

We also have
T =0y (11 + i12)0M (11 — iT2) = 01 OMT1 + 020" T
= (0171) + (0271)? + (0172)* + (02m2)?
Therefore
Sk, =2p5 20,p20" pa + 215 20, TOMF
We now consider the second term in [8.379], i.e.

Sk, =G™GP10),,Bpp0t Bpy = 2G**"G*>19), Boy 950" By
_ 2(G24’24G257258NBQ47258HBQ4725 + G24725G257248MB247258#BQ5,24)

—9 [G24’24G25’25 _ (G24’25)2] 8MB24725(9#BQ4725
4

R
=2(det G™")0,, B24,250" Boa 25 = QQTPQ(?MBM,%@“BM,%
2

Using [8.351] this becomes

RY [d\? 9
SK, ZZCXT[)g <R2) 0up10¥p1 = 2p5 “0,p10" p1
We thus find for the kinetic term
Sk =Sk, + Sk, = 2/)2_28”/)28“/)2 + 27’2_28“7'8“? + 2p2_28up18‘up1
=2(75 20,70 T + p3 2 0,up0* p)

8.80 p 256: The Number of Fixed Points of an Orbifold

We consider the orbifold

Pt X™=—X" and t,:X"=X"+2rR form=1,--,k
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Any spacetime point of the form (z!,--- ,z*) where 2™ is either 0 or 7R is a fixed point
under all 7, and ¢,,. So the number of fixed point is given by 2*. E.g. for k = 2
they are (0,0),(0,7R),(7R,0) and (7R,7R). For k = 3 we have the eight possibili-
ties (0,0,0),(0,0,7R), (0,7R,0), (0,7R,7R), (7R,0,0), (7R,0,7R), (7R, 7R, 0) and finally
(rR,mR,mR). And so on for k > 4.

8.81 p 256: Eq. (8.5.5) The Effect of a Reflection on a General State

A general state in the compactified dimension X is obtained by acting with a vertex oper-
ator of the vacuum:

Ti
S

(a’ﬁX )pi jﬁg (54 X )C“ etk X (#2) |0 [8.391]

J=1

s
I
—

The compactified spacetime field X (z, z) given by (8.2.15), i.e.

/ / 1 ~
X(z,2) =x¢ —i%(lenz+pRln2) + 44/ % g]m <j:z + O;:) [8.392]
m

with xg = 21, +zr and the momenta p;, and pr depending on the momentum quantisation
number n and the winding number w according to (8.2.7), i.e.

n R
pLZE‘f‘Ewé PR =

R | =

w [8.393]

==

Reflection symmetry X — —X, thus changes o, — —au, &m — —a&m, and pr g —
—pr,r- The latter is the same as (n, w) — (—n, —w).

A general state in the compactified dimension X is obtained by acting with a vertex
operator of the vacuum:

oo
\NN;k:;n,w> = H aﬁ%d@”O;k;n,w) [8.394]
m,n=1

The n and w appear because the momentum state is created by the vertex operator e?*X

and X contains p; and pp, as per the above, and hence also n and w. Applying the
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reflection symmetry on this state gives

T ]NN;k:;n,w)} =r H ofm &t 10; ki n, w)

7m —n
m,n=1
o
= H (—a_m)km (—d_n)en |0; k5 —n, —w)
m,n=1

(]
= (=)Embn ()t T o als, 03k —n, —w)
m,n=1

which is (8.5.5), taking into account that from Joe’s errata page N 2 =% ky, and simi-
larly for N2°.

8.82 p 256: Eq. (8.5.6) The Mode Expansion in the Twisted Sector

This is a solution to the equations of motions that satisfies the twisted boundary conditions.
We first rewrite X (z, Z) in terms of o and 7. We have z = e ™ = ¢~"7+i7) — ¢~ Thus

O[,

X(o,7) =T0 — i [pL(T —i0) + pr(T + i0)]

\/>Z ame —m(7—io) + Gpe m(T“U)) [8.396]

m#0
and
/
e} . .
X(o+2m, 1) =20 — iy [pr(T —i(o 4+ 27)) + pr(T + i(0 + 27))]
LY 3 1 (ame—m('r—i(a—i—Zw)) . dme—m(r+i(a+27r))> (8.397]
2 m
m#0
Requiring X (¢ + 27) = —X (o) one see that necessarily o = p;, = pr = 0 so that we are
left with

Z i <ame—m(’r—i0)+27rim) + dme—m(7+ia)—27rim)
m#0 m

-y <ame i) - Gy Hi)) [8.398]
m;ﬁO
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We thus need ¢?™™ = —1 or m = is half-integer. The mode expansion in twisted sector is
therefore

. o +oo 1 (nt1/2) (r—io ~ /D) (i
X(J,T):z\/; Z_: m<an+l/26 (n+1/2)( )+Oén+1/2€ (n+1/2)(r+ ))
Uny1/2 | Ony1/2
\/7 Z n + 1/2 <Zn+1/2 + 2n+1/2> [8.399]

8.83 p 257: Eq. (8.5.8) The Mass Shell Condition for the Twisted Sec-
tor

Let us start by recalling the mnemonic for the zero-point energy of section 2.9, p 73, and
apply it to a few familiar cases, before we look at the case at hand. The mnemonic is as
follows

1. Zero point energies will give a contribution §w for each bosonic (¢ = +1) or fermionic
(e = —1) modes.

2. In summing the individual modes one needs the regularised sum
Z = — 7(29 —1)? [8.400]

where 6 is the coming from non-trivial boundary conditions. It can be found from the Laurent
expansion of the field F(z) =Y, ., Fn /2™,

3. Add the contribution from the conformal transformation from the cylinder to the plane; for
Ly this is ¢/24 with ¢ the central charge of the contributing field.

Let us look at this for a free periodic boson. From the first point we take a factor +1/2.
For the second point we have periodic boundary conditions and thus § = 0. This gives a
contribution 1/24 — 1/8 = —2/24 = —1/12. For the third point we use the central charge
of the free boson, cx = 1. We thus find

1 1 1
Xp_+(_ 1 L
a —2< 12>+24 0 [8.401]
For a be ghost system we have similarly —1/2 from the first part, twice —1/12 from the
second part as we have two ghosts b and ¢, and a ghost central charge of ¢, = —26. Thus
1 1 26
9 _Zof_\_2__4 8.402
T T < 12) 24 [8.402]
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Let us now apply this to the anti-periodic bosonic field. The only change vs the periodic
bosonic field is that we have § = 1/2. Thus the second part becomes

1/1 1 3 1
XA = — _ _— = — = —
T <24> TUTR T 16 [8.403]
The mass-shell condition for a twisted boson thus becomes, from (4.3.32),

2 X
— — (N A N (N ——1)=2( N .
m /( +a —I—CL) 7 ( + 16 > j/( ]6) [8.404]

Requiring Lo = Ly gives the usual N = N condition.

8.84 p 258: Twisted Sector Oscillators Make Half-Integer Contribu-
tions to the Level Number

Recall that the level number N counts the total level of the oscillations of a general state.
In the twisted sector it is defined as

+oo
N = Z ()é_m_l/gam+1/2 [8.405]

m=—o0
To count the level of a state we then use the commutation relations [a,,41/2, 0_p_1/2] =

(m +1/2)0p41/2-n—172 = (m + 1/2)d;,—n and this introduces half-integer numbers. For
example

+oo
Na—3/2 k) = Z O_m—1/20m41/200-3/2 k) = Q_3/0003/9(¢_3/2 k)
3

8.85 p 258: Eq. (8.5.10) The Partition Function for the Untwisted
Sector

The term with the projection operator is a sum of terms of the form
(n, w; k| [ (o, @)rg20qm f(a, &) [k;n, w) [8.407]

with f(c, &) a combination of creation oscillators. The Ly and Ly acting on f(«, &) |k;n, w)
will give some number, depending on the level of the oscillators, so we have

(n,w; k| (e, @)rg™ g™ f(a, &) |k; n, w) = F(ni, 77) (n, w; k| v ks n, w)
= (—)N%N%F(ni, n;i) (n,w; k|k; —n, —w) [8.408]
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By orthogonality this is zero unless n = —n and w = —w, i.e. n = w = 0. Le. we pick up
only the massless states. The N5 and Nos pick up the level of the oscillators; it ensures that
for even level we have a plus sign, but for odd levels we have a minus sign. The rest of the
calculation is the same as our derivation of (7.2.6), except that each oscillator has a minus
sign due to the r reflection. So we consider table 7.1 with the appropriate pre-factors

Lg partitions pre-factor

0 - +1

1 {1} —q

2 {2},{1,1} —+=0

3 {3},{2,1},{1,1,1} —+-=-¢

4 {4},{3,1},{2,2},{2,1,1},{1,1,1,1} —++—+=+q¢*
5 | {5},{4,1},{3,2},{3,1,1},{2,2,1},{2,1,1,1},{1, 1,1, 1,1} | —++——+ — = —¢°

Table 8.3: Oscillator counting for the untwisted sector

More generally the oscillator counting can be obtained from the Mathematica function
Sum[(-1)"Length[IntegerPartitions[n][[k]]1]1,{k,PartitionsP[n] }]
and one easily checks that this is the same as
Series[Product[1/(1+q"k),{k,100}1,{q,0,20}]

to any order one might desire. Adding the anti-holomorphic sector gives (8.5.10).

8.86 p 259: Eq. (8.5.11) The Partition Function for the Twisted Sector

This time we need to look at the oscillators with half-integer indices, such as a;_, [0),
@iy 10), a_3210), @* , |0) etc. A moment’s thought reveals that for tr g5¢"* we need to
count the number of partitions of the integers into odd integers only. This gives the series

[e.9]

1+ ¢+ q+2¢%% +2¢* + 3¢°* + 4¢° + 52 + 0 (¢*) = [

m=1

1

This can be easily checked with Mathematica. The partitions in odd numbers only can be
obtained from the Mathematica function for each power of ¢

Length[IntegerPartitions[n,All,ODD]]* q"{n/2}

where ODD is the set of odd positive integers, ODD = {1, 3,5,7,9,11,--- }.
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For the part with the reflection, tr r¢}¢'°, one needs to count the number of partitions
including a sign plus or minus depending on whether there is an even or odd number
oscillators. We then obtains

0o
1
1/2 3/2 2 5/2 3 7/2 4\ _
m=1

Note that in this case the coefficient of each power of g is still the total number of partitions
in odd integers, but it acquires an alternating sign. This sum can be obtained from the
Mathematica function for each power of ¢

Sum[(-1)"Length[IntegerPartitions[n,All,ODD][[k]]],
{k,Length[IntegerPartitions[n,All,ODD]]}1*q"{n/2}

There are two twisted sector, depending on the boundary condition of (8.5.4) or that
of (8.5.7) hence the extra factor of two. The pre-factor (¢G)'/*® replaces the (qg)~'/?* for
the periodic bosonic field, as per our calculation of the zero-point energy in [8.403]. All
this together gives (8.5.11).

8.87 p 259: Eq. (8.5.12) The Orbifold Partition Function in Terms of
Theta Functions

Let us now work out |n(7)/910(0, 8)|. We use (7.2.10) for the Dedekind function:

n(r) =g (1 -q™) [8.411]

and (7.2.38) for the Theta functions. Here using z = €™ i.e. z = 1 for v = 0 and ¢ = €?™"

1910(0,7’) = 2q1/8 H(l o qm)(l + qm)2 (8.412]
So
77(7’) q1/241_[ (1 _qm) 1 112 »
- : =5 1+¢™ 8.413
T00.7) S0 - g 2t L0 o413
and thus
n(r) ? _} —1/12 m—2 1771/12 o
910(0,7)| — 21 1;[(1+q )X 54 1;[(1+q )
— L —-1/12 mi—4
=@ I;I‘HQ | [8.414]
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and finally

1
==(q@) " T[11+¢m 2 [8.415]

’ n(r)
2

Y10(0, 7)

This is exactly the second term of the untwisted part in (8.5.10)
Similarly from (7.2.38)

901(0,7) = [ = ¢™(1 - g™ 1/?)? [8.416]
Thus

g\
and thus

e R | R A .416)
which is the first term of the twisted partition function.

Finally

900(0,7) = [J(1 = ¢™) (1 + g™ 1/2)? [8.419]
Thus

1/24 m

o) = 0,0 - i e =1 Hosre o

and thus

%ZES?T) = (q0)"/*® ];[ L+ g™ [8.421]

Bringing it all together we indeed find

n(7)
910(0, 7)

1
Zorh(R,T) = §Ztor(R, T) + [8.422]

which is (8.5.12).

Let us now consider the modular invariance of the orbifold partition function. The
toroidal part Zi. (R, 7) is modular invariant as we have already seen, so we need to focus
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only on the Theta functions. First consider 7" : 7 — 7+ 1. The Dedekind function (7.2.10)
is manifestly invariant under 7'. Also, from (7.2.39) ¥y and o, are interchanged with one
another and |91¢| is invariant by itself. Thus Z,, (R, 7) is invariant under 7'.

Invariance under S is only slightly more complicated. From (7.2.40) we see that the
Theta functions get mixed up

1900(()’ _1/7-) = (_i7)1/2000(07 7_)

B01(0, =1/7) = (—i)?910(0, 7)
910(0, =1/7) = (—iT)?901(0, 7) [8.423]
But from (7.2.44) we also have that
n(=1/7) = (—ir)?n(7) [8.424]
and therefore
Zot R =1/7) = 3 BBy )+ |5 0 [ SIS | )
= Zorb (R, T) [8.425]

The interesting point here is the contribution |n(—1/7)/910(0, —1/7)| of the untwisted sec-
tor gets transformed into a contribution from the the twisted sector |(—1/7)/901(0, —1/7)|
and vice-versa. This means that the untwisted sector is not modular invariant by itself, but
that the twisted sector is necessarily present for a consistent theory.

8.88 p 259: Eq. (8.5.13) Relating the Theta Functions to the Path
Integral

Consider first the case a = 1 and b = 0, i.e.
X (o' 4 2m,0%) = X(0',0%) and X (o' + 2771, 0% + 27m) = —X (0, 0%) [8.426]

There are normal boundary conditions along the worldsheet coordinate ¢! and a reflection
as you go around the torus.
Similarly for a = 0 and b = 1, i.e.

X (o' +2m,0%) = —X(0,0%) and X (o' +2n7,0% + 2179) = X (0, 0%) [8.427]

There are twisted boundary conditions along the worldsheet coordinate ¢! and a normal
boundary conditions around the torus.
Finally for a = 0 and b = 0, i.e.

X(o' +2m,0%) = -X(0',0%) and — X (o' + 277, 0% + 2m) = X (0}, 0%)  [8.428]

There are twisted boundary conditions along the worldsheet coordinate ¢! and as you go
around the torus.
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8.89 p 260: Eq. (8.5.16) The Partition Function for a General Twisted
Theory

Let us see how this works in our previous example. h; is the sum over twists in the spacial
directions, i.e. X(o! + 27, 0%) = £X(0?,0'). The projection operator Py here becomes
(1 + r)/2 with r the reflection X = —X. Thus we have the group elements hy € {1,7}.
Denote by Zj,, the contribution to the partition function with twist h; and projection
contribution hs. The order of the discrete symmetry group Z is two, so we have a factor
1/2. For the untwisted sector we thus have

1 o 1+r , 7 1 n(7)
~(Z11 + Z1y) = V2 [ —=—¢"3" | = = Zio(R o 8.42
2( 11 + 17") (qq) ry 9 q q 9 tor( 77_) + 1910(0’7_> [8.429]
For the twisted sector we have
1 ~ 1+7r ; 5 n(T) n(7)
“(Zr1 + Zrr) = (@) Bty [ ——qglogho ) = 8.430
2 ( rl + 7”7’) (qq) IT 2 q q 1901(07 7_) /1900 (O7 7_) [ ]
and the total partition function is
1
5(211 + Z1y + Ze1+ Zpy) = Zowp (R, T) [8.431]

Let us now look at the modular transformations in this case. S : 7 — —1/7. We have
1 1
§Ztor(R,7) — §Ztor(R, 7') or Z11 — Z11 [8.432]

In this case hy = 1, i.e. no twist, and hy = 1, i.e. the projection is with the identity
element of the group. Therefore (ho,h;') = (1,1) = (h1, ha) as we should. Next we take
the reflection part of the untwisted sector. Under S we have

‘ n(r)

n(r)
_— _— 1y — Ly 8.433
’ 901(0,7) or Zi 1 [ 1

Y10(0,7)

In this case h; = 1, i.e. no twist, and hy = r, i.e. reflection. Thus (he, hl’l) = (r,1) as we
should.
Turn to the twisted sector. First
n(r)
H P
‘ Q910 (Oa T)

n(7)

Zyl — Z 8.434

In this case h; = , i.e. no twist, and hy = 1, i.e. reflection. Thus (he,h;’) = (1,77 1) =
(1,7) as we should. Finally

n(7)
1900(03 7—)

n(r)

_— Loy — 7, 8.435
1900(0’ 7_) or T rr [ ]
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In this case hy = hy = r and thus (hg, k') = (r,7~!) = (r,r) as we should.

Similarly, we find under under 7" : 7 — 7+1 for the untwisted sector that Z31 — Z131,
i.e. (h1,hihe) = (1,11) = (1,1) and that Z1, — Z1,, i.e. (h1,h1h2) = (1,1r) = (1,7),
so that these contributions are invariant by themselves. For the twisted sector we find that
Zyl —> Lpp, i.€. (hl, hlhg) = (T,Tl) = (T’,T) and that Z,, — Z,1, i.e. (hl, h1h2) =
(r,rr) = (r,1). So the twisted contributions get transformed into one another.

Let us now check the modular invariance of the general formula (8.5.16). First

2(=1/7) :order Z D ha(—1/7) = order( ) Z Zh%hl_l(T)

h1,h2 h17h2

=— der Z Ty s (T [8.436]
h3,h2

where we have written hs = hl_l and have used the fact that every element of G (and H)
has a unique inverse. So in stead of summing over h; we might as well sum over h;' = hs.
Next

1
Z 1) = Z 1) Z
(T+1) order( hzh: ke (7 + order hzi; nhaha (7
1,12 1,12
V4 A 8.437
order h hzh mohs (7 order Zh: nons (7 L ]
1, 3 ha,hs

where we have set hy = hy1ho and used the fact that if hl_lhg runs over all elements of H
then so does hs. Indeed let us assume that / and A’ transform to the same element h” € H
under the action of h;*', i.e. hy'h = hi'h’ = h". Then also h = k' = hih” and so every
element of H transforms to a different element of ~ under the action of H.

8.90 p 260: Eq. (8.5.17)-(8.5.19) Twisting with a Non-Abelian Sub-
group

The twisting means that we have different sectors ¢(o! + 27) = h; - ¢(c!). Now let us
consider a twist h; followed by a twist hs:

hohy - ¢(o) = hy - ¢(o + 27) = ¢p(o! 4 21 + 27) = P(o* + 4n) [8.438]
For a twist hy followed by a twist h; we find

hihy - (o) = hy - ¢(ot + 27) = p(ot + 27 + 27) = (0! + 4n) [8.439]
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Thus necessarily hohy = hihe and thus for consistency the symmetry group needs to be
Abelian.

Another way to look at it is to consider a field ¢ under a twist h;. We next define a field
¢ that is obtained by acting with another group element, hy on ¢, i.e. p(o!) = hs - ¢(al).
Let us look at the boundary condition for ¢:

@(ot +21) = hy - p(o! 4 271) = hahy - (o) = hahihy ' - (o) = by - p(a!)  [8.440]
with b} = haohihy '

Joe mentions that because of this the diagonal elements of hs are zero. 1 don’t understand
this.

The fields fields with twists h; and A are linked. Indeed a conjugacy class of a group
element g is defined all group element hgh~! for all h € G. So that h; and h/ are in the
same conjugacy class (of hs).

8.91 p 261: Eq. (8.5.20) ¢ = 1 Theories, 1

We begin by noticing that the orbifold has the same T-duality symmetry under R —
V/a' /R as the toroidal theory. Indeed the orbifold partition function can be written as (one
half) the toroidal partition function plus terms that don’t depend on the compactification
radius, see [8.422]:

1
Zorb(R7 7—) = §Ztor(R7 7—) +

n(7)

n(7)
+ Y00(0, T)

Y01(0,7)

n(7)
Y10(0, 7)

n [8.441]

so we have the same symmetry and we can restrict both theories to the half line R > v/o/.

Let us now perform consider the theory at the SU(2) x SU(2) point R = v/a' and
allow an additional sector with a twist (8.5.20) of 7v/«/. This means that we take the
endpoint of the string X (¢! + 27) and identify it with the starting point X (¢!) “twisted”
by 7v/«/. Don’t be confused by the fact that this does’t have a minus sign and so doesn’t
really remind us of twisting anything. Twist is just a general word that is used for unusual
boundary conditions X (0! 4 27) = h - X(o!), with h a discrete symmetry. We thus have
the “twisted” boundary condition

X(o'+27) = X(o!) + V! [8.442]

We rewrite this as

/
X (ot + 2n) EX(O’I)+27T\/207

[8.443]
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And we thus see that boundary condition for the sector with the twisted boundary condi-
tion is the same boundary condition for a standard toroidal compactification on a radius
R = V/a'/2, which by T-duality is equivalent to a toroidal compactification on a radius

& /R=0a/(Va]2) =2Vd.

Under this twist the SU(2) currents in (8.3.12) transform as

() = cos\/%xm) N :cos\/% (Xe2) + SVa)
— cos (\/207XL(Z) +7r) — COS;JXL(Z) ;
2(2) = sin ;JXL(Z) SN :sinja (X2 + 5 va)
— . sin (\/QE,XL(Z) +w) — _ :sin \/%XL(Z) :
B(2) = jE,aXL(z) = \/LOT (8XL(Z) + g\/cT) = \/—%aXL(z) [8.444]

and thus indeed j'%(z) — —j12(z) and j3(z) — j(z). Note that because X = X} + Xp
the twist for the left-and dight-moving parts are by half the original value, i.e. 7/2v/c’.
This indeed corresponds to a rotation of ¢ = 7 around the third axis in SU(2):

P cosm +sinm 0\ /4!
j2 | =|—-sinm cosm 0 52 [8.445]
j/3 0 0 1 j3

If we now consider the orbifold X (o' + 27) = —X(o!) at the SU(2) x SU(2) radius
R = V/a/. Then [8.444] becomes

i1(2) =: cos 2 z): : cos 2 z =: COos 2 z

Ji(z) = @XL( )i — < \/JXL( )) : \/JXL( )

-2 2) =: sinl Z) - . sin _l z ':—‘sini 2) -

Pl s o X ( @XLU). 02X (6):
PE)= 50X - =0Xi(e) [8.446]

and so j! is unchanged and ;2 and j2 flip sign. This is thus a rotation around the first axis.
The choice of basis axis is irrelevant and we thus see that both these SU(2) represent the
same theory. In other words the toroidal theory with R = 2v/«’ is the same as the orbifold
theory with R = v/o/. Note that in both theories we still have the SU(2) x SU(2) symmetry.
This reasoning is illustrated in the figure below
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SU(2) x SU(2)

Tor : R = Vo'
twist: X (ol +27) = —X(al/ Nist: X(o' +21) = X (o) + 7Va/
Orb: R=+vVdo Tor : R = Va'/2
Bix xR, [SUQ) x SUQ)] ‘ ‘ ‘ T-duality: R — o' /R

Tor : R = 2V’
Rs_ x Rs_ [SU(2) x SU(2)]

™

Figure 8.4: Equivalence of toroidal theory at R = 2+/a’ and orbifold theory at R = v/

Joe then mentions that this equivalence can be verified via theta function identities. This
may be so, but I fear this is not obvious and I will not try to do so.

8.92 p 262: The Low Energy Physics near the Crossing Point of the
Toroidal and the Orbifold Theory

Under the reflection X (¢! 4 27) = X (o) + 7vo/, we have j1? — —j1% and j3 — ;3.
The following SU(2) x SU(2) combinations thus remain invariant under this twist:

i3ty ' 3%t 5% and 550 [8.447]

All the other combinations of the generators pick up a minus sign. The generic form of the
potential at the SU(2) x SU(2) point was discussed on p 246. If M;; are the nine massless
scalars then the masslesness implies that the first possible term in a potential is cubic and
the only cubic invariant is det M, see (8.3.22). The solution of the equations of motion is
similar as in the previous case, M1 Moo M3z = M1 Moo = My M3z = Moo Mss = 0, which
implies three types of solutions, M1 # 0, My = Ms33 = 0 and its two permutations.

8.93 p 262: Extra Massless States on the Toroidal Branch

We go back to the mass-shell condition (8.3.1), i.e. m? = k? + 4(N — 1)/a’ = k% + 4(N —
1)/a’ with k r = n/R £ wR/a’ as per (8.2.7). Let us set the compactification radius as
R = kv« for some k € N. We find extra massless states at (N, Nin,w) = (0,0; +2k,0).
Indeed, we then have

1 /n
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and thus

m2:i,<%:|:kw)2+i(]\f—1)

- = [(2+0)*—4] =0 [8.449]

1
o
8.94 p 263: Eq. (8.5.22) Twisting the SU(2) x SU(2) theory by Z;

We write this twist as

\/a

X (o' 4 27) = X(o!) + 27 -

[8.450]

and so this is the same as a toroidal theory with compactification radius R = vo/ /k. By
T-duality this is equivalent to a toroidal theory with compactification radius R = kv/c/'.

8.95 p263: Eq. (8.5.23) The Massless Scalars of the Z;, Twisted Theory

Let us define j* = j! +4j2. We thus have

2 2 2
G =i cos —=X1(2) : +i : sin —X,(2) = TV XL [8.451]

Vo Vo

To check the transformation of j* under a twist recall that if X transforms as X (o' +27) =
X(o') + 27v/ /k then X, g transform as X g(o! + 27) = X1 g(o!) + 7v/&/ /k. Thus

E (X mE] _ sem (o)

ji(01+277) k9 [8.452]

and similar for the right-moving parts j7=. We thus see that the combinations j*j~ and
j~7t, as well as the combination ;j27® remain invariant under the twist. We combine the
first two as

ST AT =0+ i) + G =i G+ i) = 20 +g 1)
Pt =i =0+ G i) - (G =) G+ i) =277 - 5'F) [8.453]
We thus have three massless invariants

PR i+ 22 and P — 2 [8.454]

Recall from p 246 the definition of a flat direction as a continuous family of static
background solutions. Recall also that a solution for direction is that, in a diagonalised
matrix M;;, we cannot have two of the diagonal elements non-vanishing, or their prod-
uct, say M11 Mo # 0, so that the flat condition 0 = QU (M )/0Ms3 = Odet M /OM3z3 =
O(My1 MaaMs33) /OMs3 is not satisfied. Thus 527 can remain a flat direction, but in j'7' +
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j23% not both M;; = j'7! and My = 5277 can be zero and so this this not a flat direction. I
am not sure about the scond condition, My, = —Mo;

A complete analysis of the ¢ = 1 theories can be found in [18]. We reproduce here his
figure 14 of ¢ = 1 theories and refer to that excellent review for details.

Torbifold

n/ﬁ% Dy,

twisted N = 2 susy

Do, 4—state Potts model
Zparafermion

(Ising)? = (free Majorana)?

twisted N = 2 susy

D1

PR e ey
0 1/vV2V3/2 1 V2 V3 3/V2 n/VZ  Teircle
(SU(2))2 N =2 free e N=2 Cs Cn
susy Dirac | KTpoint susy
|
0 o

Figure 8.5: ¢ = 1 CFTs. Axes not to scale.

8.96 p 263: Eq. (8.6.1) The U(1) Constant Background Gauge Field

Equation (8.6.1) should be obviously correct. The statement that locally it is pure gauge
means that locally we can set the field to zero by a U (1) gauge transformation A — A’ =
A+ 908 = 0. This implies that —0/27 R+ 092 = 0 which is solved by a gauge transformation
Q= (0/2rR)x + c*°.

The field strength is F},, = 0,A, —0,A,, and obviously vanishes as A is constant. Under
a space-time periodicity x — x + 27 R we have

A — exp —i x+27R)| = e A [8.455]
2R
T
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and so A does not have the periodicity. Of course, A~*9A does have the required periodic-
ity, so I must admit that I am a bit lost about the the subtlety of that remark. Indeed , the
only thing you are doing is writing 1 = e~*0e” and you can do that at will. Hopefully the
reason for this will become clear later!

8.97 p 263: Eq. (8.6.2) The Wilson Line

All physical quantities need to be gauge invariant, or they would depend on the gauge
choice. As such the gauge field A is not a physical quantity and that is why we have the
field tensor, which is gauge invariant. However there is another gauge invariant quantity
we can build from the gauge field, i.e. the Wilson line as defined in (8.6.2).

Straightforward use of the definition of A gives

Wq _ eiqfdxA _ e—ti/(ZwR)fﬁdw _ e—qu/(27rR)27rR _ e—iq@ [8.456]

This is indeed gauge invariant. Indeed performing a gauge transformation would give an
additional contribution
r=2m

cia $ dz o0U(z) _ iqQ(z) =0 [8.457]

=0

as Q(x) must be periodic with period 27. For more details on the gauge invariant Wilson
loops see e.g. the chapter on Yang-Mills in my notes on QFT [11] for details.

8.98 p 264: Eq. (8.6.3) The Action for a Point Particle with Charge g

The action (8.6.3) is the equivalent of the non-linear sigma model for a point particle. The
field X™ is coupled to an external gauge field A,;. The coupling needs to happen via
the derivative of the field, X, in order to preserve worldline diffeomorphism invariance
(recall that XM and A,; are worldline scalars and that we take A,; to be a constant
background field). Note that this action has Euclidean worldsheet time, compare to the
action for Minkowski time that has a minus sign in the mass term, see (1.2.5).

The statement that the gauge action is simply —ig [ dz™ Ay, surely refers to the anal-
ogous statement for the string, where we found a low-energy spacetime action whose
equations of motion are the conditions for Weyl invariance at the quantum level, i.e. the
vanishing of the § functions of the worldsheet theory. From (8.6.2) we see that paths
winding around the compact dimension indeed pick up a phase ¢'¢’ in the spacetime path
integral.
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8.99 p 264: Eq. (8.6.4) The Momentum of Point Particle with Charge
q in a Compactified Dimension

We consider one compactified dimension X¢. We first rewrite the Euclidean action using
Xd = _jpd:

1 1 1 1
Sy = /d’T (—2vdvd + §m2 - quvd> = /dT |:—2(’Ud)2 -+ §m2 — gA? [8.458]

where we have used the fact that v? = v, for our spacetime metric, Minkowski or other-
wise. The canonical momentum in Minkowski space is defined as

oL

i [8.459]
P 001, X)
We now go to Euclidean time ¢y = it); and use 0;,, = i0;,, to find
oL _ oL _ oL [8.460]

b= 96G0,X) ~ oux) ov?

Because we wish to integrate out the dynamics over the compactified field X, we replace
the gauge field by its average contribution over the compactified dimension, i.e. we con-
sider the case where the particle can wind around the compactified dimension and pick up
a phase. Therefore

9 Lo, 1 o d
pd:—avd[—Q(v) +§m — qAqv
0
:’Ud—i‘ﬁ dxA:vd_Q;]riR [8461]

8.100 p 264: Eq. (8.6.5) The Quantised Momentum of Point Particle
with Charge ¢ in a Compactified Dimension

The quantisation of the momentum p, follows for the same reason as that that in (8.1.5).
Therefore

Pl = % —pl o [8.462]

From this we have that

— — 8.463
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8.101 p 264: Eq. (8.6.6) The Hamiltonian Point Particle with Charge ¢
in a Compactified Dimension

The Hamiltonian consists of a contribution from the non-compactified dimensions, which
is simply %(pup“ + m?), plus that of the compactified dimension. For the compactified
dimension we thus have, in Minkowski space,

X4 x4 :
Hzg—ﬁ— c:? p?— Lo=—iXW— Lo = -t — Lo [8.464]
Oty 10tg
Using [8.458] and [8.461] we find
o dafa 99N L oae 0N gl 1 g0
H=—v (v 27TR> [ 2(1}) q< 27rR>v]_ 2(1}) [8.465]

This has a different sign from Joe. I can’t figure out what is incorrect.

8.102 p 264: Eq. (8.6.8) Diagonalising the Background Field with
Chan-Paton Factors

Recall the discussion about Chan-Paton factors \*,a = 1, - - - , n starting on page 184. These
are basically n x n Hermitian matrices and there are n of them. Each end-point of the open
string has a Chan-Paton Factor associated to it. These factors always appear in amplitudes
as traces of the form tr A% \% ... \% and thus we have a symmetry under Hermitian
matrices \> — UN*UT. As explained in that section this symmetry results in a spacetime
gauge symmetry.

As we have included Chan-Paton factors in our theory, the background is now an n x n
matrix and this can be diagonalised using a Hermitian matrix U, i.e. A¢ — Agiag =
U-TAU = UTAU, i.e.

1
diag(&l, 92, Tty Gm) [8466]

Aj = —
d 21 R

where we have dropped the @& superscript for convenience. Thus matrix is clearly a
Hermitian matrix, as the 6; are real, so it is an element of U (V). It is moreover a matrix
that commutes with all other elements of U(/N) and so is an element of the subgroup
U

°Each non-zero 6 generates a U(1), and all these U (1) commute with one another, so a diagonal
element of U(n) sits automatically in U (1)".
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8.103 p 264: Eq. (8.6.9) The Quantised Momentum with Chan-Paton
Factors

It isn’t clear to me why |ij) has charge +1 under U(1); and change —1 under U(1);. The
charge is linked to the phase the open string picks up in Wilson loop. The open string
has an A Chan-Paton factor on one end and a A/ Chan Paton factor at the other end.
Why do they pick up a different sign?

Assuming that the state |ij) has charge +1 under U(1); and change —1 under U(1); then
the two ends are just like particles with charge ¢ = +1 from a Wilson line point of view.
We can thus apply the same reasoning as for the point particle and we find indeed that we
have the quantisation

- 21l + 91 - 9]'

= - 8.46
vd 2TR [8.467]

8.104 p 264: Eq. (8.6.10) The Mass Spectrum with Chan-Paton Factor

The mass spectrum is thus a combination of the non-compact and the compact dimensions.
We have a contribution from the oscillator modes o/~!(N — 1) and from the Wilson line
and quantised compact momentum v?. Together this gives (8.6.10).

8.105 p 265: Open Strings with Neumann Boundary Conditions

Recall that the Neumann boundary conditions are 9° X* = 0 at the open string endpoints.
These endpoints are thus free to move and can be unwound around any compactified di-
mension. Dirichlet boundary conditions, on the contrary, have the endpoint fixed and such
strings cannot be unwound around a compactified dimension. But for Neumann boundary
conditions there is thus no boundary condition X (o + 27) = X (o) + 2w R. Ignoring the
Chan-Paton factors, the mass spectrum (8.6.10) is thus given, in this case, by

s (2m0)? N -1

m’ =t [8.468]

Strings with non-zero momentum, i.e. with ¢ # 0, thus have infinite mass as R — 0. If
we include the Chan-Paton factors we get for the numerator of the first term in the mass
spectrum (27¢ — 0; + 6;)2. This can be zero for very specific combinations of ¢; and 6; but
this is not the case for generic such values. Because theres is no term w?R?/a/? that is
present in the closed string toridal compactification, there seems to be no duality and no
infinite set of massless states. Because an open string with Neumann boundary conditions
can just be unwound around the compactified dimension it seems like it lives in the the
25 dimensional spacetime, ignoring the compactified dimension. But as explained by Joe,
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this is not quite right; it is the endpoints only that live in 25 dimensional spacetime. The
interior stuff of the string vibrates in the full 26 dimensions.

8.106 p 266: Eq. (8.6.15) The Boundary Conditions between a Theory
and its Dual

We consider for simplicity a rectangular worldsheet

Fies

n=ao

Figure 8.6: The boundary vectors on an open string worldsheet

We use the usual complex coordinates z = e~ = ¢~ = 777 and z = 7T,
From this we have 9, = —i(0 — 0) and 0, = 0 + 0. Therefore

0:X(2,2) = —i(0 — 0) [X1(2) + XRr(2)] = —i [0X1(z) — 0XRg(2)] [8.469]
and
0, X'(2,2) = (0+0) [XL(2) — Xgr(2)] = 0X1(2) — 0XRr(2) [8.470]
and thus indeed
05X (2,2) = —i0; X'(2,2) [8.471]

The Neumann boundary condition on the X coordinate, i.e. 9,X(0) = 9,X(2m) = 0
implies that on the dual coordinate 9, X’(0) = 9. X'(27) = 0 and so that X' is fixed at the
end-points, i.e. Dirichlet boundary conditions for the dual coordinate X".

8.107 p 266: Eq. (8.6.16) The Endpoints of the Compactified Open
String Lie on one hyperplane

We drop the superscript 2° for convenience. The first line of (8.6.16) is obvious using

(8.6.15). For the second line we use (8.2.16). But that is an equation for the closed string,
so we first have to rewrite it for the open string. Using (2.7.26) we find

o «
X _ s / 1 . = m
L(2) =z —ia'prInz +i4/ 5 E e
m7#0

/
Xr(2) ::UR—ia’pRln2+i\/% Z n?;m [8.472]
m#0
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Recall that for the open string there is no &,,; both left- and right-moving part have the
same oscillators. Note also that we have p;, = pr = p in order to recover (2.7.26).
First we have

02 X1(2) = 02 xL—zoszlnz+zU Zmzm [8.473]

m;éO

. . ; 1,,+2 2 -1 .
With 2 = e = =0 +i0”) — 0°~i0" e find

D Xp(z) =0 |—id/pL(0® —io! \/>Z Om (o2 —io")
= —ia'prt Z\f > e [8.474]

m#0

Integrating, we find

™ ™
—i / do'd Xy = —i / do! —z'o/pL+m Zame o?—ic)
0 0

[av m(af'w)o-_7r
:_WapL"i' Z (@ — —im

m;ﬁO

ol=0

. [0 (8% 2 - 2
ot 5 ()
m7#0
X% €™’
= —mapy TNy Z mT (=)™ =1)
m##0

[8.475]

Similarly for the right—moving sector

0 Xg(z) =02 |zR fzapRlnz+M/ Z mzm

/
9 X _ ! 2 -1 g O‘ﬂ m(o2+iol)
b X1 (z) =02 | —id'pr(c +w)+\/2z e
i m##0
/ .
— _ia'pr + i\/% Y apem@ e [8.476]

m##0
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and integration yields

™ p- o ‘
—i/ d(TlaQXR: —i/ dUl —ia/pR+i\/; g amem(a2+wl)
0 0 m##0
1_
/ m(o2+iol) o=n
RN (S P
= TO PR + 2 Qm —

m##0

[

1=0
/

_ / - Om m(o2+ir) mo?
= —malpp =iy 30 S (e — )

m#£0

2

B , o Q€™ .
——WQPR—Z\IEZ m (=)™ -1)

m#0

[8.477]

Therefore

—i/ do' 0, X = —i/ do' 0o(X1 + XRr)
0 0

= —md/(pg + pr) = —ma'p = —2ma’v [8.478]

where we have used (8.6.4), pr, + pr = 2p = 2v, with no Wilson line, i.e. § = 0. Using
(8.6.9) with 6; = 0 we further have v = ¢/R so that

2ma’l

X'(m) = X'(0) = ==

= —2m(R [8.479]

where in the last equality we have used compactification radius of the dual theory, R’ =
o' /R.

8.108 p 266: The Endpoints of Two Interacting Open Strings Lie on
the Same hyperplane

We can represent graphically the interaction of two open strings via a graviton using the
second and fourth example of fig.3.1 that shows how an open string can evolve into a
closed string and vice-versa. This gives
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Figure 8.7: Two open strings interacting via a graviton

The diagram can be deformed in such a way that any endpoint may be connected to any
other endpoint, i.e. there isn’t a precise concept of which endpoint of a string corresponds
to which other endpoint -remember crossing symmetry. As a result we can have the point
1 being an endpoint of an open string with other end-point 2,3, --- , 8 and so by the argu-
ment of (8.6.16) the endpoint 1 must be on the same hyperplane as any of the endpoints
2,3,---,8. This argument is, of course equally valid for the endpoint 2 etc, and so all the
endpoints of these two interacting open strings must lie on the same hyperplane. But all
open strings interact with one another (it is an interacting theory!). so all the endpoints of
all the open strings must lie on the same hyperplane. Quite daunting to try to visualise if
you ask me.
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8.109 p 267: Eq. (8.6.17) The Endpoints of the Compactified Open
String with Wilson Lines, I

We now have

,271‘5—9]'—1—91'__2/ vy '
—5r = R(27r€ 0; + 0;)

= —(2nl —0; + 6;)R’ [8.480]

X'(m) = X'(0) = — 21d/v = —27c

where we have again used the compactification radius of the dual theory, R’ = o//R.

8.110 p 267: Eq. (8.6.18) The Endpoints of the Compactified Open
String with Wilson Lines, II

The endpoint with ¢ = 0 contributes a Wilson line with §; and the endpoint with ¢ = 7
contributes a Wilson line with ¢;. So if the endpoint with ¢ sits on a hyperplane X'(0) =
;R + k; for some k; and the endpoint with j sits on a hyperplane X'(7) = 6;R' + k; for
some k;, then

X/(ﬂ') — X/(O) :QjR/ + ]{J]‘ — QZ'R/ —k; = —(—9]' + «9i)R’ + (k}j — kl) [8.481]

We recover (8.6.17) provided k; — k; = 0, up to the periodic boundary condition. In other
words we have X’(0) = ¢,R' + k and X'(7) = ;R + k. So the endpoints are on the
respective hyperplanes up to an arbitrary additive constant, k.

Using (8.6.8), i.e. the fact that the 6; are the diagonal elements of gauge field, 6; =
—2rRA;; = —(2md/ /R) A;; we get thus

2w/

XI(O) = — TA“RI = —27‘('0/14“‘ [8.482]

up to an additive arbitrary constant.

8.111 p 267: Eq. (8.6.19) The Mode Expansion of the Compactified
Open String with Wilson Lines

Using the general expression for the left- and right-moving parts of the compactified di-
mension [8.472] we find that

/
X'(z,2) =X1(2,2) — Xp(2) =xp —ag —id'p(lnz — In2) + iy % Z a—m(zm —z™)
0 "
=z — xR —id'plnz/zZ +i g/ Z a—m(zm—ém) [8.483]
L — TR V3 Zm .
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From (8.6.7) we have p = v = (2n{ — 6; + 6;) /2w R. We thus have
2 m
X'(2,2) =0; R —i WZ 9 il —————1Inz/z +Z\/ Z G (ym zZ™) [8.484]

Here we have replaces x — xg by 6; R’. We will see shortly that this is necessary to ensure
that both endpoints are fixed at the right hyperplane. Using R’ = «/ R we thus get

! / L‘R, am oM —m
X'(2,5) =0iR — (27l — 0 + 0:) Inz/z + Z - [8.485]

which is the first line of (8.6.19).
Let us now check the second line of this. We have z = =™ = ¢7°~@" Thus

R/ O' —’LO' m
XI( ) 9 R/ - %(27{'6 0 + 9 ) 2+Zg1 \/» Z a m0'2+lm0' _ 67m0'272mo'1>

m;é()

—0. R,—LH(27T€ 0 _|_9 lne™ 2io! \/72 Xm —mcr < +imol _e—zmcrl)

/-1
=0;R — Rﬂ_ (2ml —0;+0;) — V2! Z %e”ﬂg(l sinmo!
m#£0

1
=6;R + G—AX/ — V2! E a—me_m"Q sinmaot [8.486]
T m
m7#0

In the last line we have used (8.6.17). The last term has a different sign from (8.6.17), but
that is an error found on Joe’s errata page.

Finally, let us check that the endpoints are fixed. At ¢ = 0 we obviously have X'(c! =
0) — 6;R. At o' = 7 we find

X/<O'l = 7T) :GZR’ +AX = (giR/ — (27T€ — 9]' + HZ)R, = QjR/ —2mlR = QjR/ [8.487]
where we have used, once more, (8.6.17) and the periodicity of the compactified dimen-
sion. Both endpoints are thus fixed and satisfy (8.6.18) as they should.

8.112 p 268: Eq. (8.6.20) The Mass Spectrum of the Compactified
Open String with Wilson Lines

From (8.6.10) and (8.6.17) we have

17 p2 _ ! "2 _ N 2 _
o (AX'/R)? N-1_(AX'R/o/)> N 1:<AX> N-1 548

A2 R2 o A2 R? o o

2ma!
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8.113 p 268: Eq. (8.7.1) Vertex Operators for the Massless States

Massless states need AX’ = 0 and N = 1 according to (8.6.0). The first condition means,
using (8.6.17) that

2l — 9j + Hz =0 [8.489]

For generic Wilson lines, this can only be the case if we take i = j and ¢ = 0. A massless
state of a generic such theory is thus of the form o |k;4i). Recall from e.g. (3.6.26) that
the open string vertex operator for the massless particle in the uncompactified theory is
given by 0,¢”*X. In the compactified theory 9, = 9, i.e. the derivative along the tangent
of the hyperplane on which the end-points are fixed. Thus the vertex operator is of the form
Ve*X with V = i9,XM. For a compactified dimension we can use (8.6.15) that relates
the derivative along the tangent of the hyperplane on a compactified spacetime coordinate
with the derivative along the normal of the hyperplane on the dual of the compactified
spacetime coordinate, and we thus see that the state o |k;4i) can indeed be obtained
from the vertex operator with V = i9, X% = 9, X

8.114 p 269: Eq. (8.7.1) The State with Perpendicular Polarisation is
a Collective Coordinate for the hyperplane

This is my understanding of this statement. The hyperplane is fully determined by the
normal coordinate and by the location of the endpoint at a given worldsheet time 7, see
fig.8.8.

/
’\\//\:1

/
Figure 8.8: The hyperplane and its normal vector. Given the endpoint of the open string at a
worldsheet time 7y and a normal, the hyperplane is fully determined.

Choosing a different constant background A will according to (8.6.18), i.e. X' =
—27a’ AL will just translate the hyperplane in spacetime. It is in that sense that a constant
gauge background corresponds to a uniform translation of the hyperplane. If the gauge
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field is now not constant, but depends on the (uncompactified) spacetime coordinates x*
hen the translation becomes x* dependent , i.e. a curved hyperplane. The background
field A% then determines the dynamics of the hyperplane.

)

8.115 p 270: Eq. (8.7.2) The D-Brane Action

I must admit that I find the discussion around (8.7.20) very hard to follow, especially the
derivation of the Born-Infeld term 27a’F,; in the D-brane action. I will therefore take a
(few) step(s) back and follow the derivation of that term as presented in [22], albeit that
their the superstring is considered, so that we will have to make the necessary adjustments.
Also, when we actually calculate the path integral, I will use the original calculation [23]
as I find this more clear. Unfortunately there will be quite a lot of repetition from what we
have already explained. But if it that repetition doesn’t benefit, it surely won’t harm.

FIXED GAUGE BACKGROUND

Our aim is to describe the dynamics of a D-brane and to show that their collective
coordinates can be described in terms of Wilson lines of a standard gauge theory. This will
then naturally lead to the low-energy action of a D-brane including the Born-Infeld term.

Let us start by recalling what we call a Dp-brane: that is a p+ 1 dimensional hyperplane
in a D dimensional spacetime onto which the endpoints of open strings can attach. These
hyperplanes arise when the open string has Dirichlet boundary conditions, rather that
Neumann boundary conditions. Remember that the Dirichlet boundary conditions arise
by taking the 7T-duality of a compactified spacetime dimension with Neumann boundary
conditions.

To be specific our string has Neumann boundary conditions in the directions along the
hyperplane:

Og XH =0 foru=0,1,--- |p [8.490]

o=0,7

and Dirichlet boundary conditions in the transverse directions:

o- X"

=0 forp=p+1,---,D [8.491]

o=0,7

The latter means that the end-points live on the hyperplane. We represent this graphically
in fig.8.11.

The position of the D-brane is fixed at the boundary points of the space-time coordi-
nates XP*1 ... XP. Following (8.6.18) we write that the dual coordinates X’?*1,...  X'P
have their endpoints fixed as

X'k — —2ma Ay i fork=p+1,---,D [8.492]
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where i is the Chan-Paton index. This links the end-points to a particular string theory
background Ay.

Figure 8.9: D-brane boundary conditions. The shaded (hyper)surfaces are two D-branes with
open strings having their endpoints attached to them. One open string has both endpoints on the
same D-brane; the other opens string has its end-points on two different D-branes. The open strings
have Neumann boundary conditions in the directions along the D-brane — i.e. they can move in
that hyperplane, but Dirichlet boundary conditions in the directions transverse to the D-branes —
i.e. they are stuck to the hyperplane.

Let us now, for simplicity, first assume that only one dimension is compactified. We
introduce U(N) Chan-Paton factors and consider an open string vertex operator like in
(8.7.1b) corresponding to a fixed background Abelian gauge field A;. Due to the U(N)
Chan-Paton factors this is an n x N matrix. We consider the background

6 0 0
1 0 92 0
Ag=—— 8.493
¢ R [8.493]
0 0 6y
with the 0, constant. This background field can be written as
Ag = —iA"194A [8.494]
with
eielX‘i/%rR 0 L 0
0 eiOQXd /2rR . 0
A= _ [8.495]
0 0 eié)NXd/QwR

and is pure gauge, i.e. it can be set to zero by a local gauge transformation A — A’ =
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A+ 0Q = 0 with

0 0
0 fz%% 0

QX) = . [8.496]
9
0 0 -

We can thus gauge away A, to zero by a local gauge transformation. But due to the com-
pactification of the dimension we cannot gauge away this field globally. This is manifest
from the fact that A(X) is not periodic in X¢. Indeed

ei01 (X4427R) /2R 0 . 0
. 0 eib2(X+27R)/2nR | 0
AX®+27R) =
0 . 0 e~ (X94427R) /27 R
101101 X%/27R 0 - 0
0 102 eieng/Qﬂ'R . 0
0 L 0 eifn eiOnX?/21R
et1 0 - 0
0 ef2 ... 0
= _ AXH =W - AXD [8.497]
0 --- 0 e

Gauge invariant states can thus pick up a phase after the periodic translation X¢ —
X<+ 27 R. But this phase is exactly the Wilson line (8.6.2)

W = ¢ § dz? Aa [8.498]

This is precisely is the gauge invariant observable that appears in the path integral of the
Polyakov action for scattering amplitudes. We cannot set the gauge field globally to zero
and hence we pick up non-trivial phases. This is responsible for the braking of the U (V)
symmetry into [U(1)] ' as explained in the discussion around (8.6.8).

This symmetry breaking mechanism has a simple explanation when using 7T-duality.
We know from (8.6.4) that the string momenta along the compactified dimensions are
quantised, and so in the 7T-dual description the dual field has open string end-points that,
in general, lie on different hyperplanes, see (8.6.17).

Consider now an open string state with Chan-Paton factors on its end-points, say |k;ij).
Under a U(1) gauge transformation [8.495] the corresponding wave function ¥(k;ij) will
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pick up a phase, in order to leave the corresponding Lagrangian invariant. For the end-
point i this phase is e /2% For the end-point j this phase is e~*i/271 10 The open string
wavefunction will therefore pick up phase e~#(%=%)/27R an under a periodic translation
X9 — X? + 27 R the state |k;ij) transforms as

|k ij) — 0i=00/2mR |} i 5) [8.499]
Following the derivation of (8.6.9) we then see that the momentum of that state is quan-
tised as

D n 9]' — (91

Continuing with Joe’s derivation, this then leads to the fact that the open string end-points
of the dual coordinates are fixed on hyperplanes, (8.6. 18)

X'P(o =0;i) = 2md/ A7 and XPo=mj) = 27T0/A]Dj [8.501]

The open string with D — p coordinates X™ for m = p + 1,--- , D compactified thus
has its end-points on NV hyperplanes of dimension p + 1. These are called Dp-branes. Just
to be sure there is no misunderstanding; the end-points of the open string of the original
theory X# = X}’ + X} for 4 = 0,--- , D are not fixed and still satisfy Neumann boundary
conditions. It is the dual coordinates of the compactified dimensions X™ = XP — XP
form = p+1,---, D that satisfy Dirichlet boundary conditions and have end-points fixed
on the Dp-branes. From this point of view we can consider the uncompactified string as
having p = D. The end-points are then fixed on DD-branes of dimension p+1 = D + 1
which is the entire space-time. The end-points of the uncompactified open string are thus
free to move in space-time.

We can now consider applying a T-duality to space-time coordinates parallel and per-
pendicular to a D-brane. As a T-duality transformation interchanges Neumann and Dirich-
let boundary conditions, if we apply it to a coordinate parallel to a Dp-brane, we change
a Neumann boundary condition into a Dirichlet boundary condition and the result is a
D(p — 1)-brane. If we apply a T-duality transformation to a coordinate perpendicular to
a Dp-brane, we change a Dirichlet boundary condition into a Neumann boundary condi-
tion and the result is a D(p + 1)-brane. Duality transformations thus allow us to view a
given theory in terms of different types of D-branes. This important remark allows one to
establish dualities between different string theories, e.g.type IIA and type IIB superstrings.

10

Here again, it is not entirely clear to me why that is the case.
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THE MASS SPECTRUM, THE MASSLESS VERTEX OPERATORS AND THE GAUGE SYMMETRY

We now wish to consider how the massless open string states contribute to the fluc-
tuation of the D-brane. Recall from the mass spectrum (8.6.20) for one compactified
dimension. This formula is easily generalised if more than one dimension is compactified:

D 1N 2 .
m2 = Z (AX ) +N L [8.502]

2ma! o
k=p+1

Generic massless states are thus level one states with end-points on the same hyperplane,
with zero winding, i.e. the states in (8.7.1).
These massless states are split into two:

e p+ 1 states o', |k;ii) for p = 0,--- ,p with polarisation parallel to the hyperplane, making

a gauge field A" on the hyperplane. These provide a [U (1)}1’ i gauge symmetry. The vertex
operator for that field is of the form o) X* e,

e D — p states with perpendicular polarisation o | |k;ii) for y = p+1,---, D. These are the
gauge fields Ay ;; = ®x, &k = p+ 1,---,D in the compact directions. In the dual theory
they are linked to the dual coordinates X* according to (8.6.18) and these dual coordinates
determine the location of the hyperplanes, i.e. the D-branes. The vertex operator for that
field is of the form g X™e™*X = 9, X'me* X,

We have thus established the fact that the gauge fields in the compactified dimensions
®,,, m = p+1,---,D are scalars that determine the location of the D-branes. Thus,
a hyperplane has fluctuations described by massless open string states that correspond
to gauge fields. This provides a description of D-branes in terms of gauge theory. Now
all of this has been explained for constant gauge fields, but if these gauge fields are not
constant then the hyperplanes would becomes curved and the gauge fields would therefore
describe the dynamics of the D-branes. These facts provide the basis for the gauge/gravity
correspondences in string theory such as the famous AdS/CFT correspondence.

So far we have considered the generic case where all 6; are different. Let us now
assume that %k of them have the same value,

01=0,=---=0,=10 [8.503]
In that case the mass spectrum
D 2 D 2
AX'® N -1 21tk — 0; + 0, N -1
2 i T Y
= = 8.50
" Z < 2o/ > * of Z ( 2o/ ) * of 18.504]
k=p+1 k=p+1

For 1 < i,j < k we have massless states for /¥ = 0 and N = 1 even if the end-points
are on different hyperplanes. The physical interpretation of this is that these different
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hyperplanes are actually located at the same place and so strings stretched between these
hyperplanes can attain a vanishing length and so require no extra energy. There are k?
such extra massless states and they transform under the adjoint representation of U (k). It
corresponds to the Wilson line in [8.497]

e Lpxr Okx1 - Orxa
O1x €% ... 0
W = _ [8.505]
01xk - 0 e~

The result is an unbroken U(k) symmetry and we have now a gauge theory based on
U(k) x [U(1)]P~*. The U(k) symmetry means that the state o”', |k;ij) for p = 0,--- ,p and
1 <4,7 < k corresponding to a gauge field Ag‘j(ga on the Dp-brane. The k? states o/ | |k; i)
foreachm =p+1,---,Dand 1 <i,j < k correspond to massless scalar fields ®77(§)
describing the dynamics of the Dp-brane. Here £ are the coordinates parametrising the
Dp-brane. They are the analogues of worldsheet coordinates 7 and o of a string.

Something special has happened here. We have selected %k end-points that have identi-
cal ¢;. These k end-points lie on k D-branes and from this emerged matrices ®7({?) for m
the index of the compactified dimensions and 1 < i, j < k that transform under the adjoint
representation of U (k). This suggests that as the compactification radius becomes small —
smaller that the typical length of a string — the theory is best described by (non-commuting)
matrix-valued fields. Just as the existence of the duality R — «&//R, this too illustrates
how string theory somehow implies that the structure of space-time itself is altered at very
small distances.

THE BORN-INFELD ACTION FOR THE UNCOMPACTIFIED STRING

We have just seen that gauge fields live on the worldvolume of a D-brane. What are
their dynamics and what kind of gauge theory do they give? Let us finally derive the
low-energy action that describes the dynamics of these D-branes.

We start with the coupling of a free open string to a constant background field strength
F., = 0,A, — 0,4, in the uncompactified theory. We have seen that we can also view
this as a theory of open strings with end-points on a D-brane of dimension D, the entire
space-time. Later on we will derive the result for compactified dimensions and generic
D-branes using T-duality.

Our goal is to work out a tree-level scattering amplitude using perturbation theory. We
are thus interested in a disc diagram with insertions at the boundary, or via a conformal
transformation a unit circle with four insertions on the boundary. Let us, of course, not
forget the Chan-Paton factors at the end-points. This is shown in fig.8.10.
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Figure 8.10: An open string four point function with Chan-Paton factors at the end-points.

We will work on the unit disc using polar coordinates z = r¢? and will need the Green’s
function on the disc with Neumann boundary conditions, i.e. the solution to the PDE

=0 [8.506]

r=1

00f(z,2') =6(z — 7)) with O f(z,2")

The solution to this is
1
f(z,7) = o (In|z — 2| +ln|z—2’_1|) [8.507]

as can be checked by direct calculation. We will need to evaluate this at the boundary of
the disk. On this boundary we have

F =31 =¢" and F = l=e® [8.508]

and plugging this in [8.507] we find that
(0,0 zlln]z -2 = iln(z -2)(z-7)
’ s 2
Lo e\ (e —ier) _ L Ci0—0)  —i(6—0")
—27r1n(e e )(e e >—27rln<2 e e )
1
=5-In [2—2cos(0 — ¢')] [8.509]

We can now use the mathematical formula

o0 bm
In(1+b%—2b =—2) — forb <1 8.510
n( + cos x) mZ::l - cosS mx or b < [ 1

which can be found in Gradshtein and Rizhik, Tables of Integrals. Setting b = 1 we get
1 o0

.0 =—23 % cosn( — 0') 8.511]
n=1
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We can also simply prove this. On the boundary we have from the second line of [8.509]

F(0.0) = - (7 = o) (70— o)

™

1 o . .
=5 [ln (ezg — ¢t ) +1In (e_lg —e )}
T

_ 1 [ln e +1n (1 - ew/_9> +Ine ™ +1n (1 — e—i&’—@)}

2
1 O etn(0-0") O o—n(0-0') 1 cos 9 9')}
. e - 7 - fz [8.512]
T

T or

n n
n=1 n=1

Later on we will also need the inverse of this function. By inverse we mean the function

f71(0,0") such that [df f(0,0")f~1(¢,0") = (6 — ") — 1/2r. We claim that this is given
by

f_l(H, 0') = —% Z ncosn(f — ') [8.513]
n=1

and can check this by direct calculation. Indeed

2 / VY 1 o / — m / / 1
/0 40 £(0,0)F~1(0',0") = WQ/O a0 m;lncos[n(e—ﬁ)] cos[n(¢/ — 0")]

1 m
o2 n

/

1
= cos nf(cos nb’ cosmb’ cosmb” + cos nb’ sin mo’ sin mo”)

o0
Z / df’ (cosn@ cos nf)’ + sinnf sin nd’)(cos mb’ cos m” + sin mf’ sinmo")
m,n=
= m
> [T
n
n=
+ sin nf(sin n#’ cosmb’ cosmb” + sin nh’ sin mb’ sin m9/’)] [8.514]

With the orthogonality relations

21 271
/ d0’ cosmb’ cosnb’ = / do’ sin m@’ sinnd’ TOm,n [8.515]
0 0

and
27
/ df’ cosmb sinnd =0 [8.516]
0
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we find
27 1 et m
/ dof0,0) 10,0 == > —[cosne(cosmeﬁ +0) + sinnd(0 4 sinmb”)| 6y n
0 g m,n=1 n
1 > Y/ . . !
=— Z (cosmf cosmb” + sinmf sinmf")
T
m=1
Z cosm(f — 9” [8.517]

Next, we use the Fourier decomposition relation of the delta function

/! / 1
1 E _ = — - .51
Cosm(9 0 ) (5(9 9) [8.518]

and so we find indeed that

2 1
/ do (0,0 f 10,0 =560—-0)— — [8.519]
0 2T
This is, of course to be viewed in terms of distributions. The —1/27 will then lead to a
divergence that we can absorb in the normalisation of the path integral and we can ignore
it without harming our derivation.

Let us now consider the bosonic string minimally coupled to a photon field. In the
conformal gauge this is
1
SIX, Al = 1 [ d*20x"0X, — i 7{ d0 Dy A, ] [8.520]

o/

We wish to evaluate the Euclidean path integral
1
Z[F] = — / DX HeSA [8.521]
gs

Note that the contribution of the minimally coupled photon field can be seen to correspond
to the insertion of an open string vertex operator. As we integrate out the spacetime fields
X* the resulting partition function is a functional of the gauge field only, and because of
gauge invariance of the Wilson loop it must be a functional of the field strength F,, .

We will compute this path integral using the background method. We expand the
spacetime coordinates into its disc zero modes and the fluctuations

XH = X{f + &M [8.522]
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For the external gauge field background we will chose the radial gauge
fltA#(XO + 5) =0 and AM(X()) =0 [8.523]

We will also assume that the vector potential is slowly varying. This implies that F,,, =
OuA, — 0, A, is constant, i.e. OF = 0.

The path integral measure DX* can be split in spacetime coordinates taking values in
the interior of the disc, paramatrised by z, z with |z| < 1 and on the boundary of the disc
parametrised by 6, i.e.

px* =[] Px*(z,2) [ D¢ 0) [8.524]

|z|]<1 boundary

We thus have for the path integral

F]:;S/H|ZI<1DXN(2,2) [ »e0)

boundary
1 _
X exp — [4m, / d*20X"0X, —i ]{

We can integrate this over all interior points £ of the disc D and reduce this to a path
integral over the boundary 0D of the disc. To do this, we introduce a new field 7(#) where
f parametrises the boundary of the disc, i.e. 0 < 6 < 27. We insert in [8.525] the identity
as 1 = [ Dp#s(P) (5“] ap — M"). We then represent the delta function as a Gaussian path
integral over some auxiliary fields v#(#) and carry out the integrations, first over ¥, then
over v*. In detail, and writing o.c. for the contribution that already only depend on the
boundary and the purely bulk contributions, the kinetic term gives a contribution from the
boundary of the form

i 1] [8.525]

_ / Deh o~ J 4006105, / Waw) (€ — ") x oc.
/D{“ Dnte™ Tna? fdeaguagu /Dn“ et S AV (Eu=nu) g .

/Dn“ DuH /’D{“ fde Trar 08 O€u+iv (Eu=mp)] o0.C. [8.526]
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We now rescale ¢ and n by vV27a/ and ignore constant pre-factors

x /Dn“ DvH /95“ 6_5#(_%5)5““‘27ra/l’u(£“_n“) X 0.C.
x /Dn“ Duv# R R NC L TR
aa/z

27'ro¢/np"r]u
D T T4na’ /80 .C.
/ 1 (det (~95/2) ) (det (47c’/0D) > ¢ e

o /Dn” e EXT o.c. [8.527]

N[s]

We have used fj;o e’ tbegy — |\ /1 /a e?*/4a for the Gaussian integrations. For simplicity
we have not written the integration over the polar angle anymore. But this reminds us
that by 90 in this expression we actually mean the inverse Green’s function with Neumann
boundary conditions [8.506] valued on the boundary of the disc. We thus conclude that
from the integration of the kinetic term we obtain a contribution of the form, renaming n*

by &~
/ Dek e 28 e [8.528]

Let us now consider the boundary term with the gauge field. By the delta function we
can just replace the £# by n*, which we rescaled by v/27w«/ and renamed £#. The upshot of
this is that because that contribution is quadratic in the original £# we get an extra factor
2ma/. We will include this by rescaling the field tensor as F,, — 2ma’F),, and will just
have to be careful not to forget this at the end of the calculation. We then find for this term

2T ; 2T
i /0 46 Fu " = 3 /0 d0 (9, A, — 0, A,)EMEY [8.529]
We interchange the dummy indices in the second term and perform a partial integration:
2 . i 2 . .
i / 0 Ferér == / df (@LA,,&“S’ - GNAZ,E’@““)
0 2 Jo
i 2m . .
=5 | a0 (e + o080 + 00,0 6%
0

21
=i / d0 9, A,E"E" + o(OF) [8.530]
0
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The last term vanishes because it is of the order 924 o OF. On the other hand, using the
gauge condition A,(Xy) = 0 we find

X 2T . 27 .
a0 A X +€) =i [ B AL (o) +€0,AX0)] =i [ a0éerD,4,(X0)
0 0
27
=i / d0 9, A, E"E" 4 o(OF) [8.531]
0

so both expressions for the gauge field insertion are indeed the same.
Combining [8.528] and [8.531] gives us the path integral for the integration over the
boundary

. 2T
Z[F] x / DEM exp (—;g“ Fle, + %Fw / do gﬂg’”) [8.532]
0

where we have used the fact that we are assuming that F},,, is constant.

Let us now look at the field tensor contribution to the boundary action. We can use
space-time Lorentz invariance to simplify this. Unfortunately an antisymmetric matrix F,,
cannot be brought to a diagonal form by an SO(D), but it can be brought to a canonical
Jordan normal form. This consists of the smallest block diagonals and for an antisymmetric
matrix these are 2 x 2 blocks. We can thus write, using a Lorentz transformation, that, as
a martrix,

0 —fi 0 0
fi 0O 0 0
E, = [8.533]
0 0 0 —fps
0 0 fojp O
We then have
0 —f1 0 0 5'1
fi O 0 0
gﬂijéV: (‘51 gD) .
0 0 0  —fpy )
0 0 fojs 0 P
= —dCH+EHE - EE S+ 88+ =P ) + PP fp
D/2
=) (—52’“_152’“ + €2k52k_1) fr [8.534]
k=1
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We conclude that, taking the path integral factorises into D /2 blocks of size 2 x 2 of the
form and using partial integration on the last term

D/2 '
ZIF < | / DEipghem (384T T O TIE AT [8.535]
k=1

We perform the integration over ¢2* and rename 2~ simply by ¢
e 2m —lff71§—7f£€£ s lep—lg_ 12788
Z[F] x H/Df‘ /F€ 2 12 H/Dg\/ﬁe—ﬁf E—3fR8r¢
k=1 k=1

D/2

X 1—‘[/1?5\/2#]"6_%5(]01+f'3f)§ [8.536]
k=1

In the last line we performed partial integration!! and defined f(0,6") = 9p0 f(6,6'). We
perform the final integration and get

li_/f Varf & li_/f [ 2in] "
Z[F] x 2 f — det (1 + fiff) [8.537]
o 'J = '

In the last line we have kept only those factors that have a dependence on the gauge field,
as that is what interests us.
Let us now remind ourselves that we rescaled the field tensor by 2ra’. We thus have

D/2
Z[F)=Z[0] [ (det Ap)™"/?  with Ay =1+ (2ra/f)*ff [8.538]
k=1

To proceed we need to compute f f. From [8.511] we have immediately that, recalling
that f = 9p0 £(0,0),

ol . 1
f= - 7;smnw -0 and f = - ;ncos n(@—0") [8.539]

From [8.513] we see that f = f~! and therefore ff = f~'f =4§(0 — ') — L =45(0 - ¢),
where we have used [8.519]. We therefore get the nice result that

Ap =14 (271 fr,)? [8.540]

URecall that by & f€ we actually mean [ df d6’ 95¢(0) f(6,0)9g (6.
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We are being slightly sloppy as we are again ignoring the —1/27.

Let us now evaluate det Ay, = det [1 4 (27c/ f)?]. To do this we take an orthonormal
basis on the boundary of the disc. The basis elements are E,, = 7 Y2 cosm# and F,, =
7 1/2sinmf form = 1,--- ,co. We have indeed [ E;,E,, = [ FynF, = 0 and [ B, F, =
0 and we can expand a field on the disc boundary as

oo 1 o0
£0) = E (amEm + by Fr) = 7 E (@, cosml + by, sinmb) [8.541]
T
m=1 m=1

which is just a Fourier decomposition. In this basis Ay, considered as an operator is diago-
nal,

/EmAkE = /FmAkF = Akém,n and /FmAkEn =0 [8.542]
and so the determinant is just the product of the Eigenvalues, which are A;. We thus have
det Ay = [ A7 [8.543]

m=1

the square appearing because the Eigenvalues appear not only for each m but also for all
E’s and all F’s. Plugging this in [8.538] we find that

D/2 D/2 ~o
ZIF) = z[0] [[ (det Ax)~Y2 = z[o] T] T] [ + 2ma’ )]~ [8.544]
k=1 k=1m=1

The infinite product seems to give a divergence, but once we realise that this comes from
the determinant of an operator, we can regularise this. We choose (-regularisation to do
this. To see how this work consider the Gaussian path integral [ 7)176*”72 on the boundary
of the disk. To make a link with our case, think of c as [1 + (27¢/ f;)?]~!. In our orthogonal
basis we have

o o
/7)776‘0772 x / H da, dby, e—clam ) H ¢! [8.545]
m=1 m=1
We can now write
oo
H C—l _ eln]_[;f:1 ™t _ e~ m—ync _ e—C(O) Inc [8.546]
m=1
with the ((s) the Riemann (-function
oo
((s) = Zn*‘g for Re(s) > 1 [8.547]
n=1
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By analytic continuation {(0) = —1/2 and thus

> 1
H ¢l = ealne — (1/2 [8.548]

m=1
Using this regularisation procedure in [8.544] gives

D/2
2[F) = z[0] [ 11 + (2xa’ fi)?]"/* [8.549]
k=1

Our final task for the calculation of this partition function is to put this back in a manifestly
Lorentz invariance form. The infinite product is a product of Eigenvalues and has the
determinant of the corresponding operator, and thus becomes det(d,,, + 27a’F),,). Indeed,
if we to that for the field tensor in the selected basis [8.533]

1 —2ndfi 0 0
2ma’ fy 1 0 0
det (5/“, + 27ra’Fm,) =
0 0 1 —27TOé,fD/2
0 0 2ma fp 2 1
D/2
= [ 1+ @rd f1)?] [8.550]
k=1

Adding in the normalisation constant that we ignored and recalling that we still have to
integrate over the zero modes we find for the tree level partition function of the uncom-
pactified open bosonic string, coupled to a U(1) gauge field

1
(47r2a/)D/29/ DXY [det (6, + 27’ F)]/? [8.551]

This "open string effective action" is similar to the Born-Infeld action for electromagnetism.
It is a non-linear extension proposed to remove the electron’s self-energy in classical elec-
trodynamics.

Note that we evaluated the partition function without having to use perturbation the-
ory. Within the approximations made, i.e. constant field strength and radial gauge, the
result is hence exact. In particular, it is exact in o/. But this also means that this results
contains the contribution of all modes of the string, both massless and massive and is hence
a pure string result.
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THE BORN-INFELD ACTION FOR THE COMPACTIFIED STRING

We now extend the result for the uncompactified string to the compactified string. This
will be surprisingly easy. We note that, in the previous derivation of the Born-Infeld action,
nowhere did we need to assume that the a spacetime dimension was compactified or not.
So to see what changes when one or more spacetime dimensions are compactified, we can
just use the T-duality relations for these dimensions.

So we assume a Dp-brane, i.e. D — p dimensions are compactified. These D — p
dimensions have Dirichlet boundary conditions for open strings whose end-points sit on
p + 1-dimensional hyperplanes. We assume that the compactified dimension are so small
that we can neglect any derivatives along them, i.e. 9,,X =0form =p+1,---,D. The
remaining uncompactified worldvolume is thus described by X* for a = 0,1,--- , p.

Consider now the Born-Infeld action for the uncompactified string [8.551]. We will
split 0,.,, + 27’ F),,, as follows

’ . (5ab 4 2ma’ Fy, 2na Fyp \
O+ 2mal Fiuy = \ 2ma Fyp, Ommn + 270/ mn}

B /5ab +2ma’ Fy, —271'0/8aAm\
o \ 2’8, A, Omn } [8.552]

where we have used the fact that 9,,X = 0form = p+1,---,D. We now introduce a
(p+1)x (p+1) matrix N and a (p+ 1) x (D — p) matrix A with elements

Napy =Nap + 21’ Fb Ay = 210’0, A, [8.553]
We can thus write
S + 21y = Z _fT [8.554]
with 1 the (D — p) x (D — p) unit matrix. We now use the matrix identity
det (JX f;) =det(N + A"M ' A) = det(M + AN~ AT) [8.555]

Therefore, taking the first equality,
det (5uv + 27ro/FW) = det (N + ATlA) = det (77ab +2ma’ Fyp + 27ra’8aAm8bAm) [8.556]

For the compactified dimensions m = p + 1,--- , D we know that we can go to the T-dual
coordinates and can link the gauge field to the location of the Dp-brane by [8.492]

X' = —21d'A,, [8.557]
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We therefore find
det (6, + 2ma/ Fy) = det(nap + 270" Fop + 0, X0, X'm) [8.558]

Using reparametrisations of the worldvolume and of space-time we can chose that the p+1
dimensions of the hyperplane are aligned with (the first) p + 1 coordinates of spacetime.
The remaining D — p coordinates are therefore transverse to the D-brane . This means that
the actual p + 1 fluctuations of the D-brane {* correspond to the spacetime coordinates
2®. We have assumed that there is no dependence on the compactified dimensions (9,,, — 0
form =p—+1,---, D) and so these can be integrated out. The Born-Infeld [8.551] action
thus becomes, reverting to Minkowski space so that we need to include a minus sign for
the determinant to be positive

T
S = —gl / dPTLE N/ — det (e + 0. XM, X' m + 270/ Fp) [8.559]
with
1 1
T, =——¥— [8.560]
PV 2nVdl)p

the tension of the Dp-brane. This action is known as the Dirac-Born-Infeld action.

Note that if there is no gauge field then the action reduces to

S[A=0] = — 1 / AP /= det(ngp + 0, XD, X ™)

s

T
=-2 / dPrie \/ — det (=1, 0, X 1O X"") [8.561]
s
as 0,X°¢ = 0,6¢ = 0;. The combination —1,,0,X""0, X" is the induced metric on the
worldvolume and its determinant is the infinitesimal volume element of the D-brane. As
such this is the natural generalisation of the action for a particle or as the Nambu-Goto
action for a string.

NON-FLAT BACKGROUNDS

So far we have considered the string to live in a flat background. One can easily
generalise the situation to curved spacetimes. We thus consider a worldsheet action (3.76).
In the conformal gauge

1

4o

S / Ao {[(n“bGW(X) + 2m'eabBW(X)} B X1 O X" + o/R(I)(X)} [8.562]
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We have also rescaled the antisymmetric field B, for convenience. We will ignore the
dilaton contribution.

Let us first assume that B,,, is constant. We have seen earlier that in this case this
contribution is just a boundary term

2 1 .
/ d*0 € B, 0, X 0y X" = / a0 Buw X X" [8.563]
0 r=

If we include the coupling to the gauge field and work in the radial gauge, i.e. we compare
with [8.532], then we see that it amounts to a shift of the field strength

Fu, — Fu =21d'F,, — By, [8.564]
This action is has the gauge invariance

Guw — Gu +0,A, +0,A,
B, — By, + 0, A, — O\,
1
A, — A+ %Au [8.565]
The gauge invariant field tensor is thus, in this case, 7, and not F),,.
We can then repeat the calculation of the disc partition function. Leaving out the details
that we will leave to the industrious reader, the outcome is the effective action

S=-T, / dPHee®\/— det(Gap + Bap + 21/ Fp) [8.566]

where G, and By, are the "pull-backs" of the space-time fields to the Dp-brane:

OX1 XV
¢ 9e
DX XV
¢ o8

Gap(&) =G (X (9))

Bup(€) =B (X (€)) [8.567]

In particular G, is the induced world-volume metric from the (curved) spacetime metric.
Expanding the spacetime metric around a flat background we find

Gab = Nap + 0. X 0, X, + 0[(02)"] [8.568]

and we recover [8.559]. We also see that the open string coupling constant g, comes from

the dilaton contribution g, = e®.
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8.116 p 271: Eq. (8.7.5) The Geometric Factor in the Action

We are considering that we have 25 — p compactified dimensions and we take their 7-dual.
We then have a p dimensional hyperplane. The coordinates are split as follows

X9 :spacetime time coordinate
X1 ... XP :parametrise a hyperplane (Neumann boundary conditions)
[8.569]
XPH, .. XxP . compactified dimensions (Dirichlet boundary conditions) [8.570]

Let us visualise this in three dimension. We compactify one dimension and so the
endpoint of the open string live on a two-dimensional plane.

/\Xl

~

X2

Figure 8.11: Visualisation of a D-brane in three dimensions. The third spacetime dimension is
compactified, and so the endpoint of an open string is fixed on a (hyper)plane with X3 = c*®. The
endpoints can move freely in the X '—X?plane.

The end-points of the string are free to move in the X '-X? plane; in these dimensions
the end-points have Neumann boundary conditions. However we know that we can buils a
T-dual theory of this and the dual coordinates then have Dirichlet boundary conditions.!?

121 am actually confused by this. The coordinate X2 is not compactified. We can treat this as the
limit of a compactified spacetime coordinate with R — oo. The T-dual coordinate X’? than has
compactification radius R — 0. But do all our arguments about 7-duality hold in this limit? Le. is
an uncompactified dimension really equivalent to its T-dual dimension with zero compactification
radius?
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So we take the T-dual of the X? coordinate. We have X'2 = —2ma’A? by (8.6.18).
Using the gauge condition Ay = X' Fj, we find X'2 = —27¢/ X! Fyo.

We have a theory with a p dimensional hyperplane, a Dp-brane. But we have taken the
T-dual of one of the coordinates, X2 and as on page 269 of Joe’s book, this reduces the
Dp-brane to a D(p — 1)-brane.

So far so good, but how does (8.7.5) arise? In his Little Book of Strings [16] Joe refers
to Pythagoras. Yes, it looks like an application of Pythagoras, but where does it come
from? The original infinitesimal two-dimensional element dX! dX? gets collapsed into
a one-dimensional one. How does good-old Pythagoras come into play? This is a Greek
mystery to me.

8.117 p 271: Eq. (8.7.10) The Field Tensor Invariant under the Trans-
formations of the Gauge and the Antisymmetric Field

This was already discussed around [8.563].

8.118 p 272: Eq. (8.7.11) The Potential for Coinciding D-Branes

The field strength gives a contribution —%tr FF* to the effective action. As F,, =
oAy — 0y A, +1ig[A,, Ay, this gives a term quartic in the A, of the form g%tr ([Ap,, Ay] x
[A™, A”]). Using (8.6.28) for the dual coordinates we find that this is a contribution to the
effective action of the form

S =+ (2md ) g*tr (X, Xp) X [X™, X)) + - [8.571]
This has the form of a potential with a quartic term. Calling this term V' it is clear that

oV
IXmOX"

XP=0

=0 [8.572]

If we have n coinciding D-branes, this thus gives n? massless fields. If we, moreover have
25 — p dimensions that we dualised, then we have a total of (25 — p)n? massless fields.

8.119 p 273: Eq. (8.7.14)-(8.7.16) The D-Brane Tension Recursion
Relation

The relation (8.3.31) between the dilation field ® of an uncompactified D-dimensional
theory and the dilaton field ®’ of the same theory with one dimension compactified is

e ® = \/JR_le_d’/ [8.573]
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with R the compactification radius. We use this to rewrite (8.7.13)

P p—1 p—1
Te® [[(2rR) =T,Vo/R e (2nR,) [ [ (27 R) = 2nVa/Tpe™® [[(27R)  [8.574]
=1 i=1 i=1

We set this equal to the mass of a D(p — 1) torus wrapped around a (p — 1)- brane

p—1 p—1
2rVa/Tpe™® [[(27R) = Tpo1e® [[ (27R) [8.575]
i=1 i=1
from which it follows that
1
T, 1 =2mV'T, = T,=——T,_ [8.576]
p—1 p p 27”/& p—1

8.120 p 275: Eq. (8.7.17) The D-Brane Annulus Vacuum Amplitude, I

We need to consider the vacuum energy for a cylinder, but with D — p coordinates fixed on
a D-brane. We thus have only p + 1 fluctuation fields. Eq. (7.4.1) is

> dt
Zc, :iVD/ %(8#0/15)*’3/2 Y~ e2rthitl) [8.577]
0 .
i€Hg

Let us briefly recall, from its derivation, where the different factors originate from. We are
calculating Z¢, = ¢~/?*Tr ¢*0. For the matter sector this is [7.203]

ZX (t) e q_d/24rj[\r qa/p2+zzo=1 n ZT:O N,un

ddk ) oo 25
_—d/24 o'k nN,n
= [ e TS 0
n=1pu=0 Nyp
= iVy (872t ) = 2y (it) ¢ [8.578]
The ghost sector give a contribution [7.205]
Zy = n(it)? [8.579]

Combining these and integrating over the modulus we then get [7.207]
- Cdl o 9, N—DJ2 n—24
Zeo, =in"Vag %(87r ta') n(it) [8.580]
0

where we have also included the contribution n? from the Chan-Paton factors.
We now adapt this to the case at hand:

— 548—



Joe’s Book (version of November 20, 2020) Notes from Stany M. Schrans

1. Replace D by p + 1 as that is the number of degrees of freedom (the other ends are fixed on
the hyperplane)

2. The weights h; come from the L part in the trace. Lg is the Hamiltonian; it measures the
energy of the string. The open string now is stretched between two hyperplanes at distance
y and thus there is an extra contribution y?/47%a’. Why exactly that is the contribution is
not clear to me.

3. There is no Chan-Paton factor per se, but a factor of two as explained in the book

All this means that we can write
: b o o, (pr1)/2, 2wt 24
A=iVp 7(8% ta’)”\P e “"axZal n(it) [8.581]
0

In order to derive the second line of (8.7.17), we follow the same procedure as for the
derivation of (7.4.3). We use (7.4.2), change variables ¢t = 7/s and use (7.4.4) to expand
around s = 0, i.e. around ¢ = oo, to see that

n(it) 2 = [t’l/Qn(i/t)] T P in ) = 12 (2 244 )

_ 412 (627r/t+24+”,) [8.582]

We therefore find that

tu2

% gt .
A=iVyi4 / 7(87r2ta’)*(p“)/2efmtl2 (e‘“/t + 244 - )
0

T 0

Vo1 OO 21-p)j2 — L2 [ on/t
= W /0 dt t( p)/ € 27ra (e / + 24 + i ) [8583]

8.121 p 275: Eq. (8.7.17) The D-Brane Annulus Vacuum Amplitude, II

Introduce the variable v = ty?/2ma’ and consider the second term in the expansion
(8.7.17)
A 241V ® oara/du [ 2malu PP/ ou
(872a/) P12 |, Y2 Y2
24V N@3—p)/2. p—23 [ 1 (23-p)/2—1 —u
= W@ﬂa ) Yy /0 duu e [8.584]

— 549—



Joe’s Book (version of November 20, 2020) Notes from Stany M. Schrans

Using the definition of the Gamma function:

A= 24“/z>+1210_2p7r(21_3p)/2a’1l_pyp_Q?’F <232_p>

= 944V, 2107 2P~ 22420 1 (21-39) /2224 2p (4 12 /)11 =pyp=23] (23—p>
2

=iVp124 x 27127 (P=2)/2 (4720 Y 1L=P |y |P= 23D <232_p) [8.585]
In the last line we have replaced y by |y| as it is an absolute number anyway in view of it
being the distance between the two D-branes. This the first line of (8.7.18). The second
line follows with the definition

(p—23)/2 23 —
T
Gas—p(y) = 1 F( 5 P > |y|P—23 [8.586]
or, setting 25 — p = d,
(2—d)/2 d—9
T
Galy) = —;—T ( 5 ) ly| ¢ [8.587]

We'll leave it as an exercise to the reader to show that G4(y) is indeed the Green’s function
for the massless scalar field in d > 2 dimensions. One certainly immediately recognises the
correct y behaviour.

8.122 p 275: Eq. (8.7.19) The Space-Time Action

As it has been some time, let us recall how the field theory approach is obtained. We
consider the general non-linear sigma model on the worldsheet with action (3.7.6), i.e. of

1

4o/

; / &0 \/g [(gabGW(X) n ie“bBW(X)> B X" X" + o' RD(X)|  [8.588]
M

Just to remind ourselves, ¢? is the (Euclidean) worldsheet metric, G uv @ Symmetric tensor
that we can view as being the spacetime metric, B, is an antisymmetric spacetime field,
also known as the Kalb-Ramond field, and ® is the dilation. Note that R here is the (two-
dimensional) worldsheet curvature. This Lagrangian is the general form of a theory of
interacting string. Indeed we saw that starting form the free string theory, and adding
all possible vertex operators, i.e. asymptotic string states, we were naturally lead to this
action.

We then required Weyl invariance of this theory after quantisation. This implied the
vanishing of the 5 functions of the theory, (3.7.14-15), which give string corrections to
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the equations of general relativity. We then showed that it was possible to derive the
vanishing of the /3 functions by an action principle from a field theory point of view. The
corresponding action to leading order in o’ was given by (3.7.20)

1
T+ R B 140,00"0 +o(a')|  [8.589)

S = /dDX\ﬁ

2&0

with v = —2(D — 26)/3c/. Note that v = 0 for the critical string. Here R is the spacetime
curvature, H,,, is the field tensor of the antisymmetric B, field, defined in (3.7.8) and x,
is an undetermined normalisation constant. Note that there is no reference to the string or
its worldsheet in this action. This is just a field theory of a coordinate X, hence the name
field theory approach.

This action is, however, not convenient because the dilation couples with everything
due to the e~® factor. We showed that it was convenient to make a field redefinition
Gu(z) = @G, (x) with w = 2(® — &) /(D — 2) and define & = & — &, with &, being
the (constant) expectation value of ®. The spacetime action then becomes

S = /dDXF

4<1>/ (D-2) L R — %e’Si’/(D’Q)HW,\fI“”A

4 Y .
- I /
55 0n®0"® +o(a) [8.590]

Here indices are raised with G, as denoted by the tilde on R , H*** and on §*. Often
G v 1s referred to as the Einstein metric. Finally, x = Koe®o.

Setting D = 26 and ignoring the Kalb-Ramond field (why can we do that?), we imme-
diately recover (8.7.19).

8.123 p 275: Eq. (8.7.20) The D-Brane Action as a Function of the
Spacetime Fields

As we are ignoring the gauge fields, (8.7.2) becomes
S, =T, / AP e [~ det Gop)'/? [8.591]
We wish to express this in terms of the tilde spacetime fields. We have, as G, isa (p+1) x
(p + 1) matrix
4(p+1)(Bo—2)

det Gop = det ( 29 et Gab) = 2P+ Dw et Ggp=¢ D2 det Gy

(p+1) (2o —9)

=e 6 detGy [8.592]
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Therefore

z (p+1)(29—%) -~ 11/2
Sp = —Tp/dpﬂﬁe_q’_%e_w [— det Gab]

11 ~o11/2
= Ty i / @ T |~ det G 8.593]

This is (8.7.20) but with a different definition of 7,,.

8.124 p 276: Eq. (8.7.20) The D-Brane Action as a Function of the
Spacetime Fields

Including the gauge-fixing term the spacetime action becomes

[ / D V—-G [R— % (v#é) (éﬂ"voé) - ;n“”fufu} [8.594]

T 92

This should be an entirely straightforward calculation, which we will not bother doing
at this stage. For those of you impelled to do so by some higher force(s), recall that the
inverse Einstein metric is given by G* = M — hu and that the dilaton is a spacetime
scalar and we can replace its covariant derivative by an ordinary derivative.

8.125 p 276: Eq. (8.7.23) The Propagator for the Graviton and the
Dilaton Field

Let us recall how we derive the propagator of a scalar field ¢ with Lagrangian 3(d¢)? +
3m%p?. Adding a source J, the path integrals is

Z[J] = / Depet | 44|~ 50(0=m*) o+ T [8.595]
We can perform the Gaussian integral and up to a normalisation factor we find
Z[J] = e~z d'x [ d%y (@) De—y) I (4) [8.596]
where D(x — y is the Green’s function, a.k.a. propagator and satisfies
—(8* +m?) = 6Dz —vy) [8.597]

The use of the propagator becomes apparent in perturbation theory. E.g. if we add an inter-
action term L;[¢] to the Lagrangian, then we can write the path integral of the interacting
theory as

Z[[J] _ eifd4w LI[d/i(SJ(w)]e—% [d?x [ d%y J(z)D(z—y)J(y) [8.598]
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and thus once we know the propagator we can use it to work out the perturbative expan-
sion. This is, of course, the basis of the Feynman diagrams. To derive the form of the
propagator we write the delta function in its Fourier transform

d’k

=y = [ e [8.599]

and one can check by direct computation that the propagator is then given by

A%k eik:~(:c—y)
D(x —y) = / (2m)4 k2 +m2 + ie [8.600]

and in momentum space
1
k24 m?

All this should be well-known to 99.9% of you, with the 0.1% being those who believed
that you can learn string theory without knowing any quantum field theory.

D(k) [8.601]

Let us now apply this to the case at hand. The dilaton is a spacetime scalar and has
kinetic term (—1/12x2)0,®0"®. The propagator in momentum space is hence

MU 6ik>
(P(k)P(—FK)) = — [8.602]

The kinetic term for the graviton is

1 o1 g
£grav = - @ <a,uhu)\8uhy>\ — 20@58"]&)
1 WP VK AT 1 VA, P KT
=gz \ T hyx0uphr + U/ Ry 0u0phr s

1 1
= — gzl (—n“pn””n” + 2?7”?7“’”?7”) DuOphrs

1 1% 1 v
= — g5l (—77 T 4 3" A77"”) hyy

1 1
— @hw\ <,'7VH77)\’T + nm'n)\n _ nuknn’r) 82]17_” — @hVAAVA,THthTK [8.603]

with
Al’)\ﬂ'l’v — nwcn)\r + 771/777)\;1 o nu)\nm— [8.604]

We now need the inverse of A¥»7%, If we consider

D,uu,ap = NucMvp T MupMve + ANpNop [8.605]
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It has the right symmetries and « can be determined. We have
DHMUPAUH’/)T — [nucrnl/p + NupTvo + O”],ul/nap} % (noTnnp + napnm— _ ncmnﬂr)
=0.,0, +nun™ — 8,6, + 0,0, + " — 0,0,
+ O”]uu(nm— + ,rlm—ég . nm—)
= R2+a(+D=Dlnun" = 2+ aD)nun™

But this does not have the right form; it should have a 4,67 + §7,6; .

[8.606]

If we assume that there is a typo in the spacetime action (8.7.22) and that the second

term quadratic in the gravitons should come with a plus sign, then we find that

Azx)\,ﬂ-n VK, AT VT, AK VA, KT

=N +Fnont A0

and

Dy, p AT = [Nuotup + Nuplve + auwop] X (770 + 070" + 07" nfT)
= 6705 + Mun”™™ + 0507, + 0567, + 0™ + 63,05
+ anu (0™ + 0765 +n"7)
= 2(555; + (5;5’,}) + 24+ a(l+ D+ 1)]nun™"
= 2(555; + 5;55) + 2+ (D + 2)|nun™”

If we choose o = —2/(D + 2) then we get
Dyu,op A7 = 2(81567, + 07,05

And so if we define D, 5, = INDW,JP then

1
4

>

1
uu,apAUH’pT = 5(55617/- + 6;55)
and D is the inverse of A. We could therefore write the propagator as
_ 16ik% 1

<huV(k)h0p(_k)> = 71(77#0771//) + NppMve + 0477;w77crp)

But unfortunately, this is not (8.7.23).

[8.607]

[8.608]

[8.609]

[8.610]

[8.611]

It seems like the action has the right symmetry structure for the graviton, and so has
the propagator, but still I cannot reproduce one from the other. Either there must be
some strange typo somewhere, or I am doing something wrong, The latter is the more
plausible explanation. In any case the form of the propagator is consistent with the rest

of the derivation, so I assume there is no error in that formula.
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8.126 p 276: Eq. (8.7.25) The Amplitude for a Propagating Graviton
and Dilaton

We are evaluating the propagation of a graviton and a dilaton between two D-branes. This
means that the D-brane is a source/sink for the graviton dilaton. We thus wish to evaluate
the path integral

A= / DhDdeSeiSr — / Dh DS =i J &6 (P13 O haa) [8.612]

Here S is the spacetime action (87.7.22) and S, is the D-brane action (8.7.24), both taken
around a flat spacetime. As usual we expand the exponential and, as we are looking at
the (lowest order) contribution for the propagation of a graviton and dilaton between the
D-branes, we only keep the terms quadratic in ® and the terms quadratic in h. This gives

. .y 2 —11\? .. 1
= [ DhDdeS [ -2 | | (L P+ -
A / h e ( 9 < 12 +4haahbb +
72 —11\? - 1
__|(P -
-2 (P @)+ (ot | + [8.613]
For D = 26 we have from (8.7.23)
. 6ir?
(D) = — ——
K
2ir> 1
(haahen) = — =R <77ab77ab + NabMab — 1277aa77bb>
1
2ik? 1 9
= ——12 1) — — 1 8.61
o 20— e n? 8.614)
We have use the fact that n,, = p+ 1 asa = 0,1,--- ,p. Here k, is the momentum

of the graviton/dilaton, i.e. the momentum perpendicular to the D-brane; it has p + 1
components. Using this we find that

- T2 ~11\? / 6ix2 1( 2ik? 1
__'p D 0tk L) stk o 2
A=y [( ) (F5) il ey - o)

iT2 K2 —11\? 1 1
_Tp p - _ 2
= {6( = ) +3 [2(1)—1—1) 12(p+1)]

2.2 2 2 i72 K2
it26% (p? 121 1lp P’ _p 1\ _3ink
_ _ ) [ N 8.615
2 \2u T T TP T T, K2 (8.615]
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We have been quite sloppy about this calculation and it is now time to make some cor-
rections. In [8.613] we forget the (double) integration over the worldvolume coordinates.
We then used the propagators in momentum space, whilst we needed them in coordinate
space. This correction leads to a delta function for the momentum conservation, which
takes care of one of the integrals. The other integral will give a volume factor V), ;. More-
over the graviton and dilaton can propagate from one D-brane to the other or vice versa.
This gives a doubling of the contribution. Our final result is thus

6iT2K>

A= #Vpﬂ [8.616]

8.127 p 276: Eq. (8.7.26) The Relation Between 7, and «

Before we can compare (8.7.18) with (8.7.15) we need to get the momentum represen-
tation of (8.7.18). The Fourier transform just gives the traditional k2, as can also be seen
from the fact that we are looking ate the inverse of V2 = 92, thus yielding a k2. Compar-
ing the two results thus gives

2

) 241 1 6iT K
ZV1;+12T0(47T20/)11 pkj = #V};H [8.617]
1 1
or, cleaning up,
7T42/11—p_22 2 T 2 nll—p
ﬁ( T°a’) =T,k = T = 562 (4r=a) [8.618]

The recursion relation (8.7.16) is, using T}, = €q)07'p

1

(4n2a/)172 P71 [8.619]

Tp =
and (8.7.26) clearly satisfies this.

8.128 p 276: Eq. (8.7.27) The Gauge Field Action for the D25-Brane
The D25-brane has p = 1 and so the hyperplane has dimension p+ 1 = 26 and is the entire
spacetime. I.e. this is the standard open string theory with all dimensions having Neumann

boundary conditions. We now attache to each end-point n-values Chan-Paton factors. The
D25-brane action (8.7.12) is then

S5 = —Ths / X tr {e™ [~ det(Gpu + By + 20’ )] 2 4 [8.620]
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we can replace the indices a, b by uv as they now run over all dimensions anyway. In order
to find the quadratic terms in F' we can set B = 0. We can’t set G, = 0 as this is the
spacetime metric necessary to raise and lower indices. We also use the dynamic dilaton
field ¢ = ¢ — ¢p. Then e~® = ¢~®~®0. We also have that T}, = e¢®07,. The @, contribution
then cancels and we can ignore the ® contributions as these would give interactions with
the dilaton and nor contribute to the gauge field kinetic term. We thus need

Sos = —725/d26X tr (= det(Gu + fu )2+ - [8.621]

where we have defined f,, = 27d/F),,.

Now recall that, as it should, this action is spacetime parametrisation invariant. This is
obviously the case if we set f,,, = 0, but as this has the same tensorial structure as G,,,, we
also have that [ d*X \/— det(G + f) is invariant. So, if there is a term quadratic in f,,, it
must be of the form \/—Gf,, f** = V-G f**G*°G"? f,,. This means that the only thing
we really need to do is to find the coefficient in front of that term, i.e. find the « in

[~ det(Gp + fu)]Y? = aV=Cfu " = aV=C f,G" G fop + - - [8.622]

This in itself is messy, but fortunately we can focus on one special case. For example, let us
take four dimensions and let us check the coefficient of the quadratic term in fi5 fo3. If that
coefficient is non-zero, it will be the same for all other (non-zero) combinations of indices
and hence also equal to «. In order to find this coefficient we simply calculate

82

m [— det(GMV + fuy)]l/Q [8623]

fmJ:O

& =

This is as well a tedious calculation and best performed by Mathematica, see fig.8.12. The
results turns out to be

G14G34 — G13G s

8.624
Nee [8.624]

a =

In other words we have a term in the expansion of [— det(G,, + f,“,)]l/ ? of the form

" G14G34 — G13G s

e

f23 [8.625]
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nes- ClearAll[dim, M, G, F, Mat, GMat, IGMat, DM, DG, alphatilde , beta0®, betal];
dim = 4;
Mm_, n_] := G[m, n]+ F[m, n]
Do[F[m, m] = ©, {m, dim}]
Do[F[n, m] = -=F[m, n], {n, dim}, {m, n}]
Do[G[n, m] = G[m, n], {n, dim}, {m, n}]
Mat = {{M[1, 1], M[1, 2], M[1, 3], M[1, 41}, {M[2, 1], M[2, 2], M[2, 3], M[2, 4]},
{M[3, 1], M[3, 2], M[3, 3], M[3, 41}, {M[4, 1], M[4, 2], M[4, 3], M[4, 41}};
GMat = {{G[1, 1], G[1, 2], G[1, 31, G[1, 4]}, {G[2, 1], G[2, 2], G[2, 31, G[2, 41},
{GI3, 11, G[3, 21, G[3, 3], G[3, 4}, {G[4, 11, G[4, 2], G[4, 3], G[4, 41}};
IGMat = Inverse[GMat];
DM = Expand[Det[Mat]];
DG = Expand[Det[GMat]];
FIm_, n_, p_, d_] := D[D[Sqrt[-DM], F[m, nl, Fip, qll
alphatilde = Simplify[F[1, 2, 2, 3]I;
Do[F[m, n] = 0, {m, dim}, {n, dim}] ;
alphatilde = Simplify[testl];
Simplify[alphatilde - (G[1, 4]+*G[3, 4] - G[1, 3]+ G[4, 4])/ Sqrt[-DG]]

out[78]= 0

n7o=  beta® = Simplify[IGMat[[1l, 2]]* IGMat[[2, 3]] - IGMat[[1l, 3]] * IGMat[[2, 2]II;
betal = Simplify[(G[1, 4] G[3, 4] - G[1, 3] *G[4, 4])/(-DG)];
beta0d - betal

out[81]= 0

Figure 8.12: Mathematica code for the D25-brane kinetic field strength term. alphatilde corre-
sponds to & in [8.624]; beta0 is G12G?? — G13G?? in [8.629] and betal is (G14G34 — G13G44)/(—G)
in [8.629].

We now need to link this to a term in /—G f,,, f*. We consider fiof'? first. This is

f12f = f1aGMG? fr = f12G2 G foz + f12GPGP fag + - -
= [12(GPG® - GPG?) fog + -+ [8.626]

where we have only shown the term in fi5 fo3. We have a similar contribution from fo; f?'.
But there is also a contribution from f3 23

fo3f? = f23G*G f, = f23G* G¥ fro + fo3G*2G3 for + - -
= f12(GG* — GPG*) fo3 + - - [8.627]
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and a contribution from f3» f32. We thus have Therefore we thus conclude the
V=G fu ' =4av/—G f12(GPG® — GBG*) fas [8.628]

Direct calculation, see fig.8.12, teaches us that

B=GRGH - GBG? = G14G34__GGBG44 [8.629]

Therefore we thus conclude the
G14G34 — G13G
OV T P = /=G i, 11~ 1
G14G34 — G13Gys
V-G

Comparing [8.625] with [8.630] we find that 4o = 1 or hence o = 1/4, i.e.

fos3

= 404f12 f23 [8.630]

1
[_ det(G,ul/ + f,uzz)]l/Q = Z \4 _Gf/u/f/“/ + - [8.631]

We will leave it as en exercise to the industrious reader to show the same results for space-
time dimensions higher than four.
Using this in [8.621] we therefore find that

Sos = —% / D QVARES o L —% / d*X V/~G(2ra/)?F,, F™ + - -+ [8.632]

which is what we set out to show (as usual the v/—G is necessary for spacetime parametri-
sation invariant and is understood as part of the measure of the action).

8.129 p 276: Eq. (8.7.28) The Relation Between the Coupling Con-
stants

Let us first recall the different formula mentioned and what they mean. (6.5.14) Relates
the coupling constant for an open string tachyon gy with that of an open string gauge boson

90

90 [8.633]

The effective spacetime action for the open string, up to first order in momenta, that re-
produces the open string amplitudes is given by (6.5.16)

1 1 1
S = /2/d26m (—2‘51“ D,pD! o + —tr ©* +

20/

1
tr ¢ — Lt FWF“”> [8.634]

2
3V 2/
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In (6.6.18) we relate the closed string coupling constant g. to the gravitational constant
K = 2mge [8.635]
From [8.633] and [8.635] we find that

g 2d/g¢  Amd/gf

EAUNSS = 8.636
ge  K/2m K [ ]
Now comparing the coupling constants between [8.634] with [8.632] we see that
1
o = m5(2ma’)? = £(47r2a’)(11p)/2(27ra’)2 [8.637]
where we have also used (8.7.26). Thus, setting p = 25,
% _ Ara’ 16x 1 — 92H+4+14-2 1-1/2+14-2 1472
e kT (Ar2a)) "7 (2mal)?
= 218725/24/6 [8.638]

Note that we did not need (6.6.15), the equivalent of (6.5.14) but for the closed string,
that relates the coupling constant for an closed string tachyon g, with that of an closed
string gauge boson g/,

.2
9. = —9e [8.639]
(6%

8.130 p 277: Eq. (8.8.1) The Impact of the Worldsheet Parity on the
Worldsheet Coordinates

Recall that the worldsheet parity 2 inverts the orientation of the coordinate coordinate o1,
i.e. i.0. running from 0 to 27 it now runs from 27 to zero. What moved to the right is now
moving to the left, and vice-versa. The worldsheet coordinates themselves don’t change.
Thus the action of (2 is simply

XM(2) ¢« XM(z) for M=1,---,D [8.640]

Note that we have X% (z) and not X £ () as the definition of the coordinates don’t change.
On the non-dualised coordinates we have

QXH(z,2) = QX (2) + Xip(2)) = Xh(2) + X (2) = XH(Z, 2) [8.641]

On the dualised coordinates we get
QX"(2,2) = QX" (2) — XF'(2) = XF'(2) — X["(2) = —X"™(z,2) [8.642]
The latter is the combination fo a worldsheet parity x < z and a spacetime reflection

X < —X.
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8.131 p 277: Eq. (8.8.3) The Fields G,y and B,y of an Orientifold

We need to consider again the worldsheet action (3.7.6)
1

4o/

/ &0 \/g [(gabGMN(X) + ie“bBMN) XM XN + o' RO(X)|  [8.643]

The orientifold is a parity operation on the worldsheet coordinates of the spacetime fields.
In addition, for the dualised coordinates, we also have a spacetime inversion. Consider
first the ¢G v (X)0, XM, XN, In the gauge ¢** = 5% we have

97°G 0 (X)0, X O XY = G (X) (1 XF 01 XY + 2 XD XY [8.644]
The worldsheet parity operator transforms 9; into —9; and X into X’. Thus here 2 acts as
QG (X)0u X' X" =G (X') (=01 X") (=01 XY) + 02 X1 0 X"
= g%G L (X)0, X 0y X" [8.645]
Requiring 2 = 1 thus implies
Guw(X') =Gu(X) [8.646]
If one of the spacetime coordinates is dualised we obtain

Qg™ G (X)0u X" 0p XY =G (X)) [(— 01(=X™)) (=01 X") + Do(—X™) 02X "]

= — ¢®G (X0, X0 X" [8.647]
from which we deduce that
Gow(X') = =G (X) [8.648]
and similarly we find for two dualised spacetime coordinates that
Grn(X') = =G pn(X) [8.649]
Looking now at the antisymmetric tensor, we see that
€ B, (X)0, X" 0p X" = 2B,,,(X)01 X 92 X [8.650]

Therefore
Qe B, (X)0u X XY = 2B, (X") (01 X") 2 X") = —26"B,,,(X")0, X 9, X"  [8.651]
so that

B, (X'") = =B, (X) [8.652]
Similarly we find, obviously, that

By (X') = By (X) [8.653]
and

Bpn(X') = =By (X) [8.654]
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8.132 p 278: Fig. 8.6 The Torus and the Klein Bottle

In order to make sure we understand this figure, let us start from the simplest case, the
cylinder. We take a rectangle and draw arrows pointing in the same direction on opposite
sides. We then "sew" together the opposite sides so that the arrows point in the same
directions. The result is a cylinder, see fig.8.13. Our graphical representation is thus a
rectangle with on two opposite sides arrows pointing in the same direction

Figure 8.13: Representation of the cylinder. The two opposite sides are sewn together so that the
two arrows align. The result is a cylinder.

If the arrows on the two opposite sides of the rectangle now point in opposite directions
and we sew them together than we have to twist one side to achieve this. The result is the
Mobius strip, see fig.8.15.

Figure 8.14: Representation of the Mébius strip. The two opposite sides are sewn together so
that the two arrows align. This needs a twist of one side and the result is the Mobius strip

It should now be clear how we can represent the torus, viz. as a cylinder where also the
two remaining opposite ends with arrows in the same direction are identified. The Klein
bottle, finally is obtained from the cylinder with with the two remaining ends identified,
but after a twist, hence with arrows on that end pointing to opposite directions.
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Figure 8.15: Representation of the torus and the Klein bottle. Both start from a cylinder with the
open ends identified. For the Klein bottle there is an extra twist.
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