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Chapter 1

Introduction

These notes provide my personal road to understanding general relativity. There are for-
tunately several excellent text books and lecture notes on the subjects, so I cannot not
claim any originality to my approach. I have done nothing else than combine parts from
these different sources, trying to avoid bringing in too many errors. Any errors in the
reasoning or in the text are entirely due to me.

If you want to help improve these Notes, either by correcting errors, changing, adding
material, or answering open questions please contact me on hepnotes@hotmail.com.

For these notes I have made more or less extensive uses of the resources given in the
bibliography. One may notice the absence of some classics such as Hawking & Ellis and
MTW. This is by no means a judgment on the quality of these books.

Stany M. Schrans
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Chapter 2

Special Relativity

2.1 Introduction

Familiarity with special relativity is assumed. This chapter is thus necessarily brief and
serves more as a reminder of concepts and important formulas, and to establish notation.

2.2 Invariant Line Element, Light Cone, Proper Time

The Invariant Line Element of Minkowski spacetime in d dimensions is

ds2 = ηµνdx
µdxν = −(dx0)2 +

d−1∑
i=1

(dxd)2 (2.1)

In four dimensions this becomes in Cartesian coordinates

ds2 = −dt2 + dx2 + dy2 + dz2 (2.2)

At each point in spacetime we have a lightcone Light Cone defined by the line element

x

t

lightlike/null

spacelike

timelike

Figure 2.1: Lightcone and timelike, lightlike and spacelike paths



2 Special Relativity

We have

ds2 < 0 ⇒ dx2

dt2
< 1 : v < c : Timelike

ds2 = 0 ⇒ dx2

dt2
= 1 : v = c : Lightlikeor Null

ds2 > 0 ⇒ dx2

dt2
> 1 : v > c : Spacelike (2.3)

The worldline of a massive particle is in the light-cone with v < c. A massless particles
moves on the boundary of the lightcone with v = c. No particles can move outside the
lightcone.

The Proper Time is defined as

dτ2 = −ds2 (2.4)

and is thus positive for massive particles and zero for massless particles. The proper time
measures the time elapsed between two events as seen by an observer moving on a straight
path with constant velocity between the events. For timelike paths we can integrate this
as

∆τ =

∫ √
−ηµν

dxµ

dλ

dxν

dλ
dλ (2.5)

where λ parametrises the path.

In 3d space the shortest distance between two points is the straight line; in spacetime
the straight trajectory has the longest proper time.

2.3 Lorentz Transformations and the Poincaré Group

The line element ds2 is invariant under a Lorentz transformation transformations xµ →
x′µ = Λµνxν with Λ satisfying

ΛtηΛ = η (2.6)

Thus Λ ∈ O(1, d − 1), called the Lorentz Group. In order to ensure that the Lorentz
transformations are connected to the identity we require det Λ = 1 which implies Λ ∈
SO(1, d − 1). But time reversal and parity transformations have unit determinant and are
not connected to the identity. In order to avoid these, we also impose Λ0

0 ≥ 1 which then
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leads to the Proper Orthochronous Lorentz Group Λ ∈ SO(1, d− 1)↑. We will often just
call this the Lorentz group.

The dimension of the Lorentz group is n(n − 1)/2 so in four dimensions the Lorentz
group is six dimensional. In four dimensions a basis of the generators of the Lorentz group
consists of Spacetime Rotations and Lorentz Boosts. The spacetime rotations are the
usual SO(3) rotations in R3. E.g. a rotation in the x–y plane is given by

Λ =


1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1

 (2.7)

A Lorentz boost is a transformation that rotates space and time. E.g. a boost in the x
direction is given by

Λ =


coshφ − sinhφ 0
− sinhφ coshφ 0 0

0 0 1 0
0 0 0 1

 (2.8)

The line element ds2 is also invariant under spacetime translations xµ → x′µ = xµ+aµ.
These form four copies of the Abelian group T4. The full symmetry group of Minkowski
space is thus the semi-direct product SO(1, d− 1)⊗ T4 and is called the Poincaré Group.

2.4 Energy and Momentum

The velocity four vector of a massive particle is defined as

Uµ =
dxµ

dτ
(2.9)

where τ is the proper time, and satisfies

U2 = ηµνU
µUµ = −1 (2.10)

The momentum four vector is then

pµ = mUµ (2.11)
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and satisfies the dispersion relation

p2 = −m2 (2.12)

The energy-momentum Tensor Tµν is the Noether current of the spacetime trans-
lations. It is the flux of the four momentum pµ across a surface of constant xµ and its
component have the following interpretation

T 00 : energy density

T 0i : momentum density

T ii : pressure

T i 6=j : shear (2.13)

In cosmology one often uses the example of an energy-momentum tensor describing a
Perfect Fluid

Tµν = (ρ+ p)UµUν + pηµν (2.14)

where ρ is the energy density and p the pressure in the rest frame. Different equations of
states, i.e. relations between ρ and p give different types of perfect fluids

p = 0 : Dust or Matter

p =
1

3
ρ : Radiation or Isotropic Photon Gas

p = − ρ : Vacuum Energy or Cosmological Constant (2.15)

The dust just consists of collision-less non-relativistic particles. Radiation consists of pho-
tons or ultra relativistic particles with negligible contribution to their energy from their
mass. The factor follows from the tracelessness of the energy-momentum tensor of the
Maxwell field. The vacuum case just gives a non-vanishing cosmological constant as we will
see when we discuss the Einstein field equations.

The conservation of energy-momentum ∂µT
µν = 0 for a perfect fluid in the the non-

relativistic limit gives the energy density continuity equation

∂t +∇ · (ρv) = 0 (2.16)

and the Euler equation

ρ
[
∂tv + (v · ∇)v

]
= −∇p (2.17)



Chapter 3

Generalities:
the Equivalence Principle,
the Metric and Causality

3.1 Equivalence Principles

The Weak Equivalence Principle has three different formulation

1. The inertial and gravitational mass of an object is the same. This leads to the famous
statement that all objects fall with the same speed in vacuum.

2. There exists a preferred class of trajectories in spacetime, so-called Inertial Tra-
jectories, on which unaccelerated particles travel. Here we define Unaccelerated
Particles as particles subject to gravity only, and not to any other force.

3. In a small enough regions of spacetime the motion of freely falling particles in a gravi-
tational field cannot be distinguished from particles undergoing constant acceleration
.

The Einstein Equivalence Principle says that in small enough regions of spacetime the
laws of physics reduce to the laws of special relativity. This means that it is impossible to
detect the presence of a gravitational field by a local experiment.

The Strong Equivalence Principle encompasses both the weak and the Einstein equiv-
alence principle.

From the weak equivalence principle we deduce that gravity is actually not really a
force, at least not in the traditional way.

5
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3.2 The Metric

Mathematically speaking the metric is a two-form, i.e. a (0, 2) tensor. Recall that a differ-
ential form is a linear function from the tangent space TpM at a point p of a manifold M
to the real numbers R. A two-form thus depends on two vectors and gives a number:

g(V,W ) = gµνV
µWµ (3.1)

Physically speaking the metric gµν is the generalisation of the Minkowski metric ηµν to
a general smooth manifold.

ds2 = gµνdx
µdxν (3.2)

Here the metric depends in general on the point of the manifold. The line element is
invariant under general coordinate transformations, also called Diffeomorphisms xµ → x′µ.
The metric then transforms as a (0, 2) tensor

g′µν(x′) =
∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ(x) (3.3)

One way to characterise metrics is by the sign of their Eigenvalues. If all Eigenvalues are
positive then the metric and by extension the manifold is called Euclidean or Riemannian. If
all Eigenvalues are positive except one that is negative then the metric and the manifold are
called Lorentzian or Pseudo-Riemannian. If the metric has several positive and negative
manifolds then we say the metric is indefinite. We do not consider the degenerate case of
zero Eigenvalues.

For a general manifold the metric cannot be transformed into a flat metric by a coor-
dinate transformation. However it is always possible to go to Local Inertial Coordinates
in a Local Lorentz Frame where the metric is locally flat and its first derivatives disappear.
I.e. at a point p we have

g′µν(x′)
∣∣∣
p

= ηµν and
∂

∂x′σ
g′µν(x′)

∣∣∣
p

= 0 (3.4)

It is not possible to set all second order and higher derivatives to zero. For example the
second derivatives have, in four dimensions, 100 components, but only 80 of them can be
fixed. The remaining 20 cannot be fixed and these are, not coincidentally, the number of
components of the curvature tensor as we will see.
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3.3 Causality

Here we consider the initial value problem: given initial conditions in some sub-manifold can
we fully determine the state of the system at a later time. The key definition is that of a
Cauchy surface, but before we get there we need to define a few other concepts

Causal Curve: this is a worldline taken by a particle that is either timelike or lightlike,
i.e. the path taken by a massive or a massless particle.

Causal Future J+(S): Given a subset S of a manifold the causal future of S is the
set of points that can be reached by the causal curves starting in S.

Chronological Curve: this is a worldline taken by a particle that is timelike, i.e. the
past taken by a massive particle.

Chronological Future I+(S): Given a subset S of a manifold the causal future of S
is the set of points that can be reached by the chronal curves starting in S.

There are similar definitions for causal past J−(S) and chronological past I−(S).

If in a subset S of a manifold M no two points are connected by a timelike curve,
then S is called Achronal. As an example consider a two-dimensional Lorentzian
manifold with a straight line L : t = cte. The future lightcone of each point on the line
L points towards the future and no point on L can be reached from any other point
on the line. Thus, L is an achronal subset. More generally, any edgeless spacelike
surface in Minkowski spacetime is achronal.

x

t

L

Figure 3.1: Achronal line in two dimensions. None of the points on the line L can
be reached via a timelike path from any other point on L.

Given a closed achronal set S the Future Domain of Dependence of S, denoted
by D+(S) is the set of all points p of the manifold such that every past-moving
inextendible causal curve through p must intersect S. Inextendible means that the
curve goes on forever, i.e. does not stop in a fixed point. By definition points in S
are also in its future domain of dependence D+(S). We can similarly define a past
domain of dependence D−(S) of an achronal set S.
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The Future Cauchy Horizon H+(S) is defined as the boundary of the future domain
of dependence, H+(s) = ∂D+(S), and likewise for the past Cauchy surface. The
Cauchy surfaces are null surfaces, i.e. point on them are lightlike, and they divide the
manifold into points that are in the domain of dependence of S and in points outside
of it. Thus, if the manifold has a Cauchy horizon for S , then there are points in the
manifold that cannot be reached via a timelike worldline from S.

Σ

S

H+(S)
D+(S)

H−(S)
D−(S)

Figure 3.2: Causal structure. S is a subset of an achronal surface Σ. The future
domain of dependence D+(S) comprises all future points that are linked by a
timelike path to S and its boundary is the future Cauchy horizon H+(s) = ∂D+(S).

These definitions just formalise our intuitive understanding of the initial value problem.
An achronal surface is a slice of spacetime where all points are independent of one another,
in the sense that the state of any one point of that surface is not determined by the state
of a different point of that surface in the past. From such an achronal surface we can
derive the part of spacetime that is determine from all its points, i.e. the domain of future
dependence. What we now want is to define a surface so that we can use it as an initial
condition for determining the future dependence of the entire manifold.

A Cauchy Surface Σ is a closed achronal surface whose domain of dependence
D(Σ) is the entire manifold.

Thus from the initial values on the Cauchy surface, we can determine what happens
throughout the entire manifold. Note that as a Cauchy surface is achronal, i.e. no single
point can be linked by a timelike path to another point on the surface, giving initial values
on the Cauchy surface, will not lead to a contradiction in the sense that a spacetime point
on the Cauchy surface as evolved from another point on that surface, could be different
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than its initial value given. There is however no guarantee that a manifold has a Cauchy
surface, i.e. that there is a well defined initial value problem.

A spacetime that has a Cauchy surface is called Globally Hyperbolic .

Any set Σ that is closed, achronal and has no edge is called a Partial Cauchy Surface.
Not ever partial Cauchy surface is a Cauchy surface. This can be due to a reason of its own
– such as that not the entire manifold evolves from Σ – or from reasons due to specific
structure of the manifold.

Note that in Newtonian physics times moves forward absolutely. In special relativity
time is relative but it moves forward as well. Particles cannot move outside their lightcone
and as Minkowski space is flat this means that a particle cannot return to its point. This is
not the case in general relativity. It is possible that the worldline of a massive particles get
bent so much that the particle returns to it spacetime original point. These are the Closed
Timelike Curves.. A couple of examples will clarify all this.

• Consider the manifold R× S1 with metric

ds2 = − cosλ dt2 − 2 sinλ dx dt+ λ dx2, λ = cot−1 t (3.5)

The null lines ds2 = 0 are given by

v2 − (2/t)v − 1 = 0 (3.6)

where v = dx/dt. Thus they are

v = (1±
√
t2 + 1)/t (3.7)

Hence for t = ±∞ these are v = ±1 but for t = 0 they are v = 0 and v = +∞. So
the lightcone at t = 0 is rotated 90◦ compared to far past and future times. With
time evolves from the far past, the light cones get rotated and eventually allow a
worldline at constant time. As x is periodic the worldline can return to itself, leading
to a closed timelike curve. This is illustrated in figure 3.3.
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x

t t = 0

Figure 3.3: Closed timelike curves of (3.5). As t evolves, the light cones get rotated
and eventually allow a worldline at constant time. As x is periodic the worldline can
return to itself.

If we had specified a surface Σ to the past of that point, then none of the points
in the region of the closed timelike curves can be obtained from starting in Σ and
are hence in its domain of dependence D+(Σ) since the closed timelike curves don’t
intersect Σ. There is thus a Cauchy horizon at t = 0, and it thus seems that this
spacetime does not have a well defined initial value problem.

• Another example is the occurrence of a Singularity in spacetime. Typically these
are points with infinite curvature. They are at a finite distance from other points of
the manifold, but are not part of it. Some points in the future of the singularity will
have a worldline tracking back to the singularity. Hence these points cannot be in
the domain of dependence of a hypersurface in the past of the singularity. This also
leads to a Cauchy horizon.



Chapter 4

Connection and Curvature

4.1 Connection

The partial derivative of a tensor ∂µV µ does not transform as a tensor, i.e. it is coordinate
dependent. We look for an alternative, the Covariant Derivative ∇µV ν that transforms
as a tensor and is hence independent of the choice of coordinates. We also require the
covariant derivative to be linear and satisfy the Leibniz rule. This can be obtained by adding
a linear correction to the partial derivative

∇µV ν = ∂µV
ν + ΓνµλV

λ (4.1)

Requiring that hat both sides transform as a (1, 1) tensor gives the transformation law for
the Connection Γνµλ

Γνµλ →
(
Γ′
)ν
µλ

=
∂xσ

∂x′µ
∂xρ

∂x′λ
∂x′ν

∂xκ
Γκσρ +

∂xσ

∂x′µ
∂xρ

∂x′λ
∂2x′ν

∂xσ∂xρ
(4.2)

which does not transform as a tensor, as it should, due to the second term.

Similarly for a one form we can write ∇µων = ∂µ + Γ̃λµνωλ. As scalars have no direction
on the manifold (i.e. no components that depend on the coordinate system) it makes sense
to require that the covariant derivate on scalars reduces to the partial derivative. Then,
requiring this on the product of a vector and a one form , we find that Γ̃λµν = −Γλµν and
the covariant derivative on a one-form becomes

∇µων = ∂µων − Γλµνωλ (4.3)

There is a certain freedom on choosing the connection on a manifold. However the
difference between any two choices of connection is a tensor, as the guilty term in (4.2)

11
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does not depend on the choice of connection. This implies that any connection can be
obtained from a "standard" connection plus a tensor.

From (4.2) we also see that if Γλµν and Γλνµ transform in the same way and are hence
both connections. Their difference is thus a tensor, the Torsion Tensor

T λµν = Γλµν − Γλνµ (4.4)

We now impose to additional conditions on the connection

1. The connection is Torsion Free, i.e. symmetric: Γλµν = Γλνµ

2. The connection is Metric Compatible: ∇σgµν = 0.

These requirements lead to a unique expression for the connection

Γσµν =
1

2
gσρ (∂µgνρ + ∂νgµρ − ∂σgµν) (4.5)

This connection is known as the Christoffel or Levi-Civita Connection, sometimes as the
Riemannian Connection. This is the only connection we will work with, and hence we will
just call it the connection as if there is no other one.

The metric compatibility condition is equivalent to the statement that the line element
remains constant when we parallel transport it along any curve as we will see in (4.13).

As a reminder, one does not have to go to a curved manifold to have non-zero con-
nections. Indeed curvilinear coordinates in flat space also results in non-zero connections.
Take for example polar coordinates in R2 with metric ds2 = dr2 + sin2 θdθ2. one easily finds
that the following connections are not zero: Γrθθ = −r and Γθrθ = Γθθr = 1/r.

In local inertial coordinates where the metric and its first derivative is locally zero, i.e.
at one point, the connection is zero

Γσµν = 0 in a local Lorentz frame (4.6)

The contracted connection satisfies

Γµµλ =
1√
|g|
∂λ
√
|g| (4.7)

from which it follows that
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∇µV µ =
1√
|g|
∂µ

(√
|g|V µ

)
(4.8)

This in turn implies a useful form of Stokes theorem

∫
Σ
ddx

√
|g| ∇µV µ =

∫
∂Σ
dd−1x

√
|γ|nµV µ (4.9)

where nµ is the normal to the boundary ∂Σ and γij is the induced metric on ∂Σ.

4.2 Parallel Transport and Geodesics

Heuristically Parallel Transport is the moving of a vector from one point to another whilst
keeping it constant. This is straightforward in flat space but on a curved manifold the
parallel transport depends on the path between both points. Indeed, vectors live on the
tangent space of a point and so it depends on how you reach that point.

This means that there is no unique way to compare vectors at different points. Thus
the concept of relative velocity between two points does not make sense in GR. As an
example the redshift of galaxies does strictly not mean that they are receding. What it
means is that the metric between here and the galaxy has changed and the wavelength of
the photon reaching us has shifted. It is of course tempting to think that the galaxies are
receding.

Before we define parallel transport we need the concept of Directional Covariant
Derivative along a path x(λ)

D

dλ
=
dxµ

dλ
∇µ (4.10)

We then define parallel transport of a tensor along a path x(λ) as the requirement that(
D

dλ
T

)µ1···µk

ν1···ν`
=
dxσ

dλ
∇σTµ1···µk

ν1···ν` = 0 (4.11)

This is the Equation of Parallel Transport. For vectors it reduces to

d

dλ
V µ + Γµσρ

dxσ

λ
V ρ = 0 (4.12)

Because of metric compatibility, the metric is always parallel transported

D

Dλ
gµν =

dxσ

dλ
∇σgµν = 0 (4.13)
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It follows that if two vectors are parallel transported, so is their inner product W · V =
gµνW

µV µ and thus also orthogonality of vectors. And vice versa: preserving the inner
product during parallel transport along any curve implies metric compatibility

0 = ∇σ(gµνv
µvν) = (∇σgµν)vµvν (4.14)

as for parallel transport ∇σvµ = 0.

4.3 The Geodesic Equation

A geodesic is the analog of a straight line in flat space to a curved manifold. There are two
ways to generalise the straight line to a general manifold. A geodesic

1. is the path that parallel transports its own tangent vector, or

2. is the path that extremises its proper time.

Recall that in Minkowski space the proper time is maximal for a straight line, hence the
second definition.

The first definition gives a straightforward equation for the geodesic. The tangent vector
to a path xµ(λ) is dxµ/dλ so we require D/Dλ(dxµ/dλ) = 0 or the Geodesic Equation

d2xµ

dλ2
+ Γµρσ

dxρ

dλ

dxσ

dλ
= 0 (4.15)

For the second definition, we have to maximise the proper time (2.5)

∆τ =

∫ √
−gµν

dxµ

dλ

dxν

dλ
dλ (4.16)

The way to do this is to write this as δτ =
∫
δ
(√
−f)dλ− = −1

2

∫
(−f)−1/2δfdλ and

then notice that if we choose for λ a specific parameter, the proper time itself, the f =
gµνU

µUν = −1 and so we need to find the extremum of

I =

∫
gµν

dxµ

dτ

dxν

dτ
dτ (4.17)

We now vary xµ → xµ + δxµ and gµν → gµν + (∂σgµν)δxσ and a bit of algebra then gives
the equation

d2xµ

dτ2
+

1

2
gµλ (∂σgλρ + ∂ρgλσ − ∂λgρσ)

dxρ

dτ

dxσ

dτ
= 0 (4.18)
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This is equivalent to the first definition provided the connection is the Christoffel connection,
i.e. provided we have metric compatibility. This motivates that restriction.

Note that using the variational principle on (4.17) is a convenient way to calculate the
connections as there is no point in having to work out in detail all the connections that are
zero.

4.4 Properties of Geodesics

1. Geodesics describe the paths of unaccelerated Test Particles, i.e. particles that
do not influence the geometry of spacetime. Whilst this is never true, this is often
a very good approximation. One can also add forces, e.g. the Lorentz force for
electromagnetism can be represented as

d2xµ

dτ2
+ Γµρσ

dxρ

dτ

dxσ

dτ
=

q

m
Fµν

dxν

dτ
(4.19)

2. The geodesic equation (4.15) contains the arbitrary parameter λ, whilst (4.18) used
the proper time τ . A transformation of the proper time

τ → λ = aτ + b (4.20)

leaves (4.18) invariant. Any parameter λ related in such a way to the proper time τ is
called an Affine Parameter and can be used as a proper time for the geodesic. The
geodesic equation (4.15) seems to have a more general parameter λ, but that is not
really the case. Requiring the tangent vector to be parallel transported constrains the
parametrisation of the curve: the initial conditions of the parallel transport not only
determine the geodesic, but also, up to an affine transformation, the parametrisation
of the path. One can use a more general parametrisation, but then the geodesic
equation will be more complicated.

3. For a timelike particle, we can rewrite the geodesic equation using the velocity Uµ =
dxµ/dτ or momentum pµ = mUµ as

Uµ∇µUν = pµ∇µpν = 0 (4.21)

This shows that free falling test particles keep moving in the direction of their mo-
mentum.

4. For a null path the proper time does not exist, but we can always use a parameter λ,
e.g. such that pµ = dxµ/dλ is the momentum of the massless particle. An observer
with velocity Uµ will then measure the energy of the particle to be
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E = −pµUµ (4.22)

In order to show this, first go to the rest frame of the observer so that Uµ =
(1, 0, 0, 0) and then take locally inertial coordinates gµν = ηµν . As E is a scalar under
coordinate transformation, this results holds in any frame.

5. Because parallel transport preserves the inner product and ds2 is an inner product, a
timelike geodesic will always remain timelike and similarly for a lightlike or spacelike
geodesic.

6. Let us explain the observation that timelike geodesics are maxima for the proper
time. Any timelike geodesic can be approximated by "jagged" lightlike curves. Indeed
at a given point of the geodesic, just take a lightlike curve, i.e. on the boundary of
the lightcone. At the next spacetime point take again a lightlike curve that goes back
to the original path. This is illustrated in fig. 4.1.

Figure 4.1: Approximating a timelike by a lightlike path

We can clearly approximate the timelike curve by a lightlike curve to any accuracy
desired. So timelike curves cannot be curves of minimum proper time as they can be
approximated by curves with less, in fact zero, proper time. Thus timelike geodesics
are necessarily curves of maximum proper time.

7. The geodesic equation can be derived in heuristic way from classical mechanics using
Einstein’s Equivalence principle, that in a small enough region the laws of special
relativity are valid. In order to make them valid we just have to write these equations
in tensorial form. In classical mechanics a particle in free fall satisfies d2xµ/dλ2 = 0
where λ parametrises the path. To make this a tensorial equation we use Leibniz and
then change the partial by a covariant derivative

0 =
d2xµ

dλ2
=
dxν

dλ
∂ν
dxµ

dλ
−→ 0 =

dxν

dλ
∇ν

dxµ

dλ
=
d2xµ

dλ2
+ Γµρσ

dxρ

dλ

dxσ

dλ
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which gives the geodesic equation.

4.5 Riemann Normal Coordinates

Using geodesics we can now construct explicitly a set of local inertial coordinates. We will
construct these using the Exponential Map, which is a map from the tangent space TpM
of a point of a manifold to a region of the manifold that contains the point p.

In order to do this consider a vector k ∈ TpM . We want to solve the geodesic equation
with the initial conditions

xµ(λ)
∣∣∣
λ=0

= p and
dxµ(λ)

dλ

∣∣∣
λ=0

= kµ (4.23)

The geodesic is a second order differential equation and so these initial conditions determine
a unique geodesic through p. We now define a specific point on that geodesic, the point
where λ = 1 and define the Exponential Map as

expp(k) = xµ(λ)
∣∣∣
λ=1

(4.24)

It is a map from the Tangent space TpM at the point p to a point of the manifold, expp :
TpM →M . In words, it takes a tangent vector, uses that as initial condition for a geodesic
and then takes a point on the geodesic with λ = 1.

This exponential map is not always invertible. Indeed different tangent vectors will give
different geodesics that may eventually cross, making the map non-invertible. Obviously
the range of the map is not necessarily the who manifold as from a given point of the
manifold there is no reason that you should be able to go to all the other points of the
manifold via a geodesic. Also the domain of the map is not necessarily the whole tangent
space because a geodesic may reach a singularity of the manifold – some kind of edge
– and we cannot take the geodesic at λ = 1. Manifolds with such singularities are called
Geodesically Incomplete.

Using the exponential map we can now build locally inertial coordinates. We take a basis
of the tangent space TpM and make it orthonormal under the metric g(·, ·). I.e. the basis
e(µ) satisfies

gµ̂ν̂ = g(e(µ̂), e(ν̂)) = ηµ̂ν̂ (4.25)

Let us now find a coordinate system xµ̂ at the point p so that the basis of the tangent space
at that point is the coordinate basis e(µ̂) = ∂µ̂ and the partial derivatives of gµ̂ν̂ vanish.

This is achieved by the exponential map. Any point q close enough to p is linked by a
geodesic from p and a unique parametrisation such that at p we have λ = 0 and at q we
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have λ = 1. The tangent vector kµ at p for this geodesics can be expanded in terms of the
basis k = kµ̂e(µ̂). We now define the coordinates xµ̂ to be the components xµ̂(q) = kµ.

In words, we define the coordinates of a nearby point q to be the components (in the
normalised basis {e(µ̂)}) of the the tangent vector kµ̂ that gets mapped by the exponential
map to q.

These coordinates are called Riemann Normal Coordinates and are locally inertial
coordinates, Indeed, we already know from (4.25) that the metric is the flat metric, all we
need to show is that the partial derivative of the metric vanishes.

In order to do so, first note that if expp(k) = xµ(λ)
∣∣
λ=1

then xµ is equally well a
geodesic map for the tangent vector λkµ. So a curve of the form xµ̂ = λkµ is also a
solution of the geodesic equation. In fact, every geodesic through p is of that form for
some kµ̂. But as kµ̂ is independent of λ we have

d2xµ̂

dλ2
= 0 (4.26)

As xµ̂ satisfies the geodesic equation in p this implies that

d2xµ̂

dλ2

∣∣∣
p

= −Γµ̂ρ̂σ̂
dxρ̂

dλ

dxσ̂

dλ

∣∣∣
p

= −Γµ̂ρ̂σ̂k
ρ̂kσ̂
∣∣∣
p

(4.27)

Since this holds for arbitrary k we find that Γµ̂ρ̂σ̂
∣∣
p

= 0. All that remains to be done is use
the metric compatibility

0 = ∇σ̂gµ̂ν̂
∣∣∣
p

= ∂gµ̂ν̂

∣∣∣
p

(4.28)

as the connections are zero at p. Hence the partial derivative of the metric evaluated at the
point p vanishes and the Riemann normal coordinates are indeed locally inertial coordinates.

Given a set of coordinates xµ with connections Γσµν one go to Riemann normal coordi-
nates at the point P with coordinates xµ∗ by the coordinate transformation

yµ(x) =
∂yµ

∂xν

∣∣∣
x∗

[
(xµ − xµ∗ ) +

1

2
Γµνσ(xµ − xν∗)(xµ − xσ∗ ) + o

(
(x− x∗)2

)]
(4.29)

4.6 About the Conservation of Energy in General Relativity

Somewhat surprisingly, maybe, energy is not conserved in general relativity. A toy model
will show this. Consider four dimensional Lorentzian spacetime with flat but expanding



General Relativity 19

space, i.e with metric

ds2 = −dt2 + a2(t)δijdx
idxj (4.30)

The energy-momentum tensor (2.14) in a curved manifold is

Tµν = (ρ+ p)UµUν + pgµν (4.31)

The energy is given by the space integral of the 00 component

E =

∫
ρa3d3x (4.32)

where the boundaries of the integration are at fixed co-moving coordinates, so the region
expands with the coordinates and the a3 =

√
−det gµν . This number is not conserved for

general a. We can check this for the three equations of state in (2.15).

1. Dust: ρ ∝ a−3 ⇒ Edust ∝
∫
d3x = constant. Dust is essentially matter; the number

of particles remains constant and the energy is essentially the rest mass of the
particles. It should remain constant.

2. Radiation: ρ ∝ a−4 ⇒ Eradiation ∝
∫
a−1d3x ∝ a−1. The energy is not constant, but

is inversely proportional to the the expansion coefficient. This is also to be expected
as in an expanding universe the wavelength of radiation changes which gives an extra
factor of a−1 compared to matter.

3. Vacuum: ρ = constant⇒ Evacuum ∝
∫
a3d3x ∝ a3. The vacuum is a constant energy

density and so it grows as space expands.

Two comments are in order. First the non-conservation of energy does mot invali-
date Noether’s theorem. Symmetry under spacetime translations still implies a conserved
current ∇µTµν = 0. Second, the non-conservation of energy clearly follows because the
space background changes with time. There is thus a priori no reason to assume energy
would be conserved. Mathematically this is a consequence of the fact that there is no
timelike Killing vector, as we will see later.

4.7 Curvature

Curvature can be measured in different ways. One way expresses how a vector, when
parallel transported around a closed loop does not revert to itself. We will express this with
the commutator of covariant derivatives. On a vector we have

[∇µ,∇ν ]V ρ = RρσµνV
σ − T λµν∇λV ρ (4.33)

where the Riemann Tensor is defined by
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Rρσµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνρ − ΓρνλΓλµρ (4.34)

and the Torsion Tensor

T λµν = Γλµν − Γλνµ (4.35)

which, clearly vanishes in torsion free theories. Some points to note :

1. Both the Riemann tensor and the torsion tensors are actually tensors.

2. We defined these for a generic connection, but they are, of course, equally valued
for Christoffel connections. This is the only case we will consider henceforth.

3. This definition can be easily extended to general tensors

[∇ρ,∇σ]Xµ1···µk
ν1···ν` = − T λρσ∇λXµ1···µk

ν1···ν`

+Rµ1

λρσX
λµ2···µk

ν1···ν` + · · ·+RµkλρσX
µ1···µk−1λ

ν1···ν`

−Rλν1ρσX
µ1···µk

λν2···ν` − · · · −R
λ
νkρσ

Xµ1···µk
ν1···ν`−1λ

(4.36)

4. The torsion and curvature can also be expressed as vector fields. Denote by X(M)
the vector fields over the manifoldsM . The torsion is then a map of X(M)⊗X(M)→
X :

T (X,Y ) = ∇XY −∇YX − [X,Y ] (4.37)

where ∇X = Xµ∇µ is the covariant derivative along the vector field X . Note that in
components this becomes

[T (X,Y )]µ∂µ = Xµ∇µY ν∂ν − Y µ∇µXν∂ν − (Xµ∂µY
ν∂ν − Y µ∂µX

ν) (4.38)

with the covariant and partial derivatives acting on everything to their right. We then
set [T (X,Y )]µ = TµλρX

λY ρ and one recovers the earlier definition of the torsion.
Similarly the curvature is a map X(M)⊗ X(M)⊗ X(M)→ X :

R(X,Y, Z) = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z (4.39)

In components we would get [R(X,Y, Z)]µ = RµρσλX
ρY σZλ.

5. If there exists a coordinate system in a simply connected region of a manifold where
the metric is constant, then the Riemann tensor will vanish in that region and vice
versa.



General Relativity 21

6. Properties of the curvature tensor

Rρσµν = gρλR
λ
σµν (4.40)

(a) Symmetry properties

Rρσµν = −Rσρµν
Rρσµν = −Rρσνµ
Rρσµν = +Rµνρσ

Rρσµν +Rρµνσ +Rρνσµ = 0

Rρ[σµν] = 0 (4.41)

As a result the curvature tensor has

1

12
d2(d2 − 1) independent components (4.42)

Note that in one dimension there is no curvature tensor. This means that a line
cannot have a curvature. This also mean that a torus, which is topologically
equivalent to S1×S1 has no curvature. In 2, 3 and 4 dimensions there are 1, 6,
and 20 independent components respectively.

(b) Bianchi Identity

∇[λRρσ]µν = 0 (4.43)

This is related the the Jacobi identity of the covariant derivatives.

7. The Ricci Tensor is the symmetric tensor defined by

Rµν = Rλµλν (4.44)

8. The Ricci Scalar or Curvature is defined as

R = gµνRµν (4.45)

9. The Weyl Tensor or Conformal Tensor is defined by
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Cρσµν = Rρσµν −
2

d− 2

(
gρ[µRν]σ − gσ[µRν]ρ

)
+

2

(d− 1)(d− 2)
gρ[µgν]σR (4.46)

and is only defined in three or more dimensions. In three dimensions it vanishes
identically. It has the following properties

(a) Symmetry properties

Cρσµν =C[ρσ][µν]

Cρσµν =Cµνρσ

Cρ[σµν] = 0 (4.47)

(b) It is invariant under Conformal Transformations gµν(x)→ w2(x)gµν(x).

10. The Einstein Tensor is defined as

Gµν = Rµν −
1

2
Rgµν (4.48)

and satisfies

∇µGµν = 0 (4.49)

11. Finally, we mention the Kretschmann Invariant which is quadratic in the curvature
and is defined as

K = RµνρσRµνρσ (4.50)

4.8 Geodesic Deviation

Consider a set of geodesics γs(t) on a manifold M . Here t is the affine parameter of a
given geodesic and s ∈ R is a parameter describing the different geodesics. Together these
parameters describe a surface of points xµ(s, t) on M . They provide a coordinate system
for that surface provided the geodesics do not cross.

We can now define two vector fields. The vector field tangent to the geodesics Tµ and
the deviation vectors Sµ

Tµ =
∂xµ

∂t
and Sµ =

∂xµ

∂s
(4.51)
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Thinking that Sµ is pointing from one geodesic to another, we can introduce a relative
velocity and relative acceleration of geodesics

V µ = (∇TS)µ = T σ∇σSµ and Aµ = (∇TV )µ = T σ∇σV µ (4.52)

S and T are just basis vectors in a coordinate system, so [S, T ] = 0. Using [S, T ]µ =
Sν∂νT

µ − T ν∂νSµ this implies that Sν∇νTµ = T ν∇νSµ. Using this it follows after some
algebra that we can write the acceleration as

Aµ =
D2Sµ

dt2
= RµνρσT

νT ρSσ (4.53)

This is the Geodesic Deviation Equation. It says that the relative acceleration between
two geodesics, i.e. how they move apart, is proportional with the curvature tensor. The
physical interpretation is to consider several adjacent geodesics, e.g. from a beam of
photon of particles, and see how the gravitational forces affect that bundle.
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Chapter 5

Symmetries

5.1 The Killing Equations and Killing Vectors

In order to find the solution for a metric on a generic manifold, it is, as always, useful
to know its symmetries. The symmetries of a metric are known as Isometries and they
follow from the Killing equations

∇µKν +∇νKµ = 0 (5.1)

where the vector fields K are known as the Killing Vectors. The Killing equation implies
that Kµp

µ is conserved along geodesics

pν∇ν(Kµp
µ) = 0 (5.2)

We can rewrite the Killing equations (5.1) as

gµσ∂νK
σ + gνσ∂µK

σ + (∂σgµν)Kσ = 0 (5.3)

which is often the most convenient way to calculate the Killing vectors.

Let us consider two examples

1. Assume the metric is independent of one specific component, say component xκ,
where κ is a fixed, specific index. So ∂κgµν = 0 for all µ and ν. Let is see what this
means for a timelike geodesic. Take the form (4.21), i.e. pµ∇µpν = 0. Use metric
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compatibility to write this as pµ∇µpν = 0 and write it out

0 = pµ∂µpν − pµΓλµνpλ

=m
dxµ

dτ
∂µpν −

1

2
gλσ(∂µgσν + ∂νgσµ − ∂σgµν)pµpλ

=m
dpν
dτ
− 1

2
(∂µgσν + ∂νgσµ − ∂σgµν)pµpσ

=m
dpν
dτ
− 1

2
(∂νgσµ)pµpσ (5.4)

Now set ν = κ and use that ∂κgµν = 0 to find that pκ is conserved:

dpκ
dτ

= 0 (5.5)

The conserved vector Kµp
µ = Kµpµ thus has Kµ = δµκ and the Killing vector is

Kµ∂µ = ∂κ. We can write the conservation law (5.2) as

0 = pν∇ν(Kµpµ) = pν∇ν(δµκpµ) = pν∇νpκ (5.6)

which we just showed does indeed corresponds to pκ being conserved. Let us now
show that the Killing equation is satisfied. We rewrite the conservation equation as

0 = pν∇ν(Kµpµ) = pνKµ∇νpµ + pνpµ∇νKµ = pνpµ∇νKµ (5.7)

We have used the geodesic equation pµ∇µpν = 0 and the metric compatibility con-
dition. Symmetrising we find that indeed ∇(µKν) = 0.

From this we find that if a metric is independent of the time coordinate then Kt = ∂t
is a Killing vector, and if the metric has cylindrical symmetry, i.e. is independent of
φ then Kφ = ∂φ is a Killing vectors. These are, of course, related to energy and
angular momentum as we will soon see.

2. Consider R3 with metric ds2 = δijdx
idxj = dx2 + dy2 + dz2. Clearly the metric is

invariant under translations xi → xi + δxi. The corresponding vector fields are the
generators of translations ∂/∂xi, and so we already have three Killing vectors

Xµ = (1, 0, 0); Y µ = (0, 1, 0) and Zµ = (0, 0, 1) (5.8)

In order to find the other Killing vectors we rewrite the metric in spherical coordinates
ds2 = dr2 +r2dθ2 +r2 sin2 θdφ2. This metric is independent of φ and so φ→ φ+δφ is
an isometry. This is a rotation around the z-axis and the corresponding vector field
is R = −y∂x +x∂y . By symmetry we have similar Killing vectors for rotations around
the y an x axis and so we have three Killing vectors

Rµ = (−y, x, 0); Sµ = (z, 0,−x) and Tµ = (0, z,−x) (5.9)
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Let us check that these satisfy the Killing equations. The manifold is flat so the
connections are zero and the Killing equations are simply ∂iKj + ∂jKi = 0. Clearly
Xµ, Y µ and Zµ satisfy this as they are independent of the coordinates. Let check
this for the remaining Killing vectors it suffices to do one of them by symmetry

∂xRx + ∂xRx = 2∂x(−y) = 0

∂xRy + ∂yRx = ∂xx+ ∂y(−y) = 0

∂yRz + ∂zRy = ∂y0 + ∂zx = 0 (5.10)

We have thus six Killing vectors and recovered the symmetry group of R3, i.e. SO(3)×
T3.

5.1 Properties of Killing Vectors

1. Killing vectors are in one-to-one correspondence with symmetries of the metric, i.e.
with isometries, and imply conserved quantities along geodesics.

2. The Killing equation can be generalised to tensors and this again leads to conserved
quantities

∇(µKν1···ν`) = 0 ⇒ pµ∇µ (Kν1···ν`p
ν1 · · · pν`) = 0 (5.11)

3. Killing vectors can be related to the curvature.1

1For illustration purposes, we prove the first equation here. From the definition of the curva-
ture [∇ρ,∇µ]Kσ = RσλρµK

λ we get by contracting with gσν and using metric compatibility, the
symmetry properties of the curvature tensor

[∇ρ,∇µ]Kσ = RσλρµK
λ = −RλσρµKλ = −RλσρµKλ

Using the Killing equation we rewrite this as

∇ρ∇µKσ +∇µ∇σKρ = −RνσρµKν

We now rewrite this two more times with different indices

∇µ∇σKρ +∇σ∇ρKµ = −RνρµσKν

∇σ∇ρKµ +∇ρ∇µKσ = −RνµσρKν

Now take (1) + (2)− (3) and use the one but last equation in (4.41)

2∇µ∇σKρ = −(Rνσρµ +Rνρµσ −Rνµσρ)Kν = 2RνµσρKν = 2RρσµνK
ν

Raising the index ρ gives the desired result.
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∇µ∇σKρ =RρσµνK
µ

∇µ∇σKµ =RσνK
ν

Kµ∇µR = 0 (5.12)

The last equation tells us that the directional derivative of the curvature along a Killing
vector vanishes, and thus that the geometry of the manifold is unchanged along such
a vector field.

4. The existence of a timelike Killing vector allows us to define a conserved energy for
the entire spacetime. If Kν is a Killing vector and Tµν is the energy-momentum
tensor, then JµT = KνT

µν is automatically conserved. Now, if Kν is timelike then we
can integrate over a spacelike hypersurface Σ to define a total energy

ET =

∫
Σ
JµT nµ

√
γ dd−1x (5.13)

where γij is the induced metric on Σ and nν is the normal to Σ. It is possible to
show that ET is independent of the hypersurface and hence conserved.

5.2 Maximally Symmetric Spaces

The "flattest" space in d dimensions is Euclidean or Minkowski, depending on the signature.
This space has d translation symmetries and 1

2d(d − 1) rotation and/or boost symmetries
for a total of 1

2d(d+1) symmetries, i.e. Killing vectors. This is the maximal number of Killing
vectors and hence symmetries any manifold can have. A space with this maximum number
of Killing vectors is called a Maximally Symmetric Space.

We can think of the 1
2d(d + 1) symmetries of such a manifold as 1

2d(d − 1) rotations
around a fixed point, and d "translations" that move the point around the manifold.

A maximally symmetric space has constant curvature and is thus fully characterised by

1. the dimension of the manifold

2. the signature of the metric

3. the sign of the curvature: positive, zero or negative

4. possible discrete topological characteristics, such as the number of holes of an n-
torus
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As the curvature is the same at all points of the manifold, so should the curvature
tensor "look" the same at all points. In locally inertial coordinates, this is up to Lorentz
transformations and the curvature tensor should be build from invariants. In order to satisfy
all symmetry properties of the curvature tensor we need to have Rρ̂σ̂µ̂ν̂ ∝ gρ̂µ̂gσ̂ν̂ − gρ̂ν̂gσ̂µ̂.
This is a tensorial relation so it should be valid in any reference frame. Working out the
proportionality constant gives in a maximally symmetric space that

Rρσµν =
R

d(d− 1)
(gρµgσν − gρνgσµ) (5.14)

Assuming Euclidean or Lorentzian signature we then have different spaces depending
on the sign of the curvature

R < 0 R > 0

(+ + · · ·+)

Eucildean

(−+ · · ·+)
Lorentzian

Lobachevski

anti-de Sitter
(AdS)

sphere

de Sitter
(dS)

Figure 5.1: Maximally symmetric spaces

Definitions of de Sitter and Anti-de Sitter spaces will follow later.

5.3 Some Simple Examples

At this point it may be useful to work out some examples in detail.

The Two-Sphere

The Metric, Connection and Curvature
Let us work out a simple example as an illustration. The two-sphere S2 can be defined
by its embedding in R3 as satisfying x2 + y2 + z2 = R2. Without loss of generality we set
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R = 1. Using spherical coordinates

x = sin θ cosϕ

y = sin θ sinϕ

z = cos θ (5.15)

we find for de invariant line element

ds2 = dx2 + dy2 + dz2 = dθ2 + sin2 θdϕ2 (5.16)

Thus the non-zero elements of the metric are

gθθ = 1 and gϕϕ = sin2 θ (5.17)

The non-zero elements of the inverse metric are thus

gθθ = 1 and gϕϕ = sin−2 θ (5.18)

This gives for the non-zero components of the connection

Γθϕϕ = − sin θ cos θ and Γϕθϕ = Γϕϕθ = cot θ (5.19)

There are only two non-zero components of the curvature tensor (up to symmetries)

Rθϕθϕ = −Rθϕϕθ = sin2 θ and Rϕθϕθ = −Rϕθθϕ = 1 (5.20)

and of the Ricci tensor

Rθθ = 1 and Rϕϕ = sin2 θ (5.21)

This gives a constant for the curvature

R = 2 (5.22)

which agrees with our understanding that the two-sphere has constant positive curvature.
The Geodesic Equation and the Great Circles
Next we turn to the geodesic equations

0 = θ̈ − sin θ cos θ ϕ̇2

0 = ϕ̈+ 2 cot θ θ̇ϕ̇ (5.23)

where θ̇ = dθ/dλ etc. Let us show that these geodesic equations lead to the great circle
lines. We set up our coordinate system that the initial condition corresponds to a vector



General Relativity 31

at the north pole in the x-direction. This allows us to write the initial conditions at λ = 0 as
θ = ϕ = ϕ̇ = 0 and θ̇ = 1. Using the geodesic equations it is straightforward to show that

d

dλ
(θ̇2 + sin2 θϕ̇2) = 0 (5.24)

Using the initial conditions this implies that

θ̇2 + sin2 θϕ̇2 = 1 (5.25)

As θ = 0 and θ̇ = 1 we can’t have θ ≡ 0 everywhere. So we can solve this for ϕ̇ as

ϕ̇2 =
1− θ̇2

sin2 θ
(5.26)

Using this in the first geodesic equation gives

θ̈ − cot θ(1− θ̇2) = 0 (5.27)

This is an ordinary differential equation that we can solve as follow. Write

θ̈ =
dθ̇

dλ
=
dθ

dλ

dθ̇

dθ
=

1

2

dθ̇2

dθ
(5.28)

which allows us to write (5.27) as

−d(1− θ̇2)

1− θ̇2
= 2

cos θ

sin θ
dθ = 2

d sin θ

sin θ
(5.29)

or

d ln
[
(1− θ̇2) sin2 θ

]
= 0 (5.30)

and using the initial conditions

(1− θ̇2) sin2 θ = 0 (5.31)

As we have already seen we can’t have θ ≡ 0 everywhere and the same holds for sin θ.
Thus we conclude that θ̇2 = 1 or θ̇ = ±1. Using the initial conditions we find that θ = λ.

Using this we find that the second geodesic equation reduces to

ϕ̈+ 2 cotλ ϕ̇ = 0 (5.32)
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Clearly ϕ̇ = 0 is a solution of this equation. Using the initial conditions this gives a solution
φ = φ̇ = 0. Let us now assume that there is another solution φ(λ) that has φ̇ 6= 0. The
previous equation can then be written as

dϕ̇

ϕ̇
= −2

cosλ

sinλ
dλ = −2

d sinλ

sinλ
(5.33)

or

d[ln
(
ϕ̇ sin2 λ

)
] = 0 (5.34)

Again using the initial conditions this implies that

ϕ̇ sin2 λ = 0 (5.35)

But λ is just parameter, so sinλ is certainly not everywhere zero. So we conclude that
ϕ̇ = 0 which is a contradiction with our assumption. Thus there cannot be a solution with
ϕ̇ 6= 0.

We conclude that in that reference frame, the only solution to the geodesic equations
is

θ = λ and ϕ = 0 (5.36)

which is indeed a great circle.

The Killing Vectors
Let us work out the symmetries of S2 by establishing its Killing vectors. The metric is

ds2 = dθ2 + sin2 θdϕ2. As S2 is just all the points in R3 at unit distance from we can just
take the rotational Killing vectors (5.9). In spherical coordinates

R = ∂φ; S = cosϕ∂θ − cot θ sinϕ∂ϕ; T = − sinϕ∂θ − cot θ cosϕ∂ϕ (5.37)

and the isometry group of S2 is SO(3).

It is useful to deduce these from the Killing equations. We use the form (5.3)

gµσ∂νK
σ + gνσ∂µK

σ + (∂σgµν)Kσ (5.38)

It is straightforward to work this out

0 = ∂θk
θ

0 = cos θkθ + sin θ∂ϕk
ϕ

0 = ∂ϕk
θ + sin2 θ∂θk

ϕ (5.39)

and one easily checks that the three Killing vectors (5.37) satisfy these equations.
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The Three-Sphere

The metric is

ds2 = dψ2 + sin2 ψdθ2 + sin2 ψ sin2 θdϕ2 (5.40)

The non-zero Christoffel connections are, up to symmetries

Γθθψ = − cosψ sinψ

Γϕϕψ = − cosψ sinψ sin2 θ

Γθϕθ = cotψ

Γϕϕθ = − cos θ sin θ

Γψϕϕ = cotψ

Γθϕϕ = cot θ (5.41)

The non-zero components of the curvature tensor are, up to symmetries

Rψθψθ = sin2 ψ

Rψϕψϕ = sin2 ψ sin2 θ

Rθϕϕψ = − sin2 ψ sin2 θ

Rϕθθϕ = − sin2 ψ (5.42)

The non-zero components of the Ricci tensor are, up to symmetries

Rθθ = 2 sin2 ψ

Rϕϕ = 2 sin2 ψ sin2 θ (5.43)

and the curvature is constant

R = 6 (5.44)
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Chapter 6

Anti-de Sitter Spacetime

6.1 introduction

Anti-de Sitter, or AdS for short, spacetime seem to play an ever increasing important role
in theoretical physics. Indeed it is one the legs of the AdS/CFT Correspondence , which
conjectures an equivalence between gravity in AdS space and N = 4 super Yang-Mills
theory. This has then lead to the so-called Holographic Principle states that certain d+ 1
dimensional field theories can be described by theories on de boundary of a d dimensional
theory. This then has lead to the speculation by L. Susskind that "the three-dimensional
world of ordinary experience – the universe filled with galaxies, stars, planets, houses, boul-
ders, and people – is a hologram, an image of reality cited on a distant two-dimensional
(2D) surface". More recently, the holographic principle seems to have surfaced (pun in-
tended) in a large and varied number of branches of physics and has become one of the
hot research topics.

Whilst the ADS/CFT correspondence is still very far from real life applications, it provides
a good motivation to spend some time studying AdS spacetime.

6.2 Definition

(d+ 1)- dimensional Anti-de Sitter spacetime or AdSd+1 is the hypersurface embedded
in (d+ 2)-Minkowski spacetime with a (2, d) signature, i.e. metric

ds2 = −(dX0)2 +

d∑
i=1

(dXi)2 − (dXd+1)2 = ηMNdX
MdXN (6.1)

that satisfies

35
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ηMNX
MXN = −(X0)2 +

d∑
i=1

(Xi)2 − (Xd+1)2 = −L2 (6.2)

where L is the radius of curvature of AdS.

AdSd+1 has an O(2, d) isometry and so (d+ 1)(d+ 2)/2 Killing vectors. It is therefore
maximally symmetric.

6.3 The Boundary of AdS

For very large XM we can set L ≈ 0 and then we approach a boundary that is a light-cone

ηMNX
MXN = −(X0)2 +

d∑
i=1

(Xi)2 − (Xd+1)2 = 0 (6.3)

We can write this boundary as

∂AdSd+1 =
{

[X]|X ∈ R2,d, X 6= 0, ηMNX
MXN = 0

}
(6.4)

Where [X] means that we identify X ≡ λX for λ ∈ R.

Let us take a point on the boundary of AdS that satisfies
∑d

i=1(Xi)2 = 1. Being on the
boundary then implies that (X0)2 + (Xd+1)2 = 1. As X and −X give the same point on
the boundary, we thus have topologically that

∂AdSd+1 =
S1 × Sd−1

Z2
(6.5)

We can also view AdSd+1 as a compactification of d-dimensional Minkowski spacetime
as follows. Take a point X 6= 0 and define u± = Xd+1 ± Xd. The boundary condition
then becomes u+u− = ηµνX

µXν where µ, ν = 0, · · · , d− 1 is the d-dimensional Minkowski
metric. As long as u− 6= 0 we can rescale it to one. For a given point Xµ in d-dimensional
Minkowski spacetime, we can then simply solve this for u+. When u− = 0 , we need u+ =∞
and this thus adds points at infinity and so we have a compactification of d-dimensional
Minkowski spacetime.

6.4 Coordinate Systems

There are several useful coordinate systems to parametrise AdS.
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6.4 Poincaré Patch Coordinates

The Metric and the Curvature

The Poincaré Coordinates are given by

X0 =
L2

2r

[
1 +

r2

L4

(
~x2 − t2 + L2

)]
Xi =

rxi

L
(i = 1, · · · , d− 1)

Xd =
L2

2r

[
1 +

r2

L4

(
~x2 − t2 − L2

)]
Xd+1 =

rt

L
(6.6)

Here t, xi ∈ R and r ∈ R+. The metric becomes

ds2 =
L2

r2
dr2 +

r2

L2
(−dt2 + d~x2) =

L2

r2
dr2 +

r2

L2
ηµνdx

µdxν (6.7)

The non-zero connections are, up to symmetry.

−Γrrr = Γtrt = Γiri =
1

r
and Γrtt = −Γrii =

r3

L4
(6.8)

The non-zero components of the curvature tensor are, up to symmetries

Rrtrt = Rt iit = Rt iir = Ri tit = Rijji =
r2

L4
and Rt rrt = Rirr− =

1

r2
(6.9)

The non-zero components of the Ricci tensor are

Rrr = −d+ 1

r2
and Rtt = −Rrr =

(d+ 1)r2

L4
(6.10)

and the curvature is given by

R = −d(d+ 1)

L2
(6.11)

The curvature is negative so it is a Lorentzian hyperbolic space.

From (6.7) we see that we can view the Poincar’e patch of AdSd+1 as a flat Minkowski
space with d coordinates (t, ~x) and an "warped" coordinate r. With a little bit of imagination
this looks like
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r = 0r =∞

Figure 6.1: Poincar’e patch of AdSd+1

The Conformal Boundary

Note that the metric has poles at r = 0 and r =∞. Let us first consider the pole at r = 0.
This is a singularity due solely to the coordinate choice, as the curvature remains constant
and we could just extend the Poincaré patch from r > 0 to r < 0. The hypersurface at the
pole at r =∞ is called the Conformal Boundary.1

If we change coordinates r = 1/x0, with also x0 ∈ R+, then we can rewrite the metric
as

ds2 =
L2

x2
0

(
−dt2 + (dx0)2 + (d~x)2

)
(6.12)

From this we can see that the Poincaré metric does not cover the whole of AdSd+1 , and
so it is only a patch of that space. In order to see this, redefine x0 = Le−y to write the
metric as

ds2 = e2y
(
−dt2 + (d~x)2

)
+ L2dy2 (6.13)

Now y ∈ R. Consider now a light ray going to +∞ in the y-direction, hence to x0 = 0
and r = +∞, whilst ~x is held constant. This is lightlike so ds2 = 0 and from (6.13) we find

1It can be shown that any spacetime that is asymptotically AdS has a quadratic divergence at a
point r∗ in the radial direction. Here r∗ =∞.
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0 = −e2ydt2 + L2dy2. We can integrate this to find the time t∞ to go to infinity from, say
y = 0 at t = 0

t =

∫ t∞

0
dt = L

∫ +∞

0
e−ydy = L (6.14)

This is a finite number, so it takes only a finite time reach that boundary. But t is not finite
so the light ray can go further. It can "reflect" from the boundary and travel to another
part of the AdS spacetime. Thus the Poincaré coordinates only cover a patch of AdSd+1

and we should be able to find coordinates that cover the whole of it.

One way to traverse the boundary is by multiplying the metric by a positive smooth
function g(r, t, ~x) that has a second order zero at r = +∞. As an example take g =
(L2/r2)ω(t, ~x). In the limit r → +∞ the metric then becomes ds2 = ω(t, ~x)(−dt2 + d~x2)
and the singularity has gone. The metric of the bulk thus determines the metric on the
boundary. Different choices of ω(t, ~x) for the metric in the bulk, give different choices of
the metric on the boundary, but these are related by a conformal factor, i.e. an overall
multiplication of gµν . Metrics related by such a conformal factor are a class forming a
Conformal Structure. Because of this one sometimes refers to the boundary of AdS as
being conformal.

Whilst the isometry group of AdSd+1 is SO(2, d), the isometry group of the metric (6.7)
is only a subgroup of this, viz. ISO(d−1, 1)×SO(1, 1). Where ISO(d−1, 1) is the Poincaré
group acting on (t, ~x), i.e. on the conformal boundary of AdS, and SO(1, 1) ≡ U(1) acts
on the coordinates as (r, t, ~x)→ (λ−1r, λt, λ~x).

It can be shown that the other generators of SO(2, d) act on the conformal boundary
as the conformal group of Minkowski space and that, in particular the subgroup SO(1, 1)
corresponds to the dilations of the conformal group on R1,d−1.

Coordinate Systems Related to Poincaré Coordinates

The replacement z = L2/r gives the metric

ds2 =
L2

z2
(dz2 − dt2 + d~x2) =

L2

z2
(dz2 + ηµνdx

µdxν) (6.15)

and the conformal boundary now sits at z = 0.

Transforming z = e−r/L gives

ds2 = dr2 + L2e2r/Lηµνdx
µdxν) (6.16)
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The conformal boundary now sits at r →∞.

Transforming ρ = z2 gives

ds2 = L2

(
1

4ρ2
dρ2 +

1

ρ
ηµνdx

µdxν
)

(6.17)

This is known as the Fefferman-Graham Metric. The conformal boundary sits at ρ→ 0.

6.4 Global Coordinates

The Metric

Global coordinates for AdSd+1 are

X0 =L cosh ρ cos τ

Xd+1 =L cosh ρ sin τ

Xi =LΩi sinh ρ (i = 1, · · · , d) (6.18)

Here ρ ∈ R+, τ ∈ [0, 2π[ and Ωi are angular coordinates with
∑

i Ω2
i = 1, i.e. they

parametrise Sd−1. These coordinates are called, not surprisingly, Global Coordinates.

We can visualise AdS2 as follows. We have coordinates ρ, τ and Ω1. We extend ρ to
ρ ∈ R. AdS2 is then a hyperboloid that is rotated around its axis.

Figure 6.2: Visualisation of AdS2
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The corresponding metric is

ds2 = L2(− cosh2 ρ dτ2 + dρ2 + sinh2 ρ dΩ2
d−1) (6.19)

This metric is reminiscent2 of the metric on Sd−1.

The Boundary

In order to understand the boundary in terms of global coordinates, we change variable

sinh ρ = tan θ ⇒ cosh ρ =
1

cos θ
(6.20)

The metric becomes

ds2 =
L2

cos2 θ
(−dτ2 + dθ2 + sin2 θ dΩ2

d−1) (6.21)

This is known as the Einstein Static Universe R× Sd. But since θ ∈ [0, π/2[ we only
cover half of R× Sd. We can always rescale the metric to get rid of the pre-factor and
we can add the point θ = π/2, which corresponds to sinh ρ = +∞ and hence to Xi =∞,
i.e. spatial infinity. We can thus consider the metric

ds2 = −dτ2 + dθ2 + sin2 θ dΩ2
d−1, θ ∈ [0, π/2], τ ∈ [0, 2π[ (6.22)

The hypersurface θ = π/2 is a Cauchy surface, i.e. setting boundary conditions on it gives
a well-defined initial value problem on AdSd+1 .

6.4 Geodesics

The timelike coordinate τ is periodic and so AdSd+1 has closed timelike curves. One can
avoid these by taking τ ∈ R without identifying poits, This amounts to unwrapping the
timelike circle, i.e. taking the universal covering group of AdSd+1 .

Consider now a radially directed light ray starting at ρ = ρ0 wit time τ(ρ0) = 0. The
metric becomes 0 = − cosh2 ρdτ2 + dρ2 or dτ = dρ/ cosh ρ. This has as solution

τ = 2
(

arctan tanh
ρ

2
− arctan tanh

ρ0

2

)
(6.23)

2The metric on Sd−1 is

ds2 = R2(cos2 ρ dw2 + dρ2 + sin2 ρ dΩ2
d−1)

so AdS is obtained by the analytical continuation in θ.
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The time it takes light to go to infinity is a finite time.

τ(ρ =∞) =
π

2
− 2 arctan tanh

ρ0

2
(6.24)

For a massive particle the path is given by

ρ(τ) =
∣∣∣ arcsin[sin ρ0 cos(τ − τ0)]

∣∣∣ (6.25)

The path is given below for ρ0 = 1 and τ0 = 0

2 4 6 8 10 12 14
α

0.2

0.4

0.6

0.8

1.0

ρ

Figure 6.3: Radial path of massive particle in AdS

The particle oscillates and never reaches the boundary.



Chapter 7

Einstein’s Equations

7.1 Introduction

In classical mechanics, the equations for a body in a gravitational field are

1. Newton’s second law a = −∇Φ

2. with the gravitational potential derived from the Poisson equation ∇2Φ = 4πGρ, with
ρ the mass density and G Newton’s constant.

Our goal is to find the corresponding equations in general relativity.

7.2 The Einstein Field Equations

The Einstein Field Equations or EFE for short are

Rµν −
1

2
Rgµν = 8πGTµν (7.1)

where G is Newton’s constant and Tµν is the energy-momentum tensor. Some remarks

1. The EFE relates the matter content of spacetime via Tµν with the behaviour of the
metric via the curvature.

2. Recall that Gµν = Rµν − 1
2Rgµν is the Einstein tensor so the EFE can be written as

Gµν = 8πGTµ.

3. The curvature tensor has terms that are second order derivatives of the metric,
so the EFE can be viewed as a generalisation of the Poisson equation for Newton’s
gravitational potential, ∇2Φ = 4πGρ.

4. Contract the EFE as R− d
2R = 8πGT , with T = gµνTµν . Hence

R = −16πG

d− 2
T (7.2)

43
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Plugging this back in the EFE gives

Rµν = 8πG

(
Tµν −

1

d− 2
ηµνT

)
(7.3)

Thus, in vacuum, Tµν = 0, the Ricci tensor vanishes

Rµν = 0 in vacuum (7.4)

5. A more naive form of the EFE could be Rµν ∝ Tµν but this gives a problem as
conservation of energy-momentum ∇µTµν = 0 would lead to ∇µRµν = 0. From
(4.49), i.e. ∇µGµν = 0 we then get that ∇µRµν = 1

2∇νR and form the naive field
equation we would get ∇Tµµ = ∂Tµµ = 0, as Tµµ is just a scalar. This would imply that
the trace of the energy-momentum tensor is constant through spacetime which we
have no reason to believe should be true.

6. In four dimensions, the EFE are 10 equations for the unknown components of the
Einstein tensor Gµν, which itself contains up to second partial derivatives of the
metric. We thus have 10 non-linear coupled second order partial differential equations
that determine the metric in terms of the matter sector. But the Einstein tensor
satisfies the Bianchi identity, ∇µGµν = 0, so we only have six independent PDEs.
The metric has 10 components but due to the required diffeomorphism under four
coordinate transformations, only six components are independent. This matches the
number of equations of the EFE. A similar reasoning holds, of course, in d dimensions.

7. The EFE relates the Ricci tensor, i.e. the traceless part of the curvature tensor, to
the matter sector. The remaining components of that curvature tensor are encoded
in the Weyl tensor. From the Bianchi identity and the EFE one can show that this
tensor satisfies, in four dimensions,

∇ρCρσµν = 8πG

(
∇[µTν]σ +

1

3
gσ[µ∇ν]T

)
(7.5)

This is sufficient to determine the six independent metric components

7.3 Newtonian Limit

Newtonian gravity is recovered in the limit of slowly moving particles in a static weak field.
Consider the perfect fluid energy-momentum tensor (2.14) with, as the particles are slow-
moving the pressure set to zero, so that most of the energy sits in the mass of the particles,
i.e. Tµν = ρUµUν . Let the fluid be some massive body, say the earth. In the rest frame
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of the massive body we have Uµ = (U0, 0, 0, 0). We can find U0 from the requirement that
−1 = gµνU

µUν . In the weak field limit we an expand to first order

gµν = ηµν + hµν ⇒ gµν = ηµν − hµν (7.6)

Thus

−1 = (−1 + h00)(U0)2 ⇒ U0 = (1− h00)−1/2 = 1 +
1

2
h00 (7.7)

In the rest frame,

U0 = g00U
0 = (−1 + h00)×

(
1 +

1

2
h00

)
= −1 +

1

2
h00 (7.8)

This gives

T00 = ρU0U0 = ρ×
(
−1 +

1

2
h00

)2

= ρ(1− h00) (7.9)

and thus

T = gµνTµν = g00T00 = (−1− h00)ρ(1− h00) = −ρ+ o(h2) (7.10)

as all other components of Tµν are zero in the rest frame. Use this with (7.2) to find

R =
16

d− 2
πρG+ o(h2) (7.11)

Now use all of this in the 00 component of the EFE

R00 −
1

2
(−1 + h00)

16

d− 2
πρG = 8πρG(1− h00) (7.12)

from which

R00 = 8πρG× d− 3

d− 2
× (1− h00) = 8πρG× d− 3

d− 2
(7.13)

where we have only kept the lowest order contribution.

Now R00 = Rj0j0 as R0
000 by antisymmetry. We need

Rj0j0 = ∂jΓ
j
00 − ∂0Γjj0 + ΓjjλΓλ00 − Γj0λΓλj0 (7.14)

The second term is zero because we are assuming a static universe. The last two terms
contain give a contribution of the order h2

00 and can be ignored. Thus

Rj0j0 = ∂jΓ
j
00 = ∂j

[
1

2
gjλ(2∂0gλ0 − ∂λg00)

]
= −1

2
∂j(g

jλ∂λg00) = −1

2
∂j∂

jg00

=− 1

2
∇2h00 (7.15)

This means that (7.13) becomes
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∇2h00 = −16πρG× d− 3

d− 2

d=4
= −8πρG (7.16)

If we associate h00 with the Newtonian gravitational potential by h00 = −2Φ then we recover
Poisson’s equation ∇2Φ = 4πGρ.

In order to justify this we use the generalisation of Newton’s second law, which is the
geodesic equation

d2xµ

dτ2
+ Γµρσ

dxρ

dτ

dxσ

dτ
= 0 (7.17)

where we are considering a massive particle and the parameter is the proper time. Slowly
moving particles implies that dxi/dt� 1 or hence dxi/dτ � dt/dτ with x0 = t the classical
time. So all dxi/dτ can be neglected in the geodesic equation and we are left with

d2xµ

dτ2
+ Γµ00

dx0

dτ

dx0

dτ
= 0 (7.18)

Now, using the static assumption,

Γµ00 =
1

2
gµλ(2∂0g0λ − ∂λg00) = −1

2
gµλ∂λg00 = −1

2
ηµλ∂λh00 (7.19)

In the last equation we used the weak field assumption (7.6). The geodesic equation thus
becomes

d2xµ

dτ2
=

1

2
ηµλ∂λh00

dt

dτ

dt

dτ
(7.20)

The µ = 0 component reduces to d2t/dτ2 = 0, so that dt/dτ is constant and t is an affine
parameter. The space components are

d2xi

dτ2
=

1

2

(
dt

dτ

)2

∂ih00 ⇒ d2xi

dt2
=

1

2
∂ih00 (7.21)

This is Newton’s second law provided we indeed identify 1
2∂ih00 by −∂iΦ or h00 = −2Φ plus

an irrelevant constant. Note that this implies that

g00 = −(1 + 2Φ) = −
(

1− 2GM

r

)
(7.22)

with M the mass of the object causing the gravitational field.

The limit of general relativity of slowly moving bodies in a static weak field thus reduces
to Newtonian gravity.
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7.4 The High-Energy Limit of General Relativity

Using Planck’s constant ~, Newton’s gravitational constant G and the speed of light one
can construct four unique constants with dimensions of mass, length, time and energy
respectively

name symbol formula value
Planck mass mP (~c/G)1/2 2.18× 10−5 g
Planck length `P (~G/c3)1/2 1.62× 10−35 m
Planck time tP (~G/c5)1/2 5.39× 10−44 s

Planck energy EP (~c5/G)1/2 1.22× 1019 GeV

Even before we reach the value of these parameters we are well into the realm of
quantum theory, and it is still largely unclear how gravity changes in that realm, though
string theory gives us hopeful glimpses of that. Still, these values are a strong indication
that at these levels, something fundamental changes, possibly, if not likely, including a
breakdown of how we model spacetime.

7.5 The Einstein Equations from the Action Principle

The Einstein equations follow from the extremisation of the following action.

S =
1

16πG
SH + SM (7.23)

Where SH is the Einstein-Hilbert Action

SH =

∫
ddx
√
−g R (7.24)

and SM is the matter action, which depends on the fields under consideration.

Nowadays it is more fashionable to derive the EFEs from the action than to posit them
and check that they correspond to Newtonian gravity in the weak field limit. The require-
ments are then that the action is a scalar and contains at most two derivatives of the
metric. It turns out that there is only one such scalar, viz. the curvature R. Combining
with the invariant volume element ddx

√
−g gives the Einstein-Hilbert action.

The EFE follow most easily from the variation under the inverse metric gµν . This is
a rather lengthy calculation, but we can easily find its general form. We need δSH =∫
ddxKµνδg

µν for some tensor Kµν that contains not more than two derivatives of the
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metric. There are only two such tensors gµν which we can multiply by R and Rµν . Thus,
without doing any calculation we know that the EFE must be of the form a1Rµν+a2Rgµν = 0.
Contact this with gµν to get (a1 + da2)R = 0. Provided a1 + da2 6= 0, which turns out to be
the case, we see that R = 0 and hence Rµν = 0. So without any calculation we have found
that in vacuum the EFE are Rµν = 0!

Let us now do the detailed calculation as we will need the coefficients a1 and a2 if there is
matter involved. The detailed calculation has four different parts

1.
∫
ddx (δ

√
−g)Rµνg

µν . Use ln detM = tr lnM to find δ(detM) = detM trM−1δM
and therefore

δ
√
−g = −1

2

√
−g gµνδgµν (7.25)

2.
∫
ddx
√
−g(δRµν)gµν . Consider a general variation of a connection. This is the differ-

ence between two connections and hence transforms as a tensor, giving the standard
form for the covariant derivative ∇λ(δΓσµν) = · · · . One then readily finds that

δRρµλν = ∇λ(δΓρµν)−∇ν(δΓσλµ) (7.26)

which, amongst aficionados, is known as the Palatini identity. From this it follows that∫
ddx (δ

√
−g)Rµνg

µν =

∫
ddx
√
−g∇σ

(
gµνδΓσµν − gµσδΓνµν

)
=

∫
ddx
√
−g∇σ

[
gµν∇σ(δgµν)−∇µ(δgσµ)

]
(7.27)

where in the last equation we used the variation of the connection. From Stokes
theorem this reduces to a surface integral, and vanishes as long as the variation of
the metric and its first derivative banish at infinity.

3.
∫
ddx
√
−gRµνδgµν . Nothing needs to be done as this is in the desired form already.

4. δSM . We simply define the energy-momentum tensor as

Tµν = −2
1√
−g

δSM
δgµν

(7.28)

Bringing the four contributions together recovers the EFE. Some comments are in order

• We assumed that the variation of the metric and its first derivative vanish on the
boundary. This may not always be the case and so we must recognise the possibility
of boundary terms.
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• That Tµν is the energy-momentum tensor can be checked from e.g. scalar field
theory. The action in covariant form is

Sφ =

∫
ddx
√
−g

[
−1

2
gµν∇µφ∇νφ− V (φ)

]
(7.29)

This leads to the energy-momentum tensor

T (φ)
µν = ∇µφ∇νφ−

1

2
gµνg

ρσ∇ρφ∇σφ− gµνV (φ) (7.30)

which is, up to an allowed total derivative, equal to the canonical energy-momentum
tensor obtained by Noether’s theorem. This definition is however more convenient in
general as it automatically ensures symmetry and gauge invariance of the energy-
momentum tensor.

7.6 The Cosmological Constant

It is not unconceivable that spacetime has an isotropic and homogenous energy density.
This is a special form of the energy-momentum tensor

T (vac)
µν = −ρvacgµν (7.31)

Comparing to a perfect fluid Tµν = (ρ + p)UµUν + pηµν this corresponds to an isotropic
pressure pvac = ρvac and we can write the EFE as

Rµν −
1

2
Rgµν = −Λgµν + 8πGTµν (7.32)

where

Λ = 8πGρvac (7.33)

is the Cosmological Constant and now Tµν, excludes vacuum energy.

This form of the EFE can be obtained form the action

S =

∫
ddx
√
−g

[
1

16πG
(R− 2Λ) + LM

]
(7.34)

with LM the matter Lagrangian.

We can make a heuristic calculation of the value of the cosmological constant from
quantum field theory arguments. When quantised, the simple harmonic oscillator has zero-
point energy ~ω/2, with ω =

√
~k2 +m2 the frequency of each oscillator. If we go to
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field theory and sum over all oscillators, which becomes an integration over continuous
momenta, we get, in four dimensions, a vacuum energy proportional to ~

∫
d3k ωk =

~
∫
k2dk

√
~k2 +m2. Assuming our theory to be valid up to the Planck scale we can put

a cut-off on the integration and we get a cosmological constant of the order of ρvac = ~k4
P

with value

ρvac ≈
(
1018GeV

)4 ≈ 1072 GeV4 (7.35)

One can also put a bound on this vacuum energy from observations

|ρobs| ≤
(
10−12GeV

)4 ≈ 10−48 GeV4 (7.36)

That is discrepancy of the order of 10120 with our simple calculation. It is clear that the
simple calculation is to simple and that there can be plenty more contributions, a.o. from
other fields, but it is still a puzzle how these large values can combine to the observed
value.

7.7 Energy Conditions

When there are many different matter sectors present, it is useful to be able to make state-
ments based on general properties of the combined energy-momentum tensor. Energy
conditions are coordinate invariant restrictions on the energy-momentum tensor. These
are obtained by turning the energy-momentum tensor into a scalar by contracting it with
timelike (tµ) or lightlike (`µ) vectors. Physical intuition can be obtained by applying these
condition to a perfect fluid with

Tµν = (ρ+ p)UµUν + pηµν (7.37)

One usually considers five such conditions

1. The Weak Energy Condition or WEC requires

Tµν t
µtν ≥ 0 for all timelike vectors tµ (7.38)

This will be the case if TµνUµUν ≥ 0 and Tµν`µ`ν ≥ 0 for some lightlike vector `µ.1

Now go to in the rest frame of the perfect fluid with locally inertial coordinates we

1We first argue that any timelike vector tµ can be written as tµ = λUµ+`µ, with Uµ the velocity
vector and `µ a lightlike vector. Let us go to the rest frame of the perfect fluid so that Uµ = (1,0)
and t = tµt

µ. We need to show that it t < 0 we can always find a λ such that `µ is lightlike. So we
solve

0 = `µ`
µ = (tµ − λUµ)(tµ − λUµ) = t+ 2λt0 − λ2
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have

0 ≤ TµνUµUν = T00 = ρ (7.39)

and

0 ≤ Tµν`µ`ν = `20(T00 + T11) = `20(ρ+ p) (7.40)

These are inequalities on scalars so reference frame independent and we conclude
that the weak energy condition is equivalent to

ρ ≥ 0 and ρ+ p ≥ 0 (7.41)

The energy density should be non-negative and the pressure should not be too large
compared to the energy density. It is generally believed that these conditions are
satisfied for matter systems.

2. The Null Energy Condition or NEC requires

Tµν `
µ`ν ≥ 0 for all lightlike vectors `µ (7.42)

or equivalently

ρ+ p ≥ 0 (7.43)

It is a less restrictive version of the WEC: the energy density may be negative as
long as there is a compensating positive pressure.

3. The Dominant Energy Condition or DEC requires

Tµν t
µtν ≥ 0 for all timelike vectors `µ and Tµνtµ is non-spacelike (7.44)

For a perfect fluid this is equivalent to

This is a quadratic equation that has real solutions provided the discriminant is positive, i.e. 4t20+t ≥ 0.
This is the case as t20 + t = t20 − t20 + t2 ≥ 0. Now

Tµνt
µtν = λ2TµνU

µUν + Tµν`
µ`ν + 2λTµνU

µ`ν

which will be greater than zero if both inequalities in the main text are satisfied.
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ρ ≥ |p| (7.45)

the energy density is positive and not smaller than the absolute value of the pressure.

4. The Null Dominant Energy Condition or NDEC requires

Tµν `
µ`ν ≥ 0 for all ligthlike vectors `µ and Tµν`µ is non-spacelike (7.46)

For a perfect fluid this is equivalent to

ρ ≥ |p| (7.47)

just as for the DEC, but negative energy densities are allowed as long as p = −ρ.

5. The Strong Energy Condition or SEC requires

Tµν t
µtν ≥ 1

2
Tµµ t

νtν for all timelike vectors (7.48)

For a perfect fluid this is equivalent to

ρ+ p ≥ 0 and ρ+ 3p ≥ 0 (7.49)

Note that the SEC does not imply the WEC. It implies the WEC with very large neg-
ative pressures. It turns out that the SEC is responsible for gravity to be attractive.
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WEC
ρ ≥ 0 and ρ+ p ≥ 0

ρ

p

NEC
ρ+ p ≥ 0

ρ

p

DEC
ρ ≥ |p|

ρ

p

NDEC
ρ ≥ |p| or p = −ρ

ρ

p

SEC
ρ+ p ≥ and ρ+ 3p ≥ 0

ρ

p

w = p/ρ ≥ −1

ρ

p

Figure 7.1: Energy Conditions: Weak, Null, Dominant, Null Dominant, Strong and
the equation of state condition w ≥ −1 and the conditions for a perfect fluid

7.8 Alternative Theories of Gravity

We will consider four alternative theories only and refer to Carroll for details. It turns out
non of these four ideas are paradigm shifting,

1. Gravitational scalar fields: One adds one (or more) scalar fields λ. In the Einstein
Hilbert Lagrangian we replace R by f(λ)R for some function f(λ) and adds a La-
grangian for a scalar field. One assumes that the matter sector does not couple to λ.
Essentially one can make a transformation of the fields to rewrite the Lagrangian as
a traditional Einstein-Hilbert Lagrangian with an additional scalar field and the matter
sector now couples to the scalar field. The metric and curvature is now, of course,
completely different.

2. Kaluza-Klein Compactification: We consider the extra spatial dimensions to be com-
pactified and the metric to be of the form

ds2 = GMNdx
MdxN = gµνdx

µdxν + b2(x)γij(y)dyidyj (7.50)
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We can integrate out the extra terms in the action and arrive at an effective four-
dimensional action. Besides massless states this action has an infinite tower of
massive states that we ignore as they are very heavy if the compactified dimensions
are very small. The action can then basically be rewritten as a four-dimensional
metric coupled to a scalar field, the so-called Dilaton Field.

3. Higher Order Curvature Terms: These would include higher order derivatives of the
metric and would thus require many more initial conditions to give a well-defined
problem. One would also assume that these corrections need to be small, as the
current theory works so well. However, at high energy they may become important.
Also viewing a quantum gravity theory as an effective theory, one should, in principle,
consider all possible interaction terms. An issue is that these theories lead to negative
energy solutions.

4. Non-Christoffel Connections and Torsion: In the Palatini Formalism we consider a
theory where the connection and the metric are independent but is torsion free. The
equations of motion dictate that the connections are the Christoffel connections. If
we drop the requirement that the theory is torsion free, then, as torsion is charac-
terised by a tensor, we are just adding a new type of matter to the theory. Similarly
if we forget about metric compatibility, we can always write the metric as a sum of
a metric compatible one and a remaining tensor, which can fall in the matter sector.

There are more exotic theories like loop quantum gravity and emergent gravity, but
these are out of scope here.

7.9 Linearised Gravity

7.9 First Order Approach

We consider a more systematic approach than for the Newtonian limit. We set

gµν = ηµν + hµν (7.51)

with hµν "small" compared to ηµν . It isn’t entirely clear what smallness of a tensor means
but we take it to mean that its values are much smaller than one in some global inertial
coordinate system. The inverse metric is then

gµν = ηmuν − hµν (7.52)

We expand everything to first order in hµν and its derivatives. The Christoffel symbols are

Γσµν =
1

2
ησ

ρ
(∂µhρν + ∂νhµρ − ∂ρhµν) (7.53)
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For the Riemann tensor we can ignore the terms quadratic in the connections and thus

Rρσµν = ∂µΓρνσ − ∂νΓρµσ + o(h2) (7.54)

The Ricci tensor becomes

R(1)
µν = ∂σ∂{νhµ}σ −

1

2
∂σ∂σhµν −

1

2
∂µ∂νh

σ
σ (7.55)

and the Einstein tensor becomes

G(1)
µν = ∂σ∂{νhµ}σ −

1

2
∂σ∂σhµν −

1

2
∂µ∂νh

σ
σ −

1

2
ηµν(∂σ∂ρhσρ − ∂σ∂σhρρ) (7.56)

It is convenient to introduce

γµν = hµν −
1

2
ηµνh

σ
σ (7.57)

so that the Einstein equations become

−1

2
∂σ∂σγµν + ∂σ∂{νγµ}σ −

1

2
ηµν∂

σ∂ργσρ = 8πTµν (7.58)

We can now use the diffeomorphism invariance that transforms the metric as hµν → hµν +
∂µξν + ∂νξµ to chose a gauge

∂νγµν = 0 (7.59)

and the linear Einstein equations are

∂σ∂σγµν = −16πTµν (7.60)

In vacuum (7.59) and (7.60) are the equations for a massless spin two particle, which we
would identify with a graviton. Note that the 00 component of (7.60) gives rise to (7.16).

7.9 Second Order and the Concept of Energy

Because the metric describes both the background spacetime structure and the dynamics
of the gravitational field, there is no concept of local energy density in general relativity.
Indeed, one cannot decompose the gravitational energy in a background and in a dynamical
part as both are interconnected. A local energy density would only depend on the dynamical
part, but this cannot be disentangled from the background.

We can illustrate this with second order corrections from the weak field limit. The
linearised Einstein equations in vacuum are of the form

G(1)
µν [h] = 0 (7.61)
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Consider now the second order corrections to the Ricci tensor

R(2)
µν =

1

2
hσρ∂µ∂νhσρ − hσρ∂σ∂{µhν}ρ +

1

4
∂µhσρ∂νh

σρ + ∂ρjσν ∂[ρhσ]µ

+
1

2
∂d(h

ρσ∂σhµν)− 1

4
∂σhρρ∂σhµν −

(
∂ρh

σρ − 1

2
∂σhρρ

)
∂{µhν}σ (7.62)

This would result in a second order correction of the Einstein equations. These come from
the second order metric g = h+ h(2) in G(1)[h(2)] and the first order metric in G(2)

µν [h] and
are of the form

G(1)
µν [h(2)] +G(2)

µν [h] = 0 (7.63)

We can rewrite this as

G(1)
µν [h(2)] = 8πtµν with tµν = − 1

8π
G(2)
µν [h] (7.64)

Clearly tµν is symmetric and one can also check that it is conserved ∂µtµν = 0. This
suggest that tµν is an effective energy-momentum that causes a correction to the weak
field spacetime metric, valid to second order. But this not entirely correct. To start with it
turns out that tµν is not invariant under a gauge transformation hµν → hµν + ∂µξν + ∂νξµ.
In addition to that, one can always add a tensor of the form ∂σ∂ρUµνσρ to it that is local,
quadratic in hµν and satisfies Uµνσρ = U[µσ]νρ = Uµσ[νρ] = Uνρµσ and the symmetry of tµν
and its conservation law is unaffected. This is a reflection of the fact that local energy
density is not well-defined in general relativity.



Chapter 8

Conformal Diagrams

Conformal Diagrams, also known as Penrose Diagrams, are representations of spacetimes
in a finite diagram that are particularly suited for understanding the causal structure of the
spacetime.

They are obtained by performing specific conformal transformations. Because such
transformations preserve the angle, the light cones in conformal diagrams remain at 45◦.

8.1 Minkowski Space

The metric is, in spherical coordinates and four dimensions

ds2 − dt2 + dr2 + r2dθ2 + r2 sin2 θdϕ2 (8.1)

with

t ∈ R, r ∈ R+, θ ∈ [0, π], ϕ ∈ [0, 2π[ (8.2)

We first replace t and r by coordinates u and v

u = t− r and v = t+ r with u ≤ v ∈ R (8.3)

so that the metric becomes

ds2 = −1

2
(du dv + dv du) +

1

4
(v − u)2dΩ2 (8.4)

with dΩ the metric on the unit two-sphere. Now we bring the u and v to a finite range

U = arctanu and V = arctan v with U ≤ V ∈
[
−π

2
,+

π

2

]
(8.5)

Straightforward algebra leads to

ds2 =
1

4 cos2 U cos2 V

[
−4dU dV + sin2(V − U) dΩ2

]
(8.6)

Finally we go back to

T = V + U and R = V − U with R ∈ [0, π] and |T |+R ≤ π (8.7)

The metric finally becomes

57
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ds2 = ω−2
(
−dT 2 + dR2 + sin2RdΩ2

)
(8.8)

with ω = cosT+cosR and is of the form g̃µν = ω2gµν and is thus a conformal transformation
and thus preserves angles. The coordinates T and R now only take finite values

If we momentarily forget the finite range of T and consider the metric

d̃s
2

= ω2ds2 = −dT 2 + dR2 + sin2RdΩ2 (8.9)

then this describes not a flat space but R × S3. This is a manifold with a curvature. This
should not worry us as it is not the Minkowski space anymore, due to the extension of
the coordinates. This space is known as Einstein Static Universe can be represented as
a cylinder in which each circle of constant T is actually a three sphere. The part of that
space where also |T |+R ≤ π represents Minkowski space.

The complete transformations are thus

T = arctan(t+ r) + arctan(t− r)
R = arctan(t+ r)− arctan(t− r) (8.10)

The "arctan" function transforms the infinite coordinates t and r to the finite coordinates
T and R.

The conformal diagram of Minkowski space is shown below. The boundaries of this
diagram are referred to as Conformal Infinity. For convenience let us recapitulate the
causal structures:

symbol name (T,R) (t, r)
i+ future timelike infinity (−π, 0) (+∞, r)
i− past timelike infinity (−π, 0) (−∞, r)
i0 spatial infinity (0, π) (t,+∞)
J + future null infinity (π −R,R) ( 1

2 cotR,− 1
2 cotR)

J− past null infinity (−π −R,R) ( 1
2 cotR,− 1

2 cotR)
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R

T

i−

i+

i0

J +

J−

r = 0

r = cte

t = cte

Figure 8.1: Conformal diagram for Minkowski spacetime in the R–T plane. Lines of
constant t are the lines starting at the vertical axis at R = 0 and ending at the
point i0. Lines of constant r start and end at i±.

Because the diagram is conformal, all null geodesics are at ±45◦. All timelike geodesics
start at the point i− and end at the point i+. All lightlike geodesics starts on the line J −
and end on the line J +. All spacelike geodesics end at the point i0.

Spacetimes (or regions of it) that are asymptotically flat share the structure of J ±
and i0 with the conformal diagram of Minkowski space.

8.1 Two-Dimensional Minkowski Space

The case of two-dimensional Minkowski space is slightly different because the metric is
ds2 = −dt2 + dx2 and here x can take on all real values, not only positive one. The
consequence is that the conformal map is not a triangle, but a square
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R

T

i−

i+

i0i0

J +

J−

J +

J−

Figure 8.2: Conformal diagram for 2d Minkowski spacetime in the R–T plane

This c

8.2 Robertson-Walker Spacetime

Consider the metric in four dimensions

ds2 = −dt2 + t2q(dr2 + r2dΩ2) (8.11)

for some q ∈]0, 1[. We will encounter a straightforward generalisation of this metric, de-
scribing the Robertson-Walker Spacetime, in section 16.1 when we discuss a basic cos-
mological model for the universe. It is easily checked that the curvature of this space
is

R =
6q(2q − 1)

t2
(8.12)

There is a real singularity at t = 0 so the restrictions are t > 0 and r ≥ 0. We can bring
this into a familiar form by transforming

η =
1

1− q
t1−q with η > 0 (8.13)

to get

ds2 = [(1− q)η]2q/(1−q)(−dη2 + dr2r2dΩ2) (8.14)

We can now perform the same type of transformations from (η, r) to (R, T ) as in the
Minkowski case and obtain
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ds2 = ω−2
(
−dT 2 + dR2 + sin2RdΩ2

)
(8.15)

with now

ω(T,R) =

(
cosT + cosR

2 sinT

)2q

(cosT + cosR) (8.16)

But this time the new coordinates are restricted to

T > 0; R ≥ 0; T +R < π (8.17)

The conformal diagram is therefore half that of Minkowski spacetime:

R

T

i−
i0

J +

r = cte

t = cte

Figure 8.3: Conformal diagram for the Robertson-Walker spacetime in the R–T
plane

8.3 Anti-de Sitter Space

We start from the metric in the form (6.21)

ds2 =
L2

cos2 θ
(−dτ2 + dθ2 + sin2 θ dΩ2

d−1) with θ ∈ [0, π/2], τ ∈ [0, 2π[ (8.18)

but then go to the universal cover to avoid closed timelike curves, see section 6.4.3 so that
τ ∈ R.

The conformal diagram of the universal cover of AdS2 is then an infinite strip as shown
in fig. 8.4. Without the universal cover it is the rectangle bounded by the dashed lines at
τ = 0 and τ = 2π. The Poincaré patch, that only covers part of AdS2 is the shaded triangle.
The conformal diagram of AdSd+1 can be obtained from this by adding a sphere Sd−1 to
each point.
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θ

τ

i−

i+

r =∞

r = 0

r = 0

τ = 2π

τ = 0

Figure 8.4: Conformal diagram for AdS2 in the R–T plane



Chapter 9

The Schwarzschild Metric

9.1 The Schwarzschild Metric

The Schwarzschild Metric is a simple static spherically symmetric solution to Einstein’s
equations. In d dimensions the metric is

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2
d−2 with f(r) = 1− 2µ

rd−3
(9.1)

Birkhoff’s Theorem states that this is the unique spherically symmetric solution to
Einstein’s equations, and in particular that there are no time-dependent solutions of this
form.

For simplicity we restrict ourselves to four dimensions and will often ignore the angular
part. We set µ = GM and the metric becomes

ds2 = −
(

1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2dΩ2 (9.2)

with the metric on S2 being dΩ2 = dθ2 + sin2 θ dφ2. The interpretation of M follows from
(7.22), i.e. form the weak field limit of a gravitational field created by an object: M is just
the mass of that object.1It is not necessarily the sum of the masses of different objects
as there would be some binding energy in that case. But it is valid in the weak field limit.
As r → ∞ the metric resembles the Minkowski metric, i.e. we recover flat space. This is
known as Asymptotic Flatness..

There are two special points, r = 0 and r = 2GM . These special points are coordinate

1in chapter 12 we will derive a formula for conserved integrals for general black holes and show
that M is indeed the conserved integral corresponding to the mass of the energy, i.e. the mass of
the black hole.
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dependent and do not necessarily lead to singularities. To find whether they are singulari-
ties, we need to see if scalars, which are coordinate free, diverge in these points. We find,
using e.g. Mathematica, that the Kretschmann Invariant is given by

K = RµνρσRµνρσ =
48G2M2

r6
(9.3)

so r = 0 is a genuine singularity.

The point r = 2GM turns out not to be a singularity. This radius is of little day-to-day
consequences. For example if we consider this radius for the sun r = 2GM� and compare
this to the sun’s radius which is R� ≈ 106GM� then we find that r � R� so this radius
sits well within the sun. But the Schwarzschild solution is only valid in vacuum, so outside
of the sun this special radius is irrelevant. It can only be relevant for an object with a very
small radius and a large mass; a black hole as we will see.

9.2 Geodesics of the Schwarzschild Metric

The non-vanishing Christoffel connections for the Schwarzschild metric are

Γttr =
GM

r(r − 2GM)

Γrtt =
GM

r3
(r − 2GM)

Γrrr = − GM

r(r − 2GM)

Γrθθ = − (r − 2GM)

Γrφφ = − (r − 2GM) sin2 θ

Γθrθ =
1

r

Γθφφ = − sin θ cos θ

Γφrφ =
1

r

Γφθφ = − cot θ (9.4)
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This gives four geodesic equations

0 =
d2t

dλ2
+

2GM

r(r − 2GM)

dr

dλ

dt

dλ

0 =
d2r

dλ2
+
GM

r3
(r − 2GM)

(
dt

dλ

)2

− GM

r(r − 2GM)

(
dr

dλ

)2

− (r − 2GM)

[(
dθ

dλ

)2

+ sin2 θ

(
dφ

dλ

)2
]

0 =
d2θ

dλ2
+

2

r

dr

dλ

dθ

dλ
− sin θ cos θ

(
dφ

dλ

)2

0 =
d2φ

dλ2
+

2

r

dr

dλ

dφ

dλ
+ 2 cot θ

dθ

dλ

dφ

dλ
(9.5)

A sane person would not think of trying to solve them. Rather we will use the symmetries
and the Killing vectors to gain insight. There are four Killing vectors, three for the spherical
symmetry and one for time translations, that will each lead to a conserved quantity: ifKµ is
a Killing vector then(5.2) is satisfied, pν∇ν(Kµp

µ) = 0. From Leibniz pµ∇µ = (dxµ/dλ)∇µ =
d/dλ and so the Killing vectors satisfy d(Kµpµ)/dλ = 0 and thus

Kµ
dxµ

dλ
= cte (9.6)

Moreover we also have that

−gµν
dxµ

dλ

dxν

dλ
= ε = cte (9.7)

Indeed for timelike geodesics this is just UµUµ = −1 so the ε = +1. For lightlike geodesics
we have ε = 0 by definition.

Spherical symmetry implies conservation of angular momentum. Conservation of the
direction of angular momentum means that it moves in a plane. We can always chose this
plane to be the equatorial plane, which means that we can always choose θ = π/2, which
fixes two components of the angular momentum. The two remaining Killing vectors are
then the magnitude of angular momentum, and from the timelike Killing vector, energy.
The latter has the timelike Killing vector, with some abuse of notation,

Kµ = ∂t = (1, 0, 0, 0) (9.8)

and the Killing vector for the conservation of the magnitude of angular momentum is

Rµ = ∂φ = (0, 0, 0, 1) (9.9)

The corresponding conserved quantities are
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E = −Kµdx
µ

dλ
=

(
1− 2GM

r

)
dt

dλ

L = +Rµ
dxµ

dλ
= r2dφ

dλ
(9.10)

where we have lowered the indices of the Killing vectors and have used θ = π/2. We can
view E and L as the energy and angular momentum (density) of the test particle.2

Insert the metric in (9.7), using θ = π/2

−
(

1− 2GM

r

)(
dt

dλ

)2

+

(
1− 2GM

r

)−1( dr
dλ

)2

+ r2

(
dΦ

dλ

)2

= −ε (9.11)

Multiplying by 1− 2GM/r and using the definitions of E and L immediately gives

−E2 +

(
dr

dλ

)2

+

(
1− 2GM

r

)
L2

r2
= −ε

(
1− 2GM

r

)
(9.12)

We can rewrite this as

1

2

(
dr

dλ

)2

+ V (r) =
1

2
E (9.13)

with

E =
1

2
E2

V (r) =
1

2
ε− εGM

r
+
L2

2r2
− GML2

r3
(9.14)

Eq. (9.13) is similar to the equation for a massive particle for the conservation of energy,
being kinetic plus potential energy, in a one-dimensional potential V (r) with total energy
E . Of course, we also need t(λ) and φ(λ) to get a full picture, but we can already learn a
lot now.

Figures 9.1 and 9.2 Show the Newtonian (thick line) and general relativity potential
(dashed line) for massive and massless particles respectively. The analysis can be done in
the same way as for Newtonian gravity.

2In (4.22) we saw that −pµUµ was the energy of a particle as measure by an observer with
four-velocity Uµ. The difference with E = −pµKµ is that −pµUµ is the inertial/kinetic energy of
the test particle, whilst −pµKµ includes the potential energy. Recall that a curved spacetime only
has a well-defined conserved energy if there is a timelike Killing vector, i.e. symmetry under time
translations.
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Figure 9.1: Newtonian (thick line) vs GR (dashed line) potential for massless particles
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Figure 9.2: Newtonian (thick line) vs GR (dashed line) potential for massless parti-
cles

Massive Particles

Consider first massive particles, i.e ε = 1. Recall that in Newtonian mechanics the central
force problem for a massive particle can be rewritten as a one dimensional radial problem
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with an effective potential

VNewton = −GM
r

+
`2

2r2
(9.15)

with ` the angular momentum. The potential V for a massive particle is now

V (r) =
1

2
− GM

r
+
L2

2r2
− GML2

r3
(9.16)

The difference is the constant term, which we can always add in classical mechanics, and
the last term GML2/r3, which hence provides a general relativity correction to Newtonian
gravity.

The potential has extrema when dV (r)/dr = 0, i.e. when

GMr2
c − L2rc + 3GML2γ = 0 (9.17)

where γ = 0 for Newtonian gravity and γ = 1 for general relativity. For Newtonian gravity
this becomes rc = 0 or rc = L2/εGM . However we now have

r± =
L2

2GM

[
1 +∓

√
1− 3(2GM)2

L2

]
(9.18)

There is a critical value for the extrema when the square root vanishes

L =
√

3(2GM) (9.19)

and we distinguish three cases

L <
√

3(2GM): the potential has no real minimum or maximum and fall straight to
r = 0. An observer falling radially towards r = 0 will reach the Schwarzschild radius
and the r = 0 point in a finite proper time, as we will see later.

L >
√

3(2GM): the potential has a real maximum and minimum. There are now
three potential cases depending on the initial energy 1

2(E2 − 1) as shown in fig, 9.3:

(a) 1
2(E2 − 1) > V (r+) : the particle sails over the potential barrier and spirals
towards r = 0.

(b) V (r+) > 1
2(E2 − 1) > 0 : the particle bumps into the potential barrier and

moves back to infinity.

(c) 0 > 1
2(E2 − 1) > V (r−) : the particle is trapped in the potential and follows an

elliptical orbit around r = 0 with a precessing perihelion.



General Relativity 69

L =
√

3(2GM): The minimum and the maximum coincide. There is an unstable
point at r = L2/2GM but any disturbance will result in the particle moving to r = 0.

Figure 9.3: Schwarzschild orbits of a massive particle withL >
√

3(2GM). (a) 1
2
(E2−

1) > V (r+): the particle falls into the singularity; (b) V (r+) > 1
2
(E2 − 1) > 0 the

particle bumps into the barrier and is ejected; (c) 0 > 1
2
(E2 − 1) > V (r−): the

particle follows an elliptical orbit with a precessing perihelion.

Elliptical orbits occur at distances (9.18). Expanding this for large L gives

r− =
L2

GM
and r+ = 3GM (9.20)

The former is stable and is farther away for larger L. The latter is unstable. As L is smaller
the orbits are closer together and coincide when L =

√
12GM , i.e. at radius rc = 6GM .

For smaller L there are no real solutions and hence no stable orbits. Thus rc = 6GM is
the smallest possible stable circular orbit for an object in the Schwarzschild metric. This
radius is known as the Innermost Stable Circular Orbit or ISCO.

Recall that in Newtonian gravity the orbits are conic sections (hyperbola, parabola,
ellipse, circle). This is not the case in general relativity. But interestingly it turns out
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that Kepler’s third law that the squares of the orbital periods of the planets are directly
proportional to the cubes of the semi-major axes of their orbits remains valid.

Massless Particles

For a massless particle, the potential is

V (r) =
L2

2r2
− GML2

r3
=

L2

2r2

(
1− 2GM

r

)
(9.21)

Setting dV/dr = 0 we find only one extremum at rc = 3GM , unless L = 0 in which case
V = 0. We see that for L 6= 0 there is always a barrier to surmount. There are three cases

(a) If the photon does not have sufficient energy it will continue on, after being deflected.

(b) If the photon has sufficient energy, it will go over the barrier and be dragged towards
the center r = 0.

(c) Circular orbits for massless particle occur at rc = 3GM .

Figure 9.4: Schwarzschild orbits of a massless particle
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9.3 The Precession of Perihelia

The Perihelion is the point of a planet closest to the sun. In general relativity, the perihelion
is not fixed, but precesses.

We use the geodesic (9.13) for a massive particle and divide it by the square of the
second equation of (9.10) to get an equation for r(φ)

(
dr

dφ

)2

+
r4

L2
− 2GMr3

L2
+ r2 − 2GMr =

2Er4

L2
(9.22)

Rename x = L2/GMr and differentiate w.r.t. φ to get

d2x

dφ2
− 1 + x =

3G2M2

L2
x2 (9.23)

We expand x = x0 + x1, where x0 is the Newtonian circular orbit, which we know satisfies
d2x0/dφ

2 = 1− x0 and has solution x0 = 1 + e cosφ witth e the eccentricity of the ellipse.
Using this we find that x1 satisfies, using the fact that x2

1 is a higher order correction and
that 6G2M2x2

0/L
2 � 1

d2x1

dφ2
+ x1 =

3G2M2x2
0

L2
=

3G2M2

L2
(1 + e cosφ)2

=
3G2M2

L2

(
1 +

1

2
e2 +

1

2
e2 cos 2φ+ 2e cosφ

)
(9.24)

One easily checks that a solution is given by

x1 =
3G2M2

L2

[(
1 +

1

2
e2

)
+ eφ sinφ− 1

6
e2 cos 2φ

]
(9.25)

The figure below shows the precession of the orbits for different values of L and e.
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Figure 9.5: Perihelion precession for different values of L and e, with GM = 1. The
dotted line is the Newtonian orbit.

The first term (9.25) is a constant displacement and the third term oscillates around
zero. But the second terms makes the correction increase with the successive orbits. We
will consider the simplified solution

xS = 1 + e cosφ+
3G2M2e

L2
φ sinφ = 1 + e cos[(1− α)φ] with α =

3G2M2

L2
(9.26)

where we have used a Taylor expansion for the second equality. This contains all the
contributions we are interested in.

This implies that at each successful orbit the perihelion advances by an angle

∆φ = 2πα =
6G2M2

L2
(9.27)

The angular momentum L can be related to parameters of Newtonian gravity as corrections
would be of higher order. This was successfully confirmed by the precession of Mercury
and provided one of the very first confirmations of general relativity.3

9.4 Gravitational Redshift

Consider an observer who is stationary in Schwarzschild metric and thus has four velocity
(U0, 0, 0, 0). From gµνU

µU sν = −1 we find that U0 = (1 − 2GM/r))−1/2. From (4.22) we

3As always, real life is a bit more complicated. The theoretical prediction turns out to be
43”/century and the experimental value is 5601”/century. But the latter comprises Newtonian
effects from the precession of equinoxes in our geocentric coordinate system and gravitational
perturbations form other planets. These still gave a gap of 43”/century which is precisely the
precession due to general relativity.
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know that this observer will measure the energy, and hence frequency of a photon with
momentum pµ as −gµνpµUν and thus, using the definition of E in (9.10)

ω =

(
1− 2GM

r

)1/2 dt

dλ
=

(
1− 2GM

r

)−1/2

E (9.28)

As E is a conserved quantity, the frequency will take different values at different ra-
dial distances. A photon emitted at r1 and observed at ro will have frequencies related
as

ωo
ω1

=

(
1− 2GM/r1

1− 2GM/ro

)1/2

≈ 1− GM

r1
+
GM

ro
= 1 + Φ1 − Φo (9.29)

where the approximation is valid for r � 2GM and Φi is the Newtonian potential.

As we climb out of a potential field, Φo increases and the frequency decreases: this is
gravitational redshift. Photons that fall into a gravitational fields are blueshifted.

­ω1

ωo

Φ1

Φo

ωo = (1 + Φ1 − Φo)ω1

Figure 9.6: Gravitational redshift

9.5 Birkhoff’s Theorem

We prove Birkhoff’s theorem in four dimension by explicit calculation. I.e. we want to show
that the most general spherical symmetric metric in vacuum is the Schwarzschild solution.
We can write the most general spherical symmetric solution as

ds2 = −U(t, r)dt2 − 2V (t, r)dt dr +W (t, r)dr2 +X2(t, r)dΩ2 (9.30)

where dΩ2 = dθ2 + sin2 θdϕ2. Here U, V,W and X are functions of t and r that we will
determine by solving the EFE in vacuum.

First we show we can get rid of the function X . Define r̃ = X(t, r) so that dr̃ =
∂tXdt + ∂rXdr. The angular part of the metric is now simply r̃2dΩ2 and the other terms
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receive an additional contribution depending on X . Their form is not important, but the
fact is that we can now write the metric as

ds2 = −U(t, r)dt2 − 2V (t, r)dt dr +W (t, r)dr2 + r2dΩ2 (9.31)

where we have deleted the˜on r and U, V and W are functions different form the original
ones.

In order to get rid of the cross term, define dt̃ = ζ(t, r)U(dt + V dr) and define a
function Φ(t, r) that satisfies ∂tΦ = ζU and ∂rΦ = ζV , so that dt̃ = ∂tΦdt + ∂rΦdr is a
total differential. From ∂t∂rΦ = ∂r∂tΦ we get ∂t(ζV ) = ∂r(ζU) which can be solved for ζ .
This shows that such a redefinition to t̃ is always possible. Again the detailed form need not
worry us. Now insert dt = ζ−1U−1dt̃− U−1V dr in U(t, r)dt2 + 2V (t, r)dt dr and get

U
(
ζ−1U−1dt̃− U−1V dr

)2
+ 2V

(
ζ−1U−1dt̃− U−1V dr

)
dr (9.32)

The cross term is (
−2Uζ−1U−1U−1V + 2V ζ−1U−1

)
dt̃ dr = 0 (9.33)

and thus disappears.

We have thus shown that the most general spherical symmetric metric in four dimen-
sions is of the form

ds2 = −A(t, r)dt2 +B(t, r)dr2 + r2dΩ2 (9.34)

for some functions A and B. Note that so far we have only used symmetry arguments to
obtain this form. We will now use the EFE to determine these functions. The Ricci tensor
is found to be

Rtt =
∂rA

rB
+
∂2
rA

2B
− ∂rA

4B

(
∂rA

A
+
∂rB

B

)
− ∂2

tB

2B
+
∂tB

4B

(
∂tA

A
+
∂tB

B

)
Rtr =

∂tB

rB

Rrr =
∂rB

rB
− ∂2

rA

2A
+
∂rA

4A

(
∂rA

A
+
∂rB

B

)
+
∂2
tB

2A
− ∂tB

4A

(
∂tA

A
+
∂tB

B

)
Rθθ = 1− 1

B
− r

2B

(
∂rA

A
− ∂rB

B

)
Rϕϕ = sin2 θ Rθθ (9.35)

For completeness we also show the curvature scalar.
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R =
∂rA∂rB

2AB2
− ∂tA∂tB

2A2B
+

(∂rA)2

2A2B
− 2∂rA

rAB

− ∂2
rA

AB
− (∂tB)2

2AB2
+
∂2
tB

AB
+

2∂rB

rB2
− 2

r2B
+

2

r2
(9.36)

The EFE Rtr = 0 implies that

∂tB = 0 (9.37)

Plugging this into Rtt = 0, Rrr = 0 and Rθθ = 0 we get

0 =
∂rA

rB
+
∂2
rA

2B
− ∂rA

4B

(
∂rA

A
+
∂rB

B

)
0 =

∂rB

rB
− ∂2

rA

2A
+
∂rA

4A

(
∂rA

A
+
∂rB

B

)
0 = 1− 1

B
− r

2B

(
∂rA

A
− ∂rB

B

)
(9.38)

From the last equation we get

∂r lnA =
2(B − 1)

r
+ ∂r lnB (9.39)

As B is independent of t so is the RHS and hence ∂r lnA is a function of r only, call it
h(r) . We can integrate this as lnA =

∫
h(r)dr+ g(t) where g is an arbitrary function of t.

Thus A is the product of a function of r and of a function of t, say A(r, t) = a(r)f2(t). But
we can then always redefine dt̃ = f(t)dt and this will get rid of the f(t) in the metric. We
thus conclude that the most general spherical symmetric solution to the EFE in vacuum is
time independent and of the form

ds2 = −A(r)dt2 +B(r)dr2 + r2dΩ2 (9.40)

In order to find A and B take the combination Rtt/A + Rrr/B = 0 which eliminates the
second derivative and gives

1

rB

(
∂rA

A
+
∂rB

B

)
= 0 (9.41)

which implies that ∂r lnAB = 0 or AB = k for some constant k. Plugging this into Rθθ = 0
gives

0 = 1− A

k
− rA

2k
2
∂rA

A
(9.42)
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or k = r∂rA+A. This is solved by A = k + α/r and thus the metric becomes

ds2 = −
(
k +

α

r

)
dt2 + k

(
k +

α

r

)−1
dr2 + r2dΩ2 (9.43)

Requiring that this becomes the Minkowski metric at r →∞ fixes k = 1 and requiring that
this reduces to Newtonian gravity in the weak limit sets α = −2GM so that finally

ds2 = −
(

1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2dΩ2 (9.44)

This proves the Birkhoff theorem in four dimensions: Schwarzschild metric is the only
solution to the EFE equations that is spherically symmetric. Note that we did not have to
require the metric to be static, it is a consequences of the EFE and the symmetry.



Chapter 10

The Schwarzschild Black Hole

10.1 To the Boundary or not to the Boundary? That is the Question.

Consider radial lightlike curves in a Schwarzschild metric, ignoring the angular part,

0 = ds2 = −
(

1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 (10.1)

Thus

dt

dr
= ±

(
1− 2GM

r

)−1

(10.2)

As r → ∞ we have dt/dr → ±1 and the lightcones are at a 45◦ angle. As r becomes
smaller dt/dr becomes smaller and the lightcones "close up". At the Schwarzschild Radius
r = 2GM , we have dt/dr = 0 and the lightcone is completely flattened, see the figure
below.

r

t

r = 2GM

Figure 10.1: Lightcones in the Schwarzschild metric close up as r → 2GM . It seems
like particles, massive or massless, are never able to reach that radius.

77
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One would think that particles, massive or massless, are never able to reach the radius
r = 2GM as they have to stay in their lightcone. This is however a direct result of the choice
of coordinate system. Equal time intervals for a traveller going towards a the Schwarzschild
radius are perceived by an outside observer to increase as the traveller comes nearer to
that radius. It turns out that the traveller will not notice the boundary at all and can travel
straight through it. It is just the outside observer that will never see this happen.

10.2 The Event Horizon

But there is still something special going on. This is best seen by change coordinate system
from (t, r) to (v, r) where

v = t+ r∗ with r∗ = r + 2GM ln
( r

2GM
− 1
)

(10.3)

r∗ is known as the Tortoise Coordinate and the (v, r) are the Eddington-Finkelstein Coor-
dinates. The radius r = 2GM has now moved to r∗ = −∞. The metric becomes

ds2 = −
(

1− 2GM

r

)
dv2 + 2dv dr + r2dΩ2 (10.4)

Note that the metric has no singularities at r = 2GM and the determinant of the metric
is well behaved as well, g = −r4 sin2 θ. Whilst the tortoise coordinate is only defined for
r > 2GM we can analytically extend the Eddington-Finkelstein coordinates to r ≤ 2GM .

We can now find how the lightcones change when we approach r = 2GM . First note that
the solution to the lightlike equation (10.2) is simply t = ±r∗ + cte.1 We now determine the
lightcones in the Eddington-Finkelstein coordinates. For the plus sign we have dt = +dr∗

or hence dv − dr∗ = dr∗ and thus dv = 2dr∗ = 2(1− 2GM/r)−1dr. For the minus sign we
have dt = −dr∗ or hence dv− dr∗ = −dr∗ and thus dv = 0. Thus the radial null curves are

1Indeed, we have

dr∗ = dr +
2GM

r/2GM − 1

dr

2GM
=

(
1− 2GM

r

)−1

dr

and thus

dt = ±dr∗ = ±
(

1− 2GM

r

)−1

dr

which is the equation for lightlike paths.
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given by

dv

dr
= 0 and

dv

dr
= 2

(
1− 2GM

r

)−1

(10.5)

The former corresponds to incoming paths, the latter to outgoing paths. In the (r, v) plane
one boundary of the lightcone is at dv = 0, i.e. v = cte and the other one starts at a slope
dv/dr = 2 at infinity, tilts and becomes infinity at r = 2GM but then continues to tilt
inwards so that for r < 2GM all particles, massive or massless will remain in the r < 2GM
region as per the fig. 10.2.

rr

v

r = 2GM

Figure 10.2: Lightcones in the Schwarzschild metric using Eddington-Finkelstein
coordinates (r, v), I. The lightcones tilt inwards in r < 2GM and no particles can
escape to r > 2GM from there.

The surface r = 2GM is now locally perfectly regular, but it gives a global boundary
such that once a test particle, massive or massless, crosses it, it cannot go back. Such
a surface is called an Event Horizon, a surface past which particles can never escape to
infinity. The region within the event horizon is called a Black Hole as nothing can escape
from it.2

Contrary to popular belief and science fiction a black hole does not suck in all matter.
The exterior of a black hole is just the same Schwarzschild metric as outside of a star or
a planet. It is just that if you move beyond a certain point, there is no return.

Note that had we taken a coordinate u = t − r∗ in stead of v the metric would have
become

ds2 =

(
1− 2GM

r

)
du2 − 2du dr + r2dΩ2 (10.6)

2We will see that this needs to be qualified in the quantum theory.
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and the lightcones would tilt as in fig. 10.3

rr

v

r = 2GM

Figure 10.3: Lightcones in the Schwarzschild metric using Eddington-Finkelstein
coordinates (r, u), II. The lightcones tilt outwards in R < 2GM and we can follow
past directed paths to this region.

What happened here? The tortoise coordinate r∗ is only defined for the region r >
2GM . By using the coordinates (r, v) we have been able to follow a particle into the future
in the region r < 2GM and by using the coordinates (r, u) we have been able to follow a
particle from the past in the region r < 2GM . So we have been able to extend spacetime
into past and future in the region r < 2GM . Are there more region to discover?

10.3 Moving through the Schwarzschild Radius

We consider a massive test particle that moves radially from a point at distance R from
the singularity towards the singularity. We set the proper time τ and the time measured
by an outside observer t to be zero when the particle starts from rest.

We only consider radial movement, so that (9.10) tells us that L = 0. We can then
write (9.12) (

dr

dτ

)2

=
2GM

r
− 1 + E2 (10.7)

As the particle is massive, we have used the proper time as the parameter and set ε = +1.
The first equation of (9.10) becomses

dt

dτ
=

E

1− 2GM/r
(10.8)
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The particle starts from rest so we have dr/dτ = 0 at r = R and thus

R =
2GM

1− E2
⇒ E = 1− 2GM

R
(10.9)

In order to solve the equations, we introduce a parameter η defined by

r =
GM

1− E2
(1 + cos η) = R cos2 η/2 (10.10)

Note that at the horizon rH = 2GM we have 2GM = GM/(1−E2) cos2 ηH from which we
get

ηH = 2 arcsinE (10.11)

At the singularity we have r = 0 and hence ηS = π, whereas at the initial point r = R we
have ηi = 0.

Straightforward algebra allows us to write (10.7) in terms of η as(
dr

dτ

)2

= (1− E2) tan2 η/2 (10.12)

and (10.8) as

dt

dτ
=

E cos2 η/2

cos2 η/2− cos2 ηH/2
(10.13)

From the definition of η, we also have

dr

dη
= −R cos η/2 sin η/2 (10.14)

Because we are considering an in-falling test particle we have dr/dτ < 0 and (10.12)
becomes

dr

dτ
= −

√
1− E2 tan η/2 = −

√
2GM

R
tan η/2 (10.15)

and thus

dτ

dη
=
dτ

dr

dr

dη
= R

√
R

2GM
cos2 η/2 =

R

2

√
R

2GM
(1 + cos η) (10.16)

which we can integrate as
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τ =
R

2

√
R

2GM
(η + sin η) (10.17)

which satisfies the boundary condition that τ = 0 at η = 0.

Similarly we have

dt

dη
=
dt

dτ

dτ

dη
= E

√
R

2GM

cos4 η/2

cos2 η/2− cos2 ηH/2
(10.18)

which solves as

t = E

√
R

2GM

[
1

2
(η + sin η) + (1− E2)η

]
+ 2GM log

tan ηH/2 + tan η/2

tan ηH/2− tan η/2
(10.19)

Finally

dr

dη
=
dr

dτ

dτ

dη
= −R sin η/2 cos η/2 = −R

2
sin η (10.20)

which solves as

r =
R

2
(1 + cos η) (10.21)

Eqs (10.17), (10.19) and (10.21) are what we need to analyse the trajectory. Fig.10.4 shows
the trajectory for GM = 1 and R = 10.
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Figure 10.4: Trajectory for a massive test particle radially moving towards the
singularity of a Schwarzschild black hole, I
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Figure 10.5: Trajectory for a massive test particle radially moving towards the
singularity of a Schwarzschild black hole, II

There are three special points:

• η = 0 corresponds to the initial point with r = R = 10 and t = τ = 0.

• η = π corresponds to the singularity. It is reached in a finite proper time

τS =
πR

2

√
R

2GM
(10.22)

in our example this is τS = 5
√

5π ≈ 35.12. But the singularity is never reached for
the external observer: as η → ηH we see that the observer time goes to infinity.
Fig. 10.5 shows that in that case r approaches the horizon, r = 2GM

• η = ηH with

ηH = 2 arcsin

√
1− 2GM

r

∣∣∣
r=2GM

=∞ (10.23)

It takes an infinite amount of time for the the external observer to see the test
particle reach that point. For the test particle itself it takes only a finite amount of
proper time

τH =
R

2
√

2

√
R

2GM

[
2 arcsin

√
1− 2GM

R
+ sin

(
2 arcsin

√
1− 2GM

R

)]
(10.24)
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in our example this is τH ≈ 33.70.

Let us assume that the test particle is a space traveller and she is moving towards the
singularity for research purposes and is asked to send us as much information as possible
during his travel. Let us first consider what happens when she crosses the event horizon. In
fact, she will notice nothing in particular when this happens. This is just a smooth transition
that will happen at her proper time τH . But we already know that once she has crossed
the event horizon, she, or any information she would like to send cannot go beyond the
horizon. So she will notice that any question she may ask an observer outside the event
horizon will remain unanswered, but that she can still receive information for that observer.

But what happens a bit earlier as she reaches the event horizon? Let us assume that
she sends a signal to the external observer with a fixed frequency, i.e. every ∆τ seconds.
For the external observer, these will arrive not with constant frequency, but with longer
and longer time spans between them as illustrated in fig. 10.6
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Δτ
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1.5
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Δt

Figure 10.6: Trajectory for a massive test particle radially moving towards the
singularity of a Schwarzschild black hole, III

In fact, it will take an infinite amount of time for the external observer to see her
reach the event horizon, so he will never receive the signal sent at the exact point of
crossing, and the signals received before crossing will be extremely wide spread. The space
traveller can provide more information by increasing the frequency of the signal as she
approaches the event horizon. But sending signal requires al least one bit of energy, and
so the higher the frequency of her signals the higher energy she needs. This energy must
be with her somewhere from the start and if it is high enough it will have an impact on
spacetime itself, altering its curvature and invalidating the assumption that we are working
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with a Schwarzschild metric.

This is a theoretical approach and will not happen. In reality, tidal forces are likely to
rip her apart before she reaches that point.

10.4 The Kruskal Coordinates

First we go from the coordinates (r, t) to (u, v). The metric becomes

ds2 = −
(

1− 2GM

r

)
du dv + r2dΩ2 (10.25)

where r is defined implicitly via

v − u = 2r∗ = 2r + 4GM ln
( r

2GM
− 1
)

(10.26)

It turns out that the horizon r = 2GM is still at an infinite distance, i.e at v = −∞ or
u = +∞, so these coordinates are not useful yet. We thus bring them to finite values using

ũ = +e+v/4GM and ũ = −e−u/4GM (10.27)

Next we move to coordinates

T =
1

2
(ṽ + ũ) =

( r

2GM
− 1
)1/2

er/4GM sinh
t

4GM

R =
1

2
(ṽ − ũ) =

( r

2GM
− 1
)1/2

er/4GM cosh
t

4GM
(10.28)

which we have expressed in terms of the (r, t) coordinates as well. The metric is now

ds2 =
32G3M3

r
e−r/2GM (−dT 2 + dR2) + r2dΩ2 (10.29)

with now r implicitly defined from

T 2 −R2 =
(

1− r

2GM

)
er/2GM (10.30)

The coordinates (T,R, θ, φ) are called Kruskal Coordinates or Kruskal-Szekeres Coordi-
nates. The allowed values of the (R, T ) coordinates are

R ∈ R and T 2 < R2 + 1 (10.31)
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The latter condition comes from (10.30) and the realisation that the function (1−x)ex has
a maximum at one.

From the metric we see that the radial lightlike curves have dT 2 = dR2 and thus
T = ±R + cte: lightcones have 45◦ angles. From (10.30) we also see that r = cte curves
are hyperbolae T 2 − R2 = cte and from the fact that T/R = tanh(t/4GM) curves of
constant t are straight lines with slope tanh(t/4GM).

The fact that R and T seem to become imaginary for r < 2GM should not worry
us. We only relate them to (r, t) for r > 2GM but continue them for all values of (R, T )
satisfying (10.31). All of this is summarised in the Kruskal Diagram in fig. 10.7.

R

T
r = 2GM, t = +∞

r = 2GM, t = +∞ r = 2GM, t = −∞

r = 2GM, t = −∞

r = 0

r = 0

t = cte

r = cte

IIV
II

III

Figure 10.7: The Kruskal diagram for the Schwarzschild metric

Each point on the Kruskal diagram has a two-sphere. The Schwarzschild spacetime
ends at the r = 0 boundary, so the grey areas do not form part of it. The thick black
diagonals are the event horizon. Lines of constant t are straight dashed lines through the
origin. Lines of constant r are the hyperbolae. Recall that lightcones are at 45◦ angles in
the Kruskal diagram. We also identify four different regions

I. This is the spacetime region outside of the event horizon r > 2GM , the patch
where we defined the original (r, t) coordinates.

II. This is the region within the event horizon r < 2GM that we would reach if we
would follow future directed paths from region I. Note that because lightcones are at
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45◦ angles, once we have crossed into region II all paths automatically lead to r = 0
i.e. to the singularity. Remark that this is not the case when you are in region I.

III. This is the region within the event horizon r < 2GM that we would reach if we
could follow past directed paths from region I. Whilst things can escape from this
region to us in region I, nothing from our region can get into there. It is therefore
known as a White Hole.

IV. This region could be reached from I if we could follow spacelike geodesics. It
is theoretically possible to connect it with region I via a Wormhole or a so-called
Einstein-Rosen Bridge.

Note that the Kruskal coordinates (10.32) require r > 2GM for the square root to be
real. Hence these coordinates are only valid outside the event horizon, and so let us denote
them by To and Ro. Inside the event horizon we can define them as

Ti =
(

1− r

2GM

)1/2
er/4GM cosh

t

4GM

Ri =
(

1− r

2GM

)1/2
er/4GM sinh

t

4GM
(10.32)

At R = 2GM we have To = Ro = Ti = Ri = 0

10.5 The Conformal Diagram of the Schwarzschild Spacetime

The conformal diagram is obtained by transforming the (ũ, ṽ) coordinates in (10.27) to

U = arctan
Ũ√

2GM
and V = arctan

ṽ√
2GM

(10.33)

with ranges

U, V, U + V ∈ ]− π

2
,+

π

2
[ (10.34)

and is
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r = 0

r = 0

r
=

2G
M

r
=

2G
M

i+

i−

i+

i−

i0i0

J−

J+

J−

J+

IIV

II

III

t = cte

r = cte

i+: future timelike infinity
i−: past timelike infinity
i0: spatial infinity
J+: future null infinity
J−: past null infinity

Figure 10.8: Conformal diagram for the Schwarzschild spacetime

The r = 0 singularities are straight lines stretching from timelike infinities from region
I to region IV. Note that the future and past timelike infinities i+ and i− are different from
r = 0. Indeed there are many timelike geodesics that do not end in r = 0. Lightcones here
are again at 45◦.



Chapter 11

Black Holes from Stars

11.1 The Schwarzschild Black Hole from Star Collapse

The Schwarzschild radius is typically much smaller than the radius of a star, so it is irrelevant
as within a star there is no vacuum and no Schwarzschild metric. But if a star shrinks by
gravitational collapse and lies within the Schwarzschild radius then this becomes relevant
and the star has become a black hole. The conformal diagram of a collapsing star is given
below.

i0

i+

i−

r
=

0

r = 0

J+

J−

Figure 11.1: Conformal diagram for a black hole from a collapsing star, I. The dashed
line is the event horizon.

The shaded area is not vacuum; it is the interior of the star and bounded by the radius
of the star r = rstar. A massive particle will start from the far past in i−and will follow a
timelike geodesic. It may either end at future timelike infinity i+, or if it crosses the event
horizon, represented by the dashed line, it will end in the singularity r = 0.

Sewing Spacetimes together

We can understand this conformal diagram by sewing together conformal diagrams of
Minkowski and Schwarzschild spacetime. Let us assume that we have a thin spherical shell

89
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of photons in Minkowski spacetime moving radially towards the origin. We can represent
this by the following diagram, where the spherical shell of photons is shown as a double line.
The double line is at 45◦ and so represents a photon propagating. It starts at a past null
infinity J − and propagates towards the origin, which is the vertical line in the Minkowski
conformal diagram.

i−

i+

i0

J +

J−

r = 0

Figure 11.2: Spherical shell of photons in Minkowski spacetime

Suppose now that the spherical shell of photons has sufficient energy to form a black
hole. We then need to use the conformal diagram for a spherically symmetric solution
around of a black hole as shown below. Here again the double line is the photons propagating
at a 45◦ angle, crossing the event horizon (r = 2GM) and finally hitting the singularity (the
squiggly line r = 0).

r = 0

r
=

2G
M

i+

i−

i0

J−

J+

Figure 11.3: Spherical shell of photons in a Schwarzschild spacetime

But this picture is not entirely correct as we are trying to describe the formation of a
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black hole. Before the shell of photons arrives, spacetime is Minkowski and thus for the
region to the left and below of the double line of the Schwarzschild conformal diagram we
need to use the Minkowski conformal diagram. And above and to the right of the Minkowski
conformal diagram we need to use the Schwarzschild conformal diagram. We thus need to
cut and sew the two diagrams with the appropriate parts, which will give something of the
form

i0

i+

i−

r = 0

J+

J−

Figure 11.4: Conformal diagram for a black hole from a collapsing star, II

Before the shell arrives we have a Minkowski spacetime and afterwards we have a
Schwarzschild spacetime with a black hole. This spacetime diagram of a black hole forming
reveals something quite interesting and surprising, as shown in fig. 11.5. Suppose you are
living at the origin and the field is so weak that spacetime is Minkowski. Your worldline is
then the vertical line at r = 0. Assume you are at a point P1 at a time t1 on that line. You
can take a rocket and blast off and stay within your lightcone always beyond the dashed
line. But if you are at a point P2 at a time t2 then you will always stay left and above the
dashed line.

i0

i+

i−

r = 0

J+

J−

P1

P2

Figure 11.5: Doomed by your blissful ignorance
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But the dashed line is the event horizon of the black hole. Thus at time t1 you may still
escape outside the event horizon, but at time t2 you will stay within the event horizon and
as we have seen you will be inevitably drawn to the singularity and get ripped by the tidal
forces. This is the case even though at that time you have no idea that the spherical shell
of photons is coming at you and you are still enjoying the quiet life of Minkowski spacetime.
Indeed, no photons from the spherical shell can have reached you at that time. But you
are doomed to be crushed in your blissful ignorance.

11.1 The Tolman-Oppenheimer-Volkoff Equation

In order to understand the gravitational collapse of a star, we need to start with un-
derstanding solutions of Einstein’s equations in a star. Thus we look for static spherical
symmetric solutions with a non-zero energy-momentum tensor. The most general form of
such a metric is

ds2 = −e2α(r)dt2 + e2β(r)dr2 + r2dΩ2 (11.1)

One could add a prefactor e2γ(r) to the dΩ2 terms, but by defining r̃ = eγ(r)r one can get
rid of the exponential in the coefficient of dΩ2 and so equivalently one can set γ(r) = 0.
Using Mathematica we find for the non-vanishing components of the Einstein tensor

Gtt = e2(α−β)r−2
(
e2β + 2rβ′ − 1

)
Grr = r−2

(
−e2β + 2rα′ + 1

)
Gθθ = e−2βr

[
rα′′ + α′

(
1− rβ′

)
+ rα′2 − β′

]
Gφφ = e−2βr sin2 θ

[
rα′′ + α′

(
1− rβ′

)
+ rα′2 − β′

]
= sin2 θ Gθθ (11.2)

We take the energy-momentum tensor to be that of a perfect fluid Tµν = (ρ+p)UµUν+
pgµν with p = p(r) and ρ = ρ(r). We take the four velocity in the rest frame of the star, Uµ =
(u, 0, 0, 0). From −1 = gµνUµUν we find u = eα. Thus Tµν = diag(e2αρ, e2βp, r2p, r2 sin2 θ p).
There are then three independent Einstein equations

8πGρ = e−2βr−2
(
e2β + 2rβ′ − 1

)
(11.3)

8πGp = e−2βr−2
(
−e2β + 2rα′ + 1

)
(11.4)

8πGp = e−2β

[
α′′ + +α′2 − α′β′ + 1

r
(α′ − β′)

]
(11.5)

Replace β(r) by a new function m(r) defined by

e2β(r) =

[
1− 2Gm(r)

r

]−1

(11.6)
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Eq. (11.3) then becomes very simple

dm(r)

dr
= 4πr2ρ(r) (11.7)

which can be integrated as

m(r) = 4π

∫ r

0
ρ(s)s2 ds (11.8)

If we wish to match the metric at the boundary of the star R∗ then we need m(R∗) = M∗,
with M∗ the mass of the star. Thus M∗ =

∫ R∗
0 ρ(r)r2dr and it looks like m(r) is the integral

of the energy density over the interior of the star and m(r) is the mass within radius r.1

Eq. (11.4) now becomes

dα(r)

dr
=
Gm(r) + 4πGr3p

r[r − 2Gm(r)]
(11.10)

Rather than using Eq. (11.5) we use momentum conservation ∇µTµν = 0. It turns out only
the ν = r equation is nontrivial

(ρ+ p)
dα

dr
= −dp

dr
(11.11)

Eliminating dα/dr from the last two equations gives an equation for hydrostatic equilibrium,
the Tolman-Oppenheimer-Volkoff Equation

dp

dr
= −(ρ+ p)[Gm(r) + 4πGr3p]

r[r − 2Gm(r)]
(11.12)

Since m(r) is a function of ρ this is an equation that links the energy density and the
pressure inside a star. We can now add an equation of state of the firm p = p(ρ) to
eliminate one of the variables. A simple choice is the polytropic equation p = Kργ for
constants K and γ. An even more simple assumption is that the star is incompressible, so
has constant energy density ρ∗. This implies that

m(r) =
4

3
πr3ρ∗ for r < R and m(r) =

4

3
πR3ρ∗ = M for r ≤ R (11.13)

1This is not really correct as the three dimensional volume elements is e2βr2 sin θdr dθdφ and
the actual integrated energy density is

M̃ = 4π

∫ R

0

ρ(r)r2eβ(r)dr = 4π

∫ R

0

ρ(r)r2√
1− 2Gm(r)/r

dr (11.9)

The difference is the binding energy from the mutual gravitational interaction of the fluid components
of the star, EB = M̃ −M > 0.
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The solution to the hydrostatic equilibrium equation turns out to be

p(r) = − R
√
R− 2GM −

√
R3 − 2GMr2

3R
√
R− 2GM −

√
R3 − 2GMr2

× ρ∗ (11.14)

Charts for pressure in such a star are shown in fig. 11.6 for fixed mass and varying radius
and for fixed radius and varying mass. We see that for R = 9GM/4 the pressure at r = 0
becomes infinite as the denominator of (11.14) becomes zero. This means that for a given
radius there is no static solution when M ≥ 4R/9G. A star that shrinks to that level must
inevitably keep on shrinking, eventually reaching R < 2G and forming a black hole.

0 1 2 3 4
r0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

p(r)

Fixed mass

0.0 0.2 0.4 0.6 0.8 1.0
r0.0

0.5

1.0

1.5

2.0

2.5

3.0

p(r)

Fixed radius

Figure 11.6: Pressure in star of constant energy density. The left chart is for
constant Mass, GM = 1, ρ∗ = 1 and R = 9/4, 10/4, 3 and 4. The value R for a
given curve is where it crosses the x-axis. The right chart is for constant radius
R = 1 and varying mass, from top to bottomM = 4/9G, (4−1/4)/9G, (4−1/2)/9G
and (4− 1)/9G.

The assumptions for this to be valid are pretty strict, but it turns out they can be
considerably weakened and the Buchdahl’s Theorem states that any reasonable static
spherical symmetric solution of the interior of a star must have M < 4R/9G.

11.2 General Considerations

Not everything turns into a black hole. Planets are typically too small for gravitational
collapse to occur. Stars can be large enough, but the heat of the fusion provides the
pressure to balance this. When the fusion stops, gravitational collapse starts. There are
then two possible outcomes

• Fermions are pushed so closely together that Fermi degeneracy, i.e. the Pauli exclu-
sion principle, stops any further collapse. The star becomes a White Dwarf and this
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is how the star ends. Heavier fermions need higher densities for the Fermi principle
to play a role, so it is mainly electrons that are in play. Most stars end like that and
their size is typically like that of the earth.

• If the star is heavier than the Chandrasekhar Limit of approx 1.4M� then gravita-
tional pressure can overcome the electron degeneracy and the star shrinks further.
Electrons combine with protons to form neutrons and the result is a Neutron Star, of
radius typically 10 km. These are low luminosity, rapidly spinning objects with strong
magnetic fields with jets of particles coming from their magnetic poles. These are
Pulsars. Heavy neutron stars may collapse further and it is believed that there can
be no neutron stars heavier than the Oppenheimer-Volkoff Limit of 3-4M�. We
know of no denser structure than neutron stars, so it is believed that the end result
of this last collapse is a black hole.

These ideas are elaborated in more details in the next section.

Note however that black holes can come in many guises. The most common seem to
be from the collapse of heavy stars as described above. There are also supermassive black
holes with masses of 106 to 109 solar masses that are found at the center of galaxies. There
are also black holes with masses between those ranges. There is also some speculation
about the existence of micro black holes that originated from the very high density just
after the big bang.

11.3 The Collapse of a Star: The Chandrasekhar Limit

Consider a star to be a self-gravitating ball of hydrogen atoms supported by thermal equilib-
rium.2 The total energy is then E = Egrav+Ekin, with Egrav ∼ −GM2/R and Ekin ∼ nR3 〈E〉.
Here R is the radius of the star, M its mass, n the total number of hydrogen atoms and
〈E〉 the average kinetic energy of the atoms. The pressure is given by P ∼ nkT .

When fusion stops the star cools and contracts. However the total pressure does
not go to zero due to the Fermi degeneracy; the Pauli exclusion principle dictates that
fermions cannot all lump together. The degeneracy occurs first with the lightest fermions,
i.e. the electrons; each needs to occupy a cube with side of the order of its Compton
wavelength. Thus for the electron density we have n

−1/3
e ∼ ~/ 〈pe〉 with pe the average

electron momentum.

First assume the electrons are non-relativistic, 〈E〉 ∼ 〈pe〉2 /me. Since the degeneracy

2For simplicity we will ignore numerical pre-factors and only add them at the end when we need
to work out specific numbers.
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comes from the electrons we have n = ne and

Ekin ∼ neR3 〈pe〉
2

me
∼ neR3~2n

2/3
e

me
∼ n

5/3
e ~2R3

me
(11.15)

The bulk of the mass sits in the protons so that M ∼ npR
3mp and as ne = np we have

ne ∼M/mpR
3. This gives

Ekin ∼
~2

me

(
M

mp

)5/3 1

R2
(11.16)

and thus the total energy

E ∼ −α
R

+
β

R2
(11.17)

with α and β positive constants for fixed M . The general form of the energy is shown in
fig. 11.7

R

E(R)

Figure 11.7: Total energy in a star

The energy has a minimum, i.e a stable configuration, when Rmin ∼ β/α, i.e.

Rmin =
~2

me

(
M

mp

)5/3

/GM2 =
~2

M1/3mem
5/3
p

(11.18)

This stable configuration is a White Dwarf. At equilibrium, the electron density is

ne ∼
M

mpR3
min
∼
G3M2m3

em
4
p

~6
(11.19)

We assumed that the electrons where non-relativistic. This means that 〈pe〉 � mec, i.e.
〈pe〉 /me ∼ ~n1/3

e /mE � c or ne � (mec/~)3. For a white dwarf at equilibrium (11.19) this
means

G3M2m3
em

4
p

~6
� m3

ec
3

~3
⇒ M � 1

m2
p

(
c~
G

)3/2

(11.20)
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If M is larger than the electrons are relativistic and their kinetic energy is then 〈E〉 =
〈pe〉 c = ~cn1/3. The kinetic energy is then

Ekin ∼ neR3 〈E〉 ∼ ~cR3n4/3
e ∼ ~cR3

(
M

mpR3

)4/3

∼ ~c
(
M

mp

)4/3 1

R
(11.21)

The total energy then becomes

E = −α
R

+
β̃

R
(11.22)

with α and β̃ positive constants for fixed M . Equilibrium is now only possible if α = β̃ or

M ∼ 1

m2
p

(
~c
G

)3/2

(11.23)

If M is smaller than this value that equilibrium can only exist if the radius is larger and
the electrons becomes non-relativistic and the star is supported by electron degeneracy
pressure. If M is larger than this value, then the radius of the star must continue to
decrease as electron degeneracy cannot support the star. This thus defines a critical
mass, and corresponding critical radius

MC ∼
1

m2
p

(
~c
G

)3/2

and RC ∼
1

memp

(
~3

Gc

)1/2

(11.24)

above which the radius of the star continues to decrease and a white dwarf cannot exist.
This is the Chandrasekhar Limit. Re-instating all numerical values gives MC ≈ 1.4M�.

11.3 Neutron Stars

The energy of the electrons in a white dwarf are of the order of the Fermi energy, i.e.
the energy difference between the highest and lowest occupied single particle states in a
system of non-interacting fermions. This Fermi energy must be smaller than mec

2 or the
electrons would be relativistic and cannot support the star. This means that there is not
sufficient energy in a white dwarf for inverse β decay e− + p+ → n+ νe to occur. Indeed
this reaction would need an energy of at least ∆mnpc

2 with ∆mnp the mass difference
between the neutron and the proton and we know that ∆mnp ≈ 3me > me. So for inverse
β decay to occur we need energies of at least 3mec

2, which is not available in white dwarfs.

But if the mass of the collapsing star is larger than the Chandrasekhar limit then the
star will continue to collapse until that energy level is reached. Inverse β decay will then
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happen and protons and electrons will combine into neutrons and neutrinos, and the latter
will just fly out of the star as they react with only extremely weakly with anything. Without
neutrinos, there is no reaction of the form n+ νe → e−+ p that can create an equilibrium.
Also β decay, i.e. n → e− + p+ + ν̄e cannot occur as they would need an energy level
∆mnpc

2 for the electron that was created, but all these energy levels are already filled
if the Fermi energy, i.e. the level of the highest occupied state, is higher than that. In
other words, all protons and electrons convert into neutrons and the star will continue to
collapse up to the point where neutron degeneracy pressure kicks in.

We can use the same approximation as for electron degeneracy. The critical mass is
independent of the electron mass remains the same, but for the critical radius we need to
replace the electron mass by the proton mass

RC ∼
1

m2
p

(
~3

Gc

)1/2

∼ GMC

c2
(11.25)

which is basically the Schwarzschild radius. This basically means that our approximation of
flat spacetime that was implicit in our earlier Newtonian is not valid anymore, and we have
to give it a fuller general relativity treatment. In addition treating nuclear matter as an
ideal gas is not justified. However one can use a perfect fluid approximation and it then
turns out that there is a critical mass below which neutron stars are stable, M ∼ 3−4M�.
This is the Oppenheimer-Volkoff Limit. More massive stars continue to collapse and as we
know of no mechanism to stop it, we can only assume that they become very high density
object, eventually black holes,
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Black Holes: General Considerations

12.1 The No-Hair Theorem

The Schwarzschild black hole is just one example of a black hole and illustrates nicely
certain properties of black holes. One would naively think that there may be a plethora of
different types of black holes, but that is misleading. It turns out that black hole solutions
are fully determined by only a small number of parameters. This is encompassed by a
so-called No-Hair Theorem that says that

stationary, asymptotically flat black hole solutions of gravity coupled
to electromagnetism that are non-singular outside the event horizon

are completely characterised by four parameters: mass,
angular momentum and electric and magnetic charge.

This deserves some comments.

• The restriction to stationary is not irrelevant as we expect this to be the end-state
of gravitational collapse. Non-stationary black holes will emit gravitational waves and
have there energy damped until they are stationary.

• We only mention electromagnetism because, as far as we know, this is the only long
range force – besides gravity of course – and hence the only force for which this is
relevant. For the weak and strong force we would need a quantum theory of gravity
and it is possible that the black hole would have different sorts of hair.

• This no-hair theorem is at the crux of the information paradox . We can throw in all
the stuff we want in a black hole but we only need a small number of parameters
to describe it. Classically we might live with that as an outsider can’t know what
happens inside the event horizon, but quantum mechanically this causes a paradox
as we discuss in more detail in section 17.3 on Hawking radiation.

99
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12.2 Definition of a Black Hole

The most important feature of a black hole is actually not the singularity but the event
horizon: the fact that there is a hypersurface beyond which nothing can escape. More
formally this means that there is a hypersurface that separates spacetime points that are
connected to infinity by a timelike curve from those that are not. By infinity we mean
far enough from the black hole in such a way that spacetime can be approximated by
Minkowski spacetime, i.e. is asymptotically flat. This means that its conformal diagram
future and past null infinity (where light rays start an end) J ± and spatial infinity i0 have
the same structure as the conformal diagram of Minkowski spacetime, i.e. it must be of
the form

J +

J−

i0

future
event horizon

past event
event

Figure 12.1: Conformal diagram of an asymptotically flat spacetime

Recall from our discussion in section 3.3 that we defined the causal future J+(S) the
subset of a spacetime that can be reached by the causal curves starting in S, where causal
curves are worldlines that are either timelike or lightlike. Similarly the causal past J−(S)
is the subset of a spacetime that with causal curves ending in S. The future event horizon
can thus be viewed as the boundary of the causal past of future null infinity, i.e. ∂J−(J +).
Similarly, the past event horizon is the boundary of the causal future of the past null infinity,
∂J+(J −).

12.3 Event Horizons as Null Hypersurfaces

It follows from this that an event horizon is a Null Hypersurface, i.e. a hypersurface Σ
defined by f(x) = 0 whose normal ∂µf is a null vector, ∂µf∂µf = 0, and hence also
a tangent to Σ. This is the case because the boundary is lightlike. Null hypersurfaces
are generated by null geodesics xµ(λ), whose tangent vectors ξµ are necessarily a linear
combination of the normal vectors, as they are also tangent vectors
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ξµ =
dx(λ)

dλ
= h(x)gµν∂νf (12.1)

where gµν appears because it is the only covariant tensor available. If we chose the function
h(x) so that the geodesics are affinely parametrised we then have ξ2 = 0 and ξ · ∇ξµ = 0.
For a future event horizon, the generators of the null hypersurface may have an end in
the past, but they will always continue indefinitely into the future and vice versa for a past
event horizon.

12.4 The Singularities of a Black Hole

As we have seen with the Schwarzschild metric a singularity in the metric could very well
be a coordinate singularity that disappears by a judicious choice of coordinates. So how do
we find the real singularities of a given metric. We could, of course, compute scalars such
as the Kretschmann invariant K = RµνρσRµνρσ and many others, until we find a singularity,
but this is computationally too hard.

For the metrics we will consider, stationary and asymptotically flat metrics with event
horizons that have a spherical topology, there is a neat way to find the singularities. As
the metric is stationary there is a Killing vector ∂t that is asymptotically timelike and we
can chose our metric to be independent of t. On a hypersurface t = cte we can chose
coordinates such that the metric at infinity looks like the Minkowski metric in spherical
coordinates. Hypersurfaces with r = cte are as r →∞ now timelike cylinders with topology
R× S2, described by coordinates t× (θ, φ).

If our coordinates are such that as we decrease r from infinity the r = cte hypersurface
remains timelike until we come to given value of r∗ where the hypersurface is null, then
this is necessarily an event horizon since in the region r < r∗ timelike paths will not be able
to go to infinity, and we have r∗ = rH .

In other words we can find event horizons by determining the points at which the r = cte

hypersurface becomes a null hypersurface. But from the definition of a null hypersurface
in the previous section, we know that this happens when (∂r)2 = 0. Writing this out we find
gµν∂µr∂νr = grr . Hence we conclude that for our cases of metrics an event horizon is a
hypersurface defined by

grr(rH) = 0 (12.2)

which is a much easier check than calculating quantities as the Kretschmann invariant. One
readily checks that this indeed works out for the Schwarzschild metric.
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12.5 Singularity Theorems, the Cosmic Censorship Conjecture
and Naked Singularities

Singularities are nearly unavoidable in general relativity and are generally hidden behind
event horizons, although it is possible to find metrics with singularities from which signals
can reach null future infinity J +, and so are not hidden behind event horizons.

Singularity Theorems

There is a whole list of Singularity Theorems, initiated by Hawking and Penrose, that
basically say that once a star collapses behind a certain point, it will necessarily evolve
to a singularity. We can find out that there is a singularity via Geodesic Incompleteness
which is the concept that there exists some geodesics that cannot be extended within the
manifold and end at a finite value of the affine parameter.

Collapse of a star has reach a point of no return if we have a Trapped Surface, which
is basically a two-dimensional submanifold from which nothing can escape. To illustrate
this consider a two-sphere in Minkowski spacetime at a given time. Light rays from this
two-sphere can travel outwards or inwards, and will describe a shrinking respectively an
expanding sphere of light. But now consider such a two-sphere in of fixed radius r < GM
well within the event horizon. Both sets of light rays will evolve to smaller r, i.e. to the
singularity, as we have seen, and thus two a smaller two-sphere. That is we have a compact
spacelike two-dimensional surface such that all future directed light rays converge in all
directions. That is precisely a trapped surface.

With these concepts out of the way we can give an example of a singularity theorem:

Assume that the metric on a manifold satisfies the EFEs,
some generic conditions and the strong energy condition.
If the manifold has a trapped surface then there must

either a closed timelike curve or a singularity.

Before we elaborate a bit on the conditions, let us take a moment to understand what
this means. A trapped surface means that no timelike or lightlike geodesics can escape. So
any geodesic will either have to return on itself (i.e. it is closed) or it has to end somewhere
in the trapped surface, i.e. in a singularity.

Let us now elaborate on the conditions

1. Obviously the metric needs to satisfy the Einstein field equations.

2. The generic conditions that the metric needs to satisfy are merely to ensure that
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certain metrics with special properties of the curvature tensor are excluded. They
are that (a) on every timelike geodesics with tangent vector Uµ there must be at
least one point on which RµνρσUµUσ 6= 0 and (b) on every lightlike geodesic with
tangent vector kµ there must be at least one point where k[µRν]σρ[κkξ]k

σkρ 6= 0

3. The energy-momentum tensor must satisfy the strong energy condition Tµν tµtν ≥
1
2T

µ
µ tνtν for all timelike vectors tµ. Recall that for a perfect fluid this is equivalent to

ρ+ p ≥ 0 and ρ+ 3p ≥ 0.

There are different singularity theorems in general relativity, but they all point out to
the fact that singularities are near unavoidable in all but the most time-dependent basic
spacetimes. This is a bit of a quandary because the equations of general relativity predict
singularities, but the theory is not valid at these singularities. Hopefully a theory of quantum
gravity can shed some light on this.

The Cosmic Censorship Conjecture

One fortunate fact is that it may turn out that singularities originating from gravitational
collapse in generic asymptotically flat spacetimes obeying the dominant energy condition
cannot be naked. Here a Naked Singularity is a singularity that is not hidden behind an
event horizon, i.e. a singularity from which signals can reach null future infinity J +. Recall
that the dominant energy condition is that Tµν tµtν ≥ 0 for all timelike vectors `µ and that
Tµνt

µ is non-spacelike, which for a perfect fluid means that ρ ≥ |p|. This statement is known
as the Cosmic Censorship Conjecture and remains to be proven. Note that this doesn’t
say anything about the actual existence of naked singularities, just about their formation.
In fact we will see that there is a regime of a charged black hole that can have just such
a naked singularity.

If this conjecture is correct, then one can show that under the weak energy condition
and cosmic censorship the area of a future event horizon in an asymptotically flat spacetime
is non-decreasing. This is known as the Area Theorem.

Note that this means that the mass of a Schwarzschild black hole, for which the area
is a monotonically increasing function of the radius, A ∝ R2

S ∝M2, cannot decrease. This
is a statement of classical general relativity. We will see later that if gravity is coupled to
quantum fields, then the black hole can radiate and loose mass, via the so-called Hawking
radiation.

Note also that not all black holes have necessarily increasing mass. Rotating black holes
have, as we will see, an area of the event horizon that is a funtion of both the mass and
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the angular momentum and we can extract energy and hence decrease the mass of the
black hole by decreasing its spin.

12.6 Killing Horizons

A Killing vector has a Killing Horizon if there exists a null hypersurface along which that
Killing vector is null. Take as as example the Schwarzschild metric with the Killing vector1

Kµ = ∂t = (1, 0, 0, 0). We have K2 = gµνK
µKν = −(1 − 2GM/r). As we enter into the

event horizon K2 turns from negative, i.e. timelike, to positive, i.e. spacelike, and on the
event horizon it is null. So this event horizon is a Killing horizon for the Killing vector ∂t.

Generally, one should not expect that event horizons and Killing horizons are closely
linked, but if the metric has time-translation symmetry we can, under certain generic
conditions, classify spacetimes.

First, it turns out that in a stationary, asymptotically flat spacetime every event horizon
is a Killing horizon for some Killing vector field. Next, if spacetime also happens to be static
then that Killing vector is Kµ = ∂t and represents time translations in that asymptotically
flat part. If however, spacetime is not static, but only stationary, then the metric will be
axisymmetric with a rotational Killing vector Rµ = ∂φ and the Killing vector of the Killing
horizon will be a linear combination of Kµ = ∂t and Rµ = ∂φ.

As an example we will see in chapter 13 on rotating or Kerr black holes that the event
horizon is a Killing horizon for a combination of Kµ = ∂t and Rµ = ∂φ and that in particular
the hypersurface on which ∂t becomes null is timelike and not null, and hence not a Killing
horizon.

We will not dwell into the conditions for when this classification is valid, bar it to say
that one can show that in the static case one does not need the EFE to show that the
event horizon is a Killing horizon for Kµ, i.e. this is a purely geometric fact and that for the
stationary case we need to make certain assumptions on the matter fields for this to be
valid.

Note that every Killing horizon does not imply an event horizon. Take e.g. Minkowski
spacetime ds2 = −dt2 + dx2 + dy2 + dz2 and consider the Killing vector for a boost in the
x-direction, i.e. K = x∂t + t∂x. It has norm K2 = −x2 + t2 and thus becomes null on the
surface x = ±t, which are therefore Killing horizons. But we know, of course, that Minkowski
spacetime has no event horizons. In fact for Minkowski spacetime we can combine the
boost Killing vectors with Killing vectors from translations and rotations and we can move

1We will be forgiven for the loose, but clear, notation we are using here.
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the Killing horizon all over spacetime. Non-flat spacetimes will have less Killing vectors and
the associated Killing horizons may have a more significant physical interpretation.

Killing Vectors as Generators of Geodesics on Killing Horizons

Let us approach Killing horizons in a slightly different way. From (12.1) we know that the
normal vector ξ to a null hypersurface Σ defined by f(x) = 0 can be written as

ξµ =
dx(λ)

dλ
= h(x)gµν∂νf (12.3)

This hypersurface f(x) = 0 is thus a Killing horizon for a Killing vector kµ if it’s normal is
null, ξ2 = 0 and if the Killing vector is proportional to that normal

kµ = ψ(x)ξµ (12.4)

Let us illustrate this with an example. Consider the Killing vector k = ∂t of the
Schwarzschild metric. It becomes null when 0 = k2 = gµνk

µkν = gtt = −(1 − 2GM/r),
thus the Killing horizon is the same as the event horizon and is defined by the hypersurface
f(x) = 1− 2GM/r. The normal to this horizon can then be written as

ξ = ξµ∂µ = hgµr∂r

(
−1 +

2GM

r

) ∣∣∣
Σ
∂µ

=hgµr
2GM

r2

∣∣∣
Σ
∂µ = hgµr

1

2GM
∂µ (12.5)

as Σ is defined by r = 2GM . We seem to have an issue because we would expect that the
normal to Σ as defined by f(x) = 1−2GM/r is ∂r and that is certainly not proportional to
our Killing vector ∂t. But we are saved by the realisation that the Schwarzschild coordinates
have a singularity at the event horizon, as grr →∞ and so are not a good set of coordinates
to describe that horizon. We thus need to go to coordinates that are not singular at the
event horizon, e.g. the Eddington-Finkelstein coordinates of (10.4)

ds2 = −
(

1− 2GM

r

)
dv2 + 2dv dr + r2dΩ2 (12.6)

The relevant components of the inverse metric are then gvr = 1, gvv = 0 and grr =
(1− 2GM/r), and the Killing vector is now k = ∂v . We now have

ξ =hgµr
1

2GM
∂µ =

h

2GM
(grr∂r + gvr∂v)

=
h

2GM
[(1− 2GM/r)) ∂r + ∂v]

=
h

2GM
∂v (12.7)
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as on the horizon r = 2GM and the normal ξ is indeed proportional to the Killing vector k
when using good coordinates.

Recall as well that ξ is not just normal to Σ but it is also tangent to it. Indeed tangents
vectors t are by definition orthogonal to normal vectors, ξ · t = 0 but as ξ is null by
construction we have ξ2 = 0 and so ξ is also tangent to Σ. This means that there must
exist a curve x(λ) in Σ such that

ξµ = dxµ/dλ (12.8)

It turns out that these curves are geodesics. In order to show this we first calculate
ξρ∇ρξµ, but not restricted to Σ:

ξρ∇ρξµ = ξρ∇ρ(hgµν∂nf) (use (12.3))

= ξρ(∂ρh)gµν∂νf + ξρhgµν∇ρ∂νf (Leibniz)

= ξρ(∂ρh)h−1ξµ + ξρhgµν∇ν∂ρf ((12.3) and ∂[ρ∂µ] = 0)

= ξρξµ∂ρ log h+ ξρhgµν∇ν∂ρf

= ξµ
d log h

dλ
+ hξρ∇µ(h−1ξρ) ((12.8) and (12.3))

= ξµ
d log h

dλ
+ ξρ∇µξρ − ξ2∂µ log h (Leibniz)

= ξµ
d log h

dλ
+

1

2
∂µξ2 − ξ2∂µ log h (12.9)

Let us now evaluate this on Σ. By definition we have ξ2 = 0 so the last term vanishes. Now,
∂µξ2 does not necessarily vanish on Σ, but as ξ2 is constant it means that tµ∂µξ2 = 0 for
any tangent vector tµ of Σ and so ∂µξ2 is normal to Σ and hence we have ∂µξ2 = αξµ for
some function α. We can thus write

ξρ∇ρξµ = ξµ
d log h

dλ
+

1

2
αξµ (12.10)

As h is an arbitrary function we can select a specific choice by requiring 0 = 2d log h
dλ + α

which implies that

ξρ∇ρξµ = 0 (12.11)

The reader will recognise this as the geodesic equation for x(λ). Explicitly, by using (12.8)
we find

0 = ξρ∇ρξµ =
d2xµ

dλ2
+ Γµνρ

dxν

dλ

dxρ

dλ
(12.12)

Eq. (12.10) is still a geodesic equation but with a non-affine parametrisation.

We have thus shown that the geodesics xµ(λ) with affine parameter λ of a Killing vector
with tangent vectors ξµ = dxµ/dλ are normal to the Killing horizon and generate it.
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12.7 Surface Gravity

To every Killing horizon we can associate a Surface Gravity which will be related to how
an external observer sees the acceleration of a static observer at the horizon.

Consider a Killing vector k associated with some Killing horizon. Along the horizon we
have by construction kµkµ = 0, so it is a constant on the horizon and therefore ∇ν(kµkµ)
is also normal to the horizon. There must therefore be a function κ(x), called the surface
gravity, such that

1

2
∇ν(kµkµ) = kµ∇µkν = −κkν (12.13)

We can also find this in another way. We know that the Killing horizon is a null hypersurface
and therefore a normal ξµ satisfies (12.11), i.e. ξν∇νξµ = 0. But we also know that the
corresponding Killing vector kµ is related to the normal ξµ by (12.4), i.e. kν = ψ(x)ξν . Let
us now work out

kν∇νkµ = kν∇ν(ψξµ) = kν(∂νψ)ξµ + kνψ∇νξµ

= kν(∂νψ)ψ−1kµ + ψ2ξν∇νξµ

= (kν∂ν logψ)kµ = −κkµ (12.14)

with

κ = −kν∂ν logψ (12.15)

We can write the surface gravity in a number of nice forms by using the fact that k
satisfies the Killing equation ∇(µkν) = 0 and Frobenius theorem that states that k[µ∇νkσ] =
0 is a necessary and sufficient condition for k to be orthogonal to the horizon.

1. Combining these two equations we find that kµ∇νkσ − kν∇µkσ + kσ∇µkν = 0. We
now contract thus with ∇µkν to find

(∇µkν)kµ(∇νkσ)− (∇µkν)kν(∇µkσ) + (∇µkν)kσ(∇µkν) = 0 (12.16)

We use the Killing equation on the second term to rewrite it as (∇νkµ)kν(∇µkσ) =
(∇µkν)kµ(∇νkσ) where we have also interchanged the dummy indices µ and ν. This
gives

(∇µkν)kσ(∇µkν) = − 2(∇µkν)kµ(∇νkσ) = −2(kµ∇µkν)∇νkσ
= + 2κkν∇νkσ = −2κ2kσ (12.17)

where we have also used the definition of κ. From this we deduce a simple formula
for the surface gravity valid at the Killing horizon
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κ2 = −1

2
(∇µkν)(∇µkν) (12.18)

2. We can also use Frobenius theorem and the Killing equation to write

3k[µ∇νkρ] = kµ∇νkρ + kν∇ρkµ + kρ∇µkν (12.19)

Multiply this with kµ∇νkρ. for the second term on the RHS use ∇ρkµ = −∇µkρ
and for the third term first interchange the dummy indices ρ and ν and then use
∇ρkν = −∇νkρ. We then get

3k[µ∇νkρ]k[µ∇νkρ] = kµkµ(∇νkρ)(∇νkρ)− 2(kµ∇νkρ)(kν∇µkρ) (12.20)

We now notice that the gradient of the LHS vanishes on the Killing horizon Σ. Indeed
the LHS is of the form 3WµνρWµνρ with Wµνρ totally antisymmetric. Therefore
∇σ(3WµνρWµνρ) = 6Wµνρ∇σWµνρ and this vanishes on the Killing horizon because
Wµνρ = k[µ∇νkρ] = 0 on Σ by Frobenius theorem. Let us now divide the LHS of the
above equation by |k|2 and take the limit of being on Σ

lim
Σ

3k[µ∇νkρ]k[µ∇νkρ]

|k|2
→ 0

0
(12.21)

We can thus use l’Hospital’s rule. But the gradient of the numerator is zero as we
have just seen and the gradient of |k|2 does not vanish for non-zero κ by (12.15).
We therefore find that on Σ

0 =
1

|k|2
[kµkµ(∇νkρ)(∇νkρ)− 2(kµ∇νkρ)(kν∇µkρ)] (12.22)

or

(∇νkρ)(∇νkρ) =
2(kµ∇νkρ)(kν∇µkρ)

|k|2
(12.23)

By (12.18) the LHS is just −2κ2. In order to rewrite the RHS we work out

∂ρ(kνkν)∂ρ(k
µkµ)

2|k|2
=
∇ρ(kνkν)∇ρ(kµkµ)

2|k|2
=

(2kν∇ρkν)(2kµ∇ρkµ)

2|k|2

=
2(kµ∇ρkν)(kν∇ρkµ)

|k|2
=

2(kµ∇νkρ)(kν∇µkρ)
|k|2

(12.24)

Therefore
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κ2 = −g
µν∂µk

2∂νk
2

4k2
(12.25)

which is often the most useful form to compute the surface gravity. Note finally that
introducing σ2 = −k2 we can also write this in the compact form

κ2 = (∂σ)2
∣∣∣
Σ

(12.26)

where we have explicitly reinstated the fact that this is to be taken on the Killing
horizon.

As Killing vectors can always be rescaled, the surface horizon is actually arbitrary, in
principle. However in a static, asymptotically free spacetime with time translation Killing
vector K = ∂t we can set the normalisation limr→∞K

2 = −1 and this fixes the surface
gravity of any associated Killing horizon. In a stationary asymptotically flat spacetime the
Killing horizon is associated with a linear combination of K = ∂t and R = ∂φ and fixing the
normalisation of K fixes the linear combination and so also the surface gravity.

Surface Gravity as the Acceleration of a Static Observer on the Horizon

We now claim that

in a static asymptotically flat spacetime the surface gravity is the acceleration
of a static observer near the horizon as seen by a static observer at infinity.

In other words, if you as an external observer far away from the horizon will see an observer
that is static at and w.r.t. to a horizon as having an acceleration equal to the surface gravity
of the horizon.

In order to show this, consider a particle near the horizon Σ, moving on an orbit of
the Killing vector kµ, i.e. following a path x(τ), where we take τ to be the proper time. Its
four-velocity is uµ = dxµ/dτ and is proportional to kµ as the Killing vector is normal to the
horizon, i.e. uµ = αkµ. To determine α we recall that the four-velocity satisfies u2 = −1
so that α2 = −k2 = σ2. Note that is the same σ that we used in (12.26). Thus

uµ = σ−1kµ (12.27)

The four-acceleration aµ is given by

aµ =Duµ/Dτ = (dxµ/dτ)∇νuµ = uν∇νuµ

=σ−1kν∇ν(σ−1kµ) = σ−1kν
[
−σ−2(∇νσ)kµ + σ−1kν∇νkµ

]
=σ−2kν∇νkµ − σ−3kµkν∇νσ (12.28)
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Consider now the second term, it is

−σ−3kµkν∇νσ = − σ−3kµkν∇ν
√
−k2 =

1

2
σ−4kµkν∇νk2

=σ−4kµkνkρ∇νkρ = 0 (12.29)

by symmetry arguments. Using this and rewriting the first term we find

aµ = − 1

2
σ−2∂µσ2 = σ−1∂µσ (12.30)

The magnitude of the acceleration is thus given by

a =
√
gµνaµaν = σ−1

√
∂µσ∂νσ (12.31)

As the particle approaches the horizon, the square root becomes the surface gravity κ but
σ−1 = (−k2)−1/2 diverges as k2 = 0 on the horizon. Thus the proper acceleration of a
particle following a path x(τ) diverges on the horizon. However that acceleration measured
by a static observer at infinity will have a scale factor relating the proper time of the particle
to the coordinate time at infinity. Take as an example a Schwarzschild black hole, where
the Killing vector is simply k = ∂t, we would then have dτ2 = −g00dt

2, but we can write
this as dτ2 = −kµkνgµνdt2. As this is a covariant expression it provides a natural way of
expressing the scaling factor in all cases and so dτ = σdt. Note that σ is nothing else but
the redshift factor.

Thus the acceleration of a test particle near the horizon as seen by a static observer
at infinity is equal to the surface gravity, which explains why it is called that way.

This consideration breaks down if spacetime is stationary and not static. In the station-
ary case K = ∂t is still a Killing vector, but it won’t become zero at the Killing horizon. The
surface where K2 = 0 is the Stationary Surface and corresponds to gtt = 0. We will work
this out explicitly when we consider rotating black holes and see that on the stationary
surface one of the light rays is indeed stationary, and results in an infinite redshift. We will
see that in the spacetime between the event horizon and the stationary surface, called the
Ergosphere, timelike paths are necessarily dragged along the rotation of the black hole.

The Surface Gravity of the Schwarzschild Spacetime

The time translation Killing vector is K = ∂t = (1, 0, 0, 0), therefore σ2 = −K2 = (1 −
2GM/r) and so σ =

√
1− 2GM/r. The Killing horizon is given by K2 = 0 hence r = 2GM .
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We now use (12.26)

κ2 = gµν∂µσ∂νσ
∣∣∣
r=2GM

= grr∂rσ∂rσ
∣∣∣
r=2GM

=

(
1− 2GM

r

)[
1

2
√

1− 2GM/r

2GM

r2

]2 ∣∣∣∣∣
r=2GM

=
1

(4GM)2
(12.32)

and so

κ =
1

4GM
(Schwarzschild spacetime) (12.33)

We can also compute the acceleration of a static observer. The static four-velocity is
uµ = (ω, 0, 0, 0). Requiring u2 = −1 gives ω = (1− 2GM/r)−1/2. The acceleration is given
by aµ = uν∇νuµ which gives the components (0, GM/r2, 0, 0) and aµ = (0, GM/[r2(1 −
2GM/r)], 0, 0) and so

a =
√
aµaµ =

GM

r2
√

1− 2GM/r
(12.34)

and we see that it indeed diverges for the static observer at the horizon. However for an
observer at infinity watching the static observer at the horizon, we need to multiply by
σa =

√
−k2 =

√
1− 2GM/r and so we find for a∞ = σa = GM/r2.

Note that the surface gravity (12.33) decreasing for increasing mass; the surface gravity
of a heavy black hole is actually weaker than that of a lighter black hole. We can under-
stand this from looking at the redshifted acceleration σa = GM/r2. The event horizon is
proportional to the mass and so provides a factor M−2 which dominates.

12.8 Charge, Mass, and Spin of a Black Hole

We have seen that the no-hair theorem says that a black hole can be fully described by
a limited number of parameters such as its mass, charge and angular momentum. It is
therefore important to have a thorough understanding of how these are defined in general
relativity, as we will see that they are not without some subtleties.

The Charge of a Black Hole

To describe the charge of a black hole is easy. It is the conserved charge of the electro-
magnetic current. Maxwell’s equation is ∇νFµν = Jµe , and the charge passing through a
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spacelike hypersurface Σ is given by the integral over that hypersurface

Q = −
∫

Σ
d3x
√
γnνJ

µ
e (12.35)

where γij is the induced metric and nµ is the unit normal vector of Σ. The minus signs
ensures that if the charge density is positive, a future directed normal vector will give a
positive charge. Using Maxwell’s equation and Stokes theorem, we can write

Q = −
∫
∂Σ
d2x

√
γ(2) nµσνF

µν (12.36)

with γ(2) is the induced metric on the boundary of Σ, which is usually a two-sphere, and
σµ is its outwards pointing unit normal vector.

Let us work this out for the simple example of a point charge in Minkowski spacetime
to convince ourselves that this makes sense. The electric field of a point charge has only a
radial component Er = q/4πr2, so the only non-vanishing field tensors are F tr = −F rt =
Er . The unit vector on spacelike infinity is nµ = (1, 0, 0, 0) and the unit vector on the
two-sphere points in the radial direction, hence is σµ = (0, 1, 0, 0). Thus nνσνFµν = −Er =

−q/4πr2. The induced metric on the two-sphere is γ(2)
ab dx

adxb = r2dθ2 + r2 sin2 θdφ2 and
so the volume element is d2x

√
γ(2) = r2 sin θ dθ dφ. Bringing everything together we find

Q = − lim
r→∞

∫
S2

(
− q

4πr2

)
× (r2 sin θ dθ dφ) = q (12.37)

which is indeed exactly what we expect.

If we would wish to, we could likewise define a magnetic charge by replacing Fµν by
its dual ∗Fµν = 1

2ε
µνρσFρσ .

The Energy of a Black Hole

The concept of energy is quite subtle in general relativity. We can understand this from
the fact that the energy-momentum is a tensor and that it only describes the properties
of matter, not of the gravitational field itself. But we saw in (5.13) that we could define a
conserved total energy in a stationary spacetime. If Kµ is a timelike Killing vector then we
can define

ET =

∫
Σ
JµT nµ

√
γ d3x with JµT = KνT

µν (12.38)

Unfortunately there are some problems with this concept. Consider for example the
Schwarzschild spacetime. It has a timelike Killing vector but it is a solution of the Ein-
stein equations in vacuum so the energy-momentum tensor is equal to zero, therefore this
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energy ET would be zero. But how can we be sure of this since the spacetime contains a
singularity and it may not be clear how we can evaluate the integral. In addition, a black
hole may be the end-point of the collapse of a massive star, which clearly has non-zero
energy. If the end-point has no total energy then we are violating the conservation of
energy.

It hence make sense to look for a new concept of energy. Once more we assume a
stationary, asymptotically flat spacetime with timelike Killing vector Kµ and we construct
the tensor

JµR = KνR
µν (12.39)

From the Einstein equation we can rewrite this as

JµR = 8πGKν

(
Tµν − 1

2
Tgµν

)
(12.40)

Let us now evaluate the divergence of (12.39)

∇µJµR = (∇µKν)Rµν +Kν(∇µRµν) =
1

2
Kν∇νR = 0 (12.41)

For the first term we have used the Killing equation and for the second we have used
the Bianchi identity, ∇µGµν = 0. For the last equation we have used the fact that the
directional derivative of the curvature along any Killing vector vanishes as per the last
equation of (5.12).

The advantage of defining a conserved quantity using JµR is that it can be written as a
surface integral over a two-sphere at spatial infinity. Indeed we have

∇ν(∇µKν) = ∇ν∇µKν) = KνR
µν = JµR (12.42)

where we have used the second equation of (5.12). Thus, if we define an energy

ER =
1

4πG

∫
Σ

√
γnµJ

µ
Rd

3x (12.43)

then we can use Stoke’s theorem to write it as

ER =
1

4πG

∫
∂Σ

√
γ(2) nµσν∇µKνd2x (12.44)

This expression is known as the Komar Integral of the timelike Killing vector Kµ = ∂t.

Let us work out the example of the Schwarzschild metric to show that ER has the
interpretation of the total energy of spacetime. This is a similar calculation as the one we
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did for the charge of a point particle in Minkowski spacetime, so we will proceed swiftly.
The unit vectors have non-zero components

n0 = −
(

1− 2GM

r

)1/2

and σ1 =

(
1− 2GM

r

)−1/2

(12.45)

note that n is timelike, n2 = −1 and σ is spacelike, σ2 = +1. Then nµσν∇µKµ = −∇0K1,
with Kµ = (1, 0, 0, 0). This gives ∇0K1 = −GM/r2. Using the two-sphere volume element
d2x
√
γ(2) = r2 sin θ dθ dφ we find

ER =
1

4πG

∫
GM

r2
r2 sin θ dθ dφ = M (12.46)

which indeed recovers the mass, i.e. energy of the Schwarzschild black hole.

Our motivation for turning to the Komar integral was thatET =
∫

ΣKνT
µν nµ

√
γ d3x was

identical to zero in vacuum. The attentive reader will notice that ER =
∫

ΣKνR
µν nµ

√
γ d3x

may have the same fate as Rµν = 0 in vacuum. But we performed this integral by using
Stoke’s theorem to integrate it over the boundary and the result was definitely not zero
for non-vanishing mass! What’s going on? The issue really is that we really only integrated
over the spacelike region I of the Kruskal diagram (see the figure below) of the extended
Schwarzschild metric, and hence only over that boundary. The spacelike region really
extends via the wormhole over region IV as well. The contribution from that region would
be the same and opposite. Hence both contributions together will indeed give a contribution
of zero. What happens when the spacelike region ends in the singularity is a mystery, at
least to me.

IIV
II

III

The Angular Momentum of a Black Hole

It is now entirely straightforward to define the total spin of a spacetime. Indeed the
definition of the Komar integral for Kµ, only required Kµ to be a Killing vector, so if
we have a Killing vector for rotational symmetry, Rµ = ∂φ, we can define a conserved
current

Jµφ = RνR
µν (12.47)

and a Komar integral
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J = −1
1

8πG

∫
∂Σ

√
γ(2) nµσν∇µRνd2x (12.48)

Working this out for the Schwarzschild metric is trivial. We have Rµ = ∂φ = (0, 0, 0, 1)
and thus Rµ = (0, 0, 0, 1). We therefore have nµσν∇µRµ = −∇0R1 = 0, hence JR = 0.

12.9 ADM Gravity

The fact that ER recovers the mass of the Black hole for the Schwarzschild metric, and, as
we will see, also for othermetrics, is encouraging to say it is the energy. But the evidence
seems somewhat meagre. Further and better evidence comes form a Hamiltonian approach
to general relativity known as ADM Gravity.2 In that approach one consider the metric and
its "conjugate momentum" as independent variables and takes the Hamiltonian as generator
of time translation. If one then splits the metric as gµν = ηµν + hµν with h very small at
infinity, so that we have an asymptotically flat spacetime, then one finds that the ADM
Energy is given by

EADM =
1

16πG

∫
∂Σ
d2x

√
γ(2) σi(∂jh

j
i − ∂ih

j
j) (12.49)

If hµν is time-independent at infinity that one can show that the ADM energy and the
Komar energy are the same.

One can further more prove a Positive Energy Theorem stating that

In a nonsingular, asymptotically flat spacetime obeying the
Einstein equations and with the dominant energy condition,

the ADM energy is nonnegative, and only zero
for Minkowski spacetime.

It is comforting that the ADM energy cannot be negative, or otherwise a zero energy
solution could always spilt in the combination of a positive and negative energy solution.
The Dirac sea all again!

2ADM stands for Arnowitt, Deser and Misner
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Chapter 13

The Rotating or Kerr Black Hole

13.1 The Kerr Metric

The Schwarzschild metric is the unique spherically symmetric solution to Einstein’s equa-
tions in vacuum. We now consider stationary and cylindrically symmetric solutions in vac-
uum. Stationary means that the object can rotate with constant angular momentum.
Cylindrical symmetry means that the metric components only depend on r and θ, but
not on t or φ. We also require the metric to be unchanged under (t, φ) → −(t, φ). This
means that the only cross terms that can appear are dt dφ and dr dθ, but the latter can be
eliminated by a coordinate transformation. The corresponding metric is then of the form

ds2 = gttdt
2 + grrdr

2 + gθθdθ
2 + gφφdφ

2 + 2gtφdt dφ (13.1)

where the metric components are functions of r and θ only.

We will not derive the solution but just posit it:

ds2 = −
(

1− 2GMr

ρ2

)
dt2 +

ρ2

∆
dr2 + ρ2dθ2 +

(
r2 + a2 +

2GMa2r sin2 θ

ρ2

)
sin2 θdφ2

− 4GMar sin2 θ

ρ2
dt dφ (13.2)

where

ρ2 = r2 + a2 cos2 θ

∆ = r2 + a2 − 2GMr

a =
J

GM
(13.3)

This solution is known as the Kerr Metric and this particular form is known amongst
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aficionados as the Boyer-Lindquist Coordinates. The Kerr metric has two free parameters
M and J . In order to identify M and J with things we know, we establish a link to specific
concepts in Newtonian gravity.

For r → ∞ the Kerr metric reduces to the Minkowski metric and in particular gtt →
−(1− 2GM/r), which becomes Newtonian gravity in the weak field limit, hence the identi-
fication of M with a mass. The gtφ component then becomes

gtφ → −
2J sin2 θ

r
dt dφ = −2J sin2 θ

r
dt (xdy − ydx) (13.4)

Using this in the metric we find that for r →∞ it is of the form

ds2 = · · ·+ r2 sin2 θ

(
dφ− 2J

r3
dt

)2

+ · · · (13.5)

One can then show that J indeed corresponds to the angular momentum of a slowly rotating
body.

In fact, the best way to show thatM and J represent the mass and angular momentum
of the black hole is by computing the respective Komar integrals.

13.2 The Komar Integrals for the Kerr Black Hole

Let us evaluate the energy and angular momentum Komar integrals for the Kerr metric.
They are given by (12.44) and (12.48) respectively

ER =
1

4πG

∫
∂Σ

√
γ(2) nµσν∇µKνd2x

JR = − 1
1

8πG

∫
∂Σ

√
γ(2) nµσν∇µRνd2x (13.6)

The unit normal vectors are nµ = (1, 0, 0, 0) and σµ = (0, 1, 0, 0). This implies that

nµ =

(
−1 +

2GMr

ρ2
, 0, 0,−2GMar sin2 θ

ρ2

)
and σµ =

(
0,
ρ2

∆
, 0, 0

)
(13.7)

Thus for a Killing vector kµ

nµσν∇µkν = nµσν∇µkν = ∇0k1 = ∂tkr − Γµtrkµ (13.8)

Let us now first consider ER. The Killing vector is Kµ = (1, 0, 0, 0) = nµ, hence

Kµ =

(
−1 +

2GMr

ρ2
, 0, 0,−2GMar sin2 θ

ρ2

)
(13.9)
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Thus

nµσν∇µKν = −ΓµtrKµ = −ΓttrKt − ΓφtrKφ (13.10)

The relevant Christoffel symbols are

Γttr =
GM(r2 + a2)(r2 − a2 cos2 θ)

∆ρ4
and Γφtr =

GMa(r2 − a2 cos2 θ)

∆ρ4
(13.11)

and this gives

nµσν∇µKν =
GM(r2 − a2 cos2 θ)

ρ4
(13.12)

Combining with the volume element d2x
√
γ(2) = r2 sin θ dθ dφ we find

ER = lim
r→∞

1

4πG

∫
dθ
GM(r2 − a2 cos2 θ)

ρ4
r2 sin θ

∫
dφ

= lim
r→∞

1

4πG

(
2GMr2

r2 + a2

)
(2π) = M (13.13)

and we find that the total energy of spacetime is indeed the mass of the black hole.

Turning to the angular momentum, we use the Killing vector Rµ = ∂φ = (0, 0, 0, 1). This
gives

Rµ =

(
−2aGMr sin2 θ

ρ2
, 0, 0, r2 + a2 +

2a2GMr sin2 θ

ρ2

)
(13.14)

and we find similarly

nµσν∇µRν = −aGM(r2 − a2 cos2 θ) sin2 θ

ρ4
(13.15)

and

JR = lim
r→∞

− 1

8πG

∫
dθ

(
−aGM(r2 − a2 cos2 θ) sin2 θ

ρ4

)
r2 sin θ

∫
dφ

(13.16)

This integral is harder to compute1, but we can evaluate it numerically for very large values
of r and we find that it is equal to −4aGM/3. Thus

JR = − 1

8πG

(
−4aGM

3

)
(2π) =

aM

3
=

J

3G
(13.17)

I am not sure about the strange denominator, but it certainly is the case that JR is
proportional to J and hence J is indeed a measure of the angular momentum of the
rotating black hole.

1My Mathematica license runs out of time.
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13.3 General Properties of a Stationary Cylindrically Symmetric Metric

It is possible to deduce some important properties of a stationary cylindrically symmetric
metric, without going into the detailed from of the Kerr metric. Assume the metric is of
the form (13.1), i.e.

ds2 = gttdt
2 + grrdr

2 + gθθdθ
2 + gφφdφ

2 + 2gtφdt dφ (13.18)

with the components functions of r and θ only. This metric is invariant under the transfor-
mations t → t + εt and φ → φ + εφ and thus has two corresponding conserved currents.
These are most easily found from the corresponding equations of motion from the action
S =

∫
ds which are

0 =
d

dτ

(
gtt
dt

dτ
+ gtφ

dφ

dτ

)
0 =

d

dτ

(
gφt

dt

dτ
+ gφφ

dφ

dτ

)
(13.19)

The conserved quantities are thus

ε = −
(
gtt
dt

dτ
+ gtφ

dφ

dτ

)
` = gφt

dt

dτ
+ gφφ

dφ

dτ
(13.20)

and these do not change along geodesics.

In the context of differential geometry we say that there are two conserved Killing
vectors kε = kµε ∂µ and kφ = kµ` ∂µ with kµε = (1, 0, 0, 0) and kµφ = (0, 0, 0, 1) so that kE = ∂t
and kφ = ∂φ. For a particle of mass m with momentum pµ = mdxµ/dτ the conserved
quantities are then

−kε · p = − kµε pµ = −pt = −gtµpµ = −(gttp
t + gtφp

φ) = ε

k` · p = kµ` pµ = pφ = gφµp
µ = gφtp

t + gφφp
φ = ` (13.21)

13.3 Frame Dragging

We see that the "angular momentum" ` has an extra term containing the non-diagonal
component gtφ, which will give some new physics.

Take a particle2 far way from the source of the gravitational field that has ` = 0. By

2If the particle is massive then τ is the proper time; if it is massless then τ is an affine parameter.
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far away we mean the the metric approaches a flat metric and thus gtφ → 0 and gφφ → 1.
Thus ` = 0 implies that dφ/dτ → 0 far away.

As the particle approaches r = 0, the angular momentum remains zero as it is con-
served, but the particle picks up a angular dependent velocity, defined w.r.t. to the
coordinate time of an external observer, i.e. not w.r.t. the proper time of the parti-
cle.

ω(r, θ) ≡ dφ

dt
=
dφ/dτ

dt/dτ
= −

gtφ
gφφ

(13.22)

Thus, an external observer will see as if the particles rotates, even though it has zero
angular momentum. This is the phenomenon of Frame Dragging and can be interpreted
as spacetime being deformed by the rotating source, as shown in fig. 13.1

Figure 13.1: Frame dragging

13.3 Stationary Limit Surface

The frame dragging is experienced by any particle, massive or massless, in the neigh-
bourhood of a rotating massive object, not necessarily a black hole and is due to the
non-vanishing of gtφ. As another example of the consequence of this off-diagonal metric
component, let us consider light rays. Solving the quadratic equation ds2 = 0 for dφ/dt we
find the two solutions

dφ

dt
= −

gtφ
gφφ
±

√(
gtφ
gφφ

)2

− gtt
gφφ

(13.23)

We consider five regimes, depending on how far away we are from the black hole

(a) Very far away from the black hole we are approaching Minkowski spacetime and
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hence gtt < 0 and gφφ > 0. Thus we have two roots

Ω
(a)
+ =

dφ

dt
= ω +

√
ω2 +

∣∣∣∣ gttgφφ
∣∣∣∣ > 0

Ω
(a)
− =

dφ

dt
= ω −

√
ω2 +

∣∣∣∣ gttgφφ
∣∣∣∣ < 0 (13.24)

where

ω = −
gtφ
gφφ

(13.25)

These two two solutions describe light rays that for the external observer are co-
rotating and counter-rotating w.r.t. the rotation of the source.3

(b) Suppose that as we get closer we come to a hypersurface that has gtt = 0. on that
surface we have for the two roots

Ω
(b)
+ =

dφ

dt
= 2ω

Ω
(b)
− =

dφ

dt
= 0 (13.26)

The counter-rotating light ray stands still on that surface, which not surprisingly is
called a Stationary Surface.

(c) Closer to the source gtt may turn positive and

Ω
(c)
+ =

dφ

dt
= ω +

√
ω2 −

∣∣∣∣ gttgφφ
∣∣∣∣ > 0

Ω
(c)
− =

dφ

dt
= ω −

√
ω2 −

∣∣∣∣ gttgφφ
∣∣∣∣ > 0 (13.27)

From the point of view of an external observer, both light rays have a positive angular
velocity. Inside the stationary surface everything, even light, is swept along with the
flow of the rotation of the black hole.

(d) Even closer, we may come to a point where g2
tφ − gttgφφ = 0. In this case

Ω
(d)
+ = Ω

(d)
− = ω (13.28)

Co-rotating and counter-rotating light rays have the same angular velocity.

3We can always set the reference frame so that ω > 0.
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(e) Finally for g2
tφ − gttgφφ < 0 there are no solutions and hence there is nothing the

external observer can say about the light rays in that region

Not surprisingly g2
tφ − gttgφφ = 0 will correspond to the event horizon.

Fig. 13.2 shows the values of the angular velocities Ω± as a function of r for different
values of the G,M, J and θ.

2 4 6 8 10
r

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

Ω

Figure 13.2: Angular velocities Ω± of light rays in Kerr metric for varoius param-
eters (G,M, J, θ). Thin line: (3/2, 1, 1, π/2); dashed line: (1, 1, 1, π/2); dotted line:
(3/2, 1, 1, π/4); thin line: (3/2, 1, 3/2, π/4);

Fig. 13.3 illustrates the different regimes of a stationary cylindrically symmetric black
hole. Staring from the outside we have co-rotating and counter-rotating light rays. At the
stationary surface gtt = 0 the counter-rotating light rays stands still on that surface, then
bot light rays rotate in the same direction as the gravitational source at different rotation
speeds until the event horizon gtφ − gttgφφ = 0 where all light rays rotate at the same
speed. Once inside the event horizon an external observer has no information about how
the light rays may behave.
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stationary surface
gtt = 0

event horizon
gtφ − gttgφφ = 0

Figure 13.3: Light rays in a Kerr black hole

13.3 The Conserved Energy

Recall from (13.21) that the conserved energy is given by ε = −pt. We can now solve the
mass shell condition −m2 = p2 = gµνpµpν for pt. This is a quadratic equation in pt with
solutions

−p±t =
gtφ
gφφ

pφ ±
√

1

g2
φφ

[(
g2
tφ − gttgφφ

)
p2
φ +m2(g2

tφ − gttgφφ)
(
grrp2

r + gθθp
2
θ + 1

)
gφφ

]
(13.29)

Far form the origin we expect flat space time and thus gtφ → 0 which leads us to select
the positive square root an thus the energy is given by

ε =
gtφ
gφφ

pφ +

√
1

g2
φφ

[(
g2
tφ − gttgφφ

)
p2
φ +m2(g2

tφ − gttgφφ)
(
grrp2

r + gθθp
2
θ + 1

)
gφφ

]
(13.30)

Note that we have the traditional square root of the form
√
~p2 +m2 plus a term outside

of the square root that depends on the non-diagonal metric component gtφ.
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13.4 General Properties of the Kerr Metric

For convenience, let us rewrite the Kerr metric

ds2 = −
(

1− 2GMr

ρ2

)
dt2 +

ρ2

∆
dr2 + ρ2dθ2 +

(
r2 + a2 +

2GMa2r sin2 θ

ρ2

)
sin2 θdφ2

− 4GMar sin2 θ

ρ2
dt dφ (13.31)

where

ρ2 = r2 + a2 cos2 θ; ∆ = r2 + a2 − 2GMr; a =
J

GM
(13.32)

and point out a number of properties

• For r → ∞ we have ρ2 ≈ ∆ → r2 and ds2 → ηµνdx
µdxν and the metric becomes

asymptotically flat.

• For a = 0 we recover the Schwarzschild metric, in fact

ds2
Kerr = ds2

Schwarzschild −
4GMa sin2 θ

r
dt dφ+ o(a2) (13.33)

• Keeping a fixed and letting M → 0 we find

ds2 → −dt2 +

[
r2 + a2 cos2 θ

r2 + a2
dr2 + (r2 + a2 cos2 θ)dθ2 + (r2 + a2) sin2 θdφ2

]
(13.34)

Performing a coordinate transformation on the spatial part

x =
√
r2 + a2 sin θ cosφ

y =
√
r2 + a2 sin θ sinφ

z = r cos θ (13.35)

we recover flat spacetime −dt2 + dx2 + dy2 + dz2. The ellipsoidal coordinates are
shown in fig. 13.4



126 The Rotating or Kerr Black Hole

Figure 13.4: Ellipsoidal coordinates for the Kerr metric for a fixed and M → 0

Note that the point (r, θ) = (0, π/2) corresponds to a ring of radius r, i.e. x =
a cosφ, y = a sinφ.

• As we already saw, the Kerr metric is independent of t and φ and thus has two Killing
vectors kε = ∂t and k` = ∂φ, which correspond to the conserved quantities ε and
` along geodesics. The Kerr metric also has a rank two Killing tensor. Recall that a
Killing tensor is defined by (5.11), i.e. ∇(µKν1···ν`) = 0. To obtain the Killing tensor we
first define

`µ =
1

∆
(r2 + a2,∆, 0, a) and nµ =

1

2ρ2
(r2 + a2,−∆, 0, a) (13.36)

These two vectors are null, `2 = n2 = 0, and ` · n = −1. We can now define the
tensor

Kµν = ρ2(`µnν + `νnµ) + r2gµν (13.37)

and check that this is indeed a Killing tensor. By metric compatibility, also Kµν is a
Killing tensor.

• The frame dragging angular velocity (13.22) is for the Kerr metric

ω(r, θ) = −
gtφ
gφφ

=
2GMar

(r2 + a2)2 −∆a2 sinθ
(13.38)

We show different plots of ω as a function of r for different values of the parameters
in fig. 13.5
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Figure 13.5: Angular velocities for frame dragging with the Kerr metric

• The stationary surface, where the counter-rotating light stands still for an external
observer, is given by gtt = 0 hence ρ2 = 2GMr. This has two solutions

rS± = GM ±
√

(GM)2 − a2 cos2 θ (13.39)

Recall that gtt=0 corresponds to infinite redshift. There is thus an inner and an outer
surface of infinite redshift. These surfaces describe two ellipsoid-type surfaces in the
x, y, z coordinates

x± =

[(
GM ±

√
(GM)2 − a2 cos2 θ

)2
+ a2

]1/2

sin θ cosφ

y± =

[(
GM ±

√
(GM)2 − a2 cos2 θ

)2
+ a2

]1/2

sin θ sinφ

z± = (GM ±
√

(GM)2 − a2 cos2 θ) cos θ (13.40)

13.5 Singularities of the Kerr Metric

The Kerr metric has singularities at ρ = 0 and at ∆ = 0. Taking a → 0 brings us back
to the Schwarzschild metric and in this limit ρ → 0 corresponds to r → 0 and ∆ → 0
to r → 2GM . We thus guess that ρ = 0 corresponds to a real singularity and ∆ = 0 is
a coordinate singularity only. This is confirmed by calculating the Kretschmann invariant
K = RµνρσRµνρσ which turns out to be

K =
(GM)2

48

(r6 − 15a2r4 cos2 θ + 15a4r2 cos4 θ − a6 cos6 θ)

ρ2
(13.41)
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The physical singularity at ρ = 0 corresponds to (r, θ) = (0, π/2). We saw earlier that
in ellipsoidal coordinates this corresponds to a ring of radius a.

The coordinate singularity ∆ = 0 has two solutions

r± = GM ±
√

(GM)2 − a2 (13.42)

These describe two ellipsoids

x± =

[(
GM ±

√
(GM)2 − a2

)2
+ a2

]1/2

sin θ cosφ

y± =

[(
GM ±

√
(GM)2 − a2

)2
+ a2

]1/2

sin θ sinφ

z± = (GM ±
√

(GM)2 − a2) cos θ (13.43)

Fig. 13.6 gives a side view of the structure of a Kerr black hole in the x, z plane. Note
that we need GM > a to have real solutions. We also see that rS+ ≥ r+ and rS− ≤ r−,
with the equality sign obtained when θ = π/2. The region between the outer coordinate
singularity and the outer stationary surface is known as the Ergoregion.

rS+r+

r−
rS−

ergoregion

Figure 13.6: Side view of a Kerr black hole: stationary surface (dashed line) and
coordinate singularity (thick line) of Kerr spacetime. The region between the outer
coordinate singularity and the outer stationary surface is known as the ergoregion.
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13.6 Extremal Kerr Black Holes

The location of the coordinate singularity involves a
√

(GM)2 − a2, which suggests that we
have |a| ≤M or equivalently

|J | ≤ GM2 (13.44)

The situation where

|J | = GM2 (13.45)

is called an Extremal Black Hole. We expect most astrophysical black holes to be (almost)
extremal as in-falling matter tends to increase the angular momentum. In section 13.10
we will give a proof of that inequality.

13.7 The Coordinate Singularity and the Outer Horizon

Let us look at a radially outward going photon and see if it can escape to infinity. Start by
assuming the photon is well outside the coordinate singularity r+, so that ∆ > 0. Setting
ds2 = 0 in the Kerr metric and solving for dr whilst keeping the positive square root as we
are considering an outgoing photon we have

dr = +
∆

ρ2

[ (
1− 2GMr

ρ2

)
dt2 − ρ2dθ2 −

(
r2 + a2 +

2GMa2r sin2 θ

ρ2

)
sin2 θdφ2

+
4GMar sin2 θ

ρ2
dt dφ

]1/2

(13.46)

We can consider light rays with dθ = 0, but because of the cross term gtφdtdφ we cannot
just set dφ = 0. Consider now ∆ = r2 + a2 − 2GMr. Its general form is shown below.

r

∆

a2

GM r+r−

Take the derivative ∂r∆ = 2r − 2GM . Thus at r = GM the derivative changes sign;
as long as r > GM then ∆ decreases as r decreases, but at a certain point ∆ becomes
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zero and hence dr = 0. The light ray can no longer go to infinity, which is exactly what a
horizon is. As ∆ = 0 corresponds to r = r± = GM +

√
(GM)2 − a2, this is exactly the

horizon, and it corresponds to the Schwarzschild horizon for a = 0 as it should.

Let us now consider what happens with a light ray at the outer horizon r+, which for
ease we will just call the horizon henceforth. Note first that clearly r+ > GM from its
definition. In order to analyse what is going on it is easiest to write the Kerr metric in
another form, viz.

ds2 = −ρ
2∆

Σ2
dt2 +

ρ2

∆
dr2 + ρ2dθ2 +

Σ2

ρ2
sin2 θ(dφ− ωdt)2 (13.47)

where as usual ρ2 = r2 + a2cos2θ and ∆ = r2 + a2 − 2GMr and

ω = −
gtφ
gφφ

=
2GMar

(r2 + a2)2 −∆a2 sin2 θ

Σ = (r2 + a2)2 −∆a2 sin2 θ (13.48)

Assuming a light ray ds2 = 0 and looking at the point where dr = 0, we can set ∆ = 0 to
obtain

0 = ρ2
+dθ

2 +
Σ2

+

ρ2
+

sin2 θ(dφ− ωdt)2 (13.49)

where the subscript + indicates this is to be evaluated at the horizon r = r+. We can solve
this equation to obtain dφ/dt = ω+. As ∆+ = 0 we have Σ+2 = (r2

+ + a2)2. Filling in the
value for r+ this gives Σ+ = 2GMr+. Therefore

dφ

dt
=

2GMar+

(r2
+ + a2)2

=
a

2GMr+
(13.50)

Thus on the horizon a light ray satisfies

(dt, dr, dθ, dφ) ∝ `µ =

(
1, 0, 0,

a

2GMr+

)
(13.51)

It so happens that `µ is a null vector on the horizon. In general

`2 = gµν`
µ`µ

= − 1 +
2GMr

ρ2
− 2a2r sin2 θ

ρ2r+
+
a2 sin2 θ

[
ρ2(r2 + a2) + 2GMa2 sin2 θ

]
GMρ2r+

(13.52)

which on the horizon gives

`2
∣∣∣
r=r+

= 0 (13.53)
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Two other vectors spanning the horizon are hµ = (0, 0, 1, 0) and kµ = (0, 0, 0, 1). Tedious,
but straightforward algebra tells us that on the horizon we indeed have.

h2 = ρ2
+

k2 =
8(GM)2(2GMr+ − a2) sin2 θ

2GMr+ − a2 sin2 θ

h · k =h · ` = k · ` = 0 (13.54)

Thus ` is normal to the horizon and null, making the horizon a null hypersurface.

Consider a slice of the null hypersurface with t = cte. Eq. (13.47) becomes

ds2 = ρ2
+dθ

2 +
Σ2

+

ρ2
+

sin2 θdφ2 (13.55)

This is clearly the metric of a squashed two-sphere. As an example, for an extremal black
hole, one can calculate the circumference of a fixed circle along the longitude through the
poles and this turns out to be ≈ 3.82(2GM), which is well below the circumference around
the equator of 2π(2GM). This confirms our intuition that spacetime is squashed around a
rotating black hole. One can work out the area of the squashed sphere

A =

∫
dθ dφ

√
−g = 4π(r2

+ + a2) (13.56)

which gives

A = 8π
[
(GM)2 +

√
(GM)4 − J2

]
(13.57)

As a last comment, note that for the Kerr metric g2
tφ − gttgφφ = ∆ sin2 θ and this

vanishes at the horizon as ∆
∣∣
r=r+

= 0. But as we saw in (13.28) that the horizon is also
the location where the co-rotating and counter-rotating light rays have the same angular
velocity, Ω

(d)
+ = Ω

(d)
− = ω, which turns out to be

ΩH = ω
∣∣
r+

=
a

2GMr+
=

J

2GM
[
(GM)2 +

√
(GM)4 − J2

] (13.58)

13.8 The Surface Gravity of the Kerr Black Hole

Recall that we can associate with every Killing horizon, such as the event horizon, a surface
gravity, which can then be interpreted as the acceleration of a static observer on the horizon
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as measured by an observer far away. In order to calculate the surface gravity we need a
null Killing vector on the horizon. A general Killing vector of the Kerr metric is of the form
kµ = (1, 0, 0,Ω). We then have

k2 = gµνk
µkν = gtt + Ω2gφφ + 2Ωgtφ (13.59)

In order to proceed it is easiest to use the following form of the Kerr metric

ds2 = −∆

ρ2
(dt− a sin2 θdφ)2 +

ρ2

∆
dr2 + ρ2dθ2 +

sin2 θ

ρ2

[
(r2 + a2)dφ− adt

]2
(13.60)

from which we get

gtt =
a2 sin2 θ −∆

ρ2

gφφ =

[
(r2 + a2)2 − a2∆ sin2 θ

]
sin2 θ

ρ2

gtφ =
(∆− r2 − a2)a sin2 θ

ρ2
(13.61)

We then find

k2 = ρ−2
{
−∆ + a2 sin2 θ + 2a(∆− r2 − a2) sin2 θΩ +

[
(a2 + r2)2 − a2∆ sin2 θ

]
sin2 θΩ2

}
(13.62)

On the horizon, this gets considerably simplified as ∆
∣∣
r+

= 0. We then get an equation for
Ω

0 = a2 − 2a(r2
+ + a2)Ω + (a2 + r2

+)2Ω2 =
[
(a2 + r2

+)Ω− a
]2

(13.63)

And thus we have a single solution, Ω = a/(r2
+ + a2). The null Killing vector on the horizon

is thus

kµ =

(
1, 0, 0,

a

r2
+ + a2

)
(13.64)

We now use (12.25) to calculate the surface gravity

κ2 = −g
µν∂µk

2∂νk
2

4k2
(13.65)
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This is a tedious calculation, best performed by Mathematica. We show the relevant code
for illustration purposes.
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The result on the horizon r = r+ turns out to be

κ2 =
(GM)4 − J2

4(GM)2
[
2(GM)4 − J2 + 2(GM)2

√
(GM)4 − J2

] (13.66)

From this we find that

κ =

√
(GM)4 − J2

2GM
[
(GM)2 +

√
(GM)4 − J2

] (13.67)

Note that the surface gravity is independent of θ. This would be an obvious result for a
spherically symmetric metric such as the Schwarzschild, but it is not a priori obvious for a
cylindrically symmetric solution such as the Kerr metric. In fact there is a general theorem
that the surface gravity is constant over the Killing horizon.

13.8 The Penrose Process

Let us briefly review what we have discovered so far about the Kerr black hole. There are
two types of hypersurfaces of importance.

1. The Stationary Surface of infinite redshift, defined by gtt = 0 and given by

rS± = GM ±
√

(GM)2 − a2 cos2 θ (13.68)

where the light rays stand still as viewed by a static observer far away.

2. The Event Horizon, defined by grr = 0 and given by4

r± = GM ±
√

(GM)2 − a2 (13.69)

beyond which all particles and light remain trapped.

Nota that for the Schwarzschild metric gtt = −grr and so both types of surfaces coincide,
rS = 2GM and r = 0. Let us now focus on the outer surfaces as these are the ones we
reach first when we move towards the black hole from far away. Clearly rS+ ≥ r+ with
the equality only valid at the poles, θ = 0. A side view of the Kerr black hole was given in
fig. 13.6 which we copy here for convenience.

4Recall that this is indeed the general condition the event horizon, see (12.2). It just so happens
that this is equivalent for the Kerr metric to g2

tφ − gttgφφ = 0.
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rS+r+

r−
rS−

The shaded area between the stationary surface and the event horizon is called the Er-
goregion, or sometimes, somewhat abusively, the Ergosphere.

Energy

The existence of this region leads to new physics, such as the Penrose Process which is a
mechanism by which we can extract energy from the black hole. As we will see, Hawking
radiation is also a process to extract energy from a black hole, but that is an inherently
quantum mechanical process. The Penrose process, on the contrary, is basically classical.

The key observation that allows the Penrose process is that gtt flips signs when crossing
into the ergosphere from outside. Thus the coordinate t becomes spacelike and energy,
which is the conserved quantity associated with the time translation Killing vector kε = ∂t
becomes rather a momentum, and can thus become negative in that region.

Let us therefore imagine a particle 1 with energy E1 that comes from far away and
moves into the ergoregion and there decays into two particles 1→ 2+3. We of course have
momentum and energy conservation in that process. But as just explained, "energy" can
be negative in the ergoregion, so let us assume that particle 2 has negative energy E2 < 0
and that this particle then crosses the event horizon towards the singularity as r = 0,
whilst particle 3 moves out of the stationary surface to infinity with E3 > 0. Conservation
of energy dictates that E1 = E2 + E3 or hence

E3 = E1 − E2 > E1 (13.70)

so we are putting a particle with energy E1 into the black hole but are getting out a particle
with a higher energy E3, hence we are extracting energy from the black hole.

Angular Momentum

We can follow a similar reasoning for angular momentum. Consider an observer inside the
ergoregion with velocity

Uµ = U0(1, 0, 0,Ωobs) (13.71)
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Thus dt/dτ = U0 and dφ/dτ = U0Ωobs. Since in the ergoregion the observer has to rotate
in the same direction of the black hole, we must have that Ωobs is positive. Let us now
rewrite

Uµ = U0(kε + Ωobsk`) (13.72)

where kε = (1, 0, 0, 0) and k` = (0, 0, 0, 1) are the time translation and angular rotation
Killing vectors respectively.

Recall that the energy of a particle as seen by that observer is −U · p, with p the
momentum of the particle. For the decay process 1→ 2 + 3 we have for particle 2 that

E2 obs = − U · p2 = −U0(kε + Ωobsk`) · p2
=U0(ε2 − ΩobsL2) (13.73)

with L2 = +Ωobsk` is the angular momentum of particle 2. The energy of particle 2 as
measured by the observer in the ergoregion must be positive, thus so must be the RHS of
(13.73) and hence ε2−ΩobsL2 must be positive too. As Ωobs is positive by construction we
thus have

ε2
Ωobs

≥ L2 (13.74)

As a Penrose process has ε2 negative in the ergoregion, we thus necessarily also have L2

negative. If particle 2 moves across the event horizon, conservation of angular momentum
teaches us that the the angular momentum of the black hole reduces. But also its mass
reduces as ε2 < 0. Thus for the black hole

δM = ε2 < 0 and δJ = L2 < 0 (13.75)

Thus by this process the black hole loses mass and angular momentum and this with a
relation

δM ≥ ΩobsδJ (13.76)

Thus by extracting energy from the black hole, we also reduce its angular momentum,
eventually leading to a Schwarzschild black hole. Note the inequality (13.76) remains valid
even if we have no Penrose process, i.e. if ε2 is positive.

13.9 The Second Law of Black Hole Thermodynamics

Recall that we worked out the area of a Kerr black hole in (13.57)

A =

∫
dθ dφ

√
−g = 4π(r2

+ + a2) = 8π
[
(GM)2 +

√
(GM)4 − J2

]
(13.77)
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How does this change in a Penrose process were both M and J decrease? Clearly

(8π)−1δA =G22MδM +
G44M3δM − 2JδJ

2
√

(GM)4 − J2

=
2G2M

[
(GM)2 +

√
(GM)4 − J2

]
δM − JδJ√

(GM)4 − J2

=
2J√

(GM)4 − J2

(
Ω−1
H GδM − δJ

)
(13.78)

where we have used (13.58) to introduce ΩH . But since (13.76) holds for any observer, it
must also hold for an observer just outside the horizon, whose angular velocity is precisely
ΩH . And as we mentioned this inequality holds in general, not only for the Penrose process.
We thus conclude that as a general rule

δA ≥ 0 (13.79)

the surface area of a Kerr black hole cannot decrease. Take a moment to consider this.
Whatever happens the area of the black hole cannot decrease. Clearly this reminds us
of the second law of thermodynamics, stating that entropy in a closed system cannot
decrease. That is why the area law δA ≥ 0 is known as the Second Law of Black Hole
Thermodynamics and is an indication that the surface of a black hole could be considered
as an entropy.

13.10 The First Law of Black Hole Thermodynamics

Now that we have found something that resembles the second law of black hole thermo-
dynamics, it seems to make sense to ask whether there is also such a thing as the first
law of black hole thermodynamics.

Our starting point is the formula for the conserved energy (13.30)

−pt =
gtφ
gφφ

pφ +

√
1

g2
φφ

[(
g2
tφ − gttgφφ

)
p2
φ +m2(g2

tφ − gttgφφ)
(
grrp2

r + gθθp
2
θ + 1

)
gφφ

]
(13.80)

which we rewrite as

−pt = ωpφ +

√√√√Dp2
φ

g2
φφ

+
K

gφφ
(13.81)
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where as usual ω = gtφ/gφφ and

D = g2
tφ − gttgφφ

K =Dm2

[
grr

(
dr

dτ

)2

+ gθθ

(
dθ

dτ

)2

+ 1

]
(13.82)

Note that K should not be confused with the Kretschmann invariant.

Since this is a conserved quantity on geodesics, we can calculate it on any point of
the geodesic, e.g. on the event horizon r = r+. For the Kerr metric D = ∆ sin2 θ so that
D
∣∣
r+

= 0. But we need to be careful as other factors may blow up on the event horizon.

Indeed grr = ρ2/∆ does and hence Dgrr
∣∣
r+

= ρ2
+ sin2 θ. The other contributions in the

square root all vanish so that, using gφφ = (Σ2/ρ2) sin2 θ we have

−pt = ΩHL+

√√√√[ ρ2
+

Σ+
m

(
dr

dτ

)2
]

(13.83)

where we have used ω
∣∣
r+

= ΩH and L = pφ. Taking the variation of that we find that

δM = ΩHδJ +
r2

+ + a2 cos2 θ

r2
+ + a2

m

∣∣∣∣drdτ
∣∣∣∣
r+

(13.84)

This gives us an interesting interpretation of the inequality δM ≥ ΩobsδJ we derived in
(13.76), and which led to the second law of black hole thermodynamics δA ≥ 0. Here we
see that this inequality is entirely driven by the radial movement |dr/dτ |.

Eq. (13.84) also explains our observation in (13.44) that J ≤ GM2 with the equality
valid for an extremal black hole. We easily work out that

ΩH =
J

2GM
[
(GM)2 +

√
(GM)4 − J2

] (13.85)

For an extremal black hole this becomes

Ωe
H =

1

2GM
(13.86)

Let us now consider the inequality (13.76) for an extremal black hole:

δM ≥ Ωe
HδJ =

δJ

2GM
⇒ δ(GM2) ≥ δJ (13.87)
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So if we have an extremal black hole, J = GM2 and try as we may to increase both
the mass and the angular momentum of the black hole from M and J by δM and δJ
respectively, we will always have GM2 + δ(GM2) ≥ J + δJ and so we cannot violate the
inequality J ≤ GM2.

Note now that we can write (13.78) as

δM =

√
(GM)4 − J2

16πGM
[
(GM)2 +

√
(GM)4 − J2

] δA+ ΩHδJ (13.88)

which we can write as

δM =
κ

8π
δA+ ΩHδJ (13.89)

where κ turns out to be the surface gravity as computed in (13.67).

Eq. (13.89) is very suggestive of thermodynamics. We already know that we could
identify the area of the black hole A with an entropy S and clearly we can identify the
mass of the black hole M with its energy. This suggest that κ̃/8π is to be viewed as a
temperature and ΩHδJ as work dW we then get the usual

dE = TdS + dW = TdS − pdV (13.90)

with the correspondence

black hole thermodynamics
mass M E energy
area A S entropy

surface gravity κ T temperature
angular velocity ΩHJ W work

Not surprisingly, (13.89) is known as the First Law of Black Hole Thermodynamics. .
Note that ΩH and J can be viewed as conjugate variables, just as p and V are in thermody-
namics. Note also that the normalisation between the temperature and entropy definition
is not yet fixed. Hawking radiation will give a natural definition for the temperature that will
fix this normalisation.

13.11 Reversible Process for Black Holes

In thermodynamics a reversible process is defined by dS = 0. We can likewise define a
process here as having δA = 0 to be reversible. It then follows from (13.89) that for such
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a process

δM = ΩHδJ =
JδJ

2GM
[
(GM)2 +

√
(GM)4 − J2

] (13.91)

We can then write this as[
(GM)2 +

√
(GM)4 − J2

]
d(GM)2 =

1

2G
dJ2 (13.92)

Setting G = 1 for convenience and M2 = x and J2 = j this becomes(
x+

√
x2 − j

)
dx =

1

2
dj (13.93)

We now show that this is solved by

x0 = x+
√
x2 − j (13.94)

for a constant x0. Indeed solving this for j gives j = 2x0x − x2
0 so that dj = 2x0dx. But

we can also write (13.93) as x0dx = (1/2)dj = (1/2)2x0dx = x0dx. Reverting back to M
and J we thus see that a reversible process dA = 0 satisfies

2M2
0 = M2 +

√
M4 − J2 (13.95)

where M0 is an integration constant and corresponds to the mass of the Schwarzschild
black hole in the limit that J vanishes. In fact we can start with a Kerr black hole and
use the Penrose process to reduce both M and J whilst ensuring that |dr/dτ |r+ remains
positive at all times. When J = 0 we will then end with a Schwarzschild black hole of mass
M0. Conversely, we can start with a Schwarzschild black hole and throw in mass that
increases its angular momentum, and we will end with an extremal Kerr black hole with
mass

√
2M0.

13.12 Closed Timelike Curves and the Extended Kerr Spacetime

Another surprising property of the ergoregion is the existence of Closed Timelike Curves
or CTCs. Indeed in the Kerr spacetime there is a region that observers can access by
following a timelike geodesic that passes through r = 0 but with θ 6= π/2, hence avoiding
the singularity, corresponding to r < 0 in the original coordinates. Let us now imagine the
observer is in that region and on a geodesic with constant t and r and with θ = π/2. His
metric then becomes

ds2 =

(
r2 + a2 +

2GMa2

r

)
dφ2 (13.96)
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For r < 0 and small enough this metric component can become negative and hence is
timelike. But φ is a periodic coordinate φ ≡ φ+ 2π, which means that moving along such a
curve, would bring one back to the same time!

Unfortunately, all this happens to an observer who has crossed the event horizon, so
she will not be able to tell us mere mortals. But it is an interesting fact that CTCs are
theoretically possible. However, common sense, or maybe healthy conservatism, reigns
amongst most general relativists as there is a general belief, that, just as for naked singu-
larities, one should not have CTCs when starting with benign initial conditions. This belief is
known as the Chronology Protection Conjecture.

Note that in the extended Kerr spacetime we still have

grr =
r2 + a2 − 2GMr

ρ2
(13.97)

and as we now have r < 0 we see that the numerator is strictly positive so there is no
solution for grr = 0 and hence this extension of the Kerr spacetime has no event horizon.

13.13 Superradiance

We now show that it is possible for a matter field to scatter of a Kerr black hole and end
up with more energy that it started with. We consider a scalar field Φ(x) with energy-
momentum tensor

Tµν = ∇µΦ∇νΦ− 1

2
gµν∇ρΦ∇ρΦ (13.98)

From (5.13) we know that given a Killing vector Kµ we can construct a new conserved
current

Jν = KµT
µν (13.99)

with conserved charge

EΣ =

∫
Σ
Jµ nµ

√
γ d3x (13.100)

where γij is the induced metric on a spacelike hypersurface Σ and nν is the normal to Σ.

Let us now integrate ∇µJµ = 0 over a region bounded by two spacelike hypersurfaces
Σ1 and Σ2, a part of the event horizon H and lightlike future infinity i0 as shown in fig. 13.7.
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H

Σ1

Σ2

i0

i+

Figure 13.7: Spatial integration region outside a Kerr black hole

Because ∇µJµ = 0 we thus have, using Stokes theorem and assuming that ∇µΦ vanishes
at infinity,

0 =

∫
d4x
√
−g∇µJµ =

∫
Σ2

d3x
√
γ2 n

µ
1Jµ −

∫
Σ1

d3x
√
γ1 n

µ
1Jµ +

∫
H
d3SµJ

µ (13.101)

where γi and n
µ
i are the induced metric and normal to the hypersurface Σi and H is the

relevant part of the event horizon. Using the definition of the conserved charge (13.100)
we can thus write

EΣ2 − EΣ1 = −
∫
H
d3SµJ

µ (13.102)

We now introduce Kerr Coordinates (v, r, θ, χ) defined by5

v = t+ r∗

dr∗ =
r2 + a2

∆
dr

dχ = dφ+
a

∆
dr (13.104)

5In These Kerr coordinates the metric becomes

ds2 = −∆

ρ2
(dv − a sin2 θdχ)2 +

sin2 θ

ρ2
[adv − (r2 + a2)dχ)2 + (dv − a sin2 θdχ)dv + ρ2dθ2 (13.103)

and null in-falling geodesics are now characterised by dv = dχ = dθ = 0. Recall that in the (t, r, θ, φ)
coordinates light rays do not follow strictly radial geodesics as they get twisted by the rotation of
the black hole. Notice also that with the Kerr coordinates the coordinate singularity at ∆ = 0 is not
present.
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This allows us to rewrite (13.102) as

EΣ2 − EΣ1 = −
∫
d2Adv kµJ

µ (13.105)

where kµ is the null Killing vector along the horizon and d2A is the spatial cross-section of
the horizon.

The power absorbed by the black hole per unit null time v is given by

P = −
∫
d2AkµJ

µ (13.106)

with

kµJ
µ = −(Kµ∇µΦ)(kν∇νΦ) +

1

2
(∇ρΦ)(∇ρΦ)(kµK

µ) (13.107)

Now kµK
µ = 0 as k is a null Killing vector orthogonal to the horizon and K is the Killing

vector defining the horizon. As we saw in (13.64) the null Killing vector on the horizon is
given by

kµ = (1, 0, 0,Ω) (13.108)

with Ω = a/(r2
+ + a2). We can replace the covariant derivatives by ordinary derivatives as

Φ is a scalar and find for P

P =

∫
d2A (Kµ∇µΦ)(kν∇νΦ) =

∫
d2A∂vΦ(∂vΦ + Ω∂χΦ) (13.109)

Let us now expand the scalar field in angular momentum modes and consider one mode

Φ = Φ0(r, θ) cos(ωv − νχ) (13.110)

with ω positive. As χ is a periodic coordinate, the angular momentum ν is quantised, ν ∈ Z.
We then have

P =

∫
d2AΦ2

0 [−ω sin(ωv − χν)] [−ω sin(ωv − χν) + Ων sin(ωv − χν)]

=

∫
d2AΦ2

0 ω(ω − Ων) sin2(ωv − χν) (13.111)

and we can take the time averaged power absorbed by the black hole by integrating over
v
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P̄ =
1

2

∫
d2AΦ2

0 ω(ω − Ων) (13.112)

We see that for high frequencies ω the power P̄ is positive, so the black hole absorbs energy.
However P̄ can be negative for small frequencies ω and so the field Φ has extracted energy
from the horizon. This is the process of Superradiance.

Note that superradiance can only occur if ν 6= 0. This is because the amplified field also
needs to take angular momentum from the black hole, as we have seen earlier.

Note also that this process is reminiscent of stimulated emission in atomics physics.
One might then well wonder if there also exists a process of spontaneous emission. This
is possible in the quantum theory and it turns out that any black hole with an ergoregion
cannot be quantum mechanically stable.

Note that we have not incorporated the impact of the field Φ on the spacetime, i.e. we
have assumed the Kerr metric to be valid, It turns out that when corrected for this the
metric can only be stationary if ∂φΦ = 0, but then Jµ = 0 and the black hole energy doesn’t
change at all. This means that in reality superradiance is incompatible with a stationary
metric.
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The Charged or Reissner-Nordström Black Hole

We now turn our attention to the extension of the Schwarzschild black hole to include an
electric charge. This is actually a purely theoretical exercise as it it unlikely that a black
hole with a considerable electric charge exists, as it would quickly engulf particles of the
opposite charge to make it neutral.

14.1 The Reissner-Nordström Metric

We need a solution of the Einstein equations not in vacuum, but in the presence of an
electromagnetic field. The relevant action is

S =

∫
d4x
√
−g

(
1

16πG
R− 1

4
FµνFµν

)
(14.1)

and the equations of motion are the Maxwell equations

∇µFµν = 0 (14.2)

together with the Einstein-Maxwell equations

Rµν −
1

2
Rgµν = 8πGT (e)

µν (14.3)

where T (e)
µν is the energy-momentum tensor for the electromagnetic field

T (e)
µν = F σ

µ Fνσ −
1

4
gµνF

ρσFρσ (14.4)

We are looking for static, spherically symmetric solutions, hence a metric of the form

ds2 = −a(r)dt2 + b(r)dr2 + r2dθ2 + r2 sin2 θdφ2 (14.5)

145
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Solving the Maxwell Equations

Use as Ansatz for a static spherical symmetric solution of the Maxwell equations, we take
as non-zero components

Ftr = −Frt = E(r) and Fθφ = −Fφθ = B(θ) (14.6)

so that

F tr = −F rt =
E(r)

a(r)b(r)
and F θφ = −F φθ =

B(θ)

r4 sin2 θ
(14.7)

Using
√
−g = r2 sin θ

√
ab and∇µFµν = (−g)−1/2∂µ(

√
−gFµν) we then find for the Maxwell

equation with ν = t

0 = ∂µ(
√
−gFµt) = ∂r(

√
−gF rt) = ∂r

[
r2 sin θ

√
ab

E(r)

a(r)b(r)

]
(14.8)

or hence 0 = ∂r(r
2E/
√
ab). We can easily write a solution for this as

E(r) =
Qe
√
ab

r2
(14.9)

Similarly for ν = φ

0 = ∂µ(
√
−gFµφ) = ∂θ(

√
−gF θφ) = ∂θ

[
r2 sin θ

√
ab

B(θ)

r4 sin2 θ

]
(14.10)

or ∂θ(B(θ)/ sin θ) = 0. Which has as solution

B(θ) = Qm sin θ (14.11)

Here QE and Qm are constants whose interpretation has to be determined, but you will
be correct if you guess them to be related to the electric and magnetic charge.

Solving The Einstein-Maxwell Equations

It is actually not too hard to solve the Einstein-Maxwell equations, but will just give the
result, leaving it to the reader to check. The solution is

a(r) = b(r)−1 = 1− 2GM

r
− 4πGe2

r2
(14.12)

with

e2 = Q2
e +Q2

m (14.13)

Thus the Reissner-Nordström Metric is given by
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ds2 = −
(

1− 2GM

r
+

4πGe2

r2

)
dt2 +

(
1− 2GM

r
+

4πGe2

r2

)−1

dr2 + r2dθ2 + r2 sin2 θdφ2

(14.14)

The non-zero components of the electromagnetic tensor are given by

Ftr = −Frt =
Qe
r2

and Fθφ = −Fφθ = Qm sin θ (14.15)

and we recognise that at infinity, where spacetime is asymptotically flat, Qe represents the
electric charge and Qm the magnetic charge.1

The non-zero components of the energy-momentum tensor are given by

T
(e)
tt =

e2[4πGe2 + r(r − 2GM)]

2r6

T (e)
rr = − e2

2r2[4πGe2 + r(r − 2GM)]

T
(e)
θθ =

e2

2r2

T
(e)
φφ =

e2 sin2 θ

2r2
(14.16)

One easily checks that the energy-momentum tensor is traceless, gµνT (e)
µν = 0.

The curvature of the metric is zero and the Kretschmann invariant is given by

K = RµνρσRµνρσ =
16G2(56π2e2 − 24πe2Mr + 3M2r2)

r8
(14.17)

This shows that r = 0 is a real singularity.

1One may set Qm = 0 is one is convinced no magnetic monopoles exist.
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14.2 The Komar Integrals for the Reissner-Nordström Black Hole

Let us evaluate the electric charge, energy and angular momentum Komar integrals for
the Reissner-Nordström metric. They are given by (12.36), (12.44) and (12.48) respectively

Q = −
∫
∂Σ

√
γ(2) nµσνF

µνd2x

ER =
1

4πG

∫
∂Σ

√
γ(2) nµσν∇µKνd2x

JR = − 1
1

8πG

∫
∂Σ

√
γ(2) nµσν∇µRνd2x (14.18)

We refer to section 13.2 for details.

Charge

We find

nµσνF
µν =

Qe
r2

(14.19)

and therefore

QE = lim
r→∞

∫
r2 sin θdθdϕ

Qe
r2

= 2πQe (14.20)

So QE is proportional to the electric charge of the black hole.

To deduct the magnetic charge, we need to find the Komar integral for the dual field
tensor ∗Fµν = εµνρσF

ρσ . This leads to

nµσ
∗
νF

µν = − 2Qm
r4 sin θ

(14.21)

giving

QM = lim
r→∞

∫
r2 sin θdθdϕ

(
−2πQm

r2

)
= 0 (14.22)

At infinity the magnetic charge disappears, but is proportional to Qm.

Energy

We find

nµσν∇µKν = −4πGe2

r2
+

2GM

r2
(14.23)
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from which we get

ER = lim
r→∞

(
2GM − 8πGe2

r

)
= 2GM (14.24)

The energy at very large is given by its rest mass plus the electromagnetic energy of the
charges, the latter vanishing at infinity.

Angular Momentum

We find

nµσν∇µRν = 0 (14.25)

and thus

JR = 0 (14.26)

The Reissner-Nordström has no angular momentum.

14.3 The Horizon of the Reissner-Nordström Black Hole

The condition grr = 0 for a horizon is

0 = 1− 2GM

r
+
Ge2

r2
=

(r − r+)(r − r−)

r2
(14.27)

where we have for convenience rescaled the charges e2/4π → e2 and

r± = GM ±
√

(GM)2 −Ge2 (14.28)

It is clear that there are three regimes depending on the sign of (GM)2 −Ge2.

The Naked Black Hole: e2 > GM2

In this case r± are not real and there is no horizon. The time coordinate remains timelike all
the way from infinity to the singularity at r = 0. We thus have a naked singularity. Note that
this does not violate the cosmic censorship conjecture that we discussed in section 12.5.
Indeed that conjecture states that a spacetime obeying the dominant energy condition
cannot form a naked singularity. But in this case the naked singularity is not formed, it has
always been there.

At large distances the solution approaches flat spacetime. The conformal diagram will
thus be that of Minkowski space fig. 12.1 but with a singularity at the origin, depicted by a
wavy line.
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i−

i+

i0

J+

J−

r = 0

r = cte

t = cte

Figure 14.1: Conformal diagram for a Reissner-Nordström black hole: e2 > GM2

Further analysis of geodesics reveals that the singularity is repulsive: timelike geodesics
never intersect r = 0, they just scatter of it. Null geodesics can reach the singularity, and,
of course, so can timelike curves that are non-geodesic.

The Subextremal Black Hole: e2 < GM2

Start with considering e = 0, which gives a Schwarzschild black hole. As we approach
the singularity from infinity gtt changes sign as we cross the horizon at r = 2GM , hence
the coordinate t changes from timelike to spacelike. Let now e 6= 0. The time coordinate
becomes spacelike as we cross r = r+, but changes again to timelike when we cross r = r−
and the singularity at r = 0 is a timelike point.

Let us consider the road travelled by an observer falling from far way towards the
singularity.

• As the observer approaches r+ it will be just like a Schwarzschild black hole. She will
cross it and r will become a timelike coordinate and she will fall further towards the
singularity. An external observer far away will never see her cross the event horizon
as is the case with the Schwarzschild black hole.

• As the in-falling observer reaches r−, the coordinate r becomes spacelike again;
the movement towards the origin can be stopped and she does not have to hit the
singularity.

• In fact, she can move back towards and cross the horizon at r−. The coordinate
r becomes timelike once more, but with opposite orientation – i.e. moving in the
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lightcone facing downwards – and so she can cross the r+ boundary as well. For an
external observer it seems like she is appearing out of nowhere, i.e. from white hole.

• The whole process can repeat itself any number of times.

This is illustrated in the conformal diagram below.

Figure 14.2: Conformal diagram for a Reissner-Nordström black hole: e2 < GM2

The Extremal Black Hole: e2 = GM2

In this case r+ = r− = GM and there is only one horizon. Consider now two such extremal
black holes with equal mass M and electric charge Qe and no magnetic charge Qm. Their
gravitational attraction GM2/r2 exactly matches their electromagnetic repulsion +Q2

e/r
2

so there is no net force between them. So we could have a situation where there are any
number of static extremal Reissner-Nordström black holes scattered around spacetime at
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random locations and they just remain static. This is quite a surprise as the gravitational
force is so much weaker than the electric force.

Whilst extremal black holes are inherently unstable because the slightest addition of
mass will bring it to the subextremal black hole, it is of some interest in the study of black
holes in quantum gravity and certain supersymmetric theories.

Let us consider the geodesic of an in-falling observer. On both sides of the single
horizon r = 2GM the r coordinate is spacelike, so you can avoid the singularity at r = 0
and move back out and in as you wish. This is illustrated in the conformal diagram below.

Figure 14.3: Conformal diagram for a Reissner-Nordström black hole: e2 = GM2

14.4 Rotating Charged Black Holes

Finally, let us mention that there are also solutions to the Einstein-Maxwell equations that
describe rotating black holes. We leave the details to the industrious reader.
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More Black Holes

There are many other solutions to the Einstein field equations that display a black hole.
Here we summarise some of them.

15.1 The Kottler Black Hole

The metric is

ds2 = −
(

1− 2m

r
− Λr2

3

)
dt2 +

(
1− 2m

r
+

Λr2

3

)−1

dr2 + r2dΩ2 (15.1)

This is a solution of the EFE with cosmological constant Rµν− 1
2Rgµν +Λgµν = 0. Note that

this spacetime is not asymptotically flat, but is asymptotically de Sitter or anti-de Sitter
depending on the sign of Λ. This metric is then known as the Schwarzschild–de Sitter
Metric for Λ > 0 and the Schwarzschild–anti-de Sitter Metric for Λ < 0. It has constant
curvature

R = 4Λ (15.2)

and the Kretschmann invariant is

K =
48(GM)2

r6
+

8Λ2

3
(15.3)

showing that there is a singularity at r = 0.

The Komar integrals are

ER = 2GM − 2Λr3

3
and JR = 0 (15.4)
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The cosmological term gives an extra contribution to the energy that is proportional to the
volume of spacetime, here infinite.

This solution can be generalised by adding a charge

1− 2m

r
− Λr2

3
→ 1− 2m

r
− Λr2

3
+
e2

r2
(15.5)

to give a solution of the Einstein-Maxwell field equations, with a constant cosmological
constant.

15.2 Topological Black Holes

A somewhat surprising solution to the EFE is given by a generalisation of

ds2 = −
(
k − 2m

r
− Λr2

3

)
dt2 +

(
k − 2m

r
+

Λr2

3

)−1

dr2 + r2dΩ2
(k) (15.6)

where k = 0,±1. For k = +1 we recover the Kottler metric. For k = 0 and k = −1 we
need to make some change to the two-sphere metric. For k = 0 we need to replace S2 by
flat space R2 or the torus T 2

dΩ2
(0) = dθ2 + dφ2 (15.7)

and for k = −1 we need to replace S2 by H2, the two-dimensional hyperbolic plane.

dΩ2
(−1) = dθ2 + sinh2 θdφ2 (15.8)

In order to have the standard interpretation of the coordinates we need Λ < 0 and so
these solutions describe black holes immersed in AdS spacetime with horizons that have
non-spherical topology. Confusingly these solutions are knows as topological black holes.1

The curvature, Kretschmann invariant and Komar integrals are the same for the k = 0
and k = −1 cases as for the k = +1 case.

15.3 Black Hole Solutions of Einstein-Yang-Mills Equations

Having found the Reissner-Nordström solutions for gravity coupled to electromagnetism, it
is logical to look for solutions for gravity coupled to Yang-Mills fields. These are mostly of

1Confusingly because topological usually means metric independent.
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theoretical interest because, contrary to electromagnetism, Yang-Mills interaction is short
range only.

There are however such solutions and they do bring about some new properties. In
particular it seems that the no-hair theorems have no good analogues. For example there
are solutions with non-trivial Yang-Mills fields but zero Yang-Mills charges. There are also
static solutions that are not spherically symmetric

15.4 Regular Black Holes

We have seen in section 12.5 that singularity theorems say that under certain benign
conditions event horizons imply the existence of a singularity. Somewhat surprising, if we
let go these conditions, even weakly, then it is possible to have event horizons without
singularities. We present two such solutions.

Bardeen Black Holes

This describes a metric coupled to a non-linear version of an electromagnetic field

ds2 = −
[
1− 2mr2

(r2 + e2)3/2

]
dt2 +

[
1− 2mr2

(r2 + e2)3/2

]−1

dr2 + r2dΩ2 (15.9)

The curvature and Kretschmann invariants are given by

R =
6GMe2(4e2 − r2)

(e2 + r2)7/2

K =
12(GM)2(4r8 − 12e2r6 + 47e4r4 − 4e6r2 + 8e8)

(e2 + r2)7/2
(15.10)

and these are indeed an indication that there is no singularity present.

For large r it approaches the Schwarzschild metric, and for small r it approaches de
Sitter spacetime, confirming the absence of a singularity

Hayward Black Holes

Another example is provided by the metric

ds2 = −
[
1− 2mr3

(r4 + 2mrL2)

]
dt2 +

[
1− 2mr3

(r4 + 2mrL2)

]−1

dr2 + r2dΩ2 (15.11)
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which solves the Einstein field equations not in vacuum, but with matter having an energy-
momentum tensor

Ttt =
12(GML)2(r3 − 2GMr2 + 2GML2)

(2GML2 + r3)3

Trr = − 12(GML)2(r3 − 2GMr2 + 2GML2)

(2GML2 + r3)(r3 − 2GMr2 + 2GML2)

Tθθ = − 24(GML)2r2(GML2 − r3)

(2GML2 + r3)3

Tφφ = − 24(GML)2r2(GML2 − r3)

(2GML2 + r3)3
sin2 θ (15.12)

The singularity at r = 0 is regularised by the cut-off L that can be thought of as related
to the Planck length. The curvature and Kretschmann invariant are given by

R =
24(GML)2(4GML2 − r3)

(2GML2 + r3)3

K =
48(GM)2(r12 − 8GML2r9 + 72(GML2)2r6 − 16(GML2)3r3 + 32(GML2)4)

(2GML2 + r3)3
(15.13)

Here too we see that there seems to be no singularity.

Solving grr = 0 gives three solutions, one of which is real and determines the horizon.

For r → ∞ this reduces to the Schwarzschild metric and for r → 0 we find that
gtt → 1−(r/L)2 and corresponds to de Sitter spacetime, and hence there is no singularity.

15.5 Non-static Black Holes: Vaidya Metrics

So far we have only considered static solutions of the Einstein equations. There are, of
course, a plethora of time dependent solutions, and we give one simple generalisation
of the Schwarzschild metric. This is best done by going to the Eddington-Finkelstein co-
ordinates (10.3) v = t + r∗ with r∗ = r + 2GM ln(r/2GM − 1)and making the mass v
dependent

ds2 = −
(

1− 2GM(v)

r

)
dv2 + 2dv dr + r2dΩ2 (15.14)

Likewise we can use the coordinate u = t− r∗ in stead of v and have similarly



General Relativity 157

ds2 =

(
1− 2GM(u)

r

)
du2 − 2du dr + r2dΩ2 (15.15)

Vaidya metrics provide useful toy models to study the evolution of black holes.

15.6 Higher Dimensional Black Holes

It is easy to generalise the four-dimensional black holes to higher dimensions or to find
new solutions in more than four dimensions. We keep it very brief, barely enough to give a
flavour of the landscape.

Schwarzschild-Tangherlini Black Holes

These are the natural extensions of the Schwarzschild metric

ds2 = −
(

1− µ

rd−2

)
dt2 +

(
1− µ

rd−2

)−1
dr2 + r2dΩd−1 (15.16)

The parameter µ is proportional to the mass of the black hole. There is a natural exten-
sion to the Reissner-Nordström black hole and asymptotically flat solutions satisfy certain
uniqueness theorems.

Topological Black Holes

These have metric

ds2 = −
(
k − µ

rd−2
± r2

`2

)
dt2 +

(
k − µ

rd−2
± r2

`2

)−1

dr2 + r2dΩd−1,k (15.17)

where the (d− 1)-dimensional space can be Sd−1,Rd−1, Hd−1 or any other manifold satis-
fying Einstein’s equations with a metric hij and Ricci tensor Rij(h) = (d− 2)khij .

Myers-Perry Black Holes

These are the analogues for the rotating or Kerr black holes to d > 4. For a d-dimensional
spacetime with d = 2n + 1 or d = 2n + 2, hence corresponding to a spatial rotation of
SO(d − 1), i.e. of SO(2n) or SO(2n + 1) respectively, such a black hole is characterised
by n independent parameters. I.e. the number of parameters is equal to the rank of the
corresponding Lie algebra. As an example, for d = 4 we have SO(3) which has rank one
and hence one parameter, corresponding to the angular momentum. This is of course the
Kerr metric we studied in detail.
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Black Strings and Black Branes

Black strings are straightforward extensions of the Schwarzschild metric by adding an extra
dimension, which can be R or S1;

ds2 = −
(

1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2dΩ2 + dy2 (15.18)

Here the black hole is actually a string extended along the fifth dimension.

More generally we can consider black p-branes with metric

ds2 = −
(

1− µ

rd−2

)
dt2 +

(
1− µ

rd−2

)−1
dr2 + r2dΩd−1 + dy2

p (15.19)

These black strings and black p-branes appear in supergravity and string theories.

Exotic Black Holes

Somewhat surprisingly the uniqueness theorems in four dimensions do not generalise to
higher dimensions, where the landscape of black holes solutions to the Einstein equations
is much more varied. As an example, in d = 5 there are asymptotically black rings solutions
where the horizon has the topology of S1 × S1.



Chapter 16

Cosmology and the State of the Universe

16.1 The Robertson-Walker Metric

We consider spacetime to be spatially homogeneous and isotropic, but evolving in time, i.e.
it is of the form R× Σ with Σ a three dimensional maximally symmetric space with metric
gij . The spacetime metric is then

ds2 = −dt2 + a(t)2gij(~x)dxidxj (16.1)

The coordinates xi used here are chosen such that the metric is independent of cross
terms dtdxi, that gtt is independent of xi and gij are independent of t. They are known as
Comoving Coordinates.

As we are assuming Σ to be maximally symmetric, we know from (5.14) that the cur-
vature tensor is given by

R
(3)
ijkl =

κ

6
(gikgjl − gilgjk) (16.2)

The superscript (3) is there to remind us that this tensor is for the three dimensional space
Σ and κ is some constant, which turns out to be the three dimensional curvature. The Ricci
tensor is the given by

R
(3)
ij = 2κgij (16.3)

A maximally symmetric space will also be spherically symmetric so we can write

dσ2 = g̃ij(~x)dxidxj = e2β(r)dr2 + r2dΩ2 (16.4)

Note that one could add a factor e2α(r) to the last term, but this can always be removed

159
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by rescaling r. For this metric we find the non-zero components of the Ricci tensor to be

R
(3)
11 =

2

r
∂rβ

R
(3)
22 = e−2β(r∂rβ − 1) + 1

R
(3)
33 =

[
e−2β(r∂rβ − 1) + 1

]
sin2 θ (16.5)

Setting R(3)
11 = 2κgrr we find

2

r
∂rβ = 2κe2β (16.6)

which is solved by

β = −1

2
ln
(
1− κr2

)
(16.7)

One easily checks that this solution also satisfies the other equations. Thus the three
dimensional metric is

dσ2 =
dr2

1− κr2
+ r2dΩ2 (16.8)

As κ is the curvature of Σ it sets its scale and we can always rescale it such that it is
±1 or 0. We then also rename it to k and have found that the most general homogeneous
and isotropic spacetime that can evolve in time is of the form

ds2 = −dt2 + a(t)2

(
dr2

1− kr2
+ r2dΩ2

)
(16.9)

This is the Robertson-Walker Metric also known as the Friedman-Lemaître-Robertson-
Walker or FLRW Universe and is a key building block of virtually all cosmological models.

Depending on k we have three cases

k = +1: the curvature is positive and the universe is closed;

k = 0: the curvature is zero and the universe is flat;

k = −1: the curvature is negative and the universe is open.
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For further use, we give the non-zero components of the Ricci tensor

R00 = − ä

a

R11 =
aä+ 2ȧ2 + 2k

1− kr2

R22 = r2(aä+ 2ȧ2 + 2k)

R22 = r2(aä+ 2ȧ2 + 2k) sin2 θ (16.10)

the curvature

R = 6

[
ä

a
+

(
ȧ

a

)2

+
k

a2

]
(16.11)

and the Kretschmann invariant

K =
12(a2ä2 + (ȧ4 + 2kȧ2 + k2)

a4
(16.12)

16.2 The Friedmann Equations

The next step is to fill the universe with something. For this we assume the energy-
momentum tensor of a perfect fluid

Tµν = (ρ+ P )UµUν + Pgµν (16.13)

With the isotropic metric that we consider the velocity of the perfect fluid is by construction
of the reference frame at rest, so that Uµ = (1, 0, 0, 0) and

Tµν =


ρ 0 0 0
0
0 Pgij
0

 (16.14)

From this we find that

Tµν = diag (−ρ, P, P, P ) (16.15)

and

T = Tµµ = −ρ+ 3P (16.16)
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Let us consider the conservation equation ∇µTµν = 0. For ν = 0 this is

0 = ∂µT
µ
0 + ΓµuλT

λ
0 − Γλµ0T

µ
λ = −∂tρ−

3∂ta

a
(ρ+ P ) (16.17)

We can rewrite this as

∂t(ρa
3) = −P∂ta3 (16.18)

One can check that the conservation equations for ν 6= 0 are identically satisfied

We now plug this energy-momentum tensor into the Einstein equations

Rµν = 8πG

(
Tµν −

1

2
Tgµν

)
(16.19)

For µ = ν = 0 this gives

−3
ä

a
= 4πG(ρ+ 3P ) (16.20)

and for µ = i and ν = j we find a common factor gij so that there is only one equation

ä

a
+ 2

(
ȧ

a

)2

+
2k

a2
= 4πG(ρ− P ) (16.21)

It is common to combine these equations as(
ȧ

a

)2

=
8πG

3
ρ− k

a2

ä

a
= − 4πG

3
(ρ+ 3P ) (16.22)

These are known as the Friedmann Equations .

It is convenient to parametrise time such that at present time t0 we have a(t0) = 1.
We can then define a variable that measures the actual scale of the universe by

R(t) = R0a(t) (16.23)

so that R(t0) = R0 is the present scale of the universe. This variable is not to be confused
with the curvature! Note that we have ȧ/a = Ṙ/R.

The upshot of all this is that with only three simple equations we will be able to say
already quite a lot about what types of universes are possible. These are (1) the equation
of state relating energy density and pressure; (2) the energy-momentum conservation
equation and (3) one of Einstein field equations. Together they can be written as
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ρ =wP

dρ

ρ+ P
= − 3

dR

R

Ṙ2 + k =
8πG

3
ρR2 (16.24)

16.3 Common Cosmological Parameters

In order to make the link with cosmological observations, it is convenient to define some
new variables

• The Hubble Parameter H characterises the rate of expansion and is defined as

H =
ȧ

a
=
Ṙ

R
(16.25)

At present time t0 we have the Hubble Constant H0. It is currently believed to be
around H0 ≈ 70± 10 km/s/Mpc ≈ 2× 10−18s.

• Cosmological scales are often defined using the Hubble length dH = H−1
0 ≈ 13.3×

1025 m and the Hubble Time tH ≈ 4.4× 1017 s.

• The Deceleration Parameter is defined as

q = −aä
ȧ2

(16.26)

• For every type of material we fill the universe with we define a Density Parameter

Ω =
8πG

3H2
ρ =

ρ

ρc
(16.27)

where ρc is the Critical Density

ρc =
3H2

8πG
(16.28)
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16.4 Filling up the Universe

Let us now assume an Equation of State relating P and ρ of the form

P = wρ (16.29)

We can rewrite the conservation equation as

ρ̇

ρ
= −3(1 + w)

ȧ

a
(16.30)

In general w could be a complicated function of ρ but as we saw in (2.15) it takes a
constant value for the cases of importance:

dust/matter w = 0 : these are just collisionless non-relativistic particles that
exert no pressure;

radiation w = 1/3: these are photons or highly relativistic particles. An easy
way to understand this to to notice that the energy-momentum tensor of the
electromagnetic field is traceless (in four dimensions) so that the value for w
follows directly from (16.16).

vacuum energy w = −1: this just gives a non-zero cosmological constant

When w = cte we can solve the equation of state

ρ ∝ a−3(1+w) = a−γj (16.31)

and we find

matter: ρ ∝ a−3 ⇒ γm = 3

radiation: ρ ∝ a−4 ⇒ γr = 4

vacuum: ρ = cte ⇒ γΛ = 0

These results should not come as a surprise. For dust the energy sits entirely in the rest
mass of the particles and so the energy density is proportional to the inverse volume of
space, which in this spacetime has a time dependent scale factor, a. For radiation we have
this same volume factor but an additional factor a−1 due to the increasing wavelength –
and corresponding decreasing energy – as space expands. For the vacuum the energy
density is constant by assumption.

We now fill up the universe with matter, radiation and vacuum energy with energy density
ρm, ρr and ρΛ respectively. We can then rewrite the last equation of (16.24) in terms of
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the cosmological parameter as

H2 =
8πG

3

∑
j=m,r,Λ

ρj −
k

R2
(16.32)

It is convenient to introduce a density linked to the geometry of spacetime

ρk = − 3

8πGk
R2 (16.33)

so that (16.34) becomes

H2 =
8πG

3

∑
n=m,r,Λ,k

ρn (16.34)

Using the definition of critical density (16.28) we thus get the simple equation

1 =
∑

n=m,r,Λ,k

Ωn = Ωm + Ωr + ΩΛ + Ωk (16.35)

i.e. the sum of all the density parameters corresponding to what fills the universe Ωm,Ωr

and ΩΛ and what comes from geometry Ωk should add to one.

We can now write

Ωj

Ωj,0
=

8πGρj/3H
2

8πGρj,0/3H2
0

=

(
H0

H

)2 ρj
ρj,0

=

(
H0

H

)2

a−γj (16.36)

where we have used a(t0) = 1. Thus

Ωj =

(
H0

H

)2

a−γjΩj,0 (16.37)

Using this in (16.35) we find

H2 = H2
0

(
Ωm,0

a3
+

Ωr,0

a4
+ ΩΛ,0 +

Ωk,0

a2

)
(16.38)

The Ωj,0 are the density parameters at current time t0 so they can be measured and
are given by

Ωm,0 ≈ 0.3; Ωr,0 ≈ 5× 10−5; ΩΛ,0 ≈ 0.7 (16.39)
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We see that 70% of the energy density comes from vacuum energy and 30% from matter
(of which 4% is from the usual baryonic matter and the remainder 25% is dark matter, of
which know nothing, except that it must exist). Energy from radiation plays no significant
role in our current universe. Note however that because ρm ∝ a−3, ρr ∝ a−4 and ρΛ = cte,
radiation dominated the universe at its very beginning when it was very small, i.e. right
after the Big Bang. This is due to the fact that at that time, all matter particles were
ultrarelativistic and their masses were negligible so that they behaved as radiation.

16.5 A Cosmic Diagram of the Universe

At this point we can start building a "phase diagram" for the universe. In theory we should
consider a three parameter space (Ωm,Ωr,ΩΛ), but as radiation is negligible, we will look
at a two dimensional phase diagram spanned by Ωm and ΩΛ. We can identify the following
features

• Consider the line Ωm+ΩΛ = 1. Because we have 1 = Ωm+ΩΛ+Ωk = Ωm+ΩΛ−k/Ṙ2

we need k > 0 if Ωm + ΩΛ > 1 and k < 0 if Ωm + ΩΛ < 1. Thus, above the line the
universe is closed (k > 0) and below that line the universe is open (k < 0).

• Next we consider the deceleration parameter q defined in (16.26)

q = −aä
ȧ2

= − R̈/R

Ṙ2/R2
=

1

2

∑
j=m,r,Λ

(1 + 3wj)Ωj

=
1

2
(Ωm + 2Ωr − 2ΩΛ) (16.40)

Here we have used

R̈

R
= − 4πG

3
(ρ+ 3P ) = −4πG

3

∑
j=m,r,Λ

(1 + 3wj)ρj

= − 4πG

3

∑
j=m,r,Λ

(1 + 3wj)
3H2

8πG
Ωj

= − 1

2

(
Ṙ

R

)2 ∑
j=m,r,Λ

(1 + 3wj)Ωj (16.41)

If the cosmological constant is zero or negative then q is positive and the expansion
of the universe will slow down. Ignoring radiation (16.40) becomes −q = ΩΛ − 1

2Ωm

we see that cosmic expansion accelerates above the line ΩΛ = 1
2Ωm and decelerates

below that line.
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• Let us now rewrite (16.38) as

ȧ2

H2
0

−
(

Ωm,0

a
+

Ωr,0

a2
+ ΩΛ,0a

2 + Ωk,0

)
= 0 (16.42)

This is an equation that we should be familiar with. It looks like the Newtonian
description of a particle with mass 2/H2

0 with zero total energy in a potential

V (a) = −
(

Ωm,0

a
+ ΩΛ,0a

2

)
− Ωk,0

= − Ωm,0

a
− ΩΛ,0a

2 − (1− Ωm,0 − ΩΛ,0) (16.43)

where we have again ignored the radiation energy and used 1 = Ωm,0 + ΩΛ,0 + Ωk,0.
Fort small a we have V (a) ∝ −Ωm,0/a and the potential is attractive like an inverse
square law. For large a we have V (a) ∝ −ΩΛ,0a and is attractive for ΩΛ0 < 0 and
repulsive for ΩΛ0 > 0, like a harmonic oscillator, with negative Hooke’s constant.
The constant term just moves the potential up and down. At present we have by
convention a = 1 and by observation ȧ > 0.

Let us first consider the case of negative cosmological constant ΩΛ,0 < 0. The
potential is then

V (a) = − Ωm,0

a
+ |ΩΛ,0|a2 − (1− Ωm,0 − ΩΛ,0) (16.44)

The potential is shown as the thick line in fig. 16.1 and attractive everywhere. The
"particle" is at present at a(t0) = 1 and has ȧ > 0 so moves up the potential to the
right. But as it reaches V (a) = 0 its "kinetic energy" and hence speed becomes zero
and the particle falls down to the left, reducing a(t), thus the universe that started
as a Big Bang will eventually contract and end in a Big Crunch.

1
a

V (a) ΩΛ,0 < 0

ΩΛ,0 > 0

Figure 16.1: Cosmic potential for different values of Ωm,0 and ΩΛ,0
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Let us now consider the case ΩΛ,0 > 0. Here both for a→ 0 and a→ +∞ we have
V (a)→ −∞. Two cases are shown as the thin and shaded lines in fig. 16.1. The thin
line is such that the universe has sufficient energy to go the top as the maximum
potential is negative. The universe started in a Big Bang and will continue to expand
forever. For the dashed line we need to consider whether the value amax where V (a)
reaches is maximum is greater or smaller than one. If amax > 1 then we will not
have enough energy to reach the top and the universe will recollapse. If, however,
amax < 1, which is the current situation, we have already passed the peak of the hill
and the universe will expand forever. In fact because the total energy of our particle
model was zero, we could never have crossed the hill and come from a situation
where a was zero. This is a universe where there was no Big Bang at all.

The dividing line between these scenarios are found by finding the maximum of V (a) ,
i.e. by solving V ′(amax) = 0, and then setting V (amax) = 0. These two equations gives
a relation between Ωm,0 and ΩΛ,0. To see what the two sides of these curves imply
we need to check whether amax is smaller or larger than one. We will not perform
this straightforward calculation in detail.

All this above information is summarised in the Cosmic Diagram shown in fig. fig:grcosmdiag.
The present value of the universe is somewhere in the grey circle. Somewhat surprisingly
this sits on or very close to the line determining whether our universe is closed or open,
i.e. it is nearly flat. We conclude that

Our universe is nearly flat, originated from a Big Bang and will expand forever.

Ωm

ΩΛ

open closed

accelerating

decelerating

expand forever
recollapse

no Big Bang

Big Bang

1
2

− 1
2

1

1 2

Figure 16.2: Cosmic diagram for a universe consisting of matter and vacuum energy
only. The current universe is somewhere in the grey circle.
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16.6 A Static Universe and the Cosmological Constant

When there is no vacuum energy, ΩΛ0 = 0 the Einstein equations admit no solution for a
static universe. This bothered Einstein considerably as at that time it was generally believed
that the universe was static. Einstein solved this by introducing the cosmological constant.
As we now show with such a cosmological constant it is possible to have a static universe.

We start with the Einstein equation for R00 in (16.20) and set ä = 0 to get ρ+ 3P = 0.
Using the equation of state P = wρ with w = 0 for matter and ω = −1 for vacuum
energy this gives (1 + 0)ρm + (1 − 3)ρΛ = ρm − 2ρΛ = 0. The total energy density is thus
ρ = ρm + ρΛ = 3ρΛ = 3Λ.

Setting both ä = 0 and ȧ = 0 in (16.21) gives

2k = a24πG(ρ− P ) = a24πG(ρm + 2ρΛ) = 16a2πGΛ (16.45)

We thus find that there is a static solution for a closed universe with k = 1 as long as
ρΛ = 1

2ρm and then a is a constant given by

a2 =
1

8πGΛ
(16.46)

It is rumoured that Einstein called his introduction of the cosmological constant to ensure
a static universe his greatest blunder. In fact, the universe is not static but expanding, so
had Einstein not introduced the cosmological constant, he could have predicted that the
universe was expanding. Ironically enough , the universe is indeed expanding and does have
a cosmological constant.

16.7 The Universe Flow in the Cosmic Diagram

We may now ask the question how a universe with a given set of density parameters
Ωj evolves over time, i.e. how universes flow in the cosmic diagram. We thus need an
expression for Ω̇j .

Our starting point is the definition of the density parameter (16.27) from which we find

Ω̇j =
d

dt

(
8πG

3H2
ρj

)
=

8πG

3

ρ̇j
H2

+
8πG

3

(
−2Ḣ

H3

)
ρj

= Ωj

(
ρ̇j
ρj
− 2

Ḣ

H

)
= −Ωj

[
3(1 + wj)H + 2

Ḣ

H

]
(16.47)
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where we have also used (16.30). We now work out

Ḣ

H2
=

1

H2

d

dt

Ṙ

R
=

1

H2

(
R̈

R
− Ṙ2

R2

)
= −q − 1

= − 1

2

∑
j=m,r,Λ

(1 + 3wj)Ωj − 1 (16.48)

where we have introduced the deceleration parameter q as defined in (16.26) and its worked
out formula in (16.40). This means that we have a simple equation for how the density
parameters evolve

Ω̇j = HΩj

−3wj − 1 +
∑

i=m,r,Λ

(1 + 3wi)Ωi

 (16.49)

If we ignore radiation, then these equations become

Ω̇m =HΩm(Ωm − 2ΩΛ − 1)

Ω̇Λ =HΩΛ(Ωm − 2ΩΛ + 2) (16.50)

We can view this as a vector field ~v = (Ω̇m, Ω̇Λ) in the two-dimensional space spanned by
(Ωm,ΩΛ) and the corresponding flow is shown in fig. 16.3.

0.0 0.5 1.0 1.5 2.0

-0.5

0.0

0.5

1.0

1.5

Figure 16.3: Flow of universes in the cosmic diagram with Ωm and ΩΛ and Ωr = 0
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There are three fixed point where Ω̇m = Ω̇Λ = 0, viz (Ωm,ΩΛ) = (0, 1), (0, 0) and (1, 0). The
former, (0, 1) is an attractor: universes in the neighbourhood evolve towards that point.
The latter two, (0, 0) and (1, 0), are unstable fixed points. Any perturbation from it will
ensure that the universe evolves away from it. Our universe with (Ωm,ΩΛ) = (0.3, 0.7) will
evolve towards (0, 1), a universe fully dominated by vacuum energy.

Note that without cosmological constant we would be moving on the horizontal axis
only. If Ωm < 1 then the universe will flow towards Ωm = 0 and the fixed point is stable; If
Ωm > 1 then it will flow towards very large values. However small a perturbation ΩΛ there
is, the universe will always flow to an larger absolute value of Λ.

Let us now consider the case where we cannot neglect the radiation. The flow equations
then become

Ω̇m =HΩm(Ωm + 2Ωr − 2ΩΛ − 1)

Ω̇r =HΩr(Ωm + 2Ωr − 2ΩΛ − 2)

Ω̇Λ =HΩΛ(Ωm + 2Ωr − 2ΩΛ + 2) (16.51)

We now have four fixed points, the origin where all density parameters are zero and three
fixed points where all density parameters are zero, bar one that is equal to one. The 3D
flow diagram is shown in fig. 16.4.

Figure 16.4: Flow of universes in the cosmic diagram with Ωm,Ωr and ΩΛ
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Finally, let us consider the case with no cosmological constant but with a universe that
contains both radiation and matter. The cosmic flow diagram is then shown in fig. 16.5.

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

Figure 16.5: Flow of universes in the cosmic diagram with Ωm and Ωr and ΩΛ = 0

16.8 The Flat Universe

We can apply the previous analysis as well to Ωk, the density parameter that is related to
the geometry of spacetime. A similar calculation gives

Ω̇k =
d

dt

(
− k

H2R2

)
=

2k

H2R2

(
Ḣ

H
+
Ṙ

R

)
= −2Ωk

(
Ḣ

H
+H

)
= 2ΩkHq

= ΩkH(Ωm + 2Ωr − 2ΩΛ) (16.52)

Let us assume a completely flat universe. Then k = 0 and Ω̇k = 0 and Ωk stays at zero:
a completely flat universe remains flat. But let us assume that universe is nearly flat, i.e.
k and by consequence Ωk is very close to, but not equal to zero. If on the one hand
Ωm + 2Ωr − 2ΩΛ > 0, which is certainly the case if the cosmological constant is negative,
then Ωk will grow and the universe will become less and less flat. If on the other hand
Ωm + 2Ωr − 2ΩΛ < 0 then Ωk is a stable fixed point. Given enough time, Ωm and Ωr will
become very small and ΩΛ will dominate so that for positive cosmological constant this
condition will eventually be satisfied and the universe will end out flat.



Chapter 17

The Unruh Effect and Hawking Radiation

17.1 The Accelerated Observer and Bogolioubov Transformations

Consider the action for a free scalar field theory in curved spacetime

S[ϕ] =

∫
d4x L =

∫
d4x
√
−g

[
1

2
gµν∇µϕ∇νϕ−

1

2
m2ϕ2

]
(17.1)

Following the minimal coupling, we have replaced the ordinary partial derivatives by covari-
ant derivatives.

Let us now proceed with the canonical quantisation of this theory. First we need the
equation of motion. This is straightforward:

gµν∇µ∇νϕ−m2ϕ = 0 (17.2)

Canonical quantisation consists of expanding the field ϕ into a basis of solutions of this
equation, the coefficients of this expansion are then promoted to operators and we can
split the field into a positive energy frequency and a negative energy frequency part that
corresponds to creation and annihilation operators respectively. In the case of flat space-
time, the equation of motion allows simple plane wave solutions eik·x and everything is
pretty simple.

In a curved spacetime background, plane waves are not a solution of the equations of
motion and this leads to interesting physics. We will therefore assume that we have a set
of functions

{
fi
}
that form an orthonormal basis of solutions for the equation of motion,

i.e. we have [
gµν∇µ∇ν −m2 − ξR

]
fi(x) = 0 (17.3)

We now expand the field ϕ in terms of these solutions and their conjugate

ϕ(x) =
∑
i

(aifi + a∗i f
∗
i ) (17.4)

173
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At this point i may consist of discrete or continuous parameter. The functions fi are
orthonormal:1

(fi, fj) = δij and (f∗i , f
∗
j ) = −δij (17.6)

We follow the standard procedure for canonical quantisation. Define the conjugate
momentum of the scalar field:

π(x) =
∂L

∂(∇0ϕ)
=
√
−g∇0ϕ (17.7)

and impose the equal-time canonical commutation relations (ETCCR)

[ϕ(t,x), ϕ(t,x′)] = [π(t,x), π(t,x′)] = 0

[ϕ(t,x), π(t,x′)] =
i√
−g

δ(d−1)(x− x′) (17.8)

The coefficients ai and a∗i are promoted to operators âi and â
†
i and satisfy the commutation

relations

[âi, âj ] = [â†i , â
†
j ] = 0

[âi, â
†
j ] = δij (17.9)

We define the vacuum state |0〉f by the fact that it is annihilated by the âi:

âi |0〉f = 0 for all i (17.10)

From this vacuum we define the entire Fock space by repeated action of creation operators
â†i :

|n1n2 · · ·〉f =
1√
n1!

(
â†1

)n1 1√
n2!

(
â†2

)n2

· · · |0〉f (17.11)

We can also define a number operator for each mode

n̂fi = â†i âi (17.12)

1The inner product of two functions F and G is defined as:

(F,G) = −i
∫

Σ

(F∇µG∗ −G∗∇µF )nµ
√
−γdd−1x (17.5)

Here Σ is a space-like hyper-surface with induced metric γij and unit normal vector nµ.
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that counts the number of excitations in mode i, i.e. n̂fi |n1n2 · · ·〉f = ni |n1n2 · · ·〉f .

So far, there is nothing unusual. The only point an attentive reader may have noticed
is that we have here and there added a suffix f to make clear that we are working in the
basis of the modes fi.

We could of course have chosen a different basis of solutions of the equation of motion,
say gi. All the equations would then have been similar with due replacements. The field is
expanded as

ϕ(x) =
∑
i

bigi + b∗i g
∗
i (17.13)

and canonical quantisation imposes the commutation relations

[b̂i, b̂j ][b̂
†
i , b̂
†
j ] = 0

[b̂i, b̂
†
j ] = δij (17.14)

We define a vacuum |0〉g by b̂i |0〉g = 0 for all i and can construct the Fock space by

repeated application of the creation operators b̂†i . We can also define the number operator
n̂gi = b̂†i b̂i.

In flat spacetime we are able to pick out the plane waves as preferred basis. This allows
us to split the field in a positive energy frequency part ϕ+ and a negative energy frequency
part ϕ−

ϕ(x) = ϕ+(x) + ϕ−(x) =

∫
d3p

(2π)3

1√
2Ep

ape
−ip·x +

∫
d3p

(2π)3

1√
2Ep

a†pe
+ip·x (17.15)

The concept of positive/negative energy frequency part comes from the time-derivative of
the plane wave solution

∂

∂t
e−ip·x =

∂

∂t
e−i(p

0t−p·x) = −ip0e−ip·x

∂

∂t
e+ip·x =

∂

∂t
e+i(p0t−p·x) = +ip0e−ip·x (17.16)

The time coordinate is not unique as we can perform Lorentz transformation that will
change the time coordinate. However, the vacuum |0〉 and the number operator n̂p = a†pap
are Lorentz-invariant. Let us indeed see what happens if we go to another inertial frame.
Clearly if we do a three-dimensional rotation, this isn’t going to affect time, so we need to
consider a boost. These are of the general form

t′ = γ(t− v · x) and x′ = γ(x− vt) (17.17)
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where v is the boost velocity. The inverse transformation is

t = γ(t′ + v · x′) and x = γ(x′ + vt′) (17.18)

We are interested in the time-derivative in the new coordinate system:

∂t′ = ∂t′x
µ∂µ = ∂t′t∂t + ∂t′x

i∂i = γ(∂t + v · ∂) (17.19)

and hence looking at the positive energy mode fp = e−ip·x we find

∂′tfp = γ(∂t + v · ∂)e−i(p
0t−p·x) = γ(−ip0 + iv · p)e−i(p

0t−p·x) = −ip′0fp (17.20)

and so in the other coordinate system fp is equally well a positive energy frequency mode,
but with boosted momentum p′. Hence the split between creation and annihilation operator
is identical in both coordinate systems and the number operator for a given mode, and
for the total number of particles, measure exactly the same number of particles in both
inertial frames.2

In flat spacetime, Lorentz invariance, guarantees that all inertial
frames will measure the same number of particles.

This immediately raises the question of if and how this generalises to non-inertial frames,
i.e. do observers in all frames from general relativity see an identical split between positive
and negative energy frequency parts. In plain english: would all observers count the same
number of particles?

In order to answer this question, we expand the modes in one reference frame in terms
of the modes of the other reference frame:

gi =
∑
j

(
αijfj + βijf

∗
j

)
(17.21)

Using the orthonormality conditions of the modes fi, we find

(gi, fj) =
∑
j

[
αik(fk, fj) + βik(f

∗
k , fj)

]
=
∑
k

αikδjk = αij (17.22)

and
(gi, f

∗
j ) =

∑
j

[
αik(fk, f

∗
j ) + βik(f

∗
k , f

∗
j )
]

= −
∑
k

βikδjk = −βij (17.23)

We can also expand fi in terms of gi:

fi =
∑
j

(
ρijgj + σijg

∗
j

)
(17.24)

2We should add for the free theory, as that is what we are looking at. But this is sufficient for
our purposes of looking how this works in curved spacetime
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and find similarly

(fi, gj) =
∑
k

[
ρik(gk, gj) + σik(g

∗
k, gj)

]
= ρij

(fi, g
∗
j ) =

∑
k

[
ρik(gk, g

∗
j ) + σik(g

∗
k, g
∗
j )
]

= −σij (17.25)

Now we have ρij = (fi, gj) = (gj , fi)
∗ = α∗ji and σij = −(fi, g

∗
j ) = −(g∗j , fi)

∗ = −(gj , f
∗
i ) =

−βji so that we can rewrite (17.24) as

fi =
∑
j

(
α∗jigj − βjig∗j

)
(17.26)

The transformations (17.21) and (17.26) between the different basis modes are known as
Bogoliubov Transformations and the coefficients α and β are known as Bogolioubov pa-
rameters. This transformation also links the creation and annihilation operators in both
reference frames. Indeed:

ϕ(x) =
∑
i

[
b̂igi + b̂†ig

∗
i

]
=
∑
i

[
b̂i
∑
j

(
αijfj + βijf

∗
j

)
+ b̂†i

∑
j

(
α∗ijf

∗
j + β∗ijfj

) ]
=
∑
j

[∑
i

(αij b̂i + β∗ij b̂
†
i )fj +

∑
i

(βij b̂i + α∗ij b̂
†
i )f
∗
j

]
(17.27)

And so we see that we can identify

âj =
∑
i

(αij b̂i + β∗ij b̂
†
i ) and â†j =

∑
i

(βij b̂i + α∗ij b̂
†
i ) (17.28)

and similarly we can write

ϕ(x) =
∑
i

[
âifi + â†if

∗
i

]
=
∑
i

[
âi
∑
j

(
α∗jigj − βjig∗j

)
+ â†i

∑
j

(
αjig

∗
j − β∗jigj

) ]
=
∑
j

[∑
i

(α∗jiâi − β∗jiâ
†
i )gj +

∑
i

(−βjiâi + αjiâ
†
i )g
∗
j

]
(17.29)

and identify

b̂i =
∑
j

(α∗ij âj − β∗ij â
†
j) and b̂†i =

∑
j

(−βij âj + αij â
†
j) (17.30)
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We already see that the creation and annihilation operators get mixed up in another coor-
dinate system.

Let us now consider a system that is in the vacuum state |0〉f as measured by the
f-modes. I.e. a state defined by âi |0〉f = 0 for all i. Clearly the f-mode number operator
in this state measures no particles:

f 〈0|nfi |0〉f =f 〈0| â†i âi |0〉f = 0 (17.31)

What would an observer in the g-mode reference frame measure for particles in his gi
modes? That is just his number operator sandwiched between the state of the system, i.e.
f 〈0|ngi |0〉f . But we can now work this out using the Bogoliubov transformations:

f 〈0|ngi |0〉f =f 〈0| b̂†i b̂i |0〉f
=f 〈0|

∑
j

(−βij âj + αij â
†
j)
∑
k

(α∗ikâk − β∗ikâ
†
k) |0〉f

=
∑
jk

βijβ
∗
ik ×f 〈0| â

†
kâj + δjk |0〉f =

∑
j

βijβ
∗
ij (17.32)

where we have used the commutation relations. We conclude that the observer of the
g-mode reference frame measures

f 〈0|ngi |0〉f =
∑
j

|βij |2 (17.33)

If any of the coefficients βij is not equal to zero than the observer in the g-mode
reference frame will see a non-zero number of particles! Now the β coefficients are defined
in (17.21), i.e. gi =

∑
j

(
αijfj + βijf

∗
j

)
; so they are non-zero when the positive and negative

energy frequency modes of the two reference frames get mixed up. In flat-spacetime we
have seen that, due to Lorentz invariance, these modes do not get mixed up and all β’s
are equal to zero. As a result both observers will measure the same number of particles.
In curved spacetime, there is no reason to assume that all the β’s are equal to zero and
so the observer in the g-mode reference frame will measure one or more particles. Now,
due to the principle of equivalence of general relativity, a curved spacetime is equivalent
to acceleration, so whereas one observer will see a vacuum with no particles, another
observer that is accelerating vs. the first one will measure particles. Thus

observers who are accelerating vs one another
do not see the same number of particles.

This is a direct consequence of field theory in curved spacetime. We would obviously like
to understand this better.
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Discussion

This is a striking and a perhaps counter-intuitive result. Clearly a particle detector in a
curved spacetime will measure a number of particles unaware of what modes is being
used? But what is the definition of a particle used by such a detector? The answer is that
the detector will have its own proper time τ along the trajectory it follows in the curved
spacetime and that proper time will define the positive and negative energy frequency
parts and then also the number operator corresponding to that proper time. So, whilst
the detector may not be aware of the modes, the modes themselves are solutions to the
equation

D

dτ
fi = −iωfi (17.34)

for some frequency ω > 0. In general it may not be possible to find such modes all over
spacetime. But this may be possible in a static spacetime, that is a spacetime where the
metric is independent of the time coordinates and there are no time-space cross terms:
∂0gµν = g0i = 0. In such a metric

� = gµν∇µ∇ν = g00∂2
0 +

1

2
g00gij∂ig00∂j + gij∂i∂j − gijΓkij∂k (17.35)

and the equation of motion (17.2) can be written as[
g00∂2

0 +
1

2
g00gij∂ig00∂j + gij∂i∂j − gijΓkij∂k −m2

]
f(x) = 0 (17.36)

We can rewrite this as

∂2
0f(x) = −g−1

00

[
1

2
g00gij∂ig00∂j + gij∂i∂j − gijΓkij∂k −m2

]
f(x) (17.37)

The RHS contains no dependence on time as we are in a static spacetime and the LHS is
just a time derivative. We can therefore perform a separation of variables:

f(x) = fω(t,x) = e−iωtFω(x) (17.38)

where F (x) and ω satisfy

−g−1
00

[
1

2
g00gij∂ig00∂j + gij∂i∂j − gijΓkij∂k −m2 − ξR

]
Fω(x) = −ω2Fω(x) (17.39)

Eq. (17.38) then defines the positive energy frequency part

∂tfω(t,x) = −iωfω(t,x) (17.40)

If the proper time of the detector will be proportional to the Killing time of the static
spacetime then these modes will be the natural basis to describe the Fock space.
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17.2 The Unruh Effect

Let us show that an accelerating observer in the vacuum of flat-spacetime will see a thermal
spectrum of particles, with the temperature of the spectrum related to the acceleration
rate. As gravity and acceleration are equivalent this will be a natural first step to then
discuss Hawking radiation, i.e. the radiation of black holes.

To simplify the analysis, we will work in 1 + 1 dimension and consider a massless real
scalar with Klein-Gordon equation �ϕ = 0. We immediately have one set of modes, the
plane waves of this equation. We now consider an observer moving along the space direction
with constant acceleration α. We will first need to identify the modes that this observer will
use and then use the Bogoliubov transformation to calculate the particle spectrum seen
by the accelerating observer.

The trajectory of the accelerating observer is given by:

t(τ) =
1

α
sinhατ and x(τ) =

1

α
coshατ (17.41)

where τ is the proper time of the observer and α is a positive constant. The acceleration
of this observer is aµ = d2xµ/dτ2 and we have

a0 =
d2t

dτ2
=

d2

dτ2

1

α
sinhατ = α sinhατ

a1 =
d2x

dτ2
=

d2

dτ2

1

α
coshατ = α coshατ (17.42)

and hence

a2 = ηµνa
µaν = −(a0)2 + (a1)2 = α2(cosh2 ατ − sinh2 ατ) = α2 (17.43)

We can easily eliminate the parameter τ from the trajectory and describe the path in t-x
space as

x2 − t2 =
1

α2
(17.44)

We see that the observer follows a hyperboloid with null paths x = −t and x = +t as
the asymptotic paths in the past and the future. This should, of course, not surprise us
as these null asymptotes are the paths where the observer has accelerated to maximum
velocity, the velocity of light.

Let us now move to new coordinates η and ξ:

t =
1

α
eαξ sinhαη and x =

1

α
eαξ coshαη for x > |t| (17.45)
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We will come back to the condition x > |t| very soon. The range of the new coordinates is
[−∞,+∞] for both η and ξ. The path of the observer is now given by

t(τ) =
1

α
eαξ sinhαη =

1

α
sinhατ

x(τ) =
1

α
eαξ coshαη =

1

α
coshατ (17.46)

We can simplify this. Squaring both equations and subtract them from one another imme-
diately yields eαξ = 1 or ξ = 0. Plugging this into the first equation gives η(τ) = τ . In
terms of the new coordinates the path of the accelerating observer is thus:

η = τ and ξ = 0 (17.47)

This is just a reference frame that is moving with the observer. To compute the metric in
terms of the new coordinates we calculate the line element ds2 = −dt2 + dx2. Straightfor-
ward algebra gives

ds2 = e2αξ(−dη2 + dξ2) (17.48)

Let us for a minute look back at the coordinate transformation (17.45). Clearly this
covers only the region x > 0 and as

x− t =
1

α
eαξ(coshαη − sinhαη) =

1

α
eαξe−αη > 0 (17.49)

we have that our coordinate transformation only covers the region x > |t| and not the
entire spacetime. This is the region R I in Fig.17.1. In order to have a coordinate system
over the whole of spacetime we also need to cover the three other regions. R II and R III
are space-like regions, so we are not to worried about them. In fact they can be reached
by analytical continuation if we would so desire. For R IV we can simply flip the signs and
we then have

t = − 1

α
eαξ sinhαη and x = − 1

α
eαξ coshαη for x < |t| (17.50)

Strictly speaking we are abusing notation as in both R I and R IV the coordinates go from
−∞ to +∞. However we can solve this by carefully identifying which region we are working
in. The only point we have not covered then is the origin, but that is a point of zero measure
and should not bother us.

These new coordinates η and ξ are as Rindler Coordinates and R I is known as Rindler
Space. The observer moving with constant acceleration is known as a Rindler Observer.
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x

t

η

ξ

R I

R II

R III

R IV

Figure 17.1: Minkowski spacetime in Rindler coordinates

Now that we have the metric in terms of Rindler coordinates (17.48) we can easily write
the equation of motion �ϕ = 0 in terms of these coordinates:

�ϕ = e−2αξ
(
− ∂2

η + ∂2
ξ

)
ϕ = 0 (17.51)

This, of course, has as solution the plane waves in terms or Rindler coordinates. But we
need to be careful. In R I we have

∂η = ∂ηt∂t + ∂ηx∂x = eαξ(coshαη∂t + sinhαη∂x) = α(x∂t + t∂x) (17.52)

and this will be recognised as a boost in the x-direction, with ∂t and ∂η pointing in the same
direction, the direction of time flowing forward. In R IV we have similarly ∂η = −a(x∂t+t∂x)
and ∂t and ∂η point in opposite directions.

First consider R I and a normalised plane wave:

g(1) =
1√
4πω

ei(−ωη+kξ) (17.53)

where, as we are in 1 + 1 dimensions, ω = |k|. This satisfies

∂ηg
(1) = ∂η

1√
4πω

ei(−ωη+kξ) = −iω 1√
4πω

ei(−ωη+kξ) = −iωg(1) (17.54)

and is indeed a positive energy frequency mode. In R IV we have to use −∂η to ensure
time flows in the same direction. And hence g(1) does not correspond to a positive energy
frequency mode in that region. It is however straightforward to write one as

−∂ηg(2) = −∂η
1√
4πω

ei(+ωη+kξ) = −iω 1√
4πω

ei(+ωη+kξ) = −iωg(2) (17.55)
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So we conclude that the Rindler observer can use the following modes:

R I : g
(1)
k =

1√
4πω

ei(−ωη+kξ) and g
(2)
k = 0

R IV : g
(1)
k = 0 and g

(2)
k =

1√
4πω

ei(+ωη+kξ) (17.56)

These form a complete basis set for the Rindler observer and we can expand the field ϕ(x)
in terms of these modes:

ϕ(x) =

∫
dk
[
b̂
(1)
k g

(1)
k + b̂

(1)†
k g

(1)∗
k + b̂

(2)
k g

(2)
k + b̂

(2)†
k g

(2)∗
k

]
(17.57)

The observer in the inertial frame, let us call him the Minkowski observer, will have a
mode expansion in plane waves in the t-x coordinate system:

ϕ(x) =

∫
dk
[
âkfk + â†kg

∗
k

]
(17.58)

The Minkowski observer will have a vacuum state |0〉M defined by

âk |0〉M = 0 (17.59)

and sometimes called the Boulware Vacuum. The Rindler observer will have a vacuum |0〉R
defined by

b̂
(1)
k |0〉R = b̂

(2)
k |0〉R = 0 (17.60)

and sometimes called the Kruskal Vacuum.

The Rindler observer will not see the Minkowski vacuum as containing zero particles as
his annihilation operators are a mix of the Minkowski annihilation and creation operators.
Two work out what the Rindler observer sees, we just need to find the Bogoliubov param-
eters that transform one set of modes into the other set of modes. This is straightforward
algebra but rather lengthy. We will use an alternative way to achieve this, originally due to
Unruh. We will find a set of modes that share the same vacuum state as the Minkowski
modes, albeit with different description of the excited modes. But these new modes will
have a simpler overlap with the Rindler modes and hence the Bogoliubov parameters will be
easier to calculate. The way to do this is to analytically continue the Rindler modes over
all of spacetime and express this extension in terms of the original Rindler modes.

In order to achieve this, first note that from (17.45) we find for R I that

α(x− t) = eαξ (coshαη − sinhαη) = e−α(η−ξ)

α(x+ t) = eαξ (coshαη + sinhαη) = e+α(η+ξ) (17.61)
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and similarly for R IV

α(−x+ t) = −eαξ (− coshαη + sinhαη) = e−α(η−ξ)

α(−x− t) = −eαξ (− coshαη − sinhαη) = e+α(η+ξ) (17.62)

If we now assume k > 0 and so ω = k then we can write for g(1) in RI :
√

4πωg
(1)
k = ei(−ωη+kξ) = αiω/α(x− t)iω/α (17.63)

We can analytically continue this expression for g(1)
k outside of R I to everywhere in

Minkowski spacetime, by using the appropriate values of t and x. Similarly, we find, assum-
ing k > 0 and so ω = k in R IV for the complex conjugate of g(2) with minus the momentum
component:

√
4πωg

(2)∗
−k = e−i(+ωη−kξ) = αiω/αeπω/α(x− t)iω/α (17.64)

Which again we can analytically continue to the whole Minkowski spacetime. We thus have
a well defined combination over the whole of Minkowski spacetime given by:

√
4πω

(
g

(1)
k + e−πω/αg

(2)∗
−k

)
= 2αiω/α(x− t)iω/α (17.65)

Now if we take k < 0 such that ω = −k, we find similarly in R I:
√

4πωg
(1)
k = ei(−ωη+kξ) = αiω/α(x+ t)iω/α (17.66)

and in R IV:
√

4πωg
(2)∗
−k = e−i(+ωη−kξ) = e−iω(η+ξ) = αiω/α(−x− t)iω/α

= αiω/α
[
e−iπ(x+ t)

]iω/α
= αiω/αeπω/a(x+ t)iω/a (17.67)

and the combination
√

4πω
(
g

(1)
k + e−πω/αg

(2)∗
−k

)
= 2αiω/α(x+ t)iω/α (17.68)

is again well defined over the whole of Minkowski spacetime. We can thus use this com-
bination as a basis for the modes of the Rindler observer. In fact, it is better to take a
properly normalised combination and define the modes h(1)

k as

h
(1)
k =

1√
2 sinh(πω/α)

(
eπω/2αg

(1)
k + e−πω/2αg

(2)∗
−k

)
(17.69)

We find the conjugate mode from a similar calculation. First for k > 0, combining the
regions in one equation, hence upsetting some people who may prefer more rigour mortis,

√
4πω(g

(2)
k + e−πω/αg

(1)∗
−k ) = eiω(η+ξ)

∣∣∣
R IV

+ e−πω/αe−iω(−η−ξ)
∣∣∣
R I

= 2αiω/αe−πω/α(x+ t)iω/α (17.70)
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Similarly for k < 0 we find

√
4πω(g

(2)
k + e−πω/αg

(1)∗
−k ) = eiω(η−ξ)

∣∣∣
R IV

+ e−πω/αeiω(η−ξ)
∣∣∣
R I

= 2α−iω/αe−πω/α(x− t)−iω/α (17.71)

So that properly normalised we can define

h
(2)
k =

1√
2 sinh(πω/α)

(
eπω/2αg

(2)
k + e−πω/2αg

(1)∗
−k

)
(17.72)

as well over the entire Minkowski-space. We can easily check that the modes h(1)
k and h(2)

k

form an orthonormal set, as log as the modes g(1)
k and g(2)

k form an orthonormal set. For
example we have

(h
(1)
k1
, h

(1)
k2

) =
1

2
√

sinh(πω1/a) sinh(πω2/α)

×
(
eπω1/2αg

(1)
k1

+ e−πω1/2αg
(2)∗
−k1

, eπω1/2αg
(1)
k2

+ e−πω1/2αg
(2)∗
−k2

)
=

1

2
√

sinh(πω1/a) sinh(πω2/α)

[
eπ(ω1+ω2)/2α − e−π(ω1+ω2)/2α

]
δ(k1 − k2)

=
1

2 sinh(πω1/a)

[
eπω1/a − e−πω1/a

]
δ(k1 − k2) = δ(k1 − k2) (17.73)

A similar calculation shows that (h
(2)
k1
, h

(2)
k2

) = δ(k1 − k2) as well and that (h
(1)
k1
, h

(2)
k2

) = 0.

We now have a third set of modes, also expressed in terms of Rindler coordinates, but
this time the formula is valid for the entire spacetime by analytical continuation. Again we
can expand the field in these modes:

ϕ(x) =

∫
dk
[
ĉ

(1)
k h

(1)
k + ĉ

(1)†
k h

(1)∗
k + ĉ

(2)
k h

(2)
k + ĉ

(2)†
k h

(2)∗
k

]
(17.74)

From our Bogoliubov transformation we know that the annihilation and creation operators
of one set of modes can be written in terms of the other set of modes. Let us remind
ourselves of this. If we have an expansion in two set of modes

ϕ(x) =
∑
i

[
âifi + â†if

∗
i

]
=
∑
i

[
b̂igi + b̂†ig

∗
i

]
(17.75)

and the different modes are related by (17.21):

gi =
∑
j

(
αijfj + βijf

∗
j

)
(17.76)
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and its complex conjugate, then the annihilation and creation operators are related by
(17.28)

âj =
∑
i

(αij b̂i + β∗ij b̂
†
i ) and â†j =

∑
i

(βij b̂i + α∗ij b̂
†
i ) (17.77)

Let us rewrite the transformation rules for convenience:

h
(1)
k =

1√
2 sinh(πω/α)

(
eπω/2αg

(1)
k + e−πω/2αg

(2)∗
−k

)
h

(2)
k =

1√
2 sinh(πω/α)

(
eπω/2αg

(2)
k + e−πω/2αg

(1)∗
−k

)
(17.78)

We see that the indices in (17.76) now run over the discrete values 1 and 2 and over the
continuous k. The only non-zero Bogoliubov parameters can be read off straightforwardly:

α11
kk =

1√
2 sinh(πω/α)

e+πω/2α; α22
kk =

1√
2 sinh(πω/α)

e+πω/2α

β12
k−k =

1√
2 sinh(πω/α)

e−πω/2α; β21
k−k =

1√
2 sinh(πω/α)

e−πω/2α (17.79)

This gives the transformation rules for the annihilation operators

b̂
(1)
k = α11

kkĉ
(1)
k + β12

k−k ĉ
(2)†
−k =

1√
2 sinh(πω/α)

[
e+πω/2αĉ

(1)
k + e−πω/2αĉ

(2)†
−k

]
b̂
(2)
k = α22

kkĉ
(2)
k + β21

k−k ĉ
(1)†
−k =

1√
2 sinh(πω/α)

[
e+πω/2αĉ

(2)
k + e−πω/2αĉ

(1)†
−k

]
(17.80)

and the creation operators follow from the hermitian conjugate

b̂
(1)†
k =

1√
2 sinh(πω/α)

[
e+πω/2αĉ

(1)†
k + e−πω/2αĉ

(2)
−k

]
b̂
(2)†
k =

1√
2 sinh(πω/α)

[
e+πω/2αĉ

(2)†
k + e−πω/2αĉ

(1)
−k

]
(17.81)

Let us look at the modes of the Minkowski observer. The original positive energy
frequency modes are, for k > 0 given by

fk ∝ e−i(ωt−kx) = e−iω(t−x) (17.82)

If we look at this in the complex t-x plane than we note that it is analytical, We also see
that if we write t− x = α1 + iα2 with α1 and α2 real we find

fk ∝ e−iω(α1+iα2) = e−iωα1eωα2 (17.83)
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and so this analytical function is bounded as long as α2 = Im (t− x) < 0. Let us now look
at h(1)

k . From its definition (17.69) and the fact that we have worked out that for k > 0 it
can be written as (17.65)

h
(1)
k ∝ (x− t)iω/α = exp

iω

α
ln(x− t) (17.84)

This function has a branch cut in the complex plane.3 Let us again look at the imaginary
part of x− t. Write x− t = −iβ. We then have

ln(x− t) = ln−iβ = ln e−
iπ
2 β = − iπ

2
+ lnβ (17.85)

This function is bounded as long as β = Im (t− x) < 0 and is analytical as long as we put
the branch cut in the upper half complex place.

Similarly we find find that the modes h(2)
k are analytic and bounded in the lower half

complex plane and so are the positive energy frequency modes of the inertial observer with
k < 0.

This means that we can express the modes h(1)
k and h(2)

k in terms of the positive energy
frequency modes fk. In terms of the Bogoliubov parameters it means that the coefficients
βij are zero and that the annihilation operators of the h-modes can be written exclusively
in terms of the annihilation operators of the f-modes, and hence that the annihilation and
creation operators don’t get mixed up in this Bogoliubov transformation.

We thus have immediately that acting with the annihilation operators of the g-modes
on the Minkowski vacuum |0〉M we find

ĉ
(i)
k |0〉M ∝ âk |0〉M = 0 for i = 1, 2 (17.86)

Let us ask how the Rindler observer experiences the Minkowski vacuum? A Rindler
observer in R I will count particles of momentum k with his number operator n̂(1)

R (k) =

b̂
(1)
k b̂

(1)†
k . We can now simply use the transformation law (17.81) that expresses the b-

operators in terms of the c-operators and use the fact that the Minkowski vacuum is

3ln z = ln reiθ = ln r + iθ has a branch cut as z(r, θ + 2π) = z(r, θ) but ln z(r, θ + 2π) =
ln z(r, θ) + 2π. It is traditional to put this branch cut on the real axis, θ = 0, but we can of course
put it anywhere starting at the origin. The important point being that if we rotate θ by 2π we cross
the branch cut.
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annihilated by the c operators:

M〈0| n̂(1)
R (k) |0〉M =M 〈0| b̂(1)

k b̂
(1)†
k |0〉M

=
1

2 sinh(πω/α)
M〈0|

[
e+πω/2αĉ

(1)†
k + e−πω/2αĉ

(1)
−k

]
×
[
e+πω/2αĉ

(1)
k + e−πω/2αĉ

(1)†
−k

]
|0〉M

=
1

2 sinh(πω/α)
e−πω/a M〈0| ĉ(1)

−k ĉ
(1)†
−k |0〉M

=
1

2 sinh(πω/α)
e−πω/a M〈0| δ(0) |0〉M =

1

e2πω/α − 1
δ(0) (17.87)

The delta function may seem to compromise this result, but it is a consequence of the fact
that we have used single-modes in our computation. The right analysis would have required
us to use wave-packets concentrated around momentum k, but this would complicate
the calculations needlessly. This is an important result, so let us rewrite it, dropping the
inconvenient delta function

M〈0| n̂(1)
R (k) |0〉M =

1

e2πω/α − 1
(17.88)

The accelerating Rindler observer does not see the Minkowski vacuum as empty but he
sees a whole spectrum of particles with all possible momenta k and the number of particles
he sees with momenta k is given by

P (ω) ∝ 1

e2πω/a − 1
(17.89)

with ω = |k|. This precisely the Planck spectrum of black-body radiation, which for fre-
quency ν and temperature T is given by

P (ν) ∝ 1

ehν/kBT − 1
(17.90)

Setting dimensionless units h = kB = 1 and equation ω with ν we find that the accelerating
Rindler observer travelling through the Minkowski vacuum will see a Planck spectrum with
temperature

T =
α

2π
(17.91)

This is the famous Unruh Effect. The fact that the radiation seen by the Rindler observer
follows Planck’s law (17.89) does, of course, not not necessarily mean that the radiation is
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effectively thermal. To be thermal one should check that there are no correlations in the
observed particles. This is outside our scope, but it has indeed been checked.

The temperature T = α/2π is the temperature measured by an observer accelerating
at a constant rate α. From (17.47) we know that this observer moves along a path with
ξ = 0. Any other path with ξ constant feels a constant acceleration α̃ given by

α̃ = αe−αξ (17.92)

and this observer should measure thermal radiation of a temperature T = α̃/2π. An
alternative way to express this is to say that if an observer at ξ = ξ1 = 0 detects a
temperature T1 = α/2π then an observer at ξ = ξ2 will see this radiation redshifted to a
temperature

T2 =
α̃

2π
=
αe−αξ

2π
= e−αξT1 (17.93)

To a naive physicist the Unruh effect is a paradox. Indeed a Minkowski observer sees
a vacuum and more precisely she sees the expectation value of the energy-momentum
tensor 〈Tµν〉 to be identical to zero. However a Rindler observer sees a whole spectrum
of particles. But if the energy-momentum tensor is zero how can particles be created?
Does this not violate energy conservation? The answer is, of course, that to measure
the particles the Rindler observer needs a detector. And to keep that detector moving at
constant acceleration one needs to put in work. That work provides the energy for the
particles observed by the Rindler observer and energy is conserved, as it should be.

17.3 Hawking Radiation

One can also turn the argument around and consider the situation from the point of view
of an observer in flat spacetime, e.g. an observer very far away from a strong gravitational
field, looking at a detector in that gravitational field. For the external observer that detector
is accelerating and so it needs to use the Rindler vacuum. But the external observer will
use her own Minkowski vacuum and thus will see a thermal radiation at the detector;
gravitational fields produce thermal radiation. This is the cause of the so-called Hawking
Radiation. A black hole creates a gravitational field and so will cause thermal radiation, also
within the event horizon. Classically such radiation cannot go beyond the event horizon,
but quantum mechanically there is always a non-zero probability that it will tunnel through
it. Thus we should expect black holes to radiate.

We can make this relation between the accelerated Rindler observer and the horizon
of a black hole more precise. Consider the metric for this observer (17.48), i.e. ds2 =
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e2αξ(−dη2 + dξ2). Change variables ρ = α−1eαξ so that dρ = eαξdξ and

ds2 = −α2ρ2dη2 + dρ2 (17.94)

Let us now consider the Schwarzschild metric near the Schwarzschild radius rS = 2GM .
Ignoring the angular part

ds2 = −
(

1− rS
r

)
dt2 +

(
1− rS

r

)−1
dt2 ≈ −r − rS

r
dt2 +

rS
r − rS

dr2 (17.95)

Change variables ρ2 = 4rS(r − rS) so that ρdρ = 2rsdr and the metric becomes

ds2 = − ρ2

4r2
s

dt2 + dρ2 (17.96)

The metric of the accelerating Rindler observer is thus of the same form as the metric
near the event horizon of a black hole and we would thus expect Unruh radiation near the
horizon of the black hole as well.

It is in fact possible to determine the equation for the temperature of the thermal
radiation up to a numerical factor, purely on dimensional grounds. Consider the possible
variables we have in the system. We have the mass of the black hole M with dimension
[M ] = +1, but this always comes in combination with Newton’s constant as GM and has
dimension [GM ] = −1. In natural units temperature has units of energy and hence of
mass, [T ] = +1. Therefore necessarily4 T ∝ 1/GM . Filling in the numerical factors we
find

T =
~c3

8πGMkb
(17.97)

Some remarks are in order.

• Hawking radiation is often presented as the creation of virtual pairs of photons near
the event horizon, with one photon staying behind the horizon and one crossing it.
This is not a tenable picture as virtual particles are a purely mathematical construct,
following from our choice to solve the evolution equation in field theory via perturba-
tion theory, and do not exist in reality, let alone that one could go left and the other
could go right.

• As we enter into the event horizon the signs of g00 and grr flip. It looks like the role
of time and distance are interchagned. Strange as the person falling crossing the
event horizon does not feel anything particular.

4We are ignoring the fact that we could also have an arbitrary function of the dimensionless
combination GMMP with MP the Planck mass.
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• What is the entropy associated with this Hawking radiation? From thermodynamics
we know that dE = TdS−pDV −µdN , which becomes, ignoring volume and particle
number changes becomes dE = Td. But E is just the mass of the black holes, so
dM = TdS or dS/dM = 1/T ∝ GM . Integrating we get S ∝ GM2 ∝ (M/Mp)

2,
where we have expressed the entropy in terms of a dimensionless combination. But
the radius of the horizon is given by RS = 2GM so we find that S ∝ R2, i.e. the
entropy is proportional to the area of the black hole. This is remarkable as entropy
is an extensive quantity and is expected to be proportional to a volume and not an
area. This observation has led to the Holographic Principle that states that many
theories in a bulk, can be fully determined by another theory as a boundary.

• If a black hole radiates, it should radiate completely until nothing of it is left, but
pure radiation. This is the origin of the Information Paradox. With the matter falling
into the black hole is associated a certain amount of information: e.g. correlation
functions. But if the whole of a black hole evaporates and becomes thermal radiation
that is uncorrelated and hence carries no information, then the initial information is
lost. Another way to look at this is that in quantum mechanics one assumes that a the
evolution of a wavefunction to the future or in the past is determined by the action
of a unitary operator. But if all black holes, irrespective of what has gone into them,
eventually turn into the same state of thermal radiation, then this assumption is not
valid. There are some possible solutions to this paradox though. String theory and
the AdS/CFT correspondence e.g. predict that the thermal radiation is not exactly
thermal but receives corrections that preserve the information.
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